]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/nvme/nvme_qpair.c
MFV r348573: 9993 zil writes can get delayed in zio pipeline
[FreeBSD/FreeBSD.git] / sys / dev / nvme / nvme_qpair.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2012-2014 Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/conf.h>
35 #include <sys/proc.h>
36
37 #include <dev/pci/pcivar.h>
38
39 #include "nvme_private.h"
40
41 typedef enum error_print { ERROR_PRINT_NONE, ERROR_PRINT_NO_RETRY, ERROR_PRINT_ALL } error_print_t;
42 #define DO_NOT_RETRY    1
43
44 static void     _nvme_qpair_submit_request(struct nvme_qpair *qpair,
45                                            struct nvme_request *req);
46 static void     nvme_qpair_destroy(struct nvme_qpair *qpair);
47
48 struct nvme_opcode_string {
49
50         uint16_t        opc;
51         const char *    str;
52 };
53
54 static struct nvme_opcode_string admin_opcode[] = {
55         { NVME_OPC_DELETE_IO_SQ, "DELETE IO SQ" },
56         { NVME_OPC_CREATE_IO_SQ, "CREATE IO SQ" },
57         { NVME_OPC_GET_LOG_PAGE, "GET LOG PAGE" },
58         { NVME_OPC_DELETE_IO_CQ, "DELETE IO CQ" },
59         { NVME_OPC_CREATE_IO_CQ, "CREATE IO CQ" },
60         { NVME_OPC_IDENTIFY, "IDENTIFY" },
61         { NVME_OPC_ABORT, "ABORT" },
62         { NVME_OPC_SET_FEATURES, "SET FEATURES" },
63         { NVME_OPC_GET_FEATURES, "GET FEATURES" },
64         { NVME_OPC_ASYNC_EVENT_REQUEST, "ASYNC EVENT REQUEST" },
65         { NVME_OPC_FIRMWARE_ACTIVATE, "FIRMWARE ACTIVATE" },
66         { NVME_OPC_FIRMWARE_IMAGE_DOWNLOAD, "FIRMWARE IMAGE DOWNLOAD" },
67         { NVME_OPC_DEVICE_SELF_TEST, "DEVICE SELF-TEST" },
68         { NVME_OPC_NAMESPACE_ATTACHMENT, "NAMESPACE ATTACHMENT" },
69         { NVME_OPC_KEEP_ALIVE, "KEEP ALIVE" },
70         { NVME_OPC_DIRECTIVE_SEND, "DIRECTIVE SEND" },
71         { NVME_OPC_DIRECTIVE_RECEIVE, "DIRECTIVE RECEIVE" },
72         { NVME_OPC_VIRTUALIZATION_MANAGEMENT, "VIRTUALIZATION MANAGEMENT" },
73         { NVME_OPC_NVME_MI_SEND, "NVME-MI SEND" },
74         { NVME_OPC_NVME_MI_RECEIVE, "NVME-MI RECEIVE" },
75         { NVME_OPC_DOORBELL_BUFFER_CONFIG, "DOORBELL BUFFER CONFIG" },
76         { NVME_OPC_FORMAT_NVM, "FORMAT NVM" },
77         { NVME_OPC_SECURITY_SEND, "SECURITY SEND" },
78         { NVME_OPC_SECURITY_RECEIVE, "SECURITY RECEIVE" },
79         { NVME_OPC_SANITIZE, "SANITIZE" },
80         { 0xFFFF, "ADMIN COMMAND" }
81 };
82
83 static struct nvme_opcode_string io_opcode[] = {
84         { NVME_OPC_FLUSH, "FLUSH" },
85         { NVME_OPC_WRITE, "WRITE" },
86         { NVME_OPC_READ, "READ" },
87         { NVME_OPC_WRITE_UNCORRECTABLE, "WRITE UNCORRECTABLE" },
88         { NVME_OPC_COMPARE, "COMPARE" },
89         { NVME_OPC_WRITE_ZEROES, "WRITE ZEROES" },
90         { NVME_OPC_DATASET_MANAGEMENT, "DATASET MANAGEMENT" },
91         { NVME_OPC_RESERVATION_REGISTER, "RESERVATION REGISTER" },
92         { NVME_OPC_RESERVATION_REPORT, "RESERVATION REPORT" },
93         { NVME_OPC_RESERVATION_ACQUIRE, "RESERVATION ACQUIRE" },
94         { NVME_OPC_RESERVATION_RELEASE, "RESERVATION RELEASE" },
95         { 0xFFFF, "IO COMMAND" }
96 };
97
98 static const char *
99 get_admin_opcode_string(uint16_t opc)
100 {
101         struct nvme_opcode_string *entry;
102
103         entry = admin_opcode;
104
105         while (entry->opc != 0xFFFF) {
106                 if (entry->opc == opc)
107                         return (entry->str);
108                 entry++;
109         }
110         return (entry->str);
111 }
112
113 static const char *
114 get_io_opcode_string(uint16_t opc)
115 {
116         struct nvme_opcode_string *entry;
117
118         entry = io_opcode;
119
120         while (entry->opc != 0xFFFF) {
121                 if (entry->opc == opc)
122                         return (entry->str);
123                 entry++;
124         }
125         return (entry->str);
126 }
127
128
129 static void
130 nvme_admin_qpair_print_command(struct nvme_qpair *qpair,
131     struct nvme_command *cmd)
132 {
133
134         nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%x "
135             "cdw10:%08x cdw11:%08x\n",
136             get_admin_opcode_string(cmd->opc), cmd->opc, qpair->id, cmd->cid,
137             le32toh(cmd->nsid), le32toh(cmd->cdw10), le32toh(cmd->cdw11));
138 }
139
140 static void
141 nvme_io_qpair_print_command(struct nvme_qpair *qpair,
142     struct nvme_command *cmd)
143 {
144
145         switch (cmd->opc) {
146         case NVME_OPC_WRITE:
147         case NVME_OPC_READ:
148         case NVME_OPC_WRITE_UNCORRECTABLE:
149         case NVME_OPC_COMPARE:
150         case NVME_OPC_WRITE_ZEROES:
151                 nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d "
152                     "lba:%llu len:%d\n",
153                     get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid),
