]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/nvme/nvme_qpair.c
riscv: increase GENERICSD gap
[FreeBSD/FreeBSD.git] / sys / dev / nvme / nvme_qpair.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2012-2014 Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/conf.h>
35 #include <sys/domainset.h>
36 #include <sys/proc.h>
37
38 #include <dev/pci/pcivar.h>
39
40 #include "nvme_private.h"
41
42 typedef enum error_print { ERROR_PRINT_NONE, ERROR_PRINT_NO_RETRY, ERROR_PRINT_ALL } error_print_t;
43 #define DO_NOT_RETRY    1
44
45 static void     _nvme_qpair_submit_request(struct nvme_qpair *qpair,
46                                            struct nvme_request *req);
47 static void     nvme_qpair_destroy(struct nvme_qpair *qpair);
48
49 struct nvme_opcode_string {
50         uint16_t        opc;
51         const char *    str;
52 };
53
54 static struct nvme_opcode_string admin_opcode[] = {
55         { NVME_OPC_DELETE_IO_SQ, "DELETE IO SQ" },
56         { NVME_OPC_CREATE_IO_SQ, "CREATE IO SQ" },
57         { NVME_OPC_GET_LOG_PAGE, "GET LOG PAGE" },
58         { NVME_OPC_DELETE_IO_CQ, "DELETE IO CQ" },
59         { NVME_OPC_CREATE_IO_CQ, "CREATE IO CQ" },
60         { NVME_OPC_IDENTIFY, "IDENTIFY" },
61         { NVME_OPC_ABORT, "ABORT" },
62         { NVME_OPC_SET_FEATURES, "SET FEATURES" },
63         { NVME_OPC_GET_FEATURES, "GET FEATURES" },
64         { NVME_OPC_ASYNC_EVENT_REQUEST, "ASYNC EVENT REQUEST" },
65         { NVME_OPC_FIRMWARE_ACTIVATE, "FIRMWARE ACTIVATE" },
66         { NVME_OPC_FIRMWARE_IMAGE_DOWNLOAD, "FIRMWARE IMAGE DOWNLOAD" },
67         { NVME_OPC_DEVICE_SELF_TEST, "DEVICE SELF-TEST" },
68         { NVME_OPC_NAMESPACE_ATTACHMENT, "NAMESPACE ATTACHMENT" },
69         { NVME_OPC_KEEP_ALIVE, "KEEP ALIVE" },
70         { NVME_OPC_DIRECTIVE_SEND, "DIRECTIVE SEND" },
71         { NVME_OPC_DIRECTIVE_RECEIVE, "DIRECTIVE RECEIVE" },
72         { NVME_OPC_VIRTUALIZATION_MANAGEMENT, "VIRTUALIZATION MANAGEMENT" },
73         { NVME_OPC_NVME_MI_SEND, "NVME-MI SEND" },
74         { NVME_OPC_NVME_MI_RECEIVE, "NVME-MI RECEIVE" },
75         { NVME_OPC_DOORBELL_BUFFER_CONFIG, "DOORBELL BUFFER CONFIG" },
76         { NVME_OPC_FORMAT_NVM, "FORMAT NVM" },
77         { NVME_OPC_SECURITY_SEND, "SECURITY SEND" },
78         { NVME_OPC_SECURITY_RECEIVE, "SECURITY RECEIVE" },
79         { NVME_OPC_SANITIZE, "SANITIZE" },
80         { NVME_OPC_GET_LBA_STATUS, "GET LBA STATUS" },
81         { 0xFFFF, "ADMIN COMMAND" }
82 };
83
84 static struct nvme_opcode_string io_opcode[] = {
85         { NVME_OPC_FLUSH, "FLUSH" },
86         { NVME_OPC_WRITE, "WRITE" },
87         { NVME_OPC_READ, "READ" },
88         { NVME_OPC_WRITE_UNCORRECTABLE, "WRITE UNCORRECTABLE" },
89         { NVME_OPC_COMPARE, "COMPARE" },
90         { NVME_OPC_WRITE_ZEROES, "WRITE ZEROES" },
91         { NVME_OPC_DATASET_MANAGEMENT, "DATASET MANAGEMENT" },
92         { NVME_OPC_VERIFY, "VERIFY" },
93         { NVME_OPC_RESERVATION_REGISTER, "RESERVATION REGISTER" },
94         { NVME_OPC_RESERVATION_REPORT, "RESERVATION REPORT" },
95         { NVME_OPC_RESERVATION_ACQUIRE, "RESERVATION ACQUIRE" },
96         { NVME_OPC_RESERVATION_RELEASE, "RESERVATION RELEASE" },
97         { 0xFFFF, "IO COMMAND" }
98 };
99
100 static const char *
101 get_admin_opcode_string(uint16_t opc)
102 {
103         struct nvme_opcode_string *entry;
104
105         entry = admin_opcode;
106
107         while (entry->opc != 0xFFFF) {
108                 if (entry->opc == opc)
109                         return (entry->str);
110                 entry++;
111         }
112         return (entry->str);
113 }
114
115 static const char *
116 get_io_opcode_string(uint16_t opc)
117 {
118         struct nvme_opcode_string *entry;
119
120         entry = io_opcode;
121
122         while (entry->opc != 0xFFFF) {
123                 if (entry->opc == opc)
124                         return (entry->str);
125                 entry++;
126         }
127         return (entry->str);
128 }
129
130 static void
131 nvme_admin_qpair_print_command(struct nvme_qpair *qpair,
132     struct nvme_command *cmd)
133 {
134
135         nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%x "
136             "cdw10:%08x cdw11:%08x\n",
137             get_admin_opcode_string(cmd->opc), cmd->opc, qpair->id, cmd->cid,
138             le32toh(cmd->nsid), le32toh(cmd->cdw10), le32toh(cmd->cdw11));
139 }
140
141 static void
142 nvme_io_qpair_print_command(struct nvme_qpair *qpair,
143     struct nvme_command *cmd)
144 {
145
146         switch (cmd->opc) {
147         case NVME_OPC_WRITE:
148         case NVME_OPC_READ:
149         case NVME_OPC_WRITE_UNCORRECTABLE:
150         case NVME_OPC_COMPARE:
151         case NVME_OPC_WRITE_ZEROES:
152         case NVME_OPC_VERIFY:
153                 nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d "
154                     "lba:%llu len:%d\n",
155                     get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid),
156                     ((unsigned long long)le32toh(cmd->cdw11) << 32) + le32toh(cmd->cdw10),
157                     (le32toh(cmd->cdw12) & 0xFFFF) + 1);
158                 break;
159         case NVME_OPC_FLUSH:
160         case NVME_OPC_DATASET_MANAGEMENT:
161         case NVME_OPC_RESERVATION_REGISTER:
162         case NVME_OPC_RESERVATION_REPORT:
163         case NVME_OPC_RESERVATION_ACQUIRE:
164         case NVME_OPC_RESERVATION_RELEASE:
165                 nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d\n",
