]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/nvme/nvme_qpair.c
sys/{x86,amd64}: remove one of doubled ;s
[FreeBSD/FreeBSD.git] / sys / dev / nvme / nvme_qpair.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2012-2014 Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/conf.h>
35 #include <sys/proc.h>
36
37 #include <dev/pci/pcivar.h>
38
39 #include "nvme_private.h"
40
41 typedef enum error_print { ERROR_PRINT_NONE, ERROR_PRINT_NO_RETRY, ERROR_PRINT_ALL } error_print_t;
42 #define DO_NOT_RETRY    1
43
44 static void     _nvme_qpair_submit_request(struct nvme_qpair *qpair,
45                                            struct nvme_request *req);
46 static void     nvme_qpair_destroy(struct nvme_qpair *qpair);
47
48 struct nvme_opcode_string {
49
50         uint16_t        opc;
51         const char *    str;
52 };
53
54 static struct nvme_opcode_string admin_opcode[] = {
55         { NVME_OPC_DELETE_IO_SQ, "DELETE IO SQ" },
56         { NVME_OPC_CREATE_IO_SQ, "CREATE IO SQ" },
57         { NVME_OPC_GET_LOG_PAGE, "GET LOG PAGE" },
58         { NVME_OPC_DELETE_IO_CQ, "DELETE IO CQ" },
59         { NVME_OPC_CREATE_IO_CQ, "CREATE IO CQ" },
60         { NVME_OPC_IDENTIFY, "IDENTIFY" },
61         { NVME_OPC_ABORT, "ABORT" },
62         { NVME_OPC_SET_FEATURES, "SET FEATURES" },
63         { NVME_OPC_GET_FEATURES, "GET FEATURES" },
64         { NVME_OPC_ASYNC_EVENT_REQUEST, "ASYNC EVENT REQUEST" },
65         { NVME_OPC_FIRMWARE_ACTIVATE, "FIRMWARE ACTIVATE" },
66         { NVME_OPC_FIRMWARE_IMAGE_DOWNLOAD, "FIRMWARE IMAGE DOWNLOAD" },
67         { NVME_OPC_DEVICE_SELF_TEST, "DEVICE SELF-TEST" },
68         { NVME_OPC_NAMESPACE_ATTACHMENT, "NAMESPACE ATTACHMENT" },
69         { NVME_OPC_KEEP_ALIVE, "KEEP ALIVE" },
70         { NVME_OPC_DIRECTIVE_SEND, "DIRECTIVE SEND" },
71         { NVME_OPC_DIRECTIVE_RECEIVE, "DIRECTIVE RECEIVE" },
72         { NVME_OPC_VIRTUALIZATION_MANAGEMENT, "VIRTUALIZATION MANAGEMENT" },
73         { NVME_OPC_NVME_MI_SEND, "NVME-MI SEND" },
74         { NVME_OPC_NVME_MI_RECEIVE, "NVME-MI RECEIVE" },
75         { NVME_OPC_DOORBELL_BUFFER_CONFIG, "DOORBELL BUFFER CONFIG" },
76         { NVME_OPC_FORMAT_NVM, "FORMAT NVM" },
77         { NVME_OPC_SECURITY_SEND, "SECURITY SEND" },
78         { NVME_OPC_SECURITY_RECEIVE, "SECURITY RECEIVE" },
79         { NVME_OPC_SANITIZE, "SANITIZE" },
80         { NVME_OPC_GET_LBA_STATUS, "GET LBA STATUS" },
81         { 0xFFFF, "ADMIN COMMAND" }
82 };
83
84 static struct nvme_opcode_string io_opcode[] = {
85         { NVME_OPC_FLUSH, "FLUSH" },
86         { NVME_OPC_WRITE, "WRITE" },
87         { NVME_OPC_READ, "READ" },
88         { NVME_OPC_WRITE_UNCORRECTABLE, "WRITE UNCORRECTABLE" },
89         { NVME_OPC_COMPARE, "COMPARE" },
90         { NVME_OPC_WRITE_ZEROES, "WRITE ZEROES" },
91         { NVME_OPC_DATASET_MANAGEMENT, "DATASET MANAGEMENT" },
92         { NVME_OPC_VERIFY, "VERIFY" },
93         { NVME_OPC_RESERVATION_REGISTER, "RESERVATION REGISTER" },
94         { NVME_OPC_RESERVATION_REPORT, "RESERVATION REPORT" },
95         { NVME_OPC_RESERVATION_ACQUIRE, "RESERVATION ACQUIRE" },
96         { NVME_OPC_RESERVATION_RELEASE, "RESERVATION RELEASE" },
97         { 0xFFFF, "IO COMMAND" }
98 };
99
100 static const char *
101 get_admin_opcode_string(uint16_t opc)
102 {
103         struct nvme_opcode_string *entry;
104
105         entry = admin_opcode;
106
107         while (entry->opc != 0xFFFF) {
108                 if (entry->opc == opc)
109                         return (entry->str);
110                 entry++;
111         }
112         return (entry->str);
113 }
114
115 static const char *
116 get_io_opcode_string(uint16_t opc)
117 {
118         struct nvme_opcode_string *entry;
119
120         entry = io_opcode;
121
122         while (entry->opc != 0xFFFF) {
123                 if (entry->opc == opc)
124                         return (entry->str);
125                 entry++;
126         }
127         return (entry->str);
128 }
129
130
131 static void
132 nvme_admin_qpair_print_command(struct nvme_qpair *qpair,
133     struct nvme_command *cmd)
134 {
135
136         nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%x "
137             "cdw10:%08x cdw11:%08x\n",
138             get_admin_opcode_string(cmd->opc), cmd->opc, qpair->id, cmd->cid,
139             le32toh(cmd->nsid), le32toh(cmd->cdw10), le32toh(cmd->cdw11));
140 }
141
142 static void
143 nvme_io_qpair_print_command(struct nvme_qpair *qpair,
144     struct nvme_command *cmd)
145 {
146
147         switch (cmd->opc) {
148         case NVME_OPC_WRITE:
149         case NVME_OPC_READ:
150         case NVME_OPC_WRITE_UNCORRECTABLE:
151         case NVME_OPC_COMPARE:
152         case NVME_OPC_WRITE_ZEROES:
153         case NVME_OPC_VERIFY:
154                 nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d "
155                     "lba:%llu len:%d\n",
156                     get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid),
157                     ((unsigned long long)le32toh(cmd->cdw11) << 32) + le32toh(cmd->cdw10),
158                     (le32toh(cmd->cdw12) & 0xFFFF) + 1);
159                 break;
160         case NVME_OPC_FLUSH:
161         case NVME_OPC_DATASET_MANAGEMENT:
162         case NVME_OPC_RESERVATION_REGISTER:
163         case NVME_OPC_RESERVATION_REPORT:
164         case NVME_OPC_RESERVATION_ACQUIRE:
165         case NVME_OPC_RESERVATION_RELEASE:
166                 nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d\n",
167                     get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid));
