]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/nvme/nvme_qpair.c
MFC r324634 (by imp):
[FreeBSD/FreeBSD.git] / sys / dev / nvme / nvme_qpair.c
1 /*-
2  * Copyright (C) 2012-2014 Intel Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <sys/param.h>
31 #include <sys/bus.h>
32
33 #include <dev/pci/pcivar.h>
34
35 #include "nvme_private.h"
36
37 static void     _nvme_qpair_submit_request(struct nvme_qpair *qpair,
38                                            struct nvme_request *req);
39 static void     nvme_qpair_destroy(struct nvme_qpair *qpair);
40
41 struct nvme_opcode_string {
42
43         uint16_t        opc;
44         const char *    str;
45 };
46
47 static struct nvme_opcode_string admin_opcode[] = {
48         { NVME_OPC_DELETE_IO_SQ, "DELETE IO SQ" },
49         { NVME_OPC_CREATE_IO_SQ, "CREATE IO SQ" },
50         { NVME_OPC_GET_LOG_PAGE, "GET LOG PAGE" },
51         { NVME_OPC_DELETE_IO_CQ, "DELETE IO CQ" },
52         { NVME_OPC_CREATE_IO_CQ, "CREATE IO CQ" },
53         { NVME_OPC_IDENTIFY, "IDENTIFY" },
54         { NVME_OPC_ABORT, "ABORT" },
55         { NVME_OPC_SET_FEATURES, "SET FEATURES" },
56         { NVME_OPC_GET_FEATURES, "GET FEATURES" },
57         { NVME_OPC_ASYNC_EVENT_REQUEST, "ASYNC EVENT REQUEST" },
58         { NVME_OPC_FIRMWARE_ACTIVATE, "FIRMWARE ACTIVATE" },
59         { NVME_OPC_FIRMWARE_IMAGE_DOWNLOAD, "FIRMWARE IMAGE DOWNLOAD" },
60         { NVME_OPC_FORMAT_NVM, "FORMAT NVM" },
61         { NVME_OPC_SECURITY_SEND, "SECURITY SEND" },
62         { NVME_OPC_SECURITY_RECEIVE, "SECURITY RECEIVE" },
63         { 0xFFFF, "ADMIN COMMAND" }
64 };
65
66 static struct nvme_opcode_string io_opcode[] = {
67         { NVME_OPC_FLUSH, "FLUSH" },
68         { NVME_OPC_WRITE, "WRITE" },
69         { NVME_OPC_READ, "READ" },
70         { NVME_OPC_WRITE_UNCORRECTABLE, "WRITE UNCORRECTABLE" },
71         { NVME_OPC_COMPARE, "COMPARE" },
72         { NVME_OPC_DATASET_MANAGEMENT, "DATASET MANAGEMENT" },
73         { 0xFFFF, "IO COMMAND" }
74 };
75
76 static const char *
77 get_admin_opcode_string(uint16_t opc)
78 {
79         struct nvme_opcode_string *entry;
80
81         entry = admin_opcode;
82
83         while (entry->opc != 0xFFFF) {
84                 if (entry->opc == opc)
85                         return (entry->str);
86                 entry++;
87         }
88         return (entry->str);
89 }
90
91 static const char *
92 get_io_opcode_string(uint16_t opc)
93 {
94         struct nvme_opcode_string *entry;
95
96         entry = io_opcode;
97
98         while (entry->opc != 0xFFFF) {
99                 if (entry->opc == opc)
100                         return (entry->str);
101                 entry++;
102         }
103         return (entry->str);
104 }
105
106
107 static void
108 nvme_admin_qpair_print_command(struct nvme_qpair *qpair,
109     struct nvme_command *cmd)
110 {
111
112         nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%x "
113             "cdw10:%08x cdw11:%08x\n",
114             get_admin_opcode_string(cmd->opc), cmd->opc, qpair->id, cmd->cid,
115             cmd->nsid, cmd->cdw10, cmd->cdw11);
116 }
117
118 static void
119 nvme_io_qpair_print_command(struct nvme_qpair *qpair,