166                     get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid));
167                 break;
168         default:
169                 nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%d\n",
170                     get_io_opcode_string(cmd->opc), cmd->opc, qpair->id,
171                     cmd->cid, le32toh(cmd->nsid));
172                 break;
173         }
174 }
175
176 static void
177 nvme_qpair_print_command(struct nvme_qpair *qpair, struct nvme_command *cmd)
178 {
179         if (qpair->id == 0)
180                 nvme_admin_qpair_print_command(qpair, cmd);
181         else
182                 nvme_io_qpair_print_command(qpair, cmd);
183         if (nvme_verbose_cmd_dump) {
184                 nvme_printf(qpair->ctrlr,
185                     "nsid:%#x rsvd2:%#x rsvd3:%#x mptr:%#jx prp1:%#jx prp2:%#jx\n",
186                     cmd->nsid, cmd->rsvd2, cmd->rsvd3, (uintmax_t)cmd->mptr,
187                     (uintmax_t)cmd->prp1, (uintmax_t)cmd->prp2);
188                 nvme_printf(qpair->ctrlr,
189                     "cdw10: %#x cdw11:%#x cdw12:%#x cdw13:%#x cdw14:%#x cdw15:%#x\n",
190                     cmd->cdw10, cmd->cdw11, cmd->cdw12, cmd->cdw13, cmd->cdw14,
191                     cmd->cdw15);
192         }
193 }
194
195 struct nvme_status_string {
196         uint16_t        sc;
197         const char *    str;
198 };
199
200 static struct nvme_status_string generic_status[] = {
201         { NVME_SC_SUCCESS, "SUCCESS" },
202         { NVME_SC_INVALID_OPCODE, "INVALID OPCODE" },
203         { NVME_SC_INVALID_FIELD, "INVALID_FIELD" },
204         { NVME_SC_COMMAND_ID_CONFLICT, "COMMAND ID CONFLICT" },
205         { NVME_SC_DATA_TRANSFER_ERROR, "DATA TRANSFER ERROR" },
206         { NVME_SC_ABORTED_POWER_LOSS, "ABORTED - POWER LOSS" },
207         { NVME_SC_INTERNAL_DEVICE_ERROR, "INTERNAL DEVICE ERROR" },
208         { NVME_SC_ABORTED_BY_REQUEST, "ABORTED - BY REQUEST" },
209         { NVME_SC_ABORTED_SQ_DELETION, "ABORTED - SQ DELETION" },
210         { NVME_SC_ABORTED_FAILED_FUSED, "ABORTED - FAILED FUSED" },
211         { NVME_SC_ABORTED_MISSING_FUSED, "ABORTED - MISSING FUSED" },
212         { NVME_SC_INVALID_NAMESPACE_OR_FORMAT, "INVALID NAMESPACE OR FORMAT" },
213         { NVME_SC_COMMAND_SEQUENCE_ERROR, "COMMAND SEQUENCE ERROR" },
214         { NVME_SC_INVALID_SGL_SEGMENT_DESCR, "INVALID SGL SEGMENT DESCRIPTOR" },
215         { NVME_SC_INVALID_NUMBER_OF_SGL_DESCR, "INVALID NUMBER OF SGL DESCRIPTORS" },
216         { NVME_SC_DATA_SGL_LENGTH_INVALID, "DATA SGL LENGTH INVALID" },
217         { NVME_SC_METADATA_SGL_LENGTH_INVALID, "METADATA SGL LENGTH INVALID" },
218         { NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID, "SGL DESCRIPTOR TYPE INVALID" },
219         { NVME_SC_INVALID_USE_OF_CMB, "INVALID USE OF CONTROLLER MEMORY BUFFER" },
220         { NVME_SC_PRP_OFFET_INVALID, "PRP OFFET INVALID" },
221         { NVME_SC_ATOMIC_WRITE_UNIT_EXCEEDED, "ATOMIC WRITE UNIT EXCEEDED" },
222         { NVME_SC_OPERATION_DENIED, "OPERATION DENIED" },
223         { NVME_SC_SGL_OFFSET_INVALID, "SGL OFFSET INVALID" },
224         { NVME_SC_HOST_ID_INCONSISTENT_FORMAT, "HOST IDENTIFIER INCONSISTENT FORMAT" },
225         { NVME_SC_KEEP_ALIVE_TIMEOUT_EXPIRED, "KEEP ALIVE TIMEOUT EXPIRED" },
226         { NVME_SC_KEEP_ALIVE_TIMEOUT_INVALID, "KEEP ALIVE TIMEOUT INVALID" },
227         { NVME_SC_ABORTED_DUE_TO_PREEMPT, "COMMAND ABORTED DUE TO PREEMPT AND ABORT" },
228         { NVME_SC_SANITIZE_FAILED, "SANITIZE FAILED" },
229         { NVME_SC_SANITIZE_IN_PROGRESS, "SANITIZE IN PROGRESS" },
230         { NVME_SC_SGL_DATA_BLOCK_GRAN_INVALID, "SGL_DATA_BLOCK_GRANULARITY_INVALID" },
231         { NVME_SC_NOT_SUPPORTED_IN_CMB, "COMMAND NOT SUPPORTED FOR QUEUE IN CMB" },
232         { NVME_SC_NAMESPACE_IS_WRITE_PROTECTED, "NAMESPACE IS WRITE PROTECTED" },
233         { NVME_SC_COMMAND_INTERRUPTED, "COMMAND INTERRUPTED" },
234         { NVME_SC_TRANSIENT_TRANSPORT_ERROR, "TRANSIENT TRANSPORT ERROR" },
235
236         { NVME_SC_LBA_OUT_OF_RANGE, "LBA OUT OF RANGE" },
237         { NVME_SC_CAPACITY_EXCEEDED, "CAPACITY EXCEEDED" },
238         { NVME_SC_NAMESPACE_NOT_READY, "NAMESPACE NOT READY" },
239         { NVME_SC_RESERVATION_CONFLICT, "RESERVATION CONFLICT" },
240         { NVME_SC_FORMAT_IN_PROGRESS, "FORMAT IN PROGRESS" },
241         { 0xFFFF, "GENERIC" }
242 };
243
244 static struct nvme_status_string command_specific_status[] = {
245         { NVME_SC_COMPLETION_QUEUE_INVALID, "INVALID COMPLETION QUEUE" },
246         { NVME_SC_INVALID_QUEUE_IDENTIFIER, "INVALID QUEUE IDENTIFIER" },
247         { NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED, "MAX QUEUE SIZE EXCEEDED" },
248         { NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED, "ABORT CMD LIMIT EXCEEDED" },
249         { NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED, "ASYNC LIMIT EXCEEDED" },
250         { NVME_SC_INVALID_FIRMWARE_SLOT, "INVALID FIRMWARE SLOT" },
251         { NVME_SC_INVALID_FIRMWARE_IMAGE, "INVALID FIRMWARE IMAGE" },
252         { NVME_SC_INVALID_INTERRUPT_VECTOR, "INVALID INTERRUPT VECTOR" },
253         { NVME_SC_INVALID_LOG_PAGE, "INVALID LOG PAGE" },
254         { NVME_SC_INVALID_FORMAT, "INVALID FORMAT" },
255         { NVME_SC_FIRMWARE_REQUIRES_RESET, "FIRMWARE REQUIRES RESET" },
256         { NVME_SC_INVALID_QUEUE_DELETION, "INVALID QUEUE DELETION" },
257         { NVME_SC_FEATURE_NOT_SAVEABLE, "FEATURE IDENTIFIER NOT SAVEABLE" },
258         { NVME_SC_FEATURE_NOT_CHANGEABLE, "FEATURE NOT CHANGEABLE" },