154                     ((unsigned long long)le32toh(cmd->cdw11) << 32) + le32toh(cmd->cdw10),
155                     (le32toh(cmd->cdw12) & 0xFFFF) + 1);
156                 break;
157         case NVME_OPC_FLUSH:
158         case NVME_OPC_DATASET_MANAGEMENT:
159         case NVME_OPC_RESERVATION_REGISTER:
160         case NVME_OPC_RESERVATION_REPORT:
161         case NVME_OPC_RESERVATION_ACQUIRE:
162         case NVME_OPC_RESERVATION_RELEASE:
163                 nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d\n",
164                     get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid));
165                 break;
166         default:
167                 nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%d\n",
168                     get_io_opcode_string(cmd->opc), cmd->opc, qpair->id,
169                     cmd->cid, le32toh(cmd->nsid));
170                 break;
171         }
172 }
173
174 static void
175 nvme_qpair_print_command(struct nvme_qpair *qpair, struct nvme_command *cmd)
176 {
177         if (qpair->id == 0)
178                 nvme_admin_qpair_print_command(qpair, cmd);
179         else
180                 nvme_io_qpair_print_command(qpair, cmd);
181 }
182
183 struct nvme_status_string {
184
185         uint16_t        sc;
186         const char *    str;
187 };
188
189 static struct nvme_status_string generic_status[] = {
190         { NVME_SC_SUCCESS, "SUCCESS" },
191         { NVME_SC_INVALID_OPCODE, "INVALID OPCODE" },
192         { NVME_SC_INVALID_FIELD, "INVALID_FIELD" },
193         { NVME_SC_COMMAND_ID_CONFLICT, "COMMAND ID CONFLICT" },
194         { NVME_SC_DATA_TRANSFER_ERROR, "DATA TRANSFER ERROR" },
195         { NVME_SC_ABORTED_POWER_LOSS, "ABORTED - POWER LOSS" },
196         { NVME_SC_INTERNAL_DEVICE_ERROR, "INTERNAL DEVICE ERROR" },
197         { NVME_SC_ABORTED_BY_REQUEST, "ABORTED - BY REQUEST" },
198         { NVME_SC_ABORTED_SQ_DELETION, "ABORTED - SQ DELETION" },
199         { NVME_SC_ABORTED_FAILED_FUSED, "ABORTED - FAILED FUSED" },
200         { NVME_SC_ABORTED_MISSING_FUSED, "ABORTED - MISSING FUSED" },
201         { NVME_SC_INVALID_NAMESPACE_OR_FORMAT, "INVALID NAMESPACE OR FORMAT" },
202         { NVME_SC_COMMAND_SEQUENCE_ERROR, "COMMAND SEQUENCE ERROR" },
203         { NVME_SC_INVALID_SGL_SEGMENT_DESCR, "INVALID SGL SEGMENT DESCRIPTOR" },
204         { NVME_SC_INVALID_NUMBER_OF_SGL_DESCR, "INVALID NUMBER OF SGL DESCRIPTORS" },
205         { NVME_SC_DATA_SGL_LENGTH_INVALID, "DATA SGL LENGTH INVALID" },
206         { NVME_SC_METADATA_SGL_LENGTH_INVALID, "METADATA SGL LENGTH INVALID" },
207         { NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID, "SGL DESCRIPTOR TYPE INVALID" },
208         { NVME_SC_INVALID_USE_OF_CMB, "INVALID USE OF CONTROLLER MEMORY BUFFER" },
209         { NVME_SC_PRP_OFFET_INVALID, "PRP OFFET INVALID" },
210         { NVME_SC_ATOMIC_WRITE_UNIT_EXCEEDED, "ATOMIC WRITE UNIT EXCEEDED" },
211         { NVME_SC_OPERATION_DENIED, "OPERATION DENIED" },
212         { NVME_SC_SGL_OFFSET_INVALID, "SGL OFFSET INVALID" },
213         { NVME_SC_HOST_ID_INCONSISTENT_FORMAT, "HOST IDENTIFIER INCONSISTENT FORMAT" },
214         { NVME_SC_KEEP_ALIVE_TIMEOUT_EXPIRED, "KEEP ALIVE TIMEOUT EXPIRED" },
215         { NVME_SC_KEEP_ALIVE_TIMEOUT_INVALID, "KEEP ALIVE TIMEOUT INVALID" },
216         { NVME_SC_ABORTED_DUE_TO_PREEMPT, "COMMAND ABORTED DUE TO PREEMPT AND ABORT" },
217         { NVME_SC_SANITIZE_FAILED, "SANITIZE FAILED" },
218         { NVME_SC_SANITIZE_IN_PROGRESS, "SANITIZE IN PROGRESS" },
219         { NVME_SC_SGL_DATA_BLOCK_GRAN_INVALID, "SGL_DATA_BLOCK_GRANULARITY_INVALID" },
220         { NVME_SC_NOT_SUPPORTED_IN_CMB, "COMMAND NOT SUPPORTED FOR QUEUE IN CMB" },
221
222         { NVME_SC_LBA_OUT_OF_RANGE, "LBA OUT OF RANGE" },
223         { NVME_SC_CAPACITY_EXCEEDED, "CAPACITY EXCEEDED" },
224         { NVME_SC_NAMESPACE_NOT_READY, "NAMESPACE NOT READY" },
225         { NVME_SC_RESERVATION_CONFLICT, "RESERVATION CONFLICT" },
226         { NVME_SC_FORMAT_IN_PROGRESS, "FORMAT IN PROGRESS" },
227         { 0xFFFF, "GENERIC" }
228 };
229
230 static struct nvme_status_string command_specific_status[] = {
231         { NVME_SC_COMPLETION_QUEUE_INVALID, "INVALID COMPLETION QUEUE" },
232         { NVME_SC_INVALID_QUEUE_IDENTIFIER, "INVALID QUEUE IDENTIFIER" },
233         { NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED, "MAX QUEUE SIZE EXCEEDED" },
234         { NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED, "ABORT CMD LIMIT EXCEEDED" },
235         { NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED, "ASYNC LIMIT EXCEEDED" },
236         { NVME_SC_INVALID_FIRMWARE_SLOT, "INVALID FIRMWARE SLOT" },
237         { NVME_SC_INVALID_FIRMWARE_IMAGE, "INVALID FIRMWARE IMAGE" },
238         { NVME_SC_INVALID_INTERRUPT_VECTOR, "INVALID INTERRUPT VECTOR" },
239         { NVME_SC_INVALID_LOG_PAGE, "INVALID LOG PAGE" },