168                 break;
169         default:
170                 nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%d\n",
171                     get_io_opcode_string(cmd->opc), cmd->opc, qpair->id,
172                     cmd->cid, le32toh(cmd->nsid));
173                 break;
174         }
175 }
176
177 static void
178 nvme_qpair_print_command(struct nvme_qpair *qpair, struct nvme_command *cmd)
179 {
180         if (qpair->id == 0)
181                 nvme_admin_qpair_print_command(qpair, cmd);
182         else
183                 nvme_io_qpair_print_command(qpair, cmd);
184         if (nvme_verbose_cmd_dump) {
185                 nvme_printf(qpair->ctrlr,
186                     "nsid:%#x rsvd2:%#x rsvd3:%#x mptr:%#jx prp1:%#jx prp2:%#jx\n",
187                     cmd->nsid, cmd->rsvd2, cmd->rsvd3, (uintmax_t)cmd->mptr,
188                     (uintmax_t)cmd->prp1, (uintmax_t)cmd->prp2);
189                 nvme_printf(qpair->ctrlr,
190                     "cdw10: %#x cdw11:%#x cdw12:%#x cdw13:%#x cdw14:%#x cdw15:%#x\n",
191                     cmd->cdw10, cmd->cdw11, cmd->cdw12, cmd->cdw13, cmd->cdw14,
192                     cmd->cdw15);
193         }
194 }
195
196 struct nvme_status_string {
197
198         uint16_t        sc;
199         const char *    str;
200 };
201
202 static struct nvme_status_string generic_status[] = {
203         { NVME_SC_SUCCESS, "SUCCESS" },
204         { NVME_SC_INVALID_OPCODE, "INVALID OPCODE" },
205         { NVME_SC_INVALID_FIELD, "INVALID_FIELD" },
206         { NVME_SC_COMMAND_ID_CONFLICT, "COMMAND ID CONFLICT" },
207         { NVME_SC_DATA_TRANSFER_ERROR, "DATA TRANSFER ERROR" },
208         { NVME_SC_ABORTED_POWER_LOSS, "ABORTED - POWER LOSS" },
209         { NVME_SC_INTERNAL_DEVICE_ERROR, "INTERNAL DEVICE ERROR" },
210         { NVME_SC_ABORTED_BY_REQUEST, "ABORTED - BY REQUEST" },
211         { NVME_SC_ABORTED_SQ_DELETION, "ABORTED - SQ DELETION" },
212         { NVME_SC_ABORTED_FAILED_FUSED, "ABORTED - FAILED FUSED" },
213         { NVME_SC_ABORTED_MISSING_FUSED, "ABORTED - MISSING FUSED" },
214         { NVME_SC_INVALID_NAMESPACE_OR_FORMAT, "INVALID NAMESPACE OR FORMAT" },
215         { NVME_SC_COMMAND_SEQUENCE_ERROR, "COMMAND SEQUENCE ERROR" },
216         { NVME_SC_INVALID_SGL_SEGMENT_DESCR, "INVALID SGL SEGMENT DESCRIPTOR" },
217         { NVME_SC_INVALID_NUMBER_OF_SGL_DESCR, "INVALID NUMBER OF SGL DESCRIPTORS" },
218         { NVME_SC_DATA_SGL_LENGTH_INVALID, "DATA SGL LENGTH INVALID" },
219         { NVME_SC_METADATA_SGL_LENGTH_INVALID, "METADATA SGL LENGTH INVALID" },
220         { NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID, "SGL DESCRIPTOR TYPE INVALID" },
221         { NVME_SC_INVALID_USE_OF_CMB, "INVALID USE OF CONTROLLER MEMORY BUFFER" },
222         { NVME_SC_PRP_OFFET_INVALID, "PRP OFFET INVALID" },
223         { NVME_SC_ATOMIC_WRITE_UNIT_EXCEEDED, "ATOMIC WRITE UNIT EXCEEDED" },
224         { NVME_SC_OPERATION_DENIED, "OPERATION DENIED" },
225         { NVME_SC_SGL_OFFSET_INVALID, "SGL OFFSET INVALID" },
226         { NVME_SC_HOST_ID_INCONSISTENT_FORMAT, "HOST IDENTIFIER INCONSISTENT FORMAT" },
227         { NVME_SC_KEEP_ALIVE_TIMEOUT_EXPIRED, "KEEP ALIVE TIMEOUT EXPIRED" },
228         { NVME_SC_KEEP_ALIVE_TIMEOUT_INVALID, "KEEP ALIVE TIMEOUT INVALID" },
229         { NVME_SC_ABORTED_DUE_TO_PREEMPT, "COMMAND ABORTED DUE TO PREEMPT AND ABORT" },
230         { NVME_SC_SANITIZE_FAILED, "SANITIZE FAILED" },
231         { NVME_SC_SANITIZE_IN_PROGRESS, "SANITIZE IN PROGRESS" },
232         { NVME_SC_SGL_DATA_BLOCK_GRAN_INVALID, "SGL_DATA_BLOCK_GRANULARITY_INVALID" },
233         { NVME_SC_NOT_SUPPORTED_IN_CMB, "COMMAND NOT SUPPORTED FOR QUEUE IN CMB" },
234         { NVME_SC_NAMESPACE_IS_WRITE_PROTECTED, "NAMESPACE IS WRITE PROTECTED" },
235         { NVME_SC_COMMAND_INTERRUPTED, "COMMAND INTERRUPTED" },
236         { NVME_SC_TRANSIENT_TRANSPORT_ERROR, "TRANSIENT TRANSPORT ERROR" },
237
238         { NVME_SC_LBA_OUT_OF_RANGE, "LBA OUT OF RANGE" },
239         { NVME_SC_CAPACITY_EXCEEDED, "CAPACITY EXCEEDED" },
240         { NVME_SC_NAMESPACE_NOT_READY, "NAMESPACE NOT READY" },
241         { NVME_SC_RESERVATION_CONFLICT, "RESERVATION CONFLICT" },
242         { NVME_SC_FORMAT_IN_PROGRESS, "FORMAT IN PROGRESS" },
243         { 0xFFFF, "GENERIC" }
244 };
245
246 static struct nvme_status_string command_specific_status[] = {
247         { NVME_SC_COMPLETION_QUEUE_INVALID, "INVALID COMPLETION QUEUE" },
248         { NVME_SC_INVALID_QUEUE_IDENTIFIER, "INVALID QUEUE IDENTIFIER" },
249         { NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED, "MAX QUEUE SIZE EXCEEDED" },
250         { NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED, "ABORT CMD LIMIT EXCEEDED" },
251         { NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED, "ASYNC LIMIT EXCEEDED" },
252         { NVME_SC_INVALID_FIRMWARE_SLOT, "INVALID FIRMWARE SLOT" },
253         { NVME_SC_INVALID_FIRMWARE_IMAGE, "INVALID FIRMWARE IMAGE" },
254         { NVME_SC_INVALID_INTERRUPT_VECTOR, "INVALID INTERRUPT VECTOR" },
255         { NVME_SC_INVALID_LOG_PAGE, "INVALID LOG PAGE" },
256         { NVME_SC_INVALID_FORMAT, "INVALID FORMAT" },
257         { NVME_SC_FIRMWARE_REQUIRES_RESET, "FIRMWARE REQUIRES RESET" },
258         { NVME_SC_INVALID_QUEUE_DELETION, "INVALID QUEUE DELETION" },
259         { NVME_SC_FEATURE_NOT_SAVEABLE, "FEATURE IDENTIFIER NOT SAVEABLE" },
260         { NVME_SC_FEATURE_NOT_CHANGEABLE, "FEATURE NOT CHANGEABLE" },