259         { NVME_SC_FEATURE_NOT_NS_SPECIFIC, "FEATURE NOT NAMESPACE SPECIFIC" },
260         { NVME_SC_FW_ACT_REQUIRES_NVMS_RESET, "FIRMWARE ACTIVATION REQUIRES NVM SUBSYSTEM RESET" },
261         { NVME_SC_FW_ACT_REQUIRES_RESET, "FIRMWARE ACTIVATION REQUIRES RESET" },
262         { NVME_SC_FW_ACT_REQUIRES_TIME, "FIRMWARE ACTIVATION REQUIRES MAXIMUM TIME VIOLATION" },
263         { NVME_SC_FW_ACT_PROHIBITED, "FIRMWARE ACTIVATION PROHIBITED" },
264         { NVME_SC_OVERLAPPING_RANGE, "OVERLAPPING RANGE" },
265         { NVME_SC_NS_INSUFFICIENT_CAPACITY, "NAMESPACE INSUFFICIENT CAPACITY" },
266         { NVME_SC_NS_ID_UNAVAILABLE, "NAMESPACE IDENTIFIER UNAVAILABLE" },
267         { NVME_SC_NS_ALREADY_ATTACHED, "NAMESPACE ALREADY ATTACHED" },
268         { NVME_SC_NS_IS_PRIVATE, "NAMESPACE IS PRIVATE" },
269         { NVME_SC_NS_NOT_ATTACHED, "NS NOT ATTACHED" },
270         { NVME_SC_THIN_PROV_NOT_SUPPORTED, "THIN PROVISIONING NOT SUPPORTED" },
271         { NVME_SC_CTRLR_LIST_INVALID, "CONTROLLER LIST INVALID" },
272         { NVME_SC_SELF_TEST_IN_PROGRESS, "DEVICE SELF-TEST IN PROGRESS" },
273         { NVME_SC_BOOT_PART_WRITE_PROHIB, "BOOT PARTITION WRITE PROHIBITED" },
274         { NVME_SC_INVALID_CTRLR_ID, "INVALID CONTROLLER IDENTIFIER" },
275         { NVME_SC_INVALID_SEC_CTRLR_STATE, "INVALID SECONDARY CONTROLLER STATE" },
276         { NVME_SC_INVALID_NUM_OF_CTRLR_RESRC, "INVALID NUMBER OF CONTROLLER RESOURCES" },
277         { NVME_SC_INVALID_RESOURCE_ID, "INVALID RESOURCE IDENTIFIER" },
278         { NVME_SC_SANITIZE_PROHIBITED_WPMRE, "SANITIZE PROHIBITED WRITE PERSISTENT MEMORY REGION ENABLED" },
279         { NVME_SC_ANA_GROUP_ID_INVALID, "ANA GROUP IDENTIFIED INVALID" },
280         { NVME_SC_ANA_ATTACH_FAILED, "ANA ATTACH FAILED" },
281
282         { NVME_SC_CONFLICTING_ATTRIBUTES, "CONFLICTING ATTRIBUTES" },
283         { NVME_SC_INVALID_PROTECTION_INFO, "INVALID PROTECTION INFO" },
284         { NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE, "WRITE TO RO PAGE" },
285         { 0xFFFF, "COMMAND SPECIFIC" }
286 };
287
288 static struct nvme_status_string media_error_status[] = {
289         { NVME_SC_WRITE_FAULTS, "WRITE FAULTS" },
290         { NVME_SC_UNRECOVERED_READ_ERROR, "UNRECOVERED READ ERROR" },
291         { NVME_SC_GUARD_CHECK_ERROR, "GUARD CHECK ERROR" },
292         { NVME_SC_APPLICATION_TAG_CHECK_ERROR, "APPLICATION TAG CHECK ERROR" },
293         { NVME_SC_REFERENCE_TAG_CHECK_ERROR, "REFERENCE TAG CHECK ERROR" },
294         { NVME_SC_COMPARE_FAILURE, "COMPARE FAILURE" },
295         { NVME_SC_ACCESS_DENIED, "ACCESS DENIED" },
296         { NVME_SC_DEALLOCATED_OR_UNWRITTEN, "DEALLOCATED OR UNWRITTEN LOGICAL BLOCK" },
297         { 0xFFFF, "MEDIA ERROR" }
298 };
299
300 static struct nvme_status_string path_related_status[] = {
301         { NVME_SC_INTERNAL_PATH_ERROR, "INTERNAL PATH ERROR" },
302         { NVME_SC_ASYMMETRIC_ACCESS_PERSISTENT_LOSS, "ASYMMETRIC ACCESS PERSISTENT LOSS" },
303         { NVME_SC_ASYMMETRIC_ACCESS_INACCESSIBLE, "ASYMMETRIC ACCESS INACCESSIBLE" },
304         { NVME_SC_ASYMMETRIC_ACCESS_TRANSITION, "ASYMMETRIC ACCESS TRANSITION" },
305         { NVME_SC_CONTROLLER_PATHING_ERROR, "CONTROLLER PATHING ERROR" },
306         { NVME_SC_HOST_PATHING_ERROR, "HOST PATHING ERROR" },
307         { NVME_SC_COMMAND_ABOTHED_BY_HOST, "COMMAND ABOTHED BY HOST" },
308         { 0xFFFF, "PATH RELATED" },
309 };
310
311 static const char *
312 get_status_string(uint16_t sct, uint16_t sc)
313 {
314         struct nvme_status_string *entry;
315
316         switch (sct) {
317         case NVME_SCT_GENERIC:
318                 entry = generic_status;
319                 break;
320         case NVME_SCT_COMMAND_SPECIFIC:
321                 entry = command_specific_status;
322                 break;
323         case NVME_SCT_MEDIA_ERROR:
324                 entry = media_error_status;
325                 break;
326         case NVME_SCT_PATH_RELATED:
327                 entry = path_related_status;
328                 break;
329         case NVME_SCT_VENDOR_SPECIFIC:
330                 return ("VENDOR SPECIFIC");
331         default:
332                 return ("RESERVED");
333         }
334
335         while (entry->sc != 0xFFFF) {
336                 if (entry->sc == sc)
337                         return (entry->str);
338                 entry++;
339         }
340         return (entry->str);
341 }
342
343 static void
344 nvme_qpair_print_completion(struct nvme_qpair *qpair,
345     struct nvme_completion *cpl)
346 {
347         uint16_t sct, sc;
348
349         sct = NVME_STATUS_GET_SCT(cpl->status);
350         sc = NVME_STATUS_GET_SC(cpl->status);
351
352         nvme_printf(qpair->ctrlr, "%s (%02x/%02x) sqid:%d cid:%d cdw0:%x\n",
353             get_status_string(sct, sc), sct, sc, cpl->sqid, cpl->cid,
354             cpl->cdw0);
355 }
356
357 static bool
358 nvme_completion_is_retry(const struct nvme_completion *cpl)
359 {
360         uint8_t sct, sc, dnr;
361
362         sct = NVME_STATUS_GET_SCT(cpl->status);
363         sc = NVME_STATUS_GET_SC(cpl->status);
364         dnr = NVME_STATUS_GET_DNR(cpl->status); /* Do Not Retry Bit */
365
366         /*
367          * TODO: spec is not clear how commands that are aborted due
368          *  to TLER will be marked.  So for now, it seems
369          *  NAMESPACE_NOT_READY is the only case where we should
370          *  look at the DNR bit. Requests failed with ABORTED_BY_REQUEST
371          *  set the DNR bit correctly since the driver controls that.
