]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/nvme/nvme_ctrlr.c
zfs: merge openzfs/zfs@e13538856
[FreeBSD/FreeBSD.git] / sys / dev / nvme / nvme_ctrlr.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2012-2016 Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 #include "opt_cam.h"
31 #include "opt_nvme.h"
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/buf.h>
36 #include <sys/bus.h>
37 #include <sys/conf.h>
38 #include <sys/ioccom.h>
39 #include <sys/proc.h>
40 #include <sys/smp.h>
41 #include <sys/uio.h>
42 #include <sys/sbuf.h>
43 #include <sys/endian.h>
44 #include <machine/stdarg.h>
45 #include <vm/vm.h>
46
47 #include "nvme_private.h"
48
49 #define B4_CHK_RDY_DELAY_MS     2300            /* work around controller bug */
50
51 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
52                                                 struct nvme_async_event_request *aer);
53
54 static void
55 nvme_ctrlr_barrier(struct nvme_controller *ctrlr, int flags)
56 {
57         bus_barrier(ctrlr->resource, 0, rman_get_size(ctrlr->resource), flags);
58 }
59
60 static void
61 nvme_ctrlr_devctl_log(struct nvme_controller *ctrlr, const char *type, const char *msg, ...)
62 {
63         struct sbuf sb;
64         va_list ap;
65         int error;
66
67         if (sbuf_new(&sb, NULL, 0, SBUF_AUTOEXTEND | SBUF_NOWAIT) == NULL)
68                 return;
69         sbuf_printf(&sb, "%s: ", device_get_nameunit(ctrlr->dev));
70         va_start(ap, msg);
71         sbuf_vprintf(&sb, msg, ap);
72         va_end(ap);
73         error = sbuf_finish(&sb);
74         if (error == 0)
75                 printf("%s\n", sbuf_data(&sb));
76
77         sbuf_clear(&sb);
78         sbuf_printf(&sb, "name=\"%s\" reason=\"", device_get_nameunit(ctrlr->dev));
79         va_start(ap, msg);
80         sbuf_vprintf(&sb, msg, ap);
81         va_end(ap);
82         sbuf_printf(&sb, "\"");
83         error = sbuf_finish(&sb);
84         if (error == 0)
85                 devctl_notify("nvme", "controller", type, sbuf_data(&sb));
86         sbuf_delete(&sb);
87 }
88
89 static int
90 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
91 {
92         struct nvme_qpair       *qpair;
93         uint32_t                num_entries;
94         int                     error;
95
96         qpair = &ctrlr->adminq;
97         qpair->id = 0;
98         qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1;
99         qpair->domain = ctrlr->domain;
100
101         num_entries = NVME_ADMIN_ENTRIES;
102         TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
103         /*
104          * If admin_entries was overridden to an invalid value, revert it
105          *  back to our default value.
106          */
107         if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
108             num_entries > NVME_MAX_ADMIN_ENTRIES) {
109                 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
110                     "specified\n", num_entries);
111                 num_entries = NVME_ADMIN_ENTRIES;
112         }
113
114         /*
115          * The admin queue's max xfer size is treated differently than the
116          *  max I/O xfer size.  16KB is sufficient here - maybe even less?
117          */
118         error = nvme_qpair_construct(qpair, num_entries, NVME_ADMIN_TRACKERS,
119              ctrlr);
120         return (error);
121 }
122
123 #define QP(ctrlr, c)    ((c) * (ctrlr)->num_io_queues / mp_ncpus)
124
125 static int
126 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
127 {
128         struct nvme_qpair       *qpair;
129         uint32_t                cap_lo;
130         uint16_t                mqes;
131         int                     c, error, i, n;
132         int                     num_entries, num_trackers, max_entries;
133
134         /*
135          * NVMe spec sets a hard limit of 64K max entries, but devices may
136          * specify a smaller limit, so we need to check the MQES field in the
137          * capabilities register. We have to cap the number of entries to the
138          * current stride allows for in BAR 0/1, otherwise the remainder entries
139          * are inaccessible. MQES should reflect this, and this is just a
140          * fail-safe.
141          */
142         max_entries =
143             (rman_get_size(ctrlr->resource) - nvme_mmio_offsetof(doorbell[0])) /
144             (1 << (ctrlr->dstrd + 1));
145         num_entries = NVME_IO_ENTRIES;
146         TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
147         cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
148         mqes = NVME_CAP_LO_MQES(cap_lo);
149         num_entries = min(num_entries, mqes + 1);
150         num_entries = min(num_entries, max_entries);
151
152         num_trackers = NVME_IO_TRACKERS;
153         TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
154
155         num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
156         num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
157         /*
158          * No need to have more trackers than entries in the submit queue.  Note
159          * also that for a queue size of N, we can only have (N-1) commands
160          * outstanding, hence the "-1" here.
161          */
162         num_trackers = min(num_trackers, (num_entries-1));
163
164         /*
165          * Our best estimate for the maximum number of I/Os that we should
166          * normally have in flight at one time. This should be viewed as a hint,
167          * not a hard limit and will need to be revisited when the upper layers
168          * of the storage system grows multi-queue support.
169          */
170         ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4;
171
172         ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
173             M_NVME, M_ZERO | M_WAITOK);
174
175         for (i = c = n = 0; i < ctrlr->num_io_queues; i++, c += n) {
176                 qpair = &ctrlr->ioq[i];
177
178                 /*
179                  * Admin queue has ID=0. IO queues start at ID=1 -
180                  *  hence the 'i+1' here.
181                  */
182                 qpair->id = i + 1;
183                 if (ctrlr->num_io_queues > 1) {
184                         /* Find number of CPUs served by this queue. */
185                         for (n = 1; QP(ctrlr, c + n) == i; n++)
186                                 ;
187                         /* Shuffle multiple NVMe devices between CPUs. */
188                         qpair->cpu = c + (device_get_unit(ctrlr->dev)+n/2) % n;
189                         qpair->domain = pcpu_find(qpair->cpu)->pc_domain;
190                 } else {
191                         qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1;
192                         qpair->domain = ctrlr->domain;
193                 }
194
195                 /*
196                  * For I/O queues, use the controller-wide max_xfer_size
197                  *  calculated in nvme_attach().
198                  */
199                 error = nvme_qpair_construct(qpair, num_entries, num_trackers,
200                     ctrlr);
201                 if (error)
202                         return (error);
203
204                 /*
205                  * Do not bother binding interrupts if we only have one I/O
206                  *  interrupt thread for this controller.
207                  */
208                 if (ctrlr->num_io_queues > 1)
209                         bus_bind_intr(ctrlr->dev, qpair->res, qpair->cpu);
210         }
211
212         return (0);
213 }
214
215 static void
216 nvme_ctrlr_fail(struct nvme_controller *ctrlr)
217 {
218         int i;
219
220         /*
221          * No need to disable queues before failing them. Failing is a superet
222          * of disabling (though pedantically we'd abort the AERs silently with
223          * a different error, though when we fail, that hardly matters).
224          */
225         ctrlr->is_failed = true;
226         nvme_qpair_fail(&ctrlr->adminq);
227         if (ctrlr->ioq != NULL) {
228                 for (i = 0; i < ctrlr->num_io_queues; i++) {
229                         nvme_qpair_fail(&ctrlr->ioq[i]);
230                 }
231         }
232         nvme_notify_fail_consumers(ctrlr);
233 }
234
235 void
236 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
237     struct nvme_request *req)
238 {
239
240         mtx_lock(&ctrlr->lock);
241         STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
242         mtx_unlock(&ctrlr->lock);
243         if (!ctrlr->is_dying)
244                 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
245 }
246
247 static void
248 nvme_ctrlr_fail_req_task(void *arg, int pending)
249 {
250         struct nvme_controller  *ctrlr = arg;
251         struct nvme_request     *req;
252
253         mtx_lock(&ctrlr->lock);
254         while ((req = STAILQ_FIRST(&ctrlr->fail_req)) != NULL) {
255                 STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
256                 mtx_unlock(&ctrlr->lock);
257                 nvme_qpair_manual_complete_request(req->qpair, req,
258                     NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST);
259                 mtx_lock(&ctrlr->lock);
260         }
261         mtx_unlock(&ctrlr->lock);
262 }
263
264 /*
265  * Wait for RDY to change.