240         { NVME_SC_INVALID_FORMAT, "INVALID FORMAT" },
241         { NVME_SC_FIRMWARE_REQUIRES_RESET, "FIRMWARE REQUIRES RESET" },
242         { NVME_SC_INVALID_QUEUE_DELETION, "INVALID QUEUE DELETION" },
243         { NVME_SC_FEATURE_NOT_SAVEABLE, "FEATURE IDENTIFIER NOT SAVEABLE" },
244         { NVME_SC_FEATURE_NOT_CHANGEABLE, "FEATURE NOT CHANGEABLE" },
245         { NVME_SC_FEATURE_NOT_NS_SPECIFIC, "FEATURE NOT NAMESPACE SPECIFIC" },
246         { NVME_SC_FW_ACT_REQUIRES_NVMS_RESET, "FIRMWARE ACTIVATION REQUIRES NVM SUBSYSTEM RESET" },
247         { NVME_SC_FW_ACT_REQUIRES_RESET, "FIRMWARE ACTIVATION REQUIRES RESET" },
248         { NVME_SC_FW_ACT_REQUIRES_TIME, "FIRMWARE ACTIVATION REQUIRES MAXIMUM TIME VIOLATION" },
249         { NVME_SC_FW_ACT_PROHIBITED, "FIRMWARE ACTIVATION PROHIBITED" },
250         { NVME_SC_OVERLAPPING_RANGE, "OVERLAPPING RANGE" },
251         { NVME_SC_NS_INSUFFICIENT_CAPACITY, "NAMESPACE INSUFFICIENT CAPACITY" },
252         { NVME_SC_NS_ID_UNAVAILABLE, "NAMESPACE IDENTIFIER UNAVAILABLE" },
253         { NVME_SC_NS_ALREADY_ATTACHED, "NAMESPACE ALREADY ATTACHED" },
254         { NVME_SC_NS_IS_PRIVATE, "NAMESPACE IS PRIVATE" },
255         { NVME_SC_NS_NOT_ATTACHED, "NS NOT ATTACHED" },
256         { NVME_SC_THIN_PROV_NOT_SUPPORTED, "THIN PROVISIONING NOT SUPPORTED" },
257         { NVME_SC_CTRLR_LIST_INVALID, "CONTROLLER LIST INVALID" },
258         { NVME_SC_SELT_TEST_IN_PROGRESS, "DEVICE SELT-TEST IN PROGRESS" },
259         { NVME_SC_BOOT_PART_WRITE_PROHIB, "BOOT PARTITION WRITE PROHIBITED" },
260         { NVME_SC_INVALID_CTRLR_ID, "INVALID CONTROLLER IDENTIFIER" },
261         { NVME_SC_INVALID_SEC_CTRLR_STATE, "INVALID SECONDARY CONTROLLER STATE" },
262         { NVME_SC_INVALID_NUM_OF_CTRLR_RESRC, "INVALID NUMBER OF CONTROLLER RESOURCES" },
263         { NVME_SC_INVALID_RESOURCE_ID, "INVALID RESOURCE IDENTIFIER" },
264
265         { NVME_SC_CONFLICTING_ATTRIBUTES, "CONFLICTING ATTRIBUTES" },
266         { NVME_SC_INVALID_PROTECTION_INFO, "INVALID PROTECTION INFO" },
267         { NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE, "WRITE TO RO PAGE" },
268         { 0xFFFF, "COMMAND SPECIFIC" }
269 };
270
271 static struct nvme_status_string media_error_status[] = {
272         { NVME_SC_WRITE_FAULTS, "WRITE FAULTS" },
273         { NVME_SC_UNRECOVERED_READ_ERROR, "UNRECOVERED READ ERROR" },
274         { NVME_SC_GUARD_CHECK_ERROR, "GUARD CHECK ERROR" },
275         { NVME_SC_APPLICATION_TAG_CHECK_ERROR, "APPLICATION TAG CHECK ERROR" },
276         { NVME_SC_REFERENCE_TAG_CHECK_ERROR, "REFERENCE TAG CHECK ERROR" },
277         { NVME_SC_COMPARE_FAILURE, "COMPARE FAILURE" },
278         { NVME_SC_ACCESS_DENIED, "ACCESS DENIED" },
279         { NVME_SC_DEALLOCATED_OR_UNWRITTEN, "DEALLOCATED OR UNWRITTEN LOGICAL BLOCK" },
280         { 0xFFFF, "MEDIA ERROR" }
281 };
282
283 static const char *
284 get_status_string(uint16_t sct, uint16_t sc)
285 {
286         struct nvme_status_string *entry;
287
288         switch (sct) {
289         case NVME_SCT_GENERIC:
290                 entry = generic_status;
291                 break;
292         case NVME_SCT_COMMAND_SPECIFIC:
293                 entry = command_specific_status;
294                 break;
295         case NVME_SCT_MEDIA_ERROR:
296                 entry = media_error_status;
297                 break;
298         case NVME_SCT_VENDOR_SPECIFIC:
299                 return ("VENDOR SPECIFIC");
300         default:
301                 return ("RESERVED");
302         }
303
304         while (entry->sc != 0xFFFF) {
305                 if (entry->sc == sc)
306                         return (entry->str);
307                 entry++;
308         }
309         return (entry->str);
310 }
311
312 static void
313 nvme_qpair_print_completion(struct nvme_qpair *qpair,
314     struct nvme_completion *cpl)
315 {
316         uint16_t sct, sc;
317
318         sct = NVME_STATUS_GET_SCT(cpl->status);
319         sc = NVME_STATUS_GET_SC(cpl->status);
320
321         nvme_printf(qpair->ctrlr, "%s (%02x/%02x) sqid:%d cid:%d cdw0:%x\n",
322             get_status_string(sct, sc), sct, sc, cpl->sqid, cpl->cid,
323             cpl->cdw0);
324 }
325
326 static boolean_t
327 nvme_completion_is_retry(const struct nvme_completion *cpl)
328 {
329         uint8_t sct, sc, dnr;
330
331         sct = NVME_STATUS_GET_SCT(cpl->status);
332         sc = NVME_STATUS_GET_SC(cpl->status);
333         dnr = NVME_STATUS_GET_DNR(cpl->status); /* Do Not Retry Bit */
334
335         /*
336          * TODO: spec is not clear how commands that are aborted due
337          *  to TLER will be marked.  So for now, it seems
338          *  NAMESPACE_NOT_READY is the only case where we should
339          *  look at the DNR bit. Requests failed with ABORTED_BY_REQUEST
340          *  set the DNR bit correctly since the driver controls that.