261         { NVME_SC_FEATURE_NOT_NS_SPECIFIC, "FEATURE NOT NAMESPACE SPECIFIC" },
262         { NVME_SC_FW_ACT_REQUIRES_NVMS_RESET, "FIRMWARE ACTIVATION REQUIRES NVM SUBSYSTEM RESET" },
263         { NVME_SC_FW_ACT_REQUIRES_RESET, "FIRMWARE ACTIVATION REQUIRES RESET" },
264         { NVME_SC_FW_ACT_REQUIRES_TIME, "FIRMWARE ACTIVATION REQUIRES MAXIMUM TIME VIOLATION" },
265         { NVME_SC_FW_ACT_PROHIBITED, "FIRMWARE ACTIVATION PROHIBITED" },
266         { NVME_SC_OVERLAPPING_RANGE, "OVERLAPPING RANGE" },
267         { NVME_SC_NS_INSUFFICIENT_CAPACITY, "NAMESPACE INSUFFICIENT CAPACITY" },
268         { NVME_SC_NS_ID_UNAVAILABLE, "NAMESPACE IDENTIFIER UNAVAILABLE" },
269         { NVME_SC_NS_ALREADY_ATTACHED, "NAMESPACE ALREADY ATTACHED" },
270         { NVME_SC_NS_IS_PRIVATE, "NAMESPACE IS PRIVATE" },
271         { NVME_SC_NS_NOT_ATTACHED, "NS NOT ATTACHED" },
272         { NVME_SC_THIN_PROV_NOT_SUPPORTED, "THIN PROVISIONING NOT SUPPORTED" },
273         { NVME_SC_CTRLR_LIST_INVALID, "CONTROLLER LIST INVALID" },
274         { NVME_SC_SELT_TEST_IN_PROGRESS, "DEVICE SELT-TEST IN PROGRESS" },
275         { NVME_SC_BOOT_PART_WRITE_PROHIB, "BOOT PARTITION WRITE PROHIBITED" },
276         { NVME_SC_INVALID_CTRLR_ID, "INVALID CONTROLLER IDENTIFIER" },
277         { NVME_SC_INVALID_SEC_CTRLR_STATE, "INVALID SECONDARY CONTROLLER STATE" },
278         { NVME_SC_INVALID_NUM_OF_CTRLR_RESRC, "INVALID NUMBER OF CONTROLLER RESOURCES" },
279         { NVME_SC_INVALID_RESOURCE_ID, "INVALID RESOURCE IDENTIFIER" },
280         { NVME_SC_SANITIZE_PROHIBITED_WPMRE, "SANITIZE PROHIBITED WRITE PERSISTENT MEMORY REGION ENABLED" },
281         { NVME_SC_ANA_GROUP_ID_INVALID, "ANA GROUP IDENTIFIED INVALID" },
282         { NVME_SC_ANA_ATTACH_FAILED, "ANA ATTACH FAILED" },
283
284         { NVME_SC_CONFLICTING_ATTRIBUTES, "CONFLICTING ATTRIBUTES" },
285         { NVME_SC_INVALID_PROTECTION_INFO, "INVALID PROTECTION INFO" },
286         { NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE, "WRITE TO RO PAGE" },
287         { 0xFFFF, "COMMAND SPECIFIC" }
288 };
289
290 static struct nvme_status_string media_error_status[] = {
291         { NVME_SC_WRITE_FAULTS, "WRITE FAULTS" },
292         { NVME_SC_UNRECOVERED_READ_ERROR, "UNRECOVERED READ ERROR" },
293         { NVME_SC_GUARD_CHECK_ERROR, "GUARD CHECK ERROR" },
294         { NVME_SC_APPLICATION_TAG_CHECK_ERROR, "APPLICATION TAG CHECK ERROR" },
295         { NVME_SC_REFERENCE_TAG_CHECK_ERROR, "REFERENCE TAG CHECK ERROR" },
296         { NVME_SC_COMPARE_FAILURE, "COMPARE FAILURE" },
297         { NVME_SC_ACCESS_DENIED, "ACCESS DENIED" },
298         { NVME_SC_DEALLOCATED_OR_UNWRITTEN, "DEALLOCATED OR UNWRITTEN LOGICAL BLOCK" },
299         { 0xFFFF, "MEDIA ERROR" }
300 };
301
302 static struct nvme_status_string path_related_status[] = {
303         { NVME_SC_INTERNAL_PATH_ERROR, "INTERNAL PATH ERROR" },
304         { NVME_SC_ASYMMETRIC_ACCESS_PERSISTENT_LOSS, "ASYMMETRIC ACCESS PERSISTENT LOSS" },
305         { NVME_SC_ASYMMETRIC_ACCESS_INACCESSIBLE, "ASYMMETRIC ACCESS INACCESSIBLE" },
306         { NVME_SC_ASYMMETRIC_ACCESS_TRANSITION, "ASYMMETRIC ACCESS TRANSITION" },
307         { NVME_SC_CONTROLLER_PATHING_ERROR, "CONTROLLER PATHING ERROR" },
308         { NVME_SC_HOST_PATHING_ERROR, "HOST PATHING ERROR" },
309         { NVME_SC_COMMAND_ABOTHED_BY_HOST, "COMMAND ABOTHED BY HOST" },
310         { 0xFFFF, "PATH RELATED" },
311 };
312
313 static const char *
314 get_status_string(uint16_t sct, uint16_t sc)
315 {
316         struct nvme_status_string *entry;
317
318         switch (sct) {
319         case NVME_SCT_GENERIC:
320                 entry = generic_status;
321                 break;
322         case NVME_SCT_COMMAND_SPECIFIC:
323                 entry = command_specific_status;
324                 break;
325         case NVME_SCT_MEDIA_ERROR:
326                 entry = media_error_status;
327                 break;
328         case NVME_SCT_PATH_RELATED:
329                 entry = path_related_status;
330                 break;
331         case NVME_SCT_VENDOR_SPECIFIC:
332                 return ("VENDOR SPECIFIC");
333         default:
334                 return ("RESERVED");
335         }
336
337         while (entry->sc != 0xFFFF) {
338                 if (entry->sc == sc)
339                         return (entry->str);
340                 entry++;
341         }
342         return (entry->str);
343 }
344
345 static void
346 nvme_qpair_print_completion(struct nvme_qpair *qpair,
347     struct nvme_completion *cpl)
348 {
349         uint16_t sct, sc;
350
351         sct = NVME_STATUS_GET_SCT(cpl->status);
352         sc = NVME_STATUS_GET_SC(cpl->status);
353
354         nvme_printf(qpair->ctrlr, "%s (%02x/%02x) sqid:%d cid:%d cdw0:%x\n",
355             get_status_string(sct, sc), sct, sc, cpl->sqid, cpl->cid,
356             cpl->cdw0);
357 }
358
359 static boolean_t
360 nvme_completion_is_retry(const struct nvme_completion *cpl)
361 {
362         uint8_t sct, sc, dnr;
363
364         sct = NVME_STATUS_GET_SCT(cpl->status);
365         sc = NVME_STATUS_GET_SC(cpl->status);
366         dnr = NVME_STATUS_GET_DNR(cpl->status); /* Do Not Retry Bit */
367
368         /*
369          * TODO: spec is not clear how commands that are aborted due
370          *  to TLER will be marked.  So for now, it seems
371          *  NAMESPACE_NOT_READY is the only case where we should
372          *  look at the DNR bit. Requests failed with ABORTED_BY_REQUEST
373          *  set the DNR bit correctly since the driver controls that.