266  *
267  * Starts sleeping for 1us and geometrically increases it the longer we wait,
268  * capped at 1ms.
269  */
270 static int
271 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val)
272 {
273         int timeout = ticks + MSEC_2_TICKS(ctrlr->ready_timeout_in_ms);
274         sbintime_t delta_t = SBT_1US;
275         uint32_t csts;
276
277         while (1) {
278                 csts = nvme_mmio_read_4(ctrlr, csts);
279                 if (csts == NVME_GONE)          /* Hot unplug. */
280                         return (ENXIO);
281                 if (((csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK)
282                     == desired_val)
283                         break;
284                 if (timeout - ticks < 0) {
285                         nvme_printf(ctrlr, "controller ready did not become %d "
286                             "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms);
287                         return (ENXIO);
288                 }
289
290                 pause_sbt("nvmerdy", delta_t, 0, C_PREL(1));
291                 delta_t = min(SBT_1MS, delta_t * 3 / 2);
292         }
293
294         return (0);
295 }
296
297 static int
298 nvme_ctrlr_disable(struct nvme_controller *ctrlr)
299 {
300         uint32_t cc;
301         uint32_t csts;
302         uint8_t  en, rdy;
303         int err;
304
305         cc = nvme_mmio_read_4(ctrlr, cc);
306         csts = nvme_mmio_read_4(ctrlr, csts);
307
308         en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK;
309         rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK;
310
311         /*
312          * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
313          * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
314          * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
315          * isn't the desired value. Short circuit if we're already disabled.
316          */
317         if (en == 0) {
318                 /* Wait for RDY == 0 or timeout & fail */
319                 if (rdy == 0)
320                         return (0);
321                 return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
322         }
323         if (rdy == 0) {
324                 /* EN == 1, wait for  RDY == 1 or timeout & fail */
325                 err = nvme_ctrlr_wait_for_ready(ctrlr, 1);
326                 if (err != 0)
327                         return (err);
328         }
329
330         cc &= ~NVME_CC_REG_EN_MASK;
331         nvme_mmio_write_4(ctrlr, cc, cc);
332
333         /*
334          * A few drives have firmware bugs that freeze the drive if we access
335          * the mmio too soon after we disable.
336          */
337         if (ctrlr->quirks & QUIRK_DELAY_B4_CHK_RDY)
338                 pause("nvmeR", MSEC_2_TICKS(B4_CHK_RDY_DELAY_MS));
339         return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
340 }
341
342 static int
343 nvme_ctrlr_enable(struct nvme_controller *ctrlr)
344 {
345         uint32_t        cc;
346         uint32_t        csts;
347         uint32_t        aqa;
348         uint32_t        qsize;
349         uint8_t         en, rdy;
350         int             err;
351
352         cc = nvme_mmio_read_4(ctrlr, cc);
353         csts = nvme_mmio_read_4(ctrlr, csts);
354
355         en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK;
356         rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK;
357
358         /*
359          * See note in nvme_ctrlr_disable. Short circuit if we're already enabled.
360          */
361         if (en == 1) {
362                 if (rdy == 1)
363                         return (0);
364                 return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
365         }
366
367         /* EN == 0 already wait for RDY == 0 or timeout & fail */
368         err = nvme_ctrlr_wait_for_ready(ctrlr, 0);
369         if (err != 0)
370                 return (err);
371
372         nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
373         nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
374
375         /* acqs and asqs are 0-based. */
376         qsize = ctrlr->adminq.num_entries - 1;
377
378         aqa = 0;
379         aqa = (qsize & NVME_AQA_REG_ACQS_MASK) << NVME_AQA_REG_ACQS_SHIFT;
380         aqa |= (qsize & NVME_AQA_REG_ASQS_MASK) << NVME_AQA_REG_ASQS_SHIFT;
381         nvme_mmio_write_4(ctrlr, aqa, aqa);
382
383         /* Initialization values for CC */
384         cc = 0;
385         cc |= 1 << NVME_CC_REG_EN_SHIFT;
386         cc |= 0 << NVME_CC_REG_CSS_SHIFT;
387         cc |= 0 << NVME_CC_REG_AMS_SHIFT;
388         cc |= 0 << NVME_CC_REG_SHN_SHIFT;
389         cc |= 6 << NVME_CC_REG_IOSQES_SHIFT; /* SQ entry size == 64 == 2^6 */
390         cc |= 4 << NVME_CC_REG_IOCQES_SHIFT; /* CQ entry size == 16 == 2^4 */
391
392         /*
393          * Use the Memory Page Size selected during device initialization.  Note
394          * that value stored in mps is suitable to use here without adjusting by
395          * NVME_MPS_SHIFT.
396          */
397         cc |= ctrlr->mps << NVME_CC_REG_MPS_SHIFT;
398
399         nvme_ctrlr_barrier(ctrlr, BUS_SPACE_BARRIER_WRITE);
400         nvme_mmio_write_4(ctrlr, cc, cc);
401
402         return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
403 }
404
405 static void
406 nvme_ctrlr_disable_qpairs(struct nvme_controller *ctrlr)
407 {
408         int i;
409
410         nvme_admin_qpair_disable(&ctrlr->adminq);
411         /*
412          * I/O queues are not allocated before the initial HW
413          *  reset, so do not try to disable them.  Use is_initialized
414          *  to determine if this is the initial HW reset.
415          */
416         if (ctrlr->is_initialized) {
417                 for (i = 0; i < ctrlr->num_io_queues; i++)
418                         nvme_io_qpair_disable(&ctrlr->ioq[i]);
419         }
420 }
421
422 static int
423 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
424 {
425         int err;
426
427         TSENTER();
428
429         nvme_ctrlr_disable_qpairs(ctrlr);
430
431         err = nvme_ctrlr_disable(ctrlr);
432         if (err != 0)
433                 goto out;
434
435         err = nvme_ctrlr_enable(ctrlr);
436 out:
437
438         TSEXIT();
439         return (err);
440 }
441
442 void
443 nvme_ctrlr_reset(struct nvme_controller *ctrlr)
444 {
445         int cmpset;
446
447         cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
448
449         if (cmpset == 0 || ctrlr->is_failed)
450                 /*
451                  * Controller is already resetting or has failed.  Return
452                  *  immediately since there is no need to kick off another
453                  *  reset in these cases.
454                  */
455                 return;
456
457         if (!ctrlr->is_dying)
458                 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
459 }
460
461 static int
462 nvme_ctrlr_identify(struct nvme_controller *ctrlr)
463 {
464         struct nvme_completion_poll_status      status;
465
466         status.done = 0;
467         nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
468             nvme_completion_poll_cb, &status);
469         nvme_completion_poll(&status);
470         if (nvme_completion_is_error(&status.cpl)) {
471                 nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
472                 return (ENXIO);
473         }
474
475         /* Convert data to host endian */
476         nvme_controller_data_swapbytes(&ctrlr->cdata);
477
478         /*
479          * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
480          *  controller supports.
481          */
482         if (ctrlr->cdata.mdts > 0)
483                 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
484                     1 << (ctrlr->cdata.mdts + NVME_MPS_SHIFT +
485                         NVME_CAP_HI_MPSMIN(ctrlr->cap_hi)));
486
487         return (0);
488 }
489
490 static int
491 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
492 {
493         struct nvme_completion_poll_status      status;
494         int                                     cq_allocated, sq_allocated;
495
496         status.done = 0;
497         nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
498             nvme_completion_poll_cb, &status);
499         nvme_completion_poll(&status);
500         if (nvme_completion_is_error(&status.cpl)) {
501                 nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n");
502                 return (ENXIO);
503         }
504
505         /*
506          * Data in cdw0 is 0-based.