341          */
342         switch (sct) {
343         case NVME_SCT_GENERIC:
344                 switch (sc) {
345                 case NVME_SC_ABORTED_BY_REQUEST:
346                 case NVME_SC_NAMESPACE_NOT_READY:
347                         if (dnr)
348                                 return (0);
349                         else
350                                 return (1);
351                 case NVME_SC_INVALID_OPCODE:
352                 case NVME_SC_INVALID_FIELD:
353                 case NVME_SC_COMMAND_ID_CONFLICT:
354                 case NVME_SC_DATA_TRANSFER_ERROR:
355                 case NVME_SC_ABORTED_POWER_LOSS:
356                 case NVME_SC_INTERNAL_DEVICE_ERROR:
357                 case NVME_SC_ABORTED_SQ_DELETION:
358                 case NVME_SC_ABORTED_FAILED_FUSED:
359                 case NVME_SC_ABORTED_MISSING_FUSED:
360                 case NVME_SC_INVALID_NAMESPACE_OR_FORMAT:
361                 case NVME_SC_COMMAND_SEQUENCE_ERROR:
362                 case NVME_SC_LBA_OUT_OF_RANGE:
363                 case NVME_SC_CAPACITY_EXCEEDED:
364                 default:
365                         return (0);
366                 }
367         case NVME_SCT_COMMAND_SPECIFIC:
368         case NVME_SCT_MEDIA_ERROR:
369         case NVME_SCT_VENDOR_SPECIFIC:
370         default:
371                 return (0);
372         }
373 }
374
375 static void
376 nvme_qpair_complete_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr,
377     struct nvme_completion *cpl, error_print_t print_on_error)
378 {
379         struct nvme_request     *req;
380         boolean_t               retry, error;
381
382         req = tr->req;
383         error = nvme_completion_is_error(cpl);
384         retry = error && nvme_completion_is_retry(cpl) &&
385            req->retries < nvme_retry_count;
386
387         if (error && (print_on_error == ERROR_PRINT_ALL ||
388                 (!retry && print_on_error == ERROR_PRINT_NO_RETRY))) {
389                 nvme_qpair_print_command(qpair, &req->cmd);
390                 nvme_qpair_print_completion(qpair, cpl);
391         }
392
393         qpair->act_tr[cpl->cid] = NULL;
394
395         KASSERT(cpl->cid == req->cmd.cid, ("cpl cid does not match cmd cid\n"));
396
397         if (req->cb_fn && !retry)
398                 req->cb_fn(req->cb_arg, cpl);
399
400         mtx_lock(&qpair->lock);
401         callout_stop(&tr->timer);
402
403         if (retry) {
404                 req->retries++;
405                 nvme_qpair_submit_tracker(qpair, tr);
406         } else {
407                 if (req->type != NVME_REQUEST_NULL) {
408                         bus_dmamap_sync(qpair->dma_tag_payload,
409                             tr->payload_dma_map,
410                             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
411                         bus_dmamap_unload(qpair->dma_tag_payload,
412                             tr->payload_dma_map);
413                 }
414
415                 nvme_free_request(req);
416                 tr->req = NULL;
417
418                 TAILQ_REMOVE(&qpair->outstanding_tr, tr, tailq);
419                 TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
420
421                 /*
422                  * If the controller is in the middle of resetting, don't
423                  *  try to submit queued requests here - let the reset logic
424                  *  handle that instead.
425                  */
426                 if (!STAILQ_EMPTY(&qpair->queued_req) &&
427                     !qpair->ctrlr->is_resetting) {
428                         req = STAILQ_FIRST(&qpair->queued_req);
429                         STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
430                         _nvme_qpair_submit_request(qpair, req);
431                 }
432         }
433
434         mtx_unlock(&qpair->lock);
435 }
436
437 static void
438 nvme_qpair_manual_complete_tracker(struct nvme_qpair *qpair,
439     struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
440     error_print_t print_on_error)
441 {
442         struct nvme_completion  cpl;
443
444         memset(&cpl, 0, sizeof(cpl));
445         cpl.sqid = qpair->id;
446         cpl.cid = tr->cid;
447         cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
448         cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
449         cpl.status |= (dnr & NVME_STATUS_DNR_MASK) << NVME_STATUS_DNR_SHIFT;
450         nvme_qpair_complete_tracker(qpair, tr, &cpl, print_on_error);
451 }
452
453 void
454 nvme_qpair_manual_complete_request(struct nvme_qpair *qpair,
455     struct nvme_request *req, uint32_t sct, uint32_t sc)
456 {
457         struct nvme_completion  cpl;
458         boolean_t               error;
459
460         memset(&cpl, 0, sizeof(cpl));
461         cpl.sqid = qpair->id;
462         cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
463         cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
464
465         error = nvme_completion_is_error(&cpl);
466
467         if (error) {
468                 nvme_qpair_print_command(qpair, &req->cmd);
469                 nvme_qpair_print_completion(qpair, &cpl);
470         }
471
472         if (req->cb_fn)
473                 req->cb_fn(req->cb_arg, &cpl);
474
475         nvme_free_request(req);
476 }
477
478 bool
479 nvme_qpair_process_completions(struct nvme_qpair *qpair)
480 {
481         struct nvme_tracker     *tr;
482         struct nvme_completion  cpl;
483         int done = 0;
484         bool in_panic = dumping || SCHEDULER_STOPPED();
485
486         qpair->num_intr_handler_calls++;
487
488         /*
489          * qpair is not enabled, likely because a controller reset is is in
490          * progress.  Ignore the interrupt - any I/O that was associated with
491          * this interrupt will get retried when the reset is complete.
492          */
493         if (!qpair->is_enabled)
494                 return (false);
495
496         /*
497          * A panic can stop the CPU this routine is running on at any point.  If
498          * we're called during a panic, complete the sq_head wrap protocol for
499          * the case where we are interrupted just after the increment at 1
500          * below, but before we can reset cq_head to zero at 2. Also cope with
501          * the case where we do the zero at 2, but may or may not have done the
502          * phase adjustment at step 3. The panic machinery flushes all pending
503          * memory writes, so we can make these strong ordering assumptions
504          * that would otherwise be unwise if we were racing in real time.
505          */
506         if (__predict_false(in_panic)) {
507                 if (qpair->cq_head == qpair->num_entries) {
508                         /*
509                          * Here we know that we need to zero cq_head and then negate
510                          * the phase, which hasn't been assigned if cq_head isn't
511                          * zero due to the atomic_store_rel.