372          */
373         switch (sct) {
374         case NVME_SCT_GENERIC:
375                 switch (sc) {
376                 case NVME_SC_ABORTED_BY_REQUEST:
377                 case NVME_SC_NAMESPACE_NOT_READY:
378                         if (dnr)
379                                 return (0);
380                         else
381                                 return (1);
382                 case NVME_SC_INVALID_OPCODE:
383                 case NVME_SC_INVALID_FIELD:
384                 case NVME_SC_COMMAND_ID_CONFLICT:
385                 case NVME_SC_DATA_TRANSFER_ERROR:
386                 case NVME_SC_ABORTED_POWER_LOSS:
387                 case NVME_SC_INTERNAL_DEVICE_ERROR:
388                 case NVME_SC_ABORTED_SQ_DELETION:
389                 case NVME_SC_ABORTED_FAILED_FUSED:
390                 case NVME_SC_ABORTED_MISSING_FUSED:
391                 case NVME_SC_INVALID_NAMESPACE_OR_FORMAT:
392                 case NVME_SC_COMMAND_SEQUENCE_ERROR:
393                 case NVME_SC_LBA_OUT_OF_RANGE:
394                 case NVME_SC_CAPACITY_EXCEEDED:
395                 default:
396                         return (0);
397                 }
398         case NVME_SCT_COMMAND_SPECIFIC:
399         case NVME_SCT_MEDIA_ERROR:
400                 return (0);
401         case NVME_SCT_PATH_RELATED:
402                 switch (sc) {
403                 case NVME_SC_INTERNAL_PATH_ERROR:
404                         if (dnr)
405                                 return (0);
406                         else
407                                 return (1);
408                 default:
409                         return (0);
410                 }
411         case NVME_SCT_VENDOR_SPECIFIC:
412         default:
413                 return (0);
414         }
415 }
416
417 static void
418 nvme_qpair_complete_tracker(struct nvme_tracker *tr,
419     struct nvme_completion *cpl, error_print_t print_on_error)
420 {
421         struct nvme_qpair * qpair = tr->qpair;
422         struct nvme_request     *req;
423         bool                    retry, error, retriable;
424
425         req = tr->req;
426         error = nvme_completion_is_error(cpl);
427         retriable = nvme_completion_is_retry(cpl);
428         retry = error && retriable && req->retries < nvme_retry_count;
429         if (retry)
430                 qpair->num_retries++;
431         if (error && req->retries >= nvme_retry_count && retriable)
432                 qpair->num_failures++;
433
434         if (error && (print_on_error == ERROR_PRINT_ALL ||
435                 (!retry && print_on_error == ERROR_PRINT_NO_RETRY))) {
436                 nvme_qpair_print_command(qpair, &req->cmd);
437                 nvme_qpair_print_completion(qpair, cpl);
438         }
439
440         qpair->act_tr[cpl->cid] = NULL;
441
442         KASSERT(cpl->cid == req->cmd.cid, ("cpl cid does not match cmd cid\n"));
443
444         if (!retry) {
445                 if (req->type != NVME_REQUEST_NULL) {
446                         bus_dmamap_sync(qpair->dma_tag_payload,
447                             tr->payload_dma_map,
448                             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
449                 }
450                 if (req->cb_fn)
451                         req->cb_fn(req->cb_arg, cpl);
452         }
453
454         mtx_lock(&qpair->lock);
455         callout_stop(&tr->timer);
456
457         if (retry) {
458                 req->retries++;
459                 nvme_qpair_submit_tracker(qpair, tr);
460         } else {
461                 if (req->type != NVME_REQUEST_NULL) {
462                         bus_dmamap_unload(qpair->dma_tag_payload,
463                             tr->payload_dma_map);
464                 }
465
466                 nvme_free_request(req);
467                 tr->req = NULL;
468
469                 TAILQ_REMOVE(&qpair->outstanding_tr, tr, tailq);
470                 TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
471
472                 /*
473                  * If the controller is in the middle of resetting, don't
474                  *  try to submit queued requests here - let the reset logic
475                  *  handle that instead.
476                  */
477                 if (!STAILQ_EMPTY(&qpair->queued_req) &&
478                     !qpair->ctrlr->is_resetting) {
479                         req = STAILQ_FIRST(&qpair->queued_req);
480                         STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
481                         _nvme_qpair_submit_request(qpair, req);
482                 }
483         }
484
485         mtx_unlock(&qpair->lock);
486 }
487
488 static void
489 nvme_qpair_manual_complete_tracker(
490     struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
491     error_print_t print_on_error)
492 {
493         struct nvme_completion  cpl;
494
495         memset(&cpl, 0, sizeof(cpl));
496
497         struct nvme_qpair * qpair = tr->qpair;
498
499         cpl.sqid = qpair->id;
500         cpl.cid = tr->cid;
501         cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
502         cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
503         cpl.status |= (dnr & NVME_STATUS_DNR_MASK) << NVME_STATUS_DNR_SHIFT;
504         nvme_qpair_complete_tracker(tr, &cpl, print_on_error);
505 }
506
507 void
508 nvme_qpair_manual_complete_request(struct nvme_qpair *qpair,
509     struct nvme_request *req, uint32_t sct, uint32_t sc)
510 {
511         struct nvme_completion  cpl;
512         bool                    error;
513
514         memset(&cpl, 0, sizeof(cpl));
515         cpl.sqid = qpair->id;
516         cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
517         cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
518
519         error = nvme_completion_is_error(&cpl);
520
521         if (error) {
522                 nvme_qpair_print_command(qpair, &req->cmd);
523                 nvme_qpair_print_completion(qpair, &cpl);
524         }
525
526         if (req->cb_fn)
527                 req->cb_fn(req->cb_arg, &cpl);
528
529         nvme_free_request(req);
530 }
531
532 bool
533 nvme_qpair_process_completions(struct nvme_qpair *qpair)
534 {
535         struct nvme_tracker     *tr;
536         struct nvme_completion  cpl;
537         int done = 0;
538         bool in_panic = dumping || SCHEDULER_STOPPED();
539
540         qpair->num_intr_handler_calls++;
541
542         /*
543          * qpair is not enabled, likely because a controller reset is is in
544          * progress.  Ignore the interrupt - any I/O that was associated with
545          * this interrupt will get retried when the reset is complete.
546          */
547         if (!qpair->is_enabled)
548                 return (false);
549
550         bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
551             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
552         /*
553          * A panic can stop the CPU this routine is running on at any point.  If
554          * we're called during a panic, complete the sq_head wrap protocol for
555          * the case where we are interrupted just after the increment at 1
556          * below, but before we can reset cq_head to zero at 2. Also cope with
557          * the case where we do the zero at 2, but may or may not have done the
558          * phase adjustment at step 3. The panic machinery flushes all pending
559          * memory writes, so we can make these strong ordering assumptions
560          * that would otherwise be unwise if we were racing in real time.