507          * Lower 16-bits indicate number of submission queues allocated.
508          * Upper 16-bits indicate number of completion queues allocated.
509          */
510         sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
511         cq_allocated = (status.cpl.cdw0 >> 16) + 1;
512
513         /*
514          * Controller may allocate more queues than we requested,
515          *  so use the minimum of the number requested and what was
516          *  actually allocated.
517          */
518         ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated);
519         ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated);
520         if (ctrlr->num_io_queues > vm_ndomains)
521                 ctrlr->num_io_queues -= ctrlr->num_io_queues % vm_ndomains;
522
523         return (0);
524 }
525
526 static int
527 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
528 {
529         struct nvme_completion_poll_status      status;
530         struct nvme_qpair                       *qpair;
531         int                                     i;
532
533         for (i = 0; i < ctrlr->num_io_queues; i++) {
534                 qpair = &ctrlr->ioq[i];
535
536                 status.done = 0;
537                 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair,
538                     nvme_completion_poll_cb, &status);
539                 nvme_completion_poll(&status);
540                 if (nvme_completion_is_error(&status.cpl)) {
541                         nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
542                         return (ENXIO);
543                 }
544
545                 status.done = 0;
546                 nvme_ctrlr_cmd_create_io_sq(ctrlr, qpair,
547                     nvme_completion_poll_cb, &status);
548                 nvme_completion_poll(&status);
549                 if (nvme_completion_is_error(&status.cpl)) {
550                         nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
551                         return (ENXIO);
552                 }
553         }
554
555         return (0);
556 }
557
558 static int
559 nvme_ctrlr_delete_qpairs(struct nvme_controller *ctrlr)
560 {
561         struct nvme_completion_poll_status      status;
562         struct nvme_qpair                       *qpair;
563
564         for (int i = 0; i < ctrlr->num_io_queues; i++) {
565                 qpair = &ctrlr->ioq[i];
566
567                 status.done = 0;
568                 nvme_ctrlr_cmd_delete_io_sq(ctrlr, qpair,
569                     nvme_completion_poll_cb, &status);
570                 nvme_completion_poll(&status);
571                 if (nvme_completion_is_error(&status.cpl)) {
572                         nvme_printf(ctrlr, "nvme_destroy_io_sq failed!\n");
573                         return (ENXIO);
574                 }
575
576                 status.done = 0;
577                 nvme_ctrlr_cmd_delete_io_cq(ctrlr, qpair,
578                     nvme_completion_poll_cb, &status);
579                 nvme_completion_poll(&status);
580                 if (nvme_completion_is_error(&status.cpl)) {
581                         nvme_printf(ctrlr, "nvme_destroy_io_cq failed!\n");
582                         return (ENXIO);
583                 }
584         }
585
586         return (0);
587 }
588
589 static int
590 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
591 {
592         struct nvme_namespace   *ns;
593         uint32_t                i;
594
595         for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) {
596                 ns = &ctrlr->ns[i];
597                 nvme_ns_construct(ns, i+1, ctrlr);
598         }
599
600         return (0);
601 }
602
603 static bool
604 is_log_page_id_valid(uint8_t page_id)
605 {
606
607         switch (page_id) {
608         case NVME_LOG_ERROR:
609         case NVME_LOG_HEALTH_INFORMATION:
610         case NVME_LOG_FIRMWARE_SLOT:
611         case NVME_LOG_CHANGED_NAMESPACE:
612         case NVME_LOG_COMMAND_EFFECT:
613         case NVME_LOG_RES_NOTIFICATION:
614         case NVME_LOG_SANITIZE_STATUS:
615                 return (true);
616         }
617
618         return (false);
619 }
620
621 static uint32_t
622 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
623 {
624         uint32_t        log_page_size;
625
626         switch (page_id) {
627         case NVME_LOG_ERROR:
628                 log_page_size = min(
629                     sizeof(struct nvme_error_information_entry) *
630                     (ctrlr->cdata.elpe + 1), NVME_MAX_AER_LOG_SIZE);
631                 break;
632         case NVME_LOG_HEALTH_INFORMATION:
633                 log_page_size = sizeof(struct nvme_health_information_page);
634                 break;
635         case NVME_LOG_FIRMWARE_SLOT:
636                 log_page_size = sizeof(struct nvme_firmware_page);
637                 break;
638         case NVME_LOG_CHANGED_NAMESPACE:
639                 log_page_size = sizeof(struct nvme_ns_list);
640                 break;
641         case NVME_LOG_COMMAND_EFFECT:
642                 log_page_size = sizeof(struct nvme_command_effects_page);
643                 break;
644         case NVME_LOG_RES_NOTIFICATION:
645                 log_page_size = sizeof(struct nvme_res_notification_page);
646                 break;
647         case NVME_LOG_SANITIZE_STATUS:
648                 log_page_size = sizeof(struct nvme_sanitize_status_page);
649                 break;
650         default:
651                 log_page_size = 0;
652                 break;
653         }
654
655         return (log_page_size);
656 }
657
658 static void
659 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
660     uint8_t state)
661 {
662
663         if (state & NVME_CRIT_WARN_ST_AVAILABLE_SPARE)
664                 nvme_ctrlr_devctl_log(ctrlr, "critical",
665                     "available spare space below threshold");
666
667         if (state & NVME_CRIT_WARN_ST_TEMPERATURE)
668                 nvme_ctrlr_devctl_log(ctrlr, "critical",
669                     "temperature above threshold");
670
671         if (state & NVME_CRIT_WARN_ST_DEVICE_RELIABILITY)
672                 nvme_ctrlr_devctl_log(ctrlr, "critical",
673                     "device reliability degraded");
674
675         if (state & NVME_CRIT_WARN_ST_READ_ONLY)
676                 nvme_ctrlr_devctl_log(ctrlr, "critical",
677                     "media placed in read only mode");
678
679         if (state & NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP)
680                 nvme_ctrlr_devctl_log(ctrlr, "critical",
681                     "volatile memory backup device failed");
682
683         if (state & NVME_CRIT_WARN_ST_RESERVED_MASK)
684                 nvme_ctrlr_devctl_log(ctrlr, "critical",
685                     "unknown critical warning(s): state = 0x%02x", state);
686 }
687
688 static void
689 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
690 {
691         struct nvme_async_event_request         *aer = arg;
692         struct nvme_health_information_page     *health_info;
693         struct nvme_ns_list                     *nsl;
694         struct nvme_error_information_entry     *err;
695         int i;
696
697         /*
698          * If the log page fetch for some reason completed with an error,
699          *  don't pass log page data to the consumers.  In practice, this case
700          *  should never happen.
701          */
702         if (nvme_completion_is_error(cpl))
703                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
704                     aer->log_page_id, NULL, 0);
705         else {
706                 /* Convert data to host endian */
707                 switch (aer->log_page_id) {
708                 case NVME_LOG_ERROR:
709                         err = (struct nvme_error_information_entry *)aer->log_page_buffer;
710                         for (i = 0; i < (aer->ctrlr->cdata.elpe + 1); i++)
711                                 nvme_error_information_entry_swapbytes(err++);
712                         break;
713                 case NVME_LOG_HEALTH_INFORMATION:
714                         nvme_health_information_page_swapbytes(
715                             (struct nvme_health_information_page *)aer->log_page_buffer);
716                         break;
717                 case NVME_LOG_FIRMWARE_SLOT:
718                         nvme_firmware_page_swapbytes(
719                             (struct nvme_firmware_page *)aer->log_page_buffer);
720                         break;
721                 case NVME_LOG_CHANGED_NAMESPACE:
722                         nvme_ns_list_swapbytes(
723                             (struct nvme_ns_list *)aer->log_page_buffer);
724                         break;
725                 case NVME_LOG_COMMAND_EFFECT:
726                         nvme_command_effects_page_swapbytes(
727                             (struct nvme_command_effects_page *)aer->log_page_buffer);
728                         break;
729                 case NVME_LOG_RES_NOTIFICATION:
730                         nvme_res_notification_page_swapbytes(
731                             (struct nvme_res_notification_page *)aer->log_page_buffer);
732                         break;
733                 case NVME_LOG_SANITIZE_STATUS:
734                         nvme_sanitize_status_page_swapbytes(
735                             (struct nvme_sanitize_status_page *)aer->log_page_buffer);
736                         break;
737                 case INTEL_LOG_TEMP_STATS:
738                         intel_log_temp_stats_swapbytes(
739                             (struct intel_log_temp_stats *)aer->log_page_buffer);
740                         break;
741                 default:
742                         break;
743                 }
744
745                 if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
746                         health_info = (struct nvme_health_information_page *)
747                             aer->log_page_buffer;
748                         nvme_ctrlr_log_critical_warnings(aer->ctrlr,
749                             health_info->critical_warning);
750                         /*
751                          * Critical warnings reported through the
752                          *  SMART/health log page are persistent, so
753                          *  clear the associated bits in the async event
754                          *  config so that we do not receive repeated
755                          *  notifications for the same event.