512                          */
513                         qpair->cq_head = 0;
514                         qpair->phase = !qpair->phase;
515                 } else if (qpair->cq_head == 0) {
516                         /*
517                          * In this case, we know that the assignment at 2
518                          * happened below, but we don't know if it 3 happened or
519                          * not. To do this, we look at the last completion
520                          * entry and set the phase to the opposite phase
521                          * that it has. This gets us back in sync
522                          */
523                         cpl = qpair->cpl[qpair->num_entries - 1];
524                         nvme_completion_swapbytes(&cpl);
525                         qpair->phase = !NVME_STATUS_GET_P(cpl.status);
526                 }
527         }
528
529         bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
530             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
531         while (1) {
532                 cpl = qpair->cpl[qpair->cq_head];
533
534                 /* Convert to host endian */
535                 nvme_completion_swapbytes(&cpl);
536
537                 if (NVME_STATUS_GET_P(cpl.status) != qpair->phase)
538                         break;
539
540                 tr = qpair->act_tr[cpl.cid];
541
542                 if (tr != NULL) {
543                         nvme_qpair_complete_tracker(qpair, tr, &cpl, ERROR_PRINT_ALL);
544                         qpair->sq_head = cpl.sqhd;
545                         done++;
546                 } else if (!in_panic) {
547                         /*
548                          * A missing tracker is normally an error.  However, a
549                          * panic can stop the CPU this routine is running on
550                          * after completing an I/O but before updating
551                          * qpair->cq_head at 1 below.  Later, we re-enter this
552                          * routine to poll I/O associated with the kernel
553                          * dump. We find that the tr has been set to null before
554                          * calling the completion routine.  If it hasn't
555                          * completed (or it triggers a panic), then '1' below
556                          * won't have updated cq_head. Rather than panic again,
557                          * ignore this condition because it's not unexpected.
558                          */
559                         nvme_printf(qpair->ctrlr,
560                             "cpl does not map to outstanding cmd\n");
561                         /* nvme_dump_completion expects device endianess */
562                         nvme_dump_completion(&qpair->cpl[qpair->cq_head]);
563                         KASSERT(0, ("received completion for unknown cmd"));
564                 }
565
566                 /*
567                  * There's a number of races with the following (see above) when
568                  * the system panics. We compensate for each one of them by
569                  * using the atomic store to force strong ordering (at least when
570                  * viewed in the aftermath of a panic).
571                  */
572                 if (++qpair->cq_head == qpair->num_entries) {           /* 1 */
573                         atomic_store_rel_int(&qpair->cq_head, 0);       /* 2 */
574                         qpair->phase = !qpair->phase;                   /* 3 */
575                 }
576
577                 nvme_mmio_write_4(qpair->ctrlr, doorbell[qpair->id].cq_hdbl,
578                     qpair->cq_head);
579         }
580         return (done != 0);
581 }
582
583 static void
584 nvme_qpair_msix_handler(void *arg)
585 {
586         struct nvme_qpair *qpair = arg;
587
588         nvme_qpair_process_completions(qpair);
589 }
590
591 int
592 nvme_qpair_construct(struct nvme_qpair *qpair, uint32_t id,
593     uint16_t vector, uint32_t num_entries, uint32_t num_trackers,
594     struct nvme_controller *ctrlr)
595 {
596         struct nvme_tracker     *tr;
597         size_t                  cmdsz, cplsz, prpsz, allocsz, prpmemsz;
598         uint64_t                queuemem_phys, prpmem_phys, list_phys;
599         uint8_t                 *queuemem, *prpmem, *prp_list;
600         int                     i, err;
601
602         qpair->id = id;
603         qpair->vector = vector;
604         qpair->num_entries = num_entries;
605         qpair->num_trackers = num_trackers;
606         qpair->ctrlr = ctrlr;
607
608         if (ctrlr->msix_enabled) {
609
610                 /*
611                  * MSI-X vector resource IDs start at 1, so we add one to
612                  *  the queue's vector to get the corresponding rid to use.
613                  */
614                 qpair->rid = vector + 1;
615
616                 qpair->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
617                     &qpair->rid, RF_ACTIVE);
618                 bus_setup_intr(ctrlr->dev, qpair->res,
619                     INTR_TYPE_MISC | INTR_MPSAFE, NULL,
620                     nvme_qpair_msix_handler, qpair, &qpair->tag);
621                 if (id == 0) {
622                         bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
623                             "admin");
624                 } else {
625                         bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
626                             "io%d", id - 1);
627                 }
628         }
629
630         mtx_init(&qpair->lock, "nvme qpair lock", NULL, MTX_DEF);
631
632         /* Note: NVMe PRP format is restricted to 4-byte alignment. */
633         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
634             4, PAGE_SIZE, BUS_SPACE_MAXADDR,
635             BUS_SPACE_MAXADDR, NULL, NULL, NVME_MAX_XFER_SIZE,
636             (NVME_MAX_XFER_SIZE/PAGE_SIZE)+1, PAGE_SIZE, 0,
637             NULL, NULL, &qpair->dma_tag_payload);
638         if (err != 0) {
639                 nvme_printf(ctrlr, "payload tag create failed %d\n", err);
640                 goto out;
641         }
642
643         /*
644          * Each component must be page aligned, and individual PRP lists
645          * cannot cross a page boundary.
646          */
647         cmdsz = qpair->num_entries * sizeof(struct nvme_command);
648         cmdsz = roundup2(cmdsz, PAGE_SIZE);
649         cplsz = qpair->num_entries * sizeof(struct nvme_completion);
650         cplsz = roundup2(cplsz, PAGE_SIZE);
651         prpsz = sizeof(uint64_t) * NVME_MAX_PRP_LIST_ENTRIES;;
652         prpmemsz = qpair->num_trackers * prpsz;
653         allocsz = cmdsz + cplsz + prpmemsz;
654
655         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
656             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
657             allocsz, 1, allocsz, 0, NULL, NULL, &qpair->dma_tag);
658         if (err != 0) {
659                 nvme_printf(ctrlr, "tag create failed %d\n", err);
660                 goto out;
661         }
662
663         if (bus_dmamem_alloc(qpair->dma_tag, (void **)&queuemem,
664             BUS_DMA_NOWAIT, &qpair->queuemem_map)) {
665                 nvme_printf(ctrlr, "failed to alloc qpair memory\n");
666                 goto out;
667         }
668
669         if (bus_dmamap_load(qpair->dma_tag, qpair->queuemem_map,
670             queuemem, allocsz, nvme_single_map, &queuemem_phys, 0) != 0) {
671                 nvme_printf(ctrlr, "failed to load qpair memory\n");
672                 goto out;
673         }
674
675         qpair->num_cmds = 0;
676         qpair->num_intr_handler_calls = 0;
677         qpair->cmd = (struct nvme_command *)queuemem;
678         qpair->cpl = (struct nvme_completion *)(queuemem + cmdsz);
679         prpmem = (uint8_t *)(queuemem + cmdsz + cplsz);
680         qpair->cmd_bus_addr = queuemem_phys;
681         qpair->cpl_bus_addr = queuemem_phys + cmdsz;
682         prpmem_phys = queuemem_phys + cmdsz + cplsz;
683
684         qpair->sq_tdbl_off = nvme_mmio_offsetof(doorbell[id].sq_tdbl);
685         qpair->cq_hdbl_off = nvme_mmio_offsetof(doorbell[id].cq_hdbl);
686
687         TAILQ_INIT(&qpair->free_tr);
688         TAILQ_INIT(&qpair->outstanding_tr);
689         STAILQ_INIT(&qpair->queued_req);
690
691         list_phys = prpmem_phys;
692         prp_list = prpmem;
693         for (i = 0; i < qpair->num_trackers; i++) {
694
695                 if (list_phys + prpsz > prpmem_phys + prpmemsz) {
696                         qpair->num_trackers = i;
697                         break;
698                 }
699
700                 /*
701                  * Make sure that the PRP list for this tracker doesn't
702                  * overflow to another page.