561          */
562         if (__predict_false(in_panic)) {
563                 if (qpair->cq_head == qpair->num_entries) {
564                         /*
565                          * Here we know that we need to zero cq_head and then negate
566                          * the phase, which hasn't been assigned if cq_head isn't
567                          * zero due to the atomic_store_rel.
568                          */
569                         qpair->cq_head = 0;
570                         qpair->phase = !qpair->phase;
571                 } else if (qpair->cq_head == 0) {
572                         /*
573                          * In this case, we know that the assignment at 2
574                          * happened below, but we don't know if it 3 happened or
575                          * not. To do this, we look at the last completion
576                          * entry and set the phase to the opposite phase
577                          * that it has. This gets us back in sync
578                          */
579                         cpl = qpair->cpl[qpair->num_entries - 1];
580                         nvme_completion_swapbytes(&cpl);
581                         qpair->phase = !NVME_STATUS_GET_P(cpl.status);
582                 }
583         }
584
585         while (1) {
586                 cpl = qpair->cpl[qpair->cq_head];
587
588                 /* Convert to host endian */
589                 nvme_completion_swapbytes(&cpl);
590
591                 if (NVME_STATUS_GET_P(cpl.status) != qpair->phase)
592                         break;
593
594                 tr = qpair->act_tr[cpl.cid];
595
596                 if (tr != NULL) {
597                         nvme_qpair_complete_tracker(tr, &cpl, ERROR_PRINT_ALL);
598                         qpair->sq_head = cpl.sqhd;
599                         done++;
600                 } else if (!in_panic) {
601                         /*
602                          * A missing tracker is normally an error.  However, a
603                          * panic can stop the CPU this routine is running on
604                          * after completing an I/O but before updating
605                          * qpair->cq_head at 1 below.  Later, we re-enter this
606                          * routine to poll I/O associated with the kernel
607                          * dump. We find that the tr has been set to null before
608                          * calling the completion routine.  If it hasn't
609                          * completed (or it triggers a panic), then '1' below
610                          * won't have updated cq_head. Rather than panic again,
611                          * ignore this condition because it's not unexpected.
612                          */
613                         nvme_printf(qpair->ctrlr,
614                             "cpl does not map to outstanding cmd\n");
615                         /* nvme_dump_completion expects device endianess */
616                         nvme_dump_completion(&qpair->cpl[qpair->cq_head]);
617                         KASSERT(0, ("received completion for unknown cmd"));
618                 }
619
620                 /*
621                  * There's a number of races with the following (see above) when
622                  * the system panics. We compensate for each one of them by
623                  * using the atomic store to force strong ordering (at least when
624                  * viewed in the aftermath of a panic).
625                  */
626                 if (++qpair->cq_head == qpair->num_entries) {           /* 1 */
627                         atomic_store_rel_int(&qpair->cq_head, 0);       /* 2 */
628                         qpair->phase = !qpair->phase;                   /* 3 */
629                 }
630
631                 bus_space_write_4(qpair->ctrlr->bus_tag, qpair->ctrlr->bus_handle,
632                     qpair->cq_hdbl_off, qpair->cq_head);
633         }
634         return (done != 0);
635 }
636
637 static void
638 nvme_qpair_msix_handler(void *arg)
639 {
640         struct nvme_qpair *qpair = arg;
641
642         nvme_qpair_process_completions(qpair);
643 }
644
645 int
646 nvme_qpair_construct(struct nvme_qpair *qpair,
647     uint32_t num_entries, uint32_t num_trackers,
648     struct nvme_controller *ctrlr)
649 {
650         struct nvme_tracker     *tr;
651         size_t                  cmdsz, cplsz, prpsz, allocsz, prpmemsz;
652         uint64_t                queuemem_phys, prpmem_phys, list_phys;
653         uint8_t                 *queuemem, *prpmem, *prp_list;
654         int                     i, err;
655
656         qpair->vector = ctrlr->msix_enabled ? qpair->id : 0;
657         qpair->num_entries = num_entries;
658         qpair->num_trackers = num_trackers;
659         qpair->ctrlr = ctrlr;
660
661         if (ctrlr->msix_enabled) {
662                 /*
663                  * MSI-X vector resource IDs start at 1, so we add one to
664                  *  the queue's vector to get the corresponding rid to use.
665                  */
666                 qpair->rid = qpair->vector + 1;
667
668                 qpair->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
669                     &qpair->rid, RF_ACTIVE);
670                 if (bus_setup_intr(ctrlr->dev, qpair->res,
671                     INTR_TYPE_MISC | INTR_MPSAFE, NULL,
672                     nvme_qpair_msix_handler, qpair, &qpair->tag) != 0) {
673                         nvme_printf(ctrlr, "unable to setup intx handler\n");
674                         goto out;
675                 }
676                 if (qpair->id == 0) {
677                         bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
678                             "admin");
679                 } else {
680                         bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
681                             "io%d", qpair->id - 1);
682                 }
683         }
684
685         mtx_init(&qpair->lock, "nvme qpair lock", NULL, MTX_DEF);
686
687         /* Note: NVMe PRP format is restricted to 4-byte alignment. */
688         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
689             4, PAGE_SIZE, BUS_SPACE_MAXADDR,
690             BUS_SPACE_MAXADDR, NULL, NULL, ctrlr->max_xfer_size,
691             btoc(ctrlr->max_xfer_size) + 1, PAGE_SIZE, 0,
692             NULL, NULL, &qpair->dma_tag_payload);
693         if (err != 0) {
694                 nvme_printf(ctrlr, "payload tag create failed %d\n", err);
695                 goto out;
696         }
697
698         /*
699          * Each component must be page aligned, and individual PRP lists
700          * cannot cross a page boundary.
701          */
702         cmdsz = qpair->num_entries * sizeof(struct nvme_command);
703         cmdsz = roundup2(cmdsz, PAGE_SIZE);
704         cplsz = qpair->num_entries * sizeof(struct nvme_completion);
705         cplsz = roundup2(cplsz, PAGE_SIZE);
706         /*
707          * For commands requiring more than 2 PRP entries, one PRP will be
708          * embedded in the command (prp1), and the rest of the PRP entries
709          * will be in a list pointed to by the command (prp2).