756                          */
757                         aer->ctrlr->async_event_config &=
758                             ~health_info->critical_warning;
759                         nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
760                             aer->ctrlr->async_event_config, NULL, NULL);
761                 } else if (aer->log_page_id == NVME_LOG_CHANGED_NAMESPACE &&
762                     !nvme_use_nvd) {
763                         nsl = (struct nvme_ns_list *)aer->log_page_buffer;
764                         for (i = 0; i < nitems(nsl->ns) && nsl->ns[i] != 0; i++) {
765                                 if (nsl->ns[i] > NVME_MAX_NAMESPACES)
766                                         break;
767                                 nvme_notify_ns(aer->ctrlr, nsl->ns[i]);
768                         }
769                 }
770
771                 /*
772                  * Pass the cpl data from the original async event completion,
773                  *  not the log page fetch.
774                  */
775                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
776                     aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
777         }
778
779         /*
780          * Repost another asynchronous event request to replace the one
781          *  that just completed.
782          */
783         nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
784 }
785
786 static void
787 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
788 {
789         struct nvme_async_event_request *aer = arg;
790
791         if (nvme_completion_is_error(cpl)) {
792                 /*
793                  *  Do not retry failed async event requests.  This avoids
794                  *  infinite loops where a new async event request is submitted
795                  *  to replace the one just failed, only to fail again and
796                  *  perpetuate the loop.
797                  */
798                 return;
799         }
800
801         /* Associated log page is in bits 23:16 of completion entry dw0. */
802         aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
803
804         nvme_printf(aer->ctrlr, "async event occurred (type 0x%x, info 0x%02x,"
805             " page 0x%02x)\n", (cpl->cdw0 & 0x07), (cpl->cdw0 & 0xFF00) >> 8,
806             aer->log_page_id);
807
808         if (is_log_page_id_valid(aer->log_page_id)) {
809                 aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
810                     aer->log_page_id);
811                 memcpy(&aer->cpl, cpl, sizeof(*cpl));
812                 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
813                     NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
814                     aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
815                     aer);
816                 /* Wait to notify consumers until after log page is fetched. */
817         } else {
818                 nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
819                     NULL, 0);
820
821                 /*
822                  * Repost another asynchronous event request to replace the one
823                  *  that just completed.
824                  */
825                 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
826         }
827 }
828
829 static void
830 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
831     struct nvme_async_event_request *aer)
832 {
833         struct nvme_request *req;
834
835         aer->ctrlr = ctrlr;
836         req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
837         aer->req = req;
838
839         /*
840          * Disable timeout here, since asynchronous event requests should by
841          *  nature never be timed out.
842          */
843         req->timeout = false;
844         req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
845         nvme_ctrlr_submit_admin_request(ctrlr, req);
846 }
847
848 static void
849 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
850 {
851         struct nvme_completion_poll_status      status;
852         struct nvme_async_event_request         *aer;
853         uint32_t                                i;
854
855         ctrlr->async_event_config = NVME_CRIT_WARN_ST_AVAILABLE_SPARE |
856             NVME_CRIT_WARN_ST_DEVICE_RELIABILITY |
857             NVME_CRIT_WARN_ST_READ_ONLY |
858             NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP;
859         if (ctrlr->cdata.ver >= NVME_REV(1, 2))
860                 ctrlr->async_event_config |= NVME_ASYNC_EVENT_NS_ATTRIBUTE |
861                     NVME_ASYNC_EVENT_FW_ACTIVATE;
862
863         status.done = 0;
864         nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
865             0, NULL, 0, nvme_completion_poll_cb, &status);
866         nvme_completion_poll(&status);
867         if (nvme_completion_is_error(&status.cpl) ||
868             (status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
869             (status.cpl.cdw0 & 0xFFFF) == 0x0000) {
870                 nvme_printf(ctrlr, "temperature threshold not supported\n");
871         } else
872                 ctrlr->async_event_config |= NVME_CRIT_WARN_ST_TEMPERATURE;
873
874         nvme_ctrlr_cmd_set_async_event_config(ctrlr,
875             ctrlr->async_event_config, NULL, NULL);
876
877         /* aerl is a zero-based value, so we need to add 1 here. */
878         ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
879
880         for (i = 0; i < ctrlr->num_aers; i++) {
881                 aer = &ctrlr->aer[i];
882                 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
883         }
884 }
885
886 static void
887 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
888 {
889
890         ctrlr->int_coal_time = 0;
891         TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
892             &ctrlr->int_coal_time);
893
894         ctrlr->int_coal_threshold = 0;
895         TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
896             &ctrlr->int_coal_threshold);
897
898         nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
899             ctrlr->int_coal_threshold, NULL, NULL);
900 }
901
902 static void
903 nvme_ctrlr_hmb_free(struct nvme_controller *ctrlr)
904 {
905         struct nvme_hmb_chunk *hmbc;
906         int i;
907
908         if (ctrlr->hmb_desc_paddr) {
909                 bus_dmamap_unload(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map);
910                 bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr,
911                     ctrlr->hmb_desc_map);
912                 ctrlr->hmb_desc_paddr = 0;
913         }
914         if (ctrlr->hmb_desc_tag) {
915                 bus_dma_tag_destroy(ctrlr->hmb_desc_tag);
916                 ctrlr->hmb_desc_tag = NULL;
917         }
918         for (i = 0; i < ctrlr->hmb_nchunks; i++) {
919                 hmbc = &ctrlr->hmb_chunks[i];
920                 bus_dmamap_unload(ctrlr->hmb_tag, hmbc->hmbc_map);
921                 bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr,
922                     hmbc->hmbc_map);
923         }
924         ctrlr->hmb_nchunks = 0;
925         if (ctrlr->hmb_tag) {
926                 bus_dma_tag_destroy(ctrlr->hmb_tag);
927                 ctrlr->hmb_tag = NULL;
928         }
929         if (ctrlr->hmb_chunks) {
930                 free(ctrlr->hmb_chunks, M_NVME);
931                 ctrlr->hmb_chunks = NULL;
932         }
933 }
934
935 static void
936 nvme_ctrlr_hmb_alloc(struct nvme_controller *ctrlr)
937 {
938         struct nvme_hmb_chunk *hmbc;
939         size_t pref, min, minc, size;
940         int err, i;
941         uint64_t max;
942
943         /* Limit HMB to 5% of RAM size per device by default. */
944         max = (uint64_t)physmem * PAGE_SIZE / 20;
945         TUNABLE_UINT64_FETCH("hw.nvme.hmb_max", &max);
946
947         /*
948          * Units of Host Memory Buffer in the Identify info are always in terms
949          * of 4k units.