703                  */
704                 if (trunc_page(list_phys) !=
705                     trunc_page(list_phys + prpsz - 1)) {
706                         list_phys = roundup2(list_phys, PAGE_SIZE);
707                         prp_list =
708                             (uint8_t *)roundup2((uintptr_t)prp_list, PAGE_SIZE);
709                 }
710
711                 tr = malloc(sizeof(*tr), M_NVME, M_ZERO | M_WAITOK);
712                 bus_dmamap_create(qpair->dma_tag_payload, 0,
713                     &tr->payload_dma_map);
714                 callout_init(&tr->timer, 1);
715                 tr->cid = i;
716                 tr->qpair = qpair;
717                 tr->prp = (uint64_t *)prp_list;
718                 tr->prp_bus_addr = list_phys;
719                 TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
720                 list_phys += prpsz;
721                 prp_list += prpsz;
722         }
723
724         if (qpair->num_trackers == 0) {
725                 nvme_printf(ctrlr, "failed to allocate enough trackers\n");
726                 goto out;
727         }
728
729         qpair->act_tr = malloc(sizeof(struct nvme_tracker *) *
730             qpair->num_entries, M_NVME, M_ZERO | M_WAITOK);
731         return (0);
732
733 out:
734         nvme_qpair_destroy(qpair);
735         return (ENOMEM);
736 }
737
738 static void
739 nvme_qpair_destroy(struct nvme_qpair *qpair)
740 {
741         struct nvme_tracker     *tr;
742
743         if (qpair->tag)
744                 bus_teardown_intr(qpair->ctrlr->dev, qpair->res, qpair->tag);
745
746         if (mtx_initialized(&qpair->lock))
747                 mtx_destroy(&qpair->lock);
748
749         if (qpair->res)
750                 bus_release_resource(qpair->ctrlr->dev, SYS_RES_IRQ,
751                     rman_get_rid(qpair->res), qpair->res);
752
753         if (qpair->cmd != NULL) {
754                 bus_dmamap_unload(qpair->dma_tag, qpair->queuemem_map);
755                 bus_dmamem_free(qpair->dma_tag, qpair->cmd,
756                     qpair->queuemem_map);
757         }
758
759         if (qpair->act_tr)
760                 free(qpair->act_tr, M_NVME);
761
762         while (!TAILQ_EMPTY(&qpair->free_tr)) {
763                 tr = TAILQ_FIRST(&qpair->free_tr);
764                 TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
765                 bus_dmamap_destroy(qpair->dma_tag_payload,
766                     tr->payload_dma_map);
767                 free(tr, M_NVME);
768         }
769
770         if (qpair->dma_tag)
771                 bus_dma_tag_destroy(qpair->dma_tag);
772
773         if (qpair->dma_tag_payload)
774                 bus_dma_tag_destroy(qpair->dma_tag_payload);
775 }
776
777 static void
778 nvme_admin_qpair_abort_aers(struct nvme_qpair *qpair)
779 {
780         struct nvme_tracker     *tr;
781
782         tr = TAILQ_FIRST(&qpair->outstanding_tr);
783         while (tr != NULL) {
784                 if (tr->req->cmd.opc == NVME_OPC_ASYNC_EVENT_REQUEST) {
785                         nvme_qpair_manual_complete_tracker(qpair, tr,
786                             NVME_SCT_GENERIC, NVME_SC_ABORTED_SQ_DELETION, 0,
787                             ERROR_PRINT_NONE);
788                         tr = TAILQ_FIRST(&qpair->outstanding_tr);
789                 } else {
790                         tr = TAILQ_NEXT(tr, tailq);
791                 }
792         }
793 }
794
795 void
796 nvme_admin_qpair_destroy(struct nvme_qpair *qpair)
797 {
798
799         nvme_admin_qpair_abort_aers(qpair);
800         nvme_qpair_destroy(qpair);
801 }
802
803 void
804 nvme_io_qpair_destroy(struct nvme_qpair *qpair)
805 {
806
807         nvme_qpair_destroy(qpair);
808 }
809
810 static void
811 nvme_abort_complete(void *arg, const struct nvme_completion *status)
812 {
813         struct nvme_tracker     *tr = arg;
814
815         /*
816          * If cdw0 == 1, the controller was not able to abort the command
817          *  we requested.  We still need to check the active tracker array,
818          *  to cover race where I/O timed out at same time controller was
819          *  completing the I/O.
820          */
821         if (status->cdw0 == 1 && tr->qpair->act_tr[tr->cid] != NULL) {
822                 /*
823                  * An I/O has timed out, and the controller was unable to
824                  *  abort it for some reason.  Construct a fake completion
825                  *  status, and then complete the I/O's tracker manually.
826                  */
827                 nvme_printf(tr->qpair->ctrlr,
828                     "abort command failed, aborting command manually\n");
829                 nvme_qpair_manual_complete_tracker(tr->qpair, tr,
830                     NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_ALL);
831         }
832 }
833
834 static void
835 nvme_timeout(void *arg)
836 {
837         struct nvme_tracker     *tr = arg;
838         struct nvme_qpair       *qpair = tr->qpair;
839         struct nvme_controller  *ctrlr = qpair->ctrlr;
840         uint32_t                csts;
841         uint8_t                 cfs;
842
843         /*
844          * Read csts to get value of cfs - controller fatal status.
845          * If no fatal status, try to call the completion routine, and
846          * if completes transactions, report a missed interrupt and
847          * return (this may need to be rate limited). Otherwise, if
848          * aborts are enabled and the controller is not reporting
849          * fatal status, abort the command. Otherwise, just reset the
850          * controller and hope for the best.