374          */
375         switch (sct) {
376         case NVME_SCT_GENERIC:
377                 switch (sc) {
378                 case NVME_SC_ABORTED_BY_REQUEST:
379                 case NVME_SC_NAMESPACE_NOT_READY:
380                         if (dnr)
381                                 return (0);
382                         else
383                                 return (1);
384                 case NVME_SC_INVALID_OPCODE:
385                 case NVME_SC_INVALID_FIELD:
386                 case NVME_SC_COMMAND_ID_CONFLICT:
387                 case NVME_SC_DATA_TRANSFER_ERROR:
388                 case NVME_SC_ABORTED_POWER_LOSS:
389                 case NVME_SC_INTERNAL_DEVICE_ERROR:
390                 case NVME_SC_ABORTED_SQ_DELETION:
391                 case NVME_SC_ABORTED_FAILED_FUSED:
392                 case NVME_SC_ABORTED_MISSING_FUSED:
393                 case NVME_SC_INVALID_NAMESPACE_OR_FORMAT:
394                 case NVME_SC_COMMAND_SEQUENCE_ERROR:
395                 case NVME_SC_LBA_OUT_OF_RANGE:
396                 case NVME_SC_CAPACITY_EXCEEDED:
397                 default:
398                         return (0);
399                 }
400         case NVME_SCT_COMMAND_SPECIFIC:
401         case NVME_SCT_MEDIA_ERROR:
402                 return (0);
403         case NVME_SCT_PATH_RELATED:
404                 switch (sc) {
405                 case NVME_SC_INTERNAL_PATH_ERROR:
406                         if (dnr)
407                                 return (0);
408                         else
409                                 return (1);
410                 default:
411                         return (0);
412                 }
413         case NVME_SCT_VENDOR_SPECIFIC:
414         default:
415                 return (0);
416         }
417 }
418
419 static void
420 nvme_qpair_complete_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr,
421     struct nvme_completion *cpl, error_print_t print_on_error)
422 {
423         struct nvme_request     *req;
424         boolean_t               retry, error, retriable;
425
426         req = tr->req;
427         error = nvme_completion_is_error(cpl);
428         retriable = nvme_completion_is_retry(cpl);
429         retry = error && retriable && req->retries < nvme_retry_count;
430         if (retry)
431                 qpair->num_retries++;
432         if (error && req->retries >= nvme_retry_count && retriable)
433                 qpair->num_failures++;
434
435         if (error && (print_on_error == ERROR_PRINT_ALL ||
436                 (!retry && print_on_error == ERROR_PRINT_NO_RETRY))) {
437                 nvme_qpair_print_command(qpair, &req->cmd);
438                 nvme_qpair_print_completion(qpair, cpl);
439         }
440
441         qpair->act_tr[cpl->cid] = NULL;
442
443         KASSERT(cpl->cid == req->cmd.cid, ("cpl cid does not match cmd cid\n"));
444
445         if (req->cb_fn && !retry)
446                 req->cb_fn(req->cb_arg, cpl);
447
448         mtx_lock(&qpair->lock);
449         callout_stop(&tr->timer);
450
451         if (retry) {
452                 req->retries++;
453                 nvme_qpair_submit_tracker(qpair, tr);
454         } else {
455                 if (req->type != NVME_REQUEST_NULL) {
456                         bus_dmamap_sync(qpair->dma_tag_payload,
457                             tr->payload_dma_map,
458                             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
459                         bus_dmamap_unload(qpair->dma_tag_payload,
460                             tr->payload_dma_map);
461                 }
462
463                 nvme_free_request(req);
464                 tr->req = NULL;
465
466                 TAILQ_REMOVE(&qpair->outstanding_tr, tr, tailq);
467                 TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
468
469                 /*
470                  * If the controller is in the middle of resetting, don't
471                  *  try to submit queued requests here - let the reset logic
472                  *  handle that instead.
473                  */
474                 if (!STAILQ_EMPTY(&qpair->queued_req) &&
475                     !qpair->ctrlr->is_resetting) {
476                         req = STAILQ_FIRST(&qpair->queued_req);
477                         STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
478                         _nvme_qpair_submit_request(qpair, req);
479                 }
480         }
481
482         mtx_unlock(&qpair->lock);
483 }
484
485 static void
486 nvme_qpair_manual_complete_tracker(struct nvme_qpair *qpair,
487     struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
488     error_print_t print_on_error)
489 {
490         struct nvme_completion  cpl;
491
492         memset(&cpl, 0, sizeof(cpl));
493         cpl.sqid = qpair->id;
494         cpl.cid = tr->cid;
495         cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
496         cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
497         cpl.status |= (dnr & NVME_STATUS_DNR_MASK) << NVME_STATUS_DNR_SHIFT;
498         nvme_qpair_complete_tracker(qpair, tr, &cpl, print_on_error);
499 }
500
501 void
502 nvme_qpair_manual_complete_request(struct nvme_qpair *qpair,
503     struct nvme_request *req, uint32_t sct, uint32_t sc)
504 {
505         struct nvme_completion  cpl;
506         boolean_t               error;
507
508         memset(&cpl, 0, sizeof(cpl));
509         cpl.sqid = qpair->id;
510         cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
511         cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
512
513         error = nvme_completion_is_error(&cpl);
514
515         if (error) {
516                 nvme_qpair_print_command(qpair, &req->cmd);
517                 nvme_qpair_print_completion(qpair, &cpl);
518         }
519
520         if (req->cb_fn)
521                 req->cb_fn(req->cb_arg, &cpl);
522
523         nvme_free_request(req);
524 }
525
526 bool
527 nvme_qpair_process_completions(struct nvme_qpair *qpair)
528 {
529         struct nvme_tracker     *tr;
530         struct nvme_completion  cpl;
531         int done = 0;
532         bool in_panic = dumping || SCHEDULER_STOPPED();
533
534         qpair->num_intr_handler_calls++;
535
536         /*
537          * qpair is not enabled, likely because a controller reset is is in
538          * progress.  Ignore the interrupt - any I/O that was associated with
539          * this interrupt will get retried when the reset is complete.