950          */
951         min = (long long unsigned)ctrlr->cdata.hmmin * NVME_HMB_UNITS;
952         if (max == 0 || max < min)
953                 return;
954         pref = MIN((long long unsigned)ctrlr->cdata.hmpre * NVME_HMB_UNITS, max);
955         minc = MAX(ctrlr->cdata.hmminds * NVME_HMB_UNITS, ctrlr->page_size);
956         if (min > 0 && ctrlr->cdata.hmmaxd > 0)
957                 minc = MAX(minc, min / ctrlr->cdata.hmmaxd);
958         ctrlr->hmb_chunk = pref;
959
960 again:
961         /*
962          * However, the chunk sizes, number of chunks, and alignment of chunks
963          * are all based on the current MPS (ctrlr->page_size).
964          */
965         ctrlr->hmb_chunk = roundup2(ctrlr->hmb_chunk, ctrlr->page_size);
966         ctrlr->hmb_nchunks = howmany(pref, ctrlr->hmb_chunk);
967         if (ctrlr->cdata.hmmaxd > 0 && ctrlr->hmb_nchunks > ctrlr->cdata.hmmaxd)
968                 ctrlr->hmb_nchunks = ctrlr->cdata.hmmaxd;
969         ctrlr->hmb_chunks = malloc(sizeof(struct nvme_hmb_chunk) *
970             ctrlr->hmb_nchunks, M_NVME, M_WAITOK);
971         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
972             ctrlr->page_size, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
973             ctrlr->hmb_chunk, 1, ctrlr->hmb_chunk, 0, NULL, NULL, &ctrlr->hmb_tag);
974         if (err != 0) {
975                 nvme_printf(ctrlr, "HMB tag create failed %d\n", err);
976                 nvme_ctrlr_hmb_free(ctrlr);
977                 return;
978         }
979
980         for (i = 0; i < ctrlr->hmb_nchunks; i++) {
981                 hmbc = &ctrlr->hmb_chunks[i];
982                 if (bus_dmamem_alloc(ctrlr->hmb_tag,
983                     (void **)&hmbc->hmbc_vaddr, BUS_DMA_NOWAIT,
984                     &hmbc->hmbc_map)) {
985                         nvme_printf(ctrlr, "failed to alloc HMB\n");
986                         break;
987                 }
988                 if (bus_dmamap_load(ctrlr->hmb_tag, hmbc->hmbc_map,
989                     hmbc->hmbc_vaddr, ctrlr->hmb_chunk, nvme_single_map,
990                     &hmbc->hmbc_paddr, BUS_DMA_NOWAIT) != 0) {
991                         bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr,
992                             hmbc->hmbc_map);
993                         nvme_printf(ctrlr, "failed to load HMB\n");
994                         break;
995                 }
996                 bus_dmamap_sync(ctrlr->hmb_tag, hmbc->hmbc_map,
997                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
998         }
999
1000         if (i < ctrlr->hmb_nchunks && i * ctrlr->hmb_chunk < min &&
1001             ctrlr->hmb_chunk / 2 >= minc) {
1002                 ctrlr->hmb_nchunks = i;
1003                 nvme_ctrlr_hmb_free(ctrlr);
1004                 ctrlr->hmb_chunk /= 2;
1005                 goto again;
1006         }
1007         ctrlr->hmb_nchunks = i;
1008         if (ctrlr->hmb_nchunks * ctrlr->hmb_chunk < min) {
1009                 nvme_ctrlr_hmb_free(ctrlr);
1010                 return;
1011         }
1012
1013         size = sizeof(struct nvme_hmb_desc) * ctrlr->hmb_nchunks;
1014         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
1015             16, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1016             size, 1, size, 0, NULL, NULL, &ctrlr->hmb_desc_tag);
1017         if (err != 0) {
1018                 nvme_printf(ctrlr, "HMB desc tag create failed %d\n", err);
1019                 nvme_ctrlr_hmb_free(ctrlr);
1020                 return;
1021         }
1022         if (bus_dmamem_alloc(ctrlr->hmb_desc_tag,
1023             (void **)&ctrlr->hmb_desc_vaddr, BUS_DMA_WAITOK,
1024             &ctrlr->hmb_desc_map)) {
1025                 nvme_printf(ctrlr, "failed to alloc HMB desc\n");
1026                 nvme_ctrlr_hmb_free(ctrlr);
1027                 return;
1028         }
1029         if (bus_dmamap_load(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map,
1030             ctrlr->hmb_desc_vaddr, size, nvme_single_map,
1031             &ctrlr->hmb_desc_paddr, BUS_DMA_NOWAIT) != 0) {
1032                 bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr,
1033                     ctrlr->hmb_desc_map);
1034                 nvme_printf(ctrlr, "failed to load HMB desc\n");
1035                 nvme_ctrlr_hmb_free(ctrlr);
1036                 return;
1037         }
1038
1039         for (i = 0; i < ctrlr->hmb_nchunks; i++) {
1040                 ctrlr->hmb_desc_vaddr[i].addr =
1041                     htole64(ctrlr->hmb_chunks[i].hmbc_paddr);
1042                 ctrlr->hmb_desc_vaddr[i].size = htole32(ctrlr->hmb_chunk / ctrlr->page_size);
1043         }
1044         bus_dmamap_sync(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map,
1045             BUS_DMASYNC_PREWRITE);
1046
1047         nvme_printf(ctrlr, "Allocated %lluMB host memory buffer\n",
1048             (long long unsigned)ctrlr->hmb_nchunks * ctrlr->hmb_chunk
1049             / 1024 / 1024);
1050 }
1051
1052 static void
1053 nvme_ctrlr_hmb_enable(struct nvme_controller *ctrlr, bool enable, bool memret)
1054 {
1055         struct nvme_completion_poll_status      status;
1056         uint32_t cdw11;
1057
1058         cdw11 = 0;
1059         if (enable)
1060                 cdw11 |= 1;
1061         if (memret)
1062                 cdw11 |= 2;
1063         status.done = 0;
1064         nvme_ctrlr_cmd_set_feature(ctrlr, NVME_FEAT_HOST_MEMORY_BUFFER, cdw11,
1065             ctrlr->hmb_nchunks * ctrlr->hmb_chunk / ctrlr->page_size,
1066             ctrlr->hmb_desc_paddr, ctrlr->hmb_desc_paddr >> 32,
1067             ctrlr->hmb_nchunks, NULL, 0,
1068             nvme_completion_poll_cb, &status);
1069         nvme_completion_poll(&status);
1070         if (nvme_completion_is_error(&status.cpl))
1071                 nvme_printf(ctrlr, "nvme_ctrlr_hmb_enable failed!\n");
1072 }
1073
1074 static void
1075 nvme_ctrlr_start(void *ctrlr_arg, bool resetting)
1076 {
1077         struct nvme_controller *ctrlr = ctrlr_arg;
1078         uint32_t old_num_io_queues;
1079         int i;
1080
1081         TSENTER();
1082
1083         /*
1084          * Only reset adminq here when we are restarting the
1085          *  controller after a reset.  During initialization,
1086          *  we have already submitted admin commands to get
1087          *  the number of I/O queues supported, so cannot reset
1088          *  the adminq again here.
1089          */
1090         if (resetting) {
1091                 nvme_qpair_reset(&ctrlr->adminq);
1092                 nvme_admin_qpair_enable(&ctrlr->adminq);
1093         }
1094
1095         if (ctrlr->ioq != NULL) {
1096                 for (i = 0; i < ctrlr->num_io_queues; i++)
1097                         nvme_qpair_reset(&ctrlr->ioq[i]);
1098         }
1099
1100         /*
1101          * If it was a reset on initialization command timeout, just
1102          * return here, letting initialization code fail gracefully.
1103          */
1104         if (resetting && !ctrlr->is_initialized)
1105                 return;
1106
1107         if (resetting && nvme_ctrlr_identify(ctrlr) != 0) {
1108                 nvme_ctrlr_fail(ctrlr);
1109                 return;
1110         }
1111
1112         /*
1113          * The number of qpairs are determined during controller initialization,
1114          *  including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the
1115          *  HW limit.  We call SET_FEATURES again here so that it gets called
1116          *  after any reset for controllers that depend on the driver to
1117          *  explicit specify how many queues it will use.  This value should
1118          *  never change between resets, so panic if somehow that does happen.