851          */
852         csts = nvme_mmio_read_4(ctrlr, csts);
853         cfs = (csts >> NVME_CSTS_REG_CFS_SHIFT) & NVME_CSTS_REG_CFS_MASK;
854         if (cfs == 0 && nvme_qpair_process_completions(qpair)) {
855                 nvme_printf(ctrlr, "Missing interrupt\n");
856                 return;
857         }
858         if (ctrlr->enable_aborts && cfs == 0) {
859                 nvme_printf(ctrlr, "Aborting command due to a timeout.\n");
860                 nvme_ctrlr_cmd_abort(ctrlr, tr->cid, qpair->id,
861                     nvme_abort_complete, tr);
862         } else {
863                 nvme_printf(ctrlr, "Resetting controller due to a timeout%s.\n",
864                     cfs ? " and fatal error status" : "");
865                 nvme_ctrlr_reset(ctrlr);
866         }
867 }
868
869 void
870 nvme_qpair_submit_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr)
871 {
872         struct nvme_request     *req;
873         struct nvme_controller  *ctrlr;
874
875         mtx_assert(&qpair->lock, MA_OWNED);
876
877         req = tr->req;
878         req->cmd.cid = tr->cid;
879         qpair->act_tr[tr->cid] = tr;
880         ctrlr = qpair->ctrlr;
881
882         if (req->timeout)
883                 callout_reset_curcpu(&tr->timer, ctrlr->timeout_period * hz,
884                     nvme_timeout, tr);
885
886         /* Copy the command from the tracker to the submission queue. */
887         memcpy(&qpair->cmd[qpair->sq_tail], &req->cmd, sizeof(req->cmd));
888
889         if (++qpair->sq_tail == qpair->num_entries)
890                 qpair->sq_tail = 0;
891
892         bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
893             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
894 #ifndef __powerpc__
895         /*
896          * powerpc's bus_dmamap_sync() already includes a heavyweight sync, but
897          * no other archs do.
898          */
899         wmb();
900 #endif
901
902         nvme_mmio_write_4(qpair->ctrlr, doorbell[qpair->id].sq_tdbl,
903             qpair->sq_tail);
904
905         qpair->num_cmds++;
906 }
907
908 static void
909 nvme_payload_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
910 {
911         struct nvme_tracker     *tr = arg;
912         uint32_t                cur_nseg;
913
914         /*
915          * If the mapping operation failed, return immediately.  The caller
916          *  is responsible for detecting the error status and failing the
917          *  tracker manually.
918          */
919         if (error != 0) {
920                 nvme_printf(tr->qpair->ctrlr,
921                     "nvme_payload_map err %d\n", error);
922                 return;
923         }
924
925         /*
926          * Note that we specified PAGE_SIZE for alignment and max
927          *  segment size when creating the bus dma tags.  So here
928          *  we can safely just transfer each segment to its
929          *  associated PRP entry.
930          */
931         tr->req->cmd.prp1 = htole64(seg[0].ds_addr);
932
933         if (nseg == 2) {
934                 tr->req->cmd.prp2 = htole64(seg[1].ds_addr);
935         } else if (nseg > 2) {
936                 cur_nseg = 1;
937                 tr->req->cmd.prp2 = htole64((uint64_t)tr->prp_bus_addr);
938                 while (cur_nseg < nseg) {
939                         tr->prp[cur_nseg-1] =
940                             htole64((uint64_t)seg[cur_nseg].ds_addr);
941                         cur_nseg++;
942                 }
943         } else {
944                 /*
945                  * prp2 should not be used by the controller
946                  *  since there is only one segment, but set
947                  *  to 0 just to be safe.
948                  */
949                 tr->req->cmd.prp2 = 0;
950         }
951
952         bus_dmamap_sync(tr->qpair->dma_tag_payload, tr->payload_dma_map,
953             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
954         nvme_qpair_submit_tracker(tr->qpair, tr);
955 }
956
957 static void
958 _nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
959 {
960         struct nvme_tracker     *tr;
961         int                     err = 0;
962
963         mtx_assert(&qpair->lock, MA_OWNED);
964
965         tr = TAILQ_FIRST(&qpair->free_tr);
966         req->qpair = qpair;
967
968         if (tr == NULL || !qpair->is_enabled) {
969                 /*
970                  * No tracker is available, or the qpair is disabled due to
971                  *  an in-progress controller-level reset or controller
972                  *  failure.
973                  */
974
975                 if (qpair->ctrlr->is_failed) {
976                         /*
977                          * The controller has failed.  Post the request to a
978                          *  task where it will be aborted, so that we do not
979                          *  invoke the request's callback in the context
980                          *  of the submission.
981                          */
982                         nvme_ctrlr_post_failed_request(qpair->ctrlr, req);
983                 } else {
984                         /*
985                          * Put the request on the qpair's request queue to be
986                          *  processed when a tracker frees up via a command
987                          *  completion or when the controller reset is
988                          *  completed.
989                          */
990                         STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
991                 }
992                 return;
993         }
994
995         TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
996         TAILQ_INSERT_TAIL(&qpair->outstanding_tr, tr, tailq);
997         tr->req = req;
998
999         switch (req->type) {
1000         case NVME_REQUEST_VADDR:
1001                 KASSERT(req->payload_size <= qpair->ctrlr->max_xfer_size,
1002                     ("payload_size (%d) exceeds max_xfer_size (%d)\n",
1003                     req->payload_size, qpair->ctrlr->max_xfer_size));
1004                 err = bus_dmamap_load(tr->qpair->dma_tag_payload,
1005                     tr->payload_dma_map, req->u.payload, req->payload_size,
1006                     nvme_payload_map, tr, 0);
1007                 if (err != 0)
1008                         nvme_printf(qpair->ctrlr,
1009                             "bus_dmamap_load returned 0x%x!\n", err);
1010                 break;
1011         case NVME_REQUEST_NULL:
1012                 nvme_qpair_submit_tracker(tr->qpair, tr);
1013                 break;
1014         case NVME_REQUEST_BIO:
1015                 KASSERT(req->u.bio->bio_bcount <= qpair->ctrlr->max_xfer_size,
1016                     ("bio->bio_bcount (%jd) exceeds max_xfer_size (%d)\n",
1017                     (intmax_t)req->u.bio->bio_bcount,
1018                     qpair->ctrlr->max_xfer_size));
1019                 err = bus_dmamap_load_bio(tr->qpair->dma_tag_payload,
1020                     tr->payload_dma_map, req->u.bio, nvme_payload_map, tr, 0);
1021                 if (err != 0)
1022                         nvme_printf(qpair->ctrlr,
1023                             "bus_dmamap_load_bio returned 0x%x!\n", err);
1024                 break;
1025         case NVME_REQUEST_CCB:
1026                 err = bus_dmamap_load_ccb(tr->qpair->dma_tag_payload,
1027                     tr->payload_dma_map, req->u.payload,
1028                     nvme_payload_map, tr, 0);
1029                 if (err != 0)
1030                         nvme_printf(qpair->ctrlr,
1031                             "bus_dmamap_load_ccb returned 0x%x!\n", err);
1032                 break;
1033         default:
1034                 panic("unknown nvme request type 0x%x\n", req->type);
1035                 break;
1036         }
1037
1038         if (err != 0) {
1039                 /*
1040                  * The dmamap operation failed, so we manually fail the
1041                  *  tracker here with DATA_TRANSFER_ERROR status.