540          */
541         if (!qpair->is_enabled)
542                 return (false);
543
544         /*
545          * A panic can stop the CPU this routine is running on at any point.  If
546          * we're called during a panic, complete the sq_head wrap protocol for
547          * the case where we are interrupted just after the increment at 1
548          * below, but before we can reset cq_head to zero at 2. Also cope with
549          * the case where we do the zero at 2, but may or may not have done the
550          * phase adjustment at step 3. The panic machinery flushes all pending
551          * memory writes, so we can make these strong ordering assumptions
552          * that would otherwise be unwise if we were racing in real time.
553          */
554         if (__predict_false(in_panic)) {
555                 if (qpair->cq_head == qpair->num_entries) {
556                         /*
557                          * Here we know that we need to zero cq_head and then negate
558                          * the phase, which hasn't been assigned if cq_head isn't
559                          * zero due to the atomic_store_rel.
560                          */
561                         qpair->cq_head = 0;
562                         qpair->phase = !qpair->phase;
563                 } else if (qpair->cq_head == 0) {
564                         /*
565                          * In this case, we know that the assignment at 2
566                          * happened below, but we don't know if it 3 happened or
567                          * not. To do this, we look at the last completion
568                          * entry and set the phase to the opposite phase
569                          * that it has. This gets us back in sync
570                          */
571                         cpl = qpair->cpl[qpair->num_entries - 1];
572                         nvme_completion_swapbytes(&cpl);
573                         qpair->phase = !NVME_STATUS_GET_P(cpl.status);
574                 }
575         }
576
577         bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
578             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
579         while (1) {
580                 cpl = qpair->cpl[qpair->cq_head];
581
582                 /* Convert to host endian */
583                 nvme_completion_swapbytes(&cpl);
584
585                 if (NVME_STATUS_GET_P(cpl.status) != qpair->phase)
586                         break;
587
588                 tr = qpair->act_tr[cpl.cid];
589
590                 if (tr != NULL) {
591                         nvme_qpair_complete_tracker(qpair, tr, &cpl, ERROR_PRINT_ALL);
592                         qpair->sq_head = cpl.sqhd;
593                         done++;
594                 } else if (!in_panic) {
595                         /*
596                          * A missing tracker is normally an error.  However, a
597                          * panic can stop the CPU this routine is running on
598                          * after completing an I/O but before updating
599                          * qpair->cq_head at 1 below.  Later, we re-enter this
600                          * routine to poll I/O associated with the kernel
601                          * dump. We find that the tr has been set to null before
602                          * calling the completion routine.  If it hasn't
603                          * completed (or it triggers a panic), then '1' below
604                          * won't have updated cq_head. Rather than panic again,
605                          * ignore this condition because it's not unexpected.
606                          */
607                         nvme_printf(qpair->ctrlr,
608                             "cpl does not map to outstanding cmd\n");
609                         /* nvme_dump_completion expects device endianess */
610                         nvme_dump_completion(&qpair->cpl[qpair->cq_head]);
611                         KASSERT(0, ("received completion for unknown cmd"));
612                 }
613
614                 /*
615                  * There's a number of races with the following (see above) when
616                  * the system panics. We compensate for each one of them by
617                  * using the atomic store to force strong ordering (at least when
618                  * viewed in the aftermath of a panic).
619                  */
620                 if (++qpair->cq_head == qpair->num_entries) {           /* 1 */
621                         atomic_store_rel_int(&qpair->cq_head, 0);       /* 2 */
622                         qpair->phase = !qpair->phase;                   /* 3 */
623                 }
624
625                 nvme_mmio_write_4(qpair->ctrlr, doorbell[qpair->id].cq_hdbl,
626                     qpair->cq_head);
627         }
628         return (done != 0);
629 }
630
631 static void
632 nvme_qpair_msix_handler(void *arg)
633 {
634         struct nvme_qpair *qpair = arg;
635
636         nvme_qpair_process_completions(qpair);
637 }
638
639 int
640 nvme_qpair_construct(struct nvme_qpair *qpair, uint32_t id,
641     uint16_t vector, uint32_t num_entries, uint32_t num_trackers,
642     struct nvme_controller *ctrlr)
643 {
644         struct nvme_tracker     *tr;
645         size_t                  cmdsz, cplsz, prpsz, allocsz, prpmemsz;
646         uint64_t                queuemem_phys, prpmem_phys, list_phys;
647         uint8_t                 *queuemem, *prpmem, *prp_list;
648         int                     i, err;
649
650         qpair->id = id;
651         qpair->vector = vector;
652         qpair->num_entries = num_entries;
653         qpair->num_trackers = num_trackers;
654         qpair->ctrlr = ctrlr;
655
656         if (ctrlr->msix_enabled) {
657
658                 /*
659                  * MSI-X vector resource IDs start at 1, so we add one to
660                  *  the queue's vector to get the corresponding rid to use.
661                  */
662                 qpair->rid = vector + 1;
663
664                 qpair->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
665                     &qpair->rid, RF_ACTIVE);
666                 bus_setup_intr(ctrlr->dev, qpair->res,
667                     INTR_TYPE_MISC | INTR_MPSAFE, NULL,
668                     nvme_qpair_msix_handler, qpair, &qpair->tag);
669                 if (id == 0) {
670                         bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
671                             "admin");
672                 } else {
673                         bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
674                             "io%d", id - 1);
675                 }
676         }
677
678         mtx_init(&qpair->lock, "nvme qpair lock", NULL, MTX_DEF);
679
680         /* Note: NVMe PRP format is restricted to 4-byte alignment. */
681         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
682             4, PAGE_SIZE, BUS_SPACE_MAXADDR,
683             BUS_SPACE_MAXADDR, NULL, NULL, NVME_MAX_XFER_SIZE,
684             (NVME_MAX_XFER_SIZE/PAGE_SIZE)+1, PAGE_SIZE, 0,
685             NULL, NULL, &qpair->dma_tag_payload);
686         if (err != 0) {
687                 nvme_printf(ctrlr, "payload tag create failed %d\n", err);
688                 goto out;
689         }
690
691         /*
692          * Each component must be page aligned, and individual PRP lists
693          * cannot cross a page boundary.