1119          */
1120         if (resetting) {
1121                 old_num_io_queues = ctrlr->num_io_queues;
1122                 if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
1123                         nvme_ctrlr_fail(ctrlr);
1124                         return;
1125                 }
1126
1127                 if (old_num_io_queues != ctrlr->num_io_queues) {
1128                         panic("num_io_queues changed from %u to %u",
1129                               old_num_io_queues, ctrlr->num_io_queues);
1130                 }
1131         }
1132
1133         if (ctrlr->cdata.hmpre > 0 && ctrlr->hmb_nchunks == 0) {
1134                 nvme_ctrlr_hmb_alloc(ctrlr);
1135                 if (ctrlr->hmb_nchunks > 0)
1136                         nvme_ctrlr_hmb_enable(ctrlr, true, false);
1137         } else if (ctrlr->hmb_nchunks > 0)
1138                 nvme_ctrlr_hmb_enable(ctrlr, true, true);
1139
1140         if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
1141                 nvme_ctrlr_fail(ctrlr);
1142                 return;
1143         }
1144
1145         if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
1146                 nvme_ctrlr_fail(ctrlr);
1147                 return;
1148         }
1149
1150         nvme_ctrlr_configure_aer(ctrlr);
1151         nvme_ctrlr_configure_int_coalescing(ctrlr);
1152
1153         for (i = 0; i < ctrlr->num_io_queues; i++)
1154                 nvme_io_qpair_enable(&ctrlr->ioq[i]);
1155         TSEXIT();
1156 }
1157
1158 void
1159 nvme_ctrlr_start_config_hook(void *arg)
1160 {
1161         struct nvme_controller *ctrlr = arg;
1162
1163         TSENTER();
1164
1165         /*
1166          * Don't call pre/post reset here. We've not yet created the qpairs,
1167          * haven't setup the ISRs, so there's no need to 'drain' them or
1168          * 'exclude' them.
1169          */
1170         if (nvme_ctrlr_hw_reset(ctrlr) != 0) {
1171 fail:
1172                 nvme_ctrlr_fail(ctrlr);
1173                 config_intrhook_disestablish(&ctrlr->config_hook);
1174                 return;
1175         }
1176
1177 #ifdef NVME_2X_RESET
1178         /*
1179          * Reset controller twice to ensure we do a transition from cc.en==1 to
1180          * cc.en==0.  This is because we don't really know what status the
1181          * controller was left in when boot handed off to OS.  Linux doesn't do
1182          * this, however, and when the controller is in state cc.en == 0, no
1183          * I/O can happen.
1184          */
1185         if (nvme_ctrlr_hw_reset(ctrlr) != 0)
1186                 goto fail;
1187 #endif
1188
1189         nvme_qpair_reset(&ctrlr->adminq);
1190         nvme_admin_qpair_enable(&ctrlr->adminq);
1191
1192         if (nvme_ctrlr_identify(ctrlr) == 0 &&
1193             nvme_ctrlr_set_num_qpairs(ctrlr) == 0 &&
1194             nvme_ctrlr_construct_io_qpairs(ctrlr) == 0)
1195                 nvme_ctrlr_start(ctrlr, false);
1196         else
1197                 goto fail;
1198
1199         nvme_sysctl_initialize_ctrlr(ctrlr);
1200         config_intrhook_disestablish(&ctrlr->config_hook);
1201
1202         ctrlr->is_initialized = 1;
1203         nvme_notify_new_controller(ctrlr);
1204         TSEXIT();
1205 }
1206
1207 static void
1208 nvme_ctrlr_reset_task(void *arg, int pending)
1209 {
1210         struct nvme_controller  *ctrlr = arg;
1211         int                     status;
1212
1213         nvme_ctrlr_devctl_log(ctrlr, "RESET", "resetting controller");
1214         status = nvme_ctrlr_hw_reset(ctrlr);
1215         if (status == 0)
1216                 nvme_ctrlr_start(ctrlr, true);
1217         else
1218                 nvme_ctrlr_fail(ctrlr);
1219
1220         atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1221 }
1222
1223 /*
1224  * Poll all the queues enabled on the device for completion.
1225  */
1226 void
1227 nvme_ctrlr_poll(struct nvme_controller *ctrlr)
1228 {
1229         int i;
1230
1231         nvme_qpair_process_completions(&ctrlr->adminq);
1232
1233         for (i = 0; i < ctrlr->num_io_queues; i++)
1234                 if (ctrlr->ioq && ctrlr->ioq[i].cpl)
1235                         nvme_qpair_process_completions(&ctrlr->ioq[i]);
1236 }
1237
1238 /*
1239  * Poll the single-vector interrupt case: num_io_queues will be 1 and
1240  * there's only a single vector. While we're polling, we mask further
1241  * interrupts in the controller.
1242  */
1243 void
1244 nvme_ctrlr_shared_handler(void *arg)
1245 {
1246         struct nvme_controller *ctrlr = arg;
1247
1248         nvme_mmio_write_4(ctrlr, intms, 1);
1249         nvme_ctrlr_poll(ctrlr);
1250         nvme_mmio_write_4(ctrlr, intmc, 1);
1251 }
1252
1253 static void
1254 nvme_pt_done(void *arg, const struct nvme_completion *cpl)
1255 {
1256         struct nvme_pt_command *pt = arg;
1257         struct mtx *mtx = pt->driver_lock;
1258         uint16_t status;
1259
1260         bzero(&pt->cpl, sizeof(pt->cpl));
1261         pt->cpl.cdw0 = cpl->cdw0;
1262
1263         status = cpl->status;
1264         status &= ~NVME_STATUS_P_MASK;
1265         pt->cpl.status = status;
1266
1267         mtx_lock(mtx);
1268         pt->driver_lock = NULL;
1269         wakeup(pt);
1270         mtx_unlock(mtx);
1271 }
1272
1273 int
1274 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
1275     struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
1276     int is_admin_cmd)
1277 {
1278         struct nvme_request     *req;
1279         struct mtx              *mtx;
1280         struct buf              *buf = NULL;
1281         int                     ret = 0;
1282
1283         if (pt->len > 0) {
1284                 if (pt->len > ctrlr->max_xfer_size) {
1285                         nvme_printf(ctrlr, "pt->len (%d) "
1286                             "exceeds max_xfer_size (%d)\n", pt->len,
1287                             ctrlr->max_xfer_size);
1288                         return EIO;
1289                 }
1290                 if (is_user_buffer) {
1291                         /*
1292                          * Ensure the user buffer is wired for the duration of
1293                          *  this pass-through command.