710          */
711         prpsz = sizeof(uint64_t) * btoc(ctrlr->max_xfer_size);
712         prpmemsz = qpair->num_trackers * prpsz;
713         allocsz = cmdsz + cplsz + prpmemsz;
714
715         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
716             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
717             allocsz, 1, allocsz, 0, NULL, NULL, &qpair->dma_tag);
718         if (err != 0) {
719                 nvme_printf(ctrlr, "tag create failed %d\n", err);
720                 goto out;
721         }
722         bus_dma_tag_set_domain(qpair->dma_tag, qpair->domain);
723
724         if (bus_dmamem_alloc(qpair->dma_tag, (void **)&queuemem,
725              BUS_DMA_COHERENT | BUS_DMA_NOWAIT, &qpair->queuemem_map)) {
726                 nvme_printf(ctrlr, "failed to alloc qpair memory\n");
727                 goto out;
728         }
729
730         if (bus_dmamap_load(qpair->dma_tag, qpair->queuemem_map,
731             queuemem, allocsz, nvme_single_map, &queuemem_phys, 0) != 0) {
732                 nvme_printf(ctrlr, "failed to load qpair memory\n");
733                 bus_dmamem_free(qpair->dma_tag, qpair->cmd,
734                     qpair->queuemem_map);
735                 goto out;
736         }
737
738         qpair->num_cmds = 0;
739         qpair->num_intr_handler_calls = 0;
740         qpair->num_retries = 0;
741         qpair->num_failures = 0;
742         qpair->cmd = (struct nvme_command *)queuemem;
743         qpair->cpl = (struct nvme_completion *)(queuemem + cmdsz);
744         prpmem = (uint8_t *)(queuemem + cmdsz + cplsz);
745         qpair->cmd_bus_addr = queuemem_phys;
746         qpair->cpl_bus_addr = queuemem_phys + cmdsz;
747         prpmem_phys = queuemem_phys + cmdsz + cplsz;
748
749         /*
750          * Calcuate the stride of the doorbell register. Many emulators set this
751          * value to correspond to a cache line. However, some hardware has set
752          * it to various small values.
753          */
754         qpair->sq_tdbl_off = nvme_mmio_offsetof(doorbell[0]) +
755             (qpair->id << (ctrlr->dstrd + 1));
756         qpair->cq_hdbl_off = nvme_mmio_offsetof(doorbell[0]) +
757             (qpair->id << (ctrlr->dstrd + 1)) + (1 << ctrlr->dstrd);
758
759         TAILQ_INIT(&qpair->free_tr);
760         TAILQ_INIT(&qpair->outstanding_tr);
761         STAILQ_INIT(&qpair->queued_req);
762
763         list_phys = prpmem_phys;
764         prp_list = prpmem;
765         for (i = 0; i < qpair->num_trackers; i++) {
766                 if (list_phys + prpsz > prpmem_phys + prpmemsz) {
767                         qpair->num_trackers = i;
768                         break;
769                 }
770
771                 /*
772                  * Make sure that the PRP list for this tracker doesn't
773                  * overflow to another page.
774                  */
775                 if (trunc_page(list_phys) !=
776                     trunc_page(list_phys + prpsz - 1)) {
777                         list_phys = roundup2(list_phys, PAGE_SIZE);
778                         prp_list =
779                             (uint8_t *)roundup2((uintptr_t)prp_list, PAGE_SIZE);
780                 }
781
782                 tr = malloc_domainset(sizeof(*tr), M_NVME,
783                     DOMAINSET_PREF(qpair->domain), M_ZERO | M_WAITOK);
784                 bus_dmamap_create(qpair->dma_tag_payload, 0,
785                     &tr->payload_dma_map);
786                 callout_init(&tr->timer, 1);
787                 tr->cid = i;
788                 tr->qpair = qpair;
789                 tr->prp = (uint64_t *)prp_list;
790                 tr->prp_bus_addr = list_phys;
791                 TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
792                 list_phys += prpsz;
793                 prp_list += prpsz;
794         }
795
796         if (qpair->num_trackers == 0) {
797                 nvme_printf(ctrlr, "failed to allocate enough trackers\n");
798                 goto out;
799         }
800
801         qpair->act_tr = malloc_domainset(sizeof(struct nvme_tracker *) *
802             qpair->num_entries, M_NVME, DOMAINSET_PREF(qpair->domain),
803             M_ZERO | M_WAITOK);
804         return (0);
805
806 out:
807         nvme_qpair_destroy(qpair);
808         return (ENOMEM);
809 }
810
811 static void
812 nvme_qpair_destroy(struct nvme_qpair *qpair)
813 {
814         struct nvme_tracker     *tr;
815
816         if (qpair->tag) {
817                 bus_teardown_intr(qpair->ctrlr->dev, qpair->res, qpair->tag);
818                 qpair->tag = NULL;
819         }
820
821         if (qpair->act_tr) {
822                 free(qpair->act_tr, M_NVME);
823                 qpair->act_tr = NULL;
824         }
825
826         while (!TAILQ_EMPTY(&qpair->free_tr)) {
827                 tr = TAILQ_FIRST(&qpair->free_tr);
828                 TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
829                 bus_dmamap_destroy(qpair->dma_tag_payload,
830                     tr->payload_dma_map);
831                 free(tr, M_NVME);
832         }
833
834         if (qpair->cmd != NULL) {
835                 bus_dmamap_unload(qpair->dma_tag, qpair->queuemem_map);
836                 bus_dmamem_free(qpair->dma_tag, qpair->cmd,
837                     qpair->queuemem_map);
838                 qpair->cmd = NULL;
839         }
840
841         if (qpair->dma_tag) {
842                 bus_dma_tag_destroy(qpair->dma_tag);
843                 qpair->dma_tag = NULL;
844         }
845
846         if (qpair->dma_tag_payload) {
847                 bus_dma_tag_destroy(qpair->dma_tag_payload);
848                 qpair->dma_tag_payload = NULL;
849         }
850
851         if (mtx_initialized(&qpair->lock))
852                 mtx_destroy(&qpair->lock);
853
854         if (qpair->res) {
855                 bus_release_resource(qpair->ctrlr->dev, SYS_RES_IRQ,
856                     rman_get_rid(qpair->res), qpair->res);
857                 qpair->res = NULL;
858         }
859 }
860
861 static void
862 nvme_admin_qpair_abort_aers(struct nvme_qpair *qpair)
863 {
864         struct nvme_tracker     *tr;
865
866         tr = TAILQ_FIRST(&qpair->outstanding_tr);
867         while (tr != NULL) {
868                 if (tr->req->cmd.opc == NVME_OPC_ASYNC_EVENT_REQUEST) {
869                         nvme_qpair_manual_complete_tracker(tr,
870                             NVME_SCT_GENERIC, NVME_SC_ABORTED_SQ_DELETION, 0,
871                             ERROR_PRINT_NONE);
872                         tr = TAILQ_FIRST(&qpair->outstanding_tr);
873                 } else {
874                         tr = TAILQ_NEXT(tr, tailq);
875                 }
876         }
877 }
878
879 void
880 nvme_admin_qpair_destroy(struct nvme_qpair *qpair)
881 {
882
883         nvme_admin_qpair_abort_aers(qpair);
884         nvme_qpair_destroy(qpair);
885 }
886
887 void
888 nvme_io_qpair_destroy(struct nvme_qpair *qpair)
889 {
890
891         nvme_qpair_destroy(qpair);
892 }
893
894 static void
895 nvme_abort_complete(void *arg, const struct nvme_completion *status)
896 {
897         struct nvme_tracker     *tr = arg;
898
899         /*
900          * If cdw0 == 1, the controller was not able to abort the command
901          *  we requested.  We still need to check the active tracker array,
902          *  to cover race where I/O timed out at same time controller was
903          *  completing the I/O.
904          */
905         if (status->cdw0 == 1 && tr->qpair->act_tr[tr->cid] != NULL) {
906                 /*
907                  * An I/O has timed out, and the controller was unable to
908                  *  abort it for some reason.  Construct a fake completion
909                  *  status, and then complete the I/O's tracker manually.