694          */
695         cmdsz = qpair->num_entries * sizeof(struct nvme_command);
696         cmdsz = roundup2(cmdsz, PAGE_SIZE);
697         cplsz = qpair->num_entries * sizeof(struct nvme_completion);
698         cplsz = roundup2(cplsz, PAGE_SIZE);
699         prpsz = sizeof(uint64_t) * NVME_MAX_PRP_LIST_ENTRIES;;
700         prpmemsz = qpair->num_trackers * prpsz;
701         allocsz = cmdsz + cplsz + prpmemsz;
702
703         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
704             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
705             allocsz, 1, allocsz, 0, NULL, NULL, &qpair->dma_tag);
706         if (err != 0) {
707                 nvme_printf(ctrlr, "tag create failed %d\n", err);
708                 goto out;
709         }
710
711         if (bus_dmamem_alloc(qpair->dma_tag, (void **)&queuemem,
712             BUS_DMA_NOWAIT, &qpair->queuemem_map)) {
713                 nvme_printf(ctrlr, "failed to alloc qpair memory\n");
714                 goto out;
715         }
716
717         if (bus_dmamap_load(qpair->dma_tag, qpair->queuemem_map,
718             queuemem, allocsz, nvme_single_map, &queuemem_phys, 0) != 0) {
719                 nvme_printf(ctrlr, "failed to load qpair memory\n");
720                 goto out;
721         }
722
723         qpair->num_cmds = 0;
724         qpair->num_intr_handler_calls = 0;
725         qpair->num_retries = 0;
726         qpair->num_failures = 0;
727         qpair->cmd = (struct nvme_command *)queuemem;
728         qpair->cpl = (struct nvme_completion *)(queuemem + cmdsz);
729         prpmem = (uint8_t *)(queuemem + cmdsz + cplsz);
730         qpair->cmd_bus_addr = queuemem_phys;
731         qpair->cpl_bus_addr = queuemem_phys + cmdsz;
732         prpmem_phys = queuemem_phys + cmdsz + cplsz;
733
734         qpair->sq_tdbl_off = nvme_mmio_offsetof(doorbell[id].sq_tdbl);
735         qpair->cq_hdbl_off = nvme_mmio_offsetof(doorbell[id].cq_hdbl);
736
737         TAILQ_INIT(&qpair->free_tr);
738         TAILQ_INIT(&qpair->outstanding_tr);
739         STAILQ_INIT(&qpair->queued_req);
740
741         list_phys = prpmem_phys;
742         prp_list = prpmem;
743         for (i = 0; i < qpair->num_trackers; i++) {
744
745                 if (list_phys + prpsz > prpmem_phys + prpmemsz) {
746                         qpair->num_trackers = i;
747                         break;
748                 }
749
750                 /*
751                  * Make sure that the PRP list for this tracker doesn't
752                  * overflow to another page.
753                  */
754                 if (trunc_page(list_phys) !=
755                     trunc_page(list_phys + prpsz - 1)) {
756                         list_phys = roundup2(list_phys, PAGE_SIZE);
757                         prp_list =
758                             (uint8_t *)roundup2((uintptr_t)prp_list, PAGE_SIZE);
759                 }
760
761                 tr = malloc(sizeof(*tr), M_NVME, M_ZERO | M_WAITOK);
762                 bus_dmamap_create(qpair->dma_tag_payload, 0,
763                     &tr->payload_dma_map);
764                 callout_init(&tr->timer, 1);
765                 tr->cid = i;
766                 tr->qpair = qpair;
767                 tr->prp = (uint64_t *)prp_list;
768                 tr->prp_bus_addr = list_phys;
769                 TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
770                 list_phys += prpsz;
771                 prp_list += prpsz;
772         }
773
774         if (qpair->num_trackers == 0) {
775                 nvme_printf(ctrlr, "failed to allocate enough trackers\n");
776                 goto out;
777         }
778
779         qpair->act_tr = malloc(sizeof(struct nvme_tracker *) *
780             qpair->num_entries, M_NVME, M_ZERO | M_WAITOK);
781         return (0);
782
783 out:
784         nvme_qpair_destroy(qpair);
785         return (ENOMEM);
786 }
787
788 static void
789 nvme_qpair_destroy(struct nvme_qpair *qpair)
790 {
791         struct nvme_tracker     *tr;
792
793         if (qpair->tag)
794                 bus_teardown_intr(qpair->ctrlr->dev, qpair->res, qpair->tag);
795
796         if (mtx_initialized(&qpair->lock))
797                 mtx_destroy(&qpair->lock);
798
799         if (qpair->res)
800                 bus_release_resource(qpair->ctrlr->dev, SYS_RES_IRQ,
801                     rman_get_rid(qpair->res), qpair->res);
802
803         if (qpair->cmd != NULL) {
804                 bus_dmamap_unload(qpair->dma_tag, qpair->queuemem_map);
805                 bus_dmamem_free(qpair->dma_tag, qpair->cmd,
806                     qpair->queuemem_map);
807         }
808
809         if (qpair->act_tr)
810                 free(qpair->act_tr, M_NVME);
811
812         while (!TAILQ_EMPTY(&qpair->free_tr)) {
813                 tr = TAILQ_FIRST(&qpair->free_tr);
814                 TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
815                 bus_dmamap_destroy(qpair->dma_tag_payload,
816                     tr->payload_dma_map);
817                 free(tr, M_NVME);
818         }
819
820         if (qpair->dma_tag)
821                 bus_dma_tag_destroy(qpair->dma_tag);
822
823         if (qpair->dma_tag_payload)
824                 bus_dma_tag_destroy(qpair->dma_tag_payload);
825 }
826
827 static void
828 nvme_admin_qpair_abort_aers(struct nvme_qpair *qpair)
829 {
830         struct nvme_tracker     *tr;
831
832         tr = TAILQ_FIRST(&qpair->outstanding_tr);
833         while (tr != NULL) {
834                 if (tr->req->cmd.opc == NVME_OPC_ASYNC_EVENT_REQUEST) {
835                         nvme_qpair_manual_complete_tracker(qpair, tr,
836                             NVME_SCT_GENERIC, NVME_SC_ABORTED_SQ_DELETION, 0,
837                             ERROR_PRINT_NONE);
838                         tr = TAILQ_FIRST(&qpair->outstanding_tr);
839                 } else {
840                         tr = TAILQ_NEXT(tr, tailq);
841                 }
842         }
843 }
844
845 void
846 nvme_admin_qpair_destroy(struct nvme_qpair *qpair)
847 {
848
849         nvme_admin_qpair_abort_aers(qpair);
850         nvme_qpair_destroy(qpair);
851 }
852
853 void
854 nvme_io_qpair_destroy(struct nvme_qpair *qpair)
855 {
856
857         nvme_qpair_destroy(qpair);
858 }
859
860 static void
861 nvme_abort_complete(void *arg, const struct nvme_completion *status)
862 {
863         struct nvme_tracker     *tr = arg;
864
865         /*
866          * If cdw0 == 1, the controller was not able to abort the command
867          *  we requested.  We still need to check the active tracker array,
868          *  to cover race where I/O timed out at same time controller was
869          *  completing the I/O.
870          */
871         if (status->cdw0 == 1 && tr->qpair->act_tr[tr->cid] != NULL) {
872                 /*
873                  * An I/O has timed out, and the controller was unable to
874                  *  abort it for some reason.  Construct a fake completion
875                  *  status, and then complete the I/O's tracker manually.
876                  */
877                 nvme_printf(tr->qpair->ctrlr,
878                     "abort command failed, aborting command manually\n");
879                 nvme_qpair_manual_complete_tracker(tr->qpair, tr,
880                     NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_ALL);
881         }
882 }
883
884 static void
885 nvme_timeout(void *arg)
886 {
887         struct nvme_tracker     *tr = arg;
888         struct nvme_qpair       *qpair = tr->qpair;
889         struct nvme_controller  *ctrlr = qpair->ctrlr;
890         uint32_t                csts;
891         uint8_t                 cfs;
892
893         /*
894          * Read csts to get value of cfs - controller fatal status.