1042                  *
1043                  * nvme_qpair_manual_complete_tracker must not be called
1044                  *  with the qpair lock held.
1045                  */
1046                 mtx_unlock(&qpair->lock);
1047                 nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1048                     NVME_SC_DATA_TRANSFER_ERROR, DO_NOT_RETRY, ERROR_PRINT_ALL);
1049                 mtx_lock(&qpair->lock);
1050         }
1051 }
1052
1053 void
1054 nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
1055 {
1056
1057         mtx_lock(&qpair->lock);
1058         _nvme_qpair_submit_request(qpair, req);
1059         mtx_unlock(&qpair->lock);
1060 }
1061
1062 static void
1063 nvme_qpair_enable(struct nvme_qpair *qpair)
1064 {
1065
1066         qpair->is_enabled = TRUE;
1067 }
1068
1069 void
1070 nvme_qpair_reset(struct nvme_qpair *qpair)
1071 {
1072
1073         qpair->sq_head = qpair->sq_tail = qpair->cq_head = 0;
1074
1075         /*
1076          * First time through the completion queue, HW will set phase
1077          *  bit on completions to 1.  So set this to 1 here, indicating
1078          *  we're looking for a 1 to know which entries have completed.
1079          *  we'll toggle the bit each time when the completion queue
1080          *  rolls over.
1081          */
1082         qpair->phase = 1;
1083
1084         memset(qpair->cmd, 0,
1085             qpair->num_entries * sizeof(struct nvme_command));
1086         memset(qpair->cpl, 0,
1087             qpair->num_entries * sizeof(struct nvme_completion));
1088 }
1089
1090 void
1091 nvme_admin_qpair_enable(struct nvme_qpair *qpair)
1092 {
1093         struct nvme_tracker             *tr;
1094         struct nvme_tracker             *tr_temp;
1095
1096         /*
1097          * Manually abort each outstanding admin command.  Do not retry
1098          *  admin commands found here, since they will be left over from
1099          *  a controller reset and its likely the context in which the
1100          *  command was issued no longer applies.
1101          */
1102         TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
1103                 nvme_printf(qpair->ctrlr,
1104                     "aborting outstanding admin command\n");
1105                 nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1106                     NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
1107         }
1108
1109         nvme_qpair_enable(qpair);
1110 }
1111
1112 void
1113 nvme_io_qpair_enable(struct nvme_qpair *qpair)
1114 {
1115         STAILQ_HEAD(, nvme_request)     temp;
1116         struct nvme_tracker             *tr;
1117         struct nvme_tracker             *tr_temp;
1118         struct nvme_request             *req;
1119
1120         /*
1121          * Manually abort each outstanding I/O.  This normally results in a
1122          *  retry, unless the retry count on the associated request has
1123          *  reached its limit.
1124          */
1125         TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
1126                 nvme_printf(qpair->ctrlr, "aborting outstanding i/o\n");
1127                 nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1128                     NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_NO_RETRY);
1129         }
1130
1131         mtx_lock(&qpair->lock);
1132
1133         nvme_qpair_enable(qpair);
1134
1135         STAILQ_INIT(&temp);
1136         STAILQ_SWAP(&qpair->queued_req, &temp, nvme_request);
1137
1138         while (!STAILQ_EMPTY(&temp)) {
1139                 req = STAILQ_FIRST(&temp);
1140                 STAILQ_REMOVE_HEAD(&temp, stailq);
1141                 nvme_printf(qpair->ctrlr, "resubmitting queued i/o\n");
1142                 nvme_qpair_print_command(qpair, &req->cmd);
1143                 _nvme_qpair_submit_request(qpair, req);
1144         }
1145
1146         mtx_unlock(&qpair->lock);
1147 }
1148
1149 static void
1150 nvme_qpair_disable(struct nvme_qpair *qpair)
1151 {
1152         struct nvme_tracker *tr;
1153
1154         qpair->is_enabled = FALSE;
1155         mtx_lock(&qpair->lock);
1156         TAILQ_FOREACH(tr, &qpair->outstanding_tr, tailq)
1157                 callout_stop(&tr->timer);
1158         mtx_unlock(&qpair->lock);
1159 }
1160
1161 void
1162 nvme_admin_qpair_disable(struct nvme_qpair *qpair)
1163 {
1164
1165         nvme_qpair_disable(qpair);
1166         nvme_admin_qpair_abort_aers(qpair);
1167 }
1168
1169 void
1170 nvme_io_qpair_disable(struct nvme_qpair *qpair)
1171 {
1172
1173         nvme_qpair_disable(qpair);
1174 }
1175
1176 void
1177 nvme_qpair_fail(struct nvme_qpair *qpair)
1178 {
1179         struct nvme_tracker             *tr;
1180         struct nvme_request             *req;
1181
1182         if (!mtx_initialized(&qpair->lock))
1183                 return;
1184
1185         mtx_lock(&qpair->lock);
1186
1187         while (!STAILQ_EMPTY(&qpair->queued_req)) {
1188                 req = STAILQ_FIRST(&qpair->queued_req);
1189                 STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
1190                 nvme_printf(qpair->ctrlr, "failing queued i/o\n");
1191                 mtx_unlock(&qpair->lock);
1192                 nvme_qpair_manual_complete_request(qpair, req, NVME_SCT_GENERIC,
1193                     NVME_SC_ABORTED_BY_REQUEST);
1194                 mtx_lock(&qpair->lock);
1195         }
1196
1197         /* Manually abort each outstanding I/O. */
1198         while (!TAILQ_EMPTY(&qpair->outstanding_tr)) {
1199                 tr = TAILQ_FIRST(&qpair->outstanding_tr);
1200                 /*
1201                  * Do not remove the tracker.  The abort_tracker path will
1202                  *  do that for us.
1203                  */
1204                 nvme_printf(qpair->ctrlr, "failing outstanding i/o\n");
1205                 mtx_unlock(&qpair->lock);
1206                 nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1207                     NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
1208                 mtx_lock(&qpair->lock);
1209         }
1210
1211         mtx_unlock(&qpair->lock);
1212 }
1213