910                  */
911                 nvme_printf(tr->qpair->ctrlr,
912                     "abort command failed, aborting command manually\n");
913                 nvme_qpair_manual_complete_tracker(tr,
914                     NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_ALL);
915         }
916 }
917
918 static void
919 nvme_timeout(void *arg)
920 {
921         struct nvme_tracker     *tr = arg;
922         struct nvme_qpair       *qpair = tr->qpair;
923         struct nvme_controller  *ctrlr = qpair->ctrlr;
924         uint32_t                csts;
925         uint8_t                 cfs;
926
927         /*
928          * Read csts to get value of cfs - controller fatal status.
929          * If no fatal status, try to call the completion routine, and
930          * if completes transactions, report a missed interrupt and
931          * return (this may need to be rate limited). Otherwise, if
932          * aborts are enabled and the controller is not reporting
933          * fatal status, abort the command. Otherwise, just reset the
934          * controller and hope for the best.
935          */
936         csts = nvme_mmio_read_4(ctrlr, csts);
937         cfs = (csts >> NVME_CSTS_REG_CFS_SHIFT) & NVME_CSTS_REG_CFS_MASK;
938         if (cfs == 0 && nvme_qpair_process_completions(qpair)) {
939                 nvme_printf(ctrlr, "Missing interrupt\n");
940                 return;
941         }
942         if (ctrlr->enable_aborts && cfs == 0) {
943                 nvme_printf(ctrlr, "Aborting command due to a timeout.\n");
944                 nvme_ctrlr_cmd_abort(ctrlr, tr->cid, qpair->id,
945                     nvme_abort_complete, tr);
946         } else {
947                 nvme_printf(ctrlr, "Resetting controller due to a timeout%s.\n",
948                     (csts == 0xffffffff) ? " and possible hot unplug" :
949                     (cfs ? " and fatal error status" : ""));
950                 nvme_ctrlr_reset(ctrlr);
951         }
952 }
953
954 void
955 nvme_qpair_submit_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr)
956 {
957         struct nvme_request     *req;
958         struct nvme_controller  *ctrlr;
959         int timeout;
960
961         mtx_assert(&qpair->lock, MA_OWNED);
962
963         req = tr->req;
964         req->cmd.cid = tr->cid;
965         qpair->act_tr[tr->cid] = tr;
966         ctrlr = qpair->ctrlr;
967
968         if (req->timeout) {
969                 if (req->cb_fn == nvme_completion_poll_cb)
970                         timeout = hz;
971                 else
972                         timeout = ctrlr->timeout_period * hz;
973                 callout_reset_on(&tr->timer, timeout, nvme_timeout, tr,
974                     qpair->cpu);
975         }
976
977         /* Copy the command from the tracker to the submission queue. */
978         memcpy(&qpair->cmd[qpair->sq_tail], &req->cmd, sizeof(req->cmd));
979
980         if (++qpair->sq_tail == qpair->num_entries)
981                 qpair->sq_tail = 0;
982
983         bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
984             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
985         bus_space_write_4(qpair->ctrlr->bus_tag, qpair->ctrlr->bus_handle,
986             qpair->sq_tdbl_off, qpair->sq_tail);
987         qpair->num_cmds++;
988 }
989
990 static void
991 nvme_payload_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
992 {
993         struct nvme_tracker     *tr = arg;
994         uint32_t                cur_nseg;
995
996         /*
997          * If the mapping operation failed, return immediately.  The caller
998          *  is responsible for detecting the error status and failing the
999          *  tracker manually.
1000          */
1001         if (error != 0) {
1002                 nvme_printf(tr->qpair->ctrlr,
1003                     "nvme_payload_map err %d\n", error);
1004                 return;
1005         }
1006
1007         /*
1008          * Note that we specified PAGE_SIZE for alignment and max
1009          *  segment size when creating the bus dma tags.  So here
1010          *  we can safely just transfer each segment to its
1011          *  associated PRP entry.
1012          */
1013         tr->req->cmd.prp1 = htole64(seg[0].ds_addr);
1014
1015         if (nseg == 2) {
1016                 tr->req->cmd.prp2 = htole64(seg[1].ds_addr);
1017         } else if (nseg > 2) {
1018                 cur_nseg = 1;
1019                 tr->req->cmd.prp2 = htole64((uint64_t)tr->prp_bus_addr);
1020                 while (cur_nseg < nseg) {
1021                         tr->prp[cur_nseg-1] =
1022                             htole64((uint64_t)seg[cur_nseg].ds_addr);
1023                         cur_nseg++;
1024                 }
1025         } else {
1026                 /*
1027                  * prp2 should not be used by the controller
1028                  *  since there is only one segment, but set
1029                  *  to 0 just to be safe.
1030                  */
1031                 tr->req->cmd.prp2 = 0;
1032         }
1033
1034         bus_dmamap_sync(tr->qpair->dma_tag_payload, tr->payload_dma_map,
1035             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1036         nvme_qpair_submit_tracker(tr->qpair, tr);
1037 }
1038
1039 static void
1040 _nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
1041 {
1042         struct nvme_tracker     *tr;
1043         int                     err = 0;
1044
1045         mtx_assert(&qpair->lock, MA_OWNED);
1046
1047         tr = TAILQ_FIRST(&qpair->free_tr);
1048         req->qpair = qpair;
1049
1050         if (tr == NULL || !qpair->is_enabled) {
1051                 /*
1052                  * No tracker is available, or the qpair is disabled due to
1053                  *  an in-progress controller-level reset or controller
1054                  *  failure.
1055                  */
1056
1057                 if (qpair->ctrlr->is_failed) {
1058                         /*
1059                          * The controller has failed.  Post the request to a
1060                          *  task where it will be aborted, so that we do not
1061                          *  invoke the request's callback in the context
1062                          *  of the submission.
1063                          */
1064                         nvme_ctrlr_post_failed_request(qpair->ctrlr, req);
1065                 } else {
1066                         /*
1067                          * Put the request on the qpair's request queue to be
1068                          *  processed when a tracker frees up via a command
1069                          *  completion or when the controller reset is
1070                          *  completed.
1071                          */
1072                         STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
1073                 }
1074                 return;
1075         }
1076
1077         TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
1078         TAILQ_INSERT_TAIL(&qpair->outstanding_tr, tr, tailq);
1079         tr->req = req;
1080
1081         switch (req->type) {
1082         case NVME_REQUEST_VADDR:
1083                 KASSERT(req->payload_size <= qpair->ctrlr->max_xfer_size,
1084                     ("payload_size (%d) exceeds max_xfer_size (%d)\n",
1085                     req->payload_size, qpair->ctrlr->max_xfer_size));
1086                 err = bus_dmamap_load(tr->qpair->dma_tag_payload,
1087                     tr->payload_dma_map, req->u.payload, req->payload_size,
1088                     nvme_payload_map, tr, 0);
1089                 if (err != 0)
1090                         nvme_printf(qpair->ctrlr,
1091                             "bus_dmamap_load returned 0x%x!\n", err);
1092                 break;
1093         case NVME_REQUEST_NULL:
1094                 nvme_qpair_submit_tracker(tr->qpair, tr);
1095                 break;
1096         case NVME_REQUEST_BIO:
1097                 KASSERT(req->u.bio->bio_bcount <= qpair->ctrlr->max_xfer_size,
1098                     ("bio->bio_bcount (%jd) exceeds max_xfer_size (%d)\n",
1099                     (intmax_t)req->u.bio->bio_bcount,
1100                     qpair->ctrlr->max_xfer_size));
1101                 err = bus_dmamap_load_bio(tr->qpair->dma_tag_payload,
1102                     tr->payload_dma_map, req->u.bio, nvme_payload_map, tr, 0);
1103                 if (err != 0)
1104                         nvme_printf(qpair->ctrlr,
1105                             "bus_dmamap_load_bio returned 0x%x!\n", err);
1106                 break;
1107         case NVME_REQUEST_CCB:
1108                 err = bus_dmamap_load_ccb(tr->qpair->dma_tag_payload,
1109                     tr->payload_dma_map, req->u.payload,
1110                     nvme_payload_map, tr, 0);
1111                 if (err != 0)
1112                         nvme_printf(qpair->ctrlr,
1113                             "bus_dmamap_load_ccb returned 0x%x!\n", err);
1114                 break;
1115         default:
1116                 panic("unknown nvme request type 0x%x\n", req->type);
1117                 break;
1118         }
1119
1120         if (err != 0) {
1121                 /*
1122                  * The dmamap operation failed, so we manually fail the
1123                  *  tracker here with DATA_TRANSFER_ERROR status.