895          * If no fatal status, try to call the completion routine, and
896          * if completes transactions, report a missed interrupt and
897          * return (this may need to be rate limited). Otherwise, if
898          * aborts are enabled and the controller is not reporting
899          * fatal status, abort the command. Otherwise, just reset the
900          * controller and hope for the best.
901          */
902         csts = nvme_mmio_read_4(ctrlr, csts);
903         cfs = (csts >> NVME_CSTS_REG_CFS_SHIFT) & NVME_CSTS_REG_CFS_MASK;
904         if (cfs == 0 && nvme_qpair_process_completions(qpair)) {
905                 nvme_printf(ctrlr, "Missing interrupt\n");
906                 return;
907         }
908         if (ctrlr->enable_aborts && cfs == 0) {
909                 nvme_printf(ctrlr, "Aborting command due to a timeout.\n");
910                 nvme_ctrlr_cmd_abort(ctrlr, tr->cid, qpair->id,
911                     nvme_abort_complete, tr);
912         } else {
913                 nvme_printf(ctrlr, "Resetting controller due to a timeout%s.\n",
914                     cfs ? " and fatal error status" : "");
915                 nvme_ctrlr_reset(ctrlr);
916         }
917 }
918
919 void
920 nvme_qpair_submit_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr)
921 {
922         struct nvme_request     *req;
923         struct nvme_controller  *ctrlr;
924
925         mtx_assert(&qpair->lock, MA_OWNED);
926
927         req = tr->req;
928         req->cmd.cid = tr->cid;
929         qpair->act_tr[tr->cid] = tr;
930         ctrlr = qpair->ctrlr;
931
932         if (req->timeout)
933                 callout_reset_curcpu(&tr->timer, ctrlr->timeout_period * hz,
934                     nvme_timeout, tr);
935
936         /* Copy the command from the tracker to the submission queue. */
937         memcpy(&qpair->cmd[qpair->sq_tail], &req->cmd, sizeof(req->cmd));
938
939         if (++qpair->sq_tail == qpair->num_entries)
940                 qpair->sq_tail = 0;
941
942         bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
943             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
944 #ifndef __powerpc__
945         /*
946          * powerpc's bus_dmamap_sync() already includes a heavyweight sync, but
947          * no other archs do.
948          */
949         wmb();
950 #endif
951
952         nvme_mmio_write_4(qpair->ctrlr, doorbell[qpair->id].sq_tdbl,
953             qpair->sq_tail);
954
955         qpair->num_cmds++;
956 }
957
958 static void
959 nvme_payload_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
960 {
961         struct nvme_tracker     *tr = arg;
962         uint32_t                cur_nseg;
963
964         /*
965          * If the mapping operation failed, return immediately.  The caller
966          *  is responsible for detecting the error status and failing the
967          *  tracker manually.
968          */
969         if (error != 0) {
970                 nvme_printf(tr->qpair->ctrlr,
971                     "nvme_payload_map err %d\n", error);
972                 return;
973         }
974
975         /*
976          * Note that we specified PAGE_SIZE for alignment and max
977          *  segment size when creating the bus dma tags.  So here
978          *  we can safely just transfer each segment to its
979          *  associated PRP entry.
980          */
981         tr->req->cmd.prp1 = htole64(seg[0].ds_addr);
982
983         if (nseg == 2) {
984                 tr->req->cmd.prp2 = htole64(seg[1].ds_addr);
985         } else if (nseg > 2) {
986                 cur_nseg = 1;
987                 tr->req->cmd.prp2 = htole64((uint64_t)tr->prp_bus_addr);
988                 while (cur_nseg < nseg) {
989                         tr->prp[cur_nseg-1] =
990                             htole64((uint64_t)seg[cur_nseg].ds_addr);
991                         cur_nseg++;
992                 }
993         } else {
994                 /*
995                  * prp2 should not be used by the controller
996                  *  since there is only one segment, but set
997                  *  to 0 just to be safe.
998                  */
999                 tr->req->cmd.prp2 = 0;
1000         }
1001
1002         bus_dmamap_sync(tr->qpair->dma_tag_payload, tr->payload_dma_map,
1003             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1004         nvme_qpair_submit_tracker(tr->qpair, tr);
1005 }
1006
1007 static void
1008 _nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
1009 {
1010         struct nvme_tracker     *tr;
1011         int                     err = 0;
1012
1013         mtx_assert(&qpair->lock, MA_OWNED);
1014
1015         tr = TAILQ_FIRST(&qpair->free_tr);
1016         req->qpair = qpair;
1017
1018         if (tr == NULL || !qpair->is_enabled) {
1019                 /*
1020                  * No tracker is available, or the qpair is disabled due to
1021                  *  an in-progress controller-level reset or controller
1022                  *  failure.
1023                  */
1024
1025                 if (qpair->ctrlr->is_failed) {
1026                         /*
1027                          * The controller has failed.  Post the request to a
1028                          *  task where it will be aborted, so that we do not
1029                          *  invoke the request's callback in the context
1030                          *  of the submission.
1031                          */
1032                         nvme_ctrlr_post_failed_request(qpair->ctrlr, req);
1033                 } else {
1034                         /*
1035                          * Put the request on the qpair's request queue to be
1036                          *  processed when a tracker frees up via a command
1037                          *  completion or when the controller reset is
1038                          *  completed.
1039                          */
1040                         STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
1041                 }
1042                 return;
1043         }
1044
1045         TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
1046         TAILQ_INSERT_TAIL(&qpair->outstanding_tr, tr, tailq);
1047         tr->req = req;
1048
1049         switch (req->type) {
1050         case NVME_REQUEST_VADDR:
1051                 KASSERT(req->payload_size <= qpair->ctrlr->max_xfer_size,
1052                     ("payload_size (%d) exceeds max_xfer_size (%d)\n",
1053                     req->payload_size, qpair->ctrlr->max_xfer_size));
1054                 err = bus_dmamap_load(tr->qpair->dma_tag_payload,
1055                     tr->payload_dma_map, req->u.payload, req->payload_size,
1056                     nvme_payload_map, tr, 0);
1057                 if (err != 0)
1058                         nvme_printf(qpair->ctrlr,
1059                             "bus_dmamap_load returned 0x%x!\n", err);
1060                 break;
1061         case NVME_REQUEST_NULL:
1062                 nvme_qpair_submit_tracker(tr->qpair, tr);
1063                 break;
1064         case NVME_REQUEST_BIO:
1065                 KASSERT(req->u.bio->bio_bcount <= qpair->ctrlr->max_xfer_size,
1066                     ("bio->bio_bcount (%jd) exceeds max_xfer_size (%d)\n",
1067                     (intmax_t)req->u.bio->bio_bcount,
1068                     qpair->ctrlr->max_xfer_size));
1069                 err = bus_dmamap_load_bio(tr->qpair->dma_tag_payload,
1070                     tr->payload_dma_map, req->u.bio, nvme_payload_map, tr, 0);
1071                 if (err != 0)
1072                         nvme_printf(qpair->ctrlr,
1073                             "bus_dmamap_load_bio returned 0x%x!\n", err);
1074                 break;
1075         case NVME_REQUEST_CCB:
1076                 err = bus_dmamap_load_ccb(tr->qpair->dma_tag_payload,
1077                     tr->payload_dma_map, req->u.payload,
1078                     nvme_payload_map, tr, 0);
1079                 if (err != 0)
1080                         nvme_printf(qpair->ctrlr,
1081                             "bus_dmamap_load_ccb returned 0x%x!\n", err);
1082                 break;
1083         default:
1084                 panic("unknown nvme request type 0x%x\n", req->type);
1085                 break;
1086         }
1087
1088         if (err != 0) {
1089                 /*
1090                  * The dmamap operation failed, so we manually fail the
1091                  *  tracker here with DATA_TRANSFER_ERROR status.