120     struct nvme_command *cmd)
121 {
122
123         switch (cmd->opc) {
124         case NVME_OPC_WRITE:
125         case NVME_OPC_READ:
126         case NVME_OPC_WRITE_UNCORRECTABLE:
127         case NVME_OPC_COMPARE:
128                 nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d "
129                     "lba:%llu len:%d\n",
130                     get_io_opcode_string(cmd->opc), qpair->id, cmd->cid,
131                     cmd->nsid,
132                     ((unsigned long long)cmd->cdw11 << 32) + cmd->cdw10,
133                     (cmd->cdw12 & 0xFFFF) + 1);
134                 break;
135         case NVME_OPC_FLUSH:
136         case NVME_OPC_DATASET_MANAGEMENT:
137                 nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d\n",
138                     get_io_opcode_string(cmd->opc), qpair->id, cmd->cid,
139                     cmd->nsid);
140                 break;
141         default:
142                 nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%d\n",
143                     get_io_opcode_string(cmd->opc), cmd->opc, qpair->id,
144                     cmd->cid, cmd->nsid);
145                 break;
146         }
147 }
148
149 static void
150 nvme_qpair_print_command(struct nvme_qpair *qpair, struct nvme_command *cmd)
151 {
152         if (qpair->id == 0)
153                 nvme_admin_qpair_print_command(qpair, cmd);
154         else
155                 nvme_io_qpair_print_command(qpair, cmd);
156 }
157
158 struct nvme_status_string {
159
160         uint16_t        sc;
161         const char *    str;
162 };
163
164 static struct nvme_status_string generic_status[] = {
165         { NVME_SC_SUCCESS, "SUCCESS" },
166         { NVME_SC_INVALID_OPCODE, "INVALID OPCODE" },
167         { NVME_SC_INVALID_FIELD, "INVALID_FIELD" },
168         { NVME_SC_COMMAND_ID_CONFLICT, "COMMAND ID CONFLICT" },
169         { NVME_SC_DATA_TRANSFER_ERROR, "DATA TRANSFER ERROR" },
170         { NVME_SC_ABORTED_POWER_LOSS, "ABORTED - POWER LOSS" },
171         { NVME_SC_INTERNAL_DEVICE_ERROR, "INTERNAL DEVICE ERROR" },
172         { NVME_SC_ABORTED_BY_REQUEST, "ABORTED - BY REQUEST" },
173         { NVME_SC_ABORTED_SQ_DELETION, "ABORTED - SQ DELETION" },
174         { NVME_SC_ABORTED_FAILED_FUSED, "ABORTED - FAILED FUSED" },
175         { NVME_SC_ABORTED_MISSING_FUSED, "ABORTED - MISSING FUSED" },
176         { NVME_SC_INVALID_NAMESPACE_OR_FORMAT, "INVALID NAMESPACE OR FORMAT" },
177         { NVME_SC_COMMAND_SEQUENCE_ERROR, "COMMAND SEQUENCE ERROR" },
178         { NVME_SC_LBA_OUT_OF_RANGE, "LBA OUT OF RANGE" },
179         { NVME_SC_CAPACITY_EXCEEDED, "CAPACITY EXCEEDED" },
180         { NVME_SC_NAMESPACE_NOT_READY, "NAMESPACE NOT READY" },
181         { 0xFFFF, "GENERIC" }
182 };
183
184 static struct nvme_status_string command_specific_status[] = {
185         { NVME_SC_COMPLETION_QUEUE_INVALID, "INVALID COMPLETION QUEUE" },
186         { NVME_SC_INVALID_QUEUE_IDENTIFIER, "INVALID QUEUE IDENTIFIER" },
187         { NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED, "MAX QUEUE SIZE EXCEEDED" },
188         { NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED, "ABORT CMD LIMIT EXCEEDED" },
189         