1294                          */
1295                         PHOLD(curproc);
1296                         buf = uma_zalloc(pbuf_zone, M_WAITOK);
1297                         buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
1298                         if (vmapbuf(buf, pt->buf, pt->len, 1) < 0) {
1299                                 ret = EFAULT;
1300                                 goto err;
1301                         }
1302                         req = nvme_allocate_request_vaddr(buf->b_data, pt->len, 
1303                             nvme_pt_done, pt);
1304                 } else
1305                         req = nvme_allocate_request_vaddr(pt->buf, pt->len,
1306                             nvme_pt_done, pt);
1307         } else
1308                 req = nvme_allocate_request_null(nvme_pt_done, pt);
1309
1310         /* Assume user space already converted to little-endian */
1311         req->cmd.opc = pt->cmd.opc;
1312         req->cmd.fuse = pt->cmd.fuse;
1313         req->cmd.rsvd2 = pt->cmd.rsvd2;
1314         req->cmd.rsvd3 = pt->cmd.rsvd3;
1315         req->cmd.cdw10 = pt->cmd.cdw10;
1316         req->cmd.cdw11 = pt->cmd.cdw11;
1317         req->cmd.cdw12 = pt->cmd.cdw12;
1318         req->cmd.cdw13 = pt->cmd.cdw13;
1319         req->cmd.cdw14 = pt->cmd.cdw14;
1320         req->cmd.cdw15 = pt->cmd.cdw15;
1321
1322         req->cmd.nsid = htole32(nsid);
1323
1324         mtx = mtx_pool_find(mtxpool_sleep, pt);
1325         pt->driver_lock = mtx;
1326
1327         if (is_admin_cmd)
1328                 nvme_ctrlr_submit_admin_request(ctrlr, req);
1329         else
1330                 nvme_ctrlr_submit_io_request(ctrlr, req);
1331
1332         mtx_lock(mtx);
1333         while (pt->driver_lock != NULL)
1334                 mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
1335         mtx_unlock(mtx);
1336
1337 err:
1338         if (buf != NULL) {
1339                 uma_zfree(pbuf_zone, buf);
1340                 PRELE(curproc);
1341         }
1342
1343         return (ret);
1344 }
1345
1346 static int
1347 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
1348     struct thread *td)
1349 {
1350         struct nvme_controller                  *ctrlr;
1351         struct nvme_pt_command                  *pt;
1352
1353         ctrlr = cdev->si_drv1;
1354
1355         switch (cmd) {
1356         case NVME_RESET_CONTROLLER:
1357                 nvme_ctrlr_reset(ctrlr);
1358                 break;
1359         case NVME_PASSTHROUGH_CMD:
1360                 pt = (struct nvme_pt_command *)arg;
1361                 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, le32toh(pt->cmd.nsid),
1362                     1 /* is_user_buffer */, 1 /* is_admin_cmd */));
1363         case NVME_GET_NSID:
1364         {
1365                 struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg;
1366                 strncpy(gnsid->cdev, device_get_nameunit(ctrlr->dev),
1367                     sizeof(gnsid->cdev));
1368                 gnsid->cdev[sizeof(gnsid->cdev) - 1] = '\0';
1369                 gnsid->nsid = 0;
1370                 break;
1371         }
1372         case NVME_GET_MAX_XFER_SIZE:
1373                 *(uint64_t *)arg = ctrlr->max_xfer_size;
1374                 break;
1375         default:
1376                 return (ENOTTY);
1377         }
1378
1379         return (0);
1380 }
1381
1382 static struct cdevsw nvme_ctrlr_cdevsw = {
1383         .d_version =    D_VERSION,
1384         .d_flags =      0,
1385         .d_ioctl =      nvme_ctrlr_ioctl
1386 };
1387
1388 int
1389 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
1390 {
1391         struct make_dev_args    md_args;
1392         uint32_t        cap_lo;
1393         uint32_t        cap_hi;
1394         uint32_t        to, vs, pmrcap;
1395         int             status, timeout_period;
1396
1397         ctrlr->dev = dev;
1398
1399         mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
1400         if (bus_get_domain(dev, &ctrlr->domain) != 0)
1401                 ctrlr->domain = 0;
1402
1403         ctrlr->cap_lo = cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
1404         if (bootverbose) {
1405                 device_printf(dev, "CapLo: 0x%08x: MQES %u%s%s%s%s, TO %u\n",
1406                     cap_lo, NVME_CAP_LO_MQES(cap_lo),
1407                     NVME_CAP_LO_CQR(cap_lo) ? ", CQR" : "",
1408                     NVME_CAP_LO_AMS(cap_lo) ? ", AMS" : "",
1409                     (NVME_CAP_LO_AMS(cap_lo) & 0x1) ? " WRRwUPC" : "",
1410                     (NVME_CAP_LO_AMS(cap_lo) & 0x2) ? " VS" : "",
1411                     NVME_CAP_LO_TO(cap_lo));
1412         }
1413         ctrlr->cap_hi = cap_hi = nvme_mmio_read_4(ctrlr, cap_hi);
1414         if (bootverbose) {
1415                 device_printf(dev, "CapHi: 0x%08x: DSTRD %u%s, CSS %x%s, "
1416                     "MPSMIN %u, MPSMAX %u%s%s\n", cap_hi,
1417                     NVME_CAP_HI_DSTRD(cap_hi),
1418                     NVME_CAP_HI_NSSRS(cap_hi) ? ", NSSRS" : "",
1419                     NVME_CAP_HI_CSS(cap_hi),
1420                     NVME_CAP_HI_BPS(cap_hi) ? ", BPS" : "",
1421                     NVME_CAP_HI_MPSMIN(cap_hi),
1422                     NVME_CAP_HI_MPSMAX(cap_hi),
1423                     NVME_CAP_HI_PMRS(cap_hi) ? ", PMRS" : "",
1424                     NVME_CAP_HI_CMBS(cap_hi) ? ", CMBS" : "");
1425         }
1426         if (bootverbose) {
1427                 vs = nvme_mmio_read_4(ctrlr, vs);
1428                 device_printf(dev, "Version: 0x%08x: %d.%d\n", vs,
1429                     NVME_MAJOR(vs), NVME_MINOR(vs));
1430         }
1431         if (bootverbose && NVME_CAP_HI_PMRS(cap_hi)) {
1432                 pmrcap = nvme_mmio_read_4(ctrlr, pmrcap);
1433                 device_printf(dev, "PMRCap: 0x%08x: BIR %u%s%s, PMRTU %u, "
1434                     "PMRWBM %x, PMRTO %u%s\n", pmrcap,
1435                     NVME_PMRCAP_BIR(pmrcap),
1436                     NVME_PMRCAP_RDS(pmrcap) ? ", RDS" : "",
1437                     NVME_PMRCAP_WDS(pmrcap) ? ", WDS" : "",
1438                     NVME_PMRCAP_PMRTU(pmrcap),
1439                     NVME_PMRCAP_PMRWBM(pmrcap),
1440                     NVME_PMRCAP_PMRTO(pmrcap),
1441                     NVME_PMRCAP_CMSS(pmrcap) ? ", CMSS" : "");
1442         }
1443
1444         ctrlr->dstrd = NVME_CAP_HI_DSTRD(cap_hi) + 2;
1445
1446         ctrlr->mps = NVME_CAP_HI_MPSMIN(cap_hi);
1447         ctrlr->page_size = 1 << (NVME_MPS_SHIFT + ctrlr->mps);
1448
1449         /* Get ready timeout value from controller, in units of 500ms. */
1450         to = NVME_CAP_LO_TO(cap_lo) + 1;
1451         ctrlr->ready_timeout_in_ms = to * 500;
1452
1453         timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
1454         TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
1455         timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1456         timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1457         ctrlr->timeout_period = timeout_period;
1458
1459         nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
1460         TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
1461
1462         ctrlr->enable_aborts = 0;
1463         TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
1464
1465         /* Cap transfers by the maximum addressable by page-sized PRP (4KB pages -> 2MB). */
1466         ctrlr->max_xfer_size = MIN(maxphys, (ctrlr->page_size / 8 * ctrlr->page_size));
1467         if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0)
1468                 return (ENXIO);
1469
1470         /*
1471          * Create 2 threads for the taskqueue. The reset thread will block when
1472          * it detects that the controller has failed until all I/O has been
1473          * failed up the stack. The fail_req task needs to be able to run in
1474          * this case to finish the request failure for some cases.
1475          *
1476          * We could partially solve this race by draining the failed requeust
1477          * queue before proceding to free the sim, though nothing would stop
1478          * new I/O from coming in after we do that drain, but before we reach
1479          * cam_sim_free, so this big hammer is used instead.