1124                  *
1125                  * nvme_qpair_manual_complete_tracker must not be called
1126                  *  with the qpair lock held.
1127                  */
1128                 mtx_unlock(&qpair->lock);
1129                 nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC,
1130                     NVME_SC_DATA_TRANSFER_ERROR, DO_NOT_RETRY, ERROR_PRINT_ALL);
1131                 mtx_lock(&qpair->lock);
1132         }
1133 }
1134
1135 void
1136 nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
1137 {
1138
1139         mtx_lock(&qpair->lock);
1140         _nvme_qpair_submit_request(qpair, req);
1141         mtx_unlock(&qpair->lock);
1142 }
1143
1144 static void
1145 nvme_qpair_enable(struct nvme_qpair *qpair)
1146 {
1147
1148         qpair->is_enabled = true;
1149 }
1150
1151 void
1152 nvme_qpair_reset(struct nvme_qpair *qpair)
1153 {
1154
1155         qpair->sq_head = qpair->sq_tail = qpair->cq_head = 0;
1156
1157         /*
1158          * First time through the completion queue, HW will set phase
1159          *  bit on completions to 1.  So set this to 1 here, indicating
1160          *  we're looking for a 1 to know which entries have completed.
1161          *  we'll toggle the bit each time when the completion queue
1162          *  rolls over.
1163          */
1164         qpair->phase = 1;
1165
1166         memset(qpair->cmd, 0,
1167             qpair->num_entries * sizeof(struct nvme_command));
1168         memset(qpair->cpl, 0,
1169             qpair->num_entries * sizeof(struct nvme_completion));
1170 }
1171
1172 void
1173 nvme_admin_qpair_enable(struct nvme_qpair *qpair)
1174 {
1175         struct nvme_tracker             *tr;
1176         struct nvme_tracker             *tr_temp;
1177
1178         /*
1179          * Manually abort each outstanding admin command.  Do not retry
1180          *  admin commands found here, since they will be left over from
1181          *  a controller reset and its likely the context in which the
1182          *  command was issued no longer applies.
1183          */
1184         TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
1185                 nvme_printf(qpair->ctrlr,
1186                     "aborting outstanding admin command\n");
1187                 nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC,
1188                     NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
1189         }
1190
1191         nvme_qpair_enable(qpair);
1192 }
1193
1194 void
1195 nvme_io_qpair_enable(struct nvme_qpair *qpair)
1196 {
1197         STAILQ_HEAD(, nvme_request)     temp;
1198         struct nvme_tracker             *tr;
1199         struct nvme_tracker             *tr_temp;
1200         struct nvme_request             *req;
1201
1202         /*
1203          * Manually abort each outstanding I/O.  This normally results in a
1204          *  retry, unless the retry count on the associated request has
1205          *  reached its limit.
1206          */
1207         TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
1208                 nvme_printf(qpair->ctrlr, "aborting outstanding i/o\n");
1209                 nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC,
1210                     NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_NO_RETRY);
1211         }
1212
1213         mtx_lock(&qpair->lock);
1214
1215         nvme_qpair_enable(qpair);
1216
1217         STAILQ_INIT(&temp);
1218         STAILQ_SWAP(&qpair->queued_req, &temp, nvme_request);
1219
1220         while (!STAILQ_EMPTY(&temp)) {
1221                 req = STAILQ_FIRST(&temp);
1222                 STAILQ_REMOVE_HEAD(&temp, stailq);
1223                 nvme_printf(qpair->ctrlr, "resubmitting queued i/o\n");
1224                 nvme_qpair_print_command(qpair, &req->cmd);
1225                 _nvme_qpair_submit_request(qpair, req);
1226         }
1227
1228         mtx_unlock(&qpair->lock);
1229 }
1230
1231 static void
1232 nvme_qpair_disable(struct nvme_qpair *qpair)
1233 {
1234         struct nvme_tracker *tr;
1235
1236         qpair->is_enabled = false;
1237         mtx_lock(&qpair->lock);
1238         TAILQ_FOREACH(tr, &qpair->outstanding_tr, tailq)
1239                 callout_stop(&tr->timer);
1240         mtx_unlock(&qpair->lock);
1241 }
1242
1243 void
1244 nvme_admin_qpair_disable(struct nvme_qpair *qpair)
1245 {
1246
1247         nvme_qpair_disable(qpair);
1248         nvme_admin_qpair_abort_aers(qpair);
1249 }
1250
1251 void
1252 nvme_io_qpair_disable(struct nvme_qpair *qpair)
1253 {
1254
1255         nvme_qpair_disable(qpair);
1256 }
1257
1258 void
1259 nvme_qpair_fail(struct nvme_qpair *qpair)
1260 {
1261         struct nvme_tracker             *tr;
1262         struct nvme_request             *req;
1263
1264         if (!mtx_initialized(&qpair->lock))
1265                 return;
1266
1267         mtx_lock(&qpair->lock);
1268
1269         while (!STAILQ_EMPTY(&qpair->queued_req)) {
1270                 req = STAILQ_FIRST(&qpair->queued_req);
1271                 STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
1272                 nvme_printf(qpair->ctrlr, "failing queued i/o\n");
1273                 mtx_unlock(&qpair->lock);
1274                 nvme_qpair_manual_complete_request(qpair, req, NVME_SCT_GENERIC,
1275                     NVME_SC_ABORTED_BY_REQUEST);
1276                 mtx_lock(&qpair->lock);
1277         }
1278
1279         /* Manually abort each outstanding I/O. */
1280         while (!TAILQ_EMPTY(&qpair->outstanding_tr)) {
1281                 tr = TAILQ_FIRST(&qpair->outstanding_tr);
1282                 /*
1283                  * Do not remove the tracker.  The abort_tracker path will
1284                  *  do that for us.
1285                  */
1286                 nvme_printf(qpair->ctrlr, "failing outstanding i/o\n");
1287                 mtx_unlock(&qpair->lock);
1288                 nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC,
1289                     NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
1290                 mtx_lock(&qpair->lock);
1291         }
1292
1293         mtx_unlock(&qpair->lock);
1294 }