1092                  *
1093                  * nvme_qpair_manual_complete_tracker must not be called
1094                  *  with the qpair lock held.
1095                  */
1096                 mtx_unlock(&qpair->lock);
1097                 nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1098                     NVME_SC_DATA_TRANSFER_ERROR, DO_NOT_RETRY, ERROR_PRINT_ALL);
1099                 mtx_lock(&qpair->lock);
1100         }
1101 }
1102
1103 void
1104 nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
1105 {
1106
1107         mtx_lock(&qpair->lock);
1108         _nvme_qpair_submit_request(qpair, req);
1109         mtx_unlock(&qpair->lock);
1110 }
1111
1112 static void
1113 nvme_qpair_enable(struct nvme_qpair *qpair)
1114 {
1115
1116         qpair->is_enabled = TRUE;
1117 }
1118
1119 void
1120 nvme_qpair_reset(struct nvme_qpair *qpair)
1121 {
1122
1123         qpair->sq_head = qpair->sq_tail = qpair->cq_head = 0;
1124
1125         /*
1126          * First time through the completion queue, HW will set phase
1127          *  bit on completions to 1.  So set this to 1 here, indicating
1128          *  we're looking for a 1 to know which entries have completed.
1129          *  we'll toggle the bit each time when the completion queue
1130          *  rolls over.
1131          */
1132         qpair->phase = 1;
1133
1134         memset(qpair->cmd, 0,
1135             qpair->num_entries * sizeof(struct nvme_command));
1136         memset(qpair->cpl, 0,
1137             qpair->num_entries * sizeof(struct nvme_completion));
1138 }
1139
1140 void
1141 nvme_admin_qpair_enable(struct nvme_qpair *qpair)
1142 {
1143         struct nvme_tracker             *tr;
1144         struct nvme_tracker             *tr_temp;
1145
1146         /*
1147          * Manually abort each outstanding admin command.  Do not retry
1148          *  admin commands found here, since they will be left over from
1149          *  a controller reset and its likely the context in which the
1150          *  command was issued no longer applies.
1151          */
1152         TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
1153                 nvme_printf(qpair->ctrlr,
1154                     "aborting outstanding admin command\n");
1155                 nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1156                     NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
1157         }
1158
1159         nvme_qpair_enable(qpair);
1160 }
1161
1162 void
1163 nvme_io_qpair_enable(struct nvme_qpair *qpair)
1164 {
1165         STAILQ_HEAD(, nvme_request)     temp;
1166         struct nvme_tracker             *tr;
1167         struct nvme_tracker             *tr_temp;
1168         struct nvme_request             *req;
1169
1170         /*
1171          * Manually abort each outstanding I/O.  This normally results in a
1172          *  retry, unless the retry count on the associated request has
1173          *  reached its limit.
1174          */
1175         TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
1176                 nvme_printf(qpair->ctrlr, "aborting outstanding i/o\n");
1177                 nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1178                     NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_NO_RETRY);
1179         }
1180
1181         mtx_lock(&qpair->lock);
1182
1183         nvme_qpair_enable(qpair);
1184
1185         STAILQ_INIT(&temp);
1186         STAILQ_SWAP(&qpair->queued_req, &temp, nvme_request);
1187
1188         while (!STAILQ_EMPTY(&temp)) {
1189                 req = STAILQ_FIRST(&temp);
1190                 STAILQ_REMOVE_HEAD(&temp, stailq);
1191                 nvme_printf(qpair->ctrlr, "resubmitting queued i/o\n");
1192                 nvme_qpair_print_command(qpair, &req->cmd);
1193                 _nvme_qpair_submit_request(qpair, req);
1194         }
1195
1196         mtx_unlock(&qpair->lock);
1197 }
1198
1199 static void
1200 nvme_qpair_disable(struct nvme_qpair *qpair)
1201 {
1202         struct nvme_tracker *tr;
1203
1204         qpair->is_enabled = FALSE;
1205         mtx_lock(&qpair->lock);
1206         TAILQ_FOREACH(tr, &qpair->outstanding_tr, tailq)
1207                 callout_stop(&tr->timer);
1208         mtx_unlock(&qpair->lock);
1209 }
1210
1211 void
1212 nvme_admin_qpair_disable(struct nvme_qpair *qpair)
1213 {
1214
1215         nvme_qpair_disable(qpair);
1216         nvme_admin_qpair_abort_aers(qpair);
1217 }
1218
1219 void
1220 nvme_io_qpair_disable(struct nvme_qpair *qpair)
1221 {
1222
1223         nvme_qpair_disable(qpair);
1224 }
1225
1226 void
1227 nvme_qpair_fail(struct nvme_qpair *qpair)
1228 {
1229         struct nvme_tracker             *tr;
1230         struct nvme_request             *req;
1231
1232         if (!mtx_initialized(&qpair->lock))
1233                 return;
1234
1235         mtx_lock(&qpair->lock);
1236
1237         while (!STAILQ_EMPTY(&qpair->queued_req)) {
1238                 req = STAILQ_FIRST(&qpair->queued_req);
1239                 STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
1240                 nvme_printf(qpair->ctrlr, "failing queued i/o\n");
1241                 mtx_unlock(&qpair->lock);
1242                 nvme_qpair_manual_complete_request(qpair, req, NVME_SCT_GENERIC,
1243                     NVME_SC_ABORTED_BY_REQUEST);
1244                 mtx_lock(&qpair->lock);
1245         }
1246
1247         /* Manually abort each outstanding I/O. */
1248         while (!TAILQ_EMPTY(&qpair->outstanding_tr)) {
1249                 tr = TAILQ_FIRST(&qpair->outstanding_tr);
1250                 /*
1251                  * Do not remove the tracker.  The abort_tracker path will
1252                  *  do that for us.
1253                  */
1254                 nvme_printf(qpair->ctrlr, "failing outstanding i/o\n");
1255                 mtx_unlock(&qpair->lock);
1256                 nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1257                     NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
1258                 mtx_lock(&qpair->lock);
1259         }
1260
1261         mtx_unlock(&qpair->lock);
1262 }
1263