1480          */
1481         ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1482             taskqueue_thread_enqueue, &ctrlr->taskqueue);
1483         taskqueue_start_threads(&ctrlr->taskqueue, 2, PI_DISK, "nvme taskq");
1484
1485         ctrlr->is_resetting = 0;
1486         ctrlr->is_initialized = 0;
1487         ctrlr->notification_sent = 0;
1488         TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1489         TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
1490         STAILQ_INIT(&ctrlr->fail_req);
1491         ctrlr->is_failed = false;
1492
1493         make_dev_args_init(&md_args);
1494         md_args.mda_devsw = &nvme_ctrlr_cdevsw;
1495         md_args.mda_uid = UID_ROOT;
1496         md_args.mda_gid = GID_WHEEL;
1497         md_args.mda_mode = 0600;
1498         md_args.mda_unit = device_get_unit(dev);
1499         md_args.mda_si_drv1 = (void *)ctrlr;
1500         status = make_dev_s(&md_args, &ctrlr->cdev, "nvme%d",
1501             device_get_unit(dev));
1502         if (status != 0)
1503                 return (ENXIO);
1504
1505         return (0);
1506 }
1507
1508 void
1509 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1510 {
1511         int     gone, i;
1512
1513         ctrlr->is_dying = true;
1514
1515         if (ctrlr->resource == NULL)
1516                 goto nores;
1517         if (!mtx_initialized(&ctrlr->adminq.lock))
1518                 goto noadminq;
1519
1520         /*
1521          * Check whether it is a hot unplug or a clean driver detach.
1522          * If device is not there any more, skip any shutdown commands.
1523          */
1524         gone = (nvme_mmio_read_4(ctrlr, csts) == NVME_GONE);
1525         if (gone)
1526                 nvme_ctrlr_fail(ctrlr);
1527         else
1528                 nvme_notify_fail_consumers(ctrlr);
1529
1530         for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1531                 nvme_ns_destruct(&ctrlr->ns[i]);
1532
1533         if (ctrlr->cdev)
1534                 destroy_dev(ctrlr->cdev);
1535
1536         if (ctrlr->is_initialized) {
1537                 if (!gone) {
1538                         if (ctrlr->hmb_nchunks > 0)
1539                                 nvme_ctrlr_hmb_enable(ctrlr, false, false);
1540                         nvme_ctrlr_delete_qpairs(ctrlr);
1541                 }
1542                 nvme_ctrlr_hmb_free(ctrlr);
1543         }
1544         if (ctrlr->ioq != NULL) {
1545                 for (i = 0; i < ctrlr->num_io_queues; i++)
1546                         nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1547                 free(ctrlr->ioq, M_NVME);
1548         }
1549         nvme_admin_qpair_destroy(&ctrlr->adminq);
1550
1551         /*
1552          *  Notify the controller of a shutdown, even though this is due to
1553          *   a driver unload, not a system shutdown (this path is not invoked
1554          *   during shutdown).  This ensures the controller receives a
1555          *   shutdown notification in case the system is shutdown before
1556          *   reloading the driver.
1557          */
1558         if (!gone)
1559                 nvme_ctrlr_shutdown(ctrlr);
1560
1561         if (!gone)
1562                 nvme_ctrlr_disable(ctrlr);
1563
1564 noadminq:
1565         if (ctrlr->taskqueue)
1566                 taskqueue_free(ctrlr->taskqueue);
1567
1568         if (ctrlr->tag)
1569                 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1570
1571         if (ctrlr->res)
1572                 bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1573                     rman_get_rid(ctrlr->res), ctrlr->res);
1574
1575         if (ctrlr->bar4_resource != NULL) {
1576                 bus_release_resource(dev, SYS_RES_MEMORY,
1577                     ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1578         }
1579
1580         bus_release_resource(dev, SYS_RES_MEMORY,
1581             ctrlr->resource_id, ctrlr->resource);
1582
1583 nores:
1584         mtx_destroy(&ctrlr->lock);
1585 }
1586
1587 void
1588 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
1589 {
1590         uint32_t        cc;
1591         uint32_t        csts;
1592         int             timeout;
1593
1594         cc = nvme_mmio_read_4(ctrlr, cc);
1595         cc &= ~(NVME_CC_REG_SHN_MASK << NVME_CC_REG_SHN_SHIFT);
1596         cc |= NVME_SHN_NORMAL << NVME_CC_REG_SHN_SHIFT;
1597         nvme_mmio_write_4(ctrlr, cc, cc);
1598
1599         timeout = ticks + (ctrlr->cdata.rtd3e == 0 ? 5 * hz :
1600             ((uint64_t)ctrlr->cdata.rtd3e * hz + 999999) / 1000000);
1601         while (1) {
1602                 csts = nvme_mmio_read_4(ctrlr, csts);
1603                 if (csts == NVME_GONE)          /* Hot unplug. */
1604                         break;
1605                 if (NVME_CSTS_GET_SHST(csts) == NVME_SHST_COMPLETE)
1606                         break;
1607                 if (timeout - ticks < 0) {
1608                         nvme_printf(ctrlr, "shutdown timeout\n");
1609                         break;
1610                 }
1611                 pause("nvmeshut", 1);
1612         }
1613 }
1614
1615 void
1616 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1617     struct nvme_request *req)
1618 {
1619
1620         nvme_qpair_submit_request(&ctrlr->adminq, req);
1621 }
1622
1623 void
1624 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1625     struct nvme_request *req)
1626 {
1627         struct nvme_qpair       *qpair;
1628
1629         qpair = &ctrlr->ioq[QP(ctrlr, curcpu)];
1630         nvme_qpair_submit_request(qpair, req);
1631 }
1632
1633 device_t
1634 nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1635 {
1636
1637         return (ctrlr->dev);
1638 }
1639
1640 const struct nvme_controller_data *
1641 nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1642 {
1643
1644         return (&ctrlr->cdata);
1645 }
1646
1647 int
1648 nvme_ctrlr_suspend(struct nvme_controller *ctrlr)
1649 {
1650         int to = hz;
1651
1652         /*
1653          * Can't touch failed controllers, so it's already suspended.
1654          */
1655         if (ctrlr->is_failed)
1656                 return (0);
1657
1658         /*
1659          * We don't want the reset taskqueue running, since it does similar
1660          * things, so prevent it from running after we start. Wait for any reset
1661          * that may have been started to complete. The reset process we follow
1662          * will ensure that any new I/O will queue and be given to the hardware
1663          * after we resume (though there should be none).
1664          */
1665         while (atomic_cmpset_32(&ctrlr->is_resetting, 0, 1) == 0 && to-- > 0)
1666                 pause("nvmesusp", 1);
1667         if (to <= 0) {
1668                 nvme_printf(ctrlr,
1669                     "Competing reset task didn't finish. Try again later.\n");
1670                 return (EWOULDBLOCK);
1671         }
1672
1673         if (ctrlr->hmb_nchunks > 0)
1674                 nvme_ctrlr_hmb_enable(ctrlr, false, false);
1675
1676         /*
1677          * Per Section 7.6.2 of NVMe spec 1.4, to properly suspend, we need to
1678          * delete the hardware I/O queues, and then shutdown. This properly
1679          * flushes any metadata the drive may have stored so it can survive
1680          * having its power removed and prevents the unsafe shutdown count from
1681          * incriminating. Once we delete the qpairs, we have to disable them
1682          * before shutting down.
1683          */
1684         nvme_ctrlr_delete_qpairs(ctrlr);
1685         nvme_ctrlr_disable_qpairs(ctrlr);
1686         nvme_ctrlr_shutdown(ctrlr);
1687
1688         return (0);
1689 }
1690
1691 int
1692 nvme_ctrlr_resume(struct nvme_controller *ctrlr)
1693 {
1694
1695         /*
1696          * Can't touch failed controllers, so nothing to do to resume.
1697          */
1698         if (ctrlr->is_failed)
1699                 return (0);
1700
1701         if (nvme_ctrlr_hw_reset(ctrlr) != 0)
1702                 goto fail;
1703
1704         /*
1705          * Now that we've reset the hardware, we can restart the controller. Any
1706          * I/O that was pending is requeued. Any admin commands are aborted with
1707          * an error. Once we've restarted, take the controller out of reset.
1708          */
1709         nvme_ctrlr_start(ctrlr, true);
1710         (void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1711
1712         return (0);
1713 fail:
1714         /*
1715          * Since we can't bring the controller out of reset, announce and fail
1716          * the controller. However, we have to return success for the resume
1717          * itself, due to questionable APIs.
1718          */
1719         nvme_printf(ctrlr, "Failed to reset on resume, failing.\n");
1720         nvme_ctrlr_fail(ctrlr);
1721         (void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1722         return (0);
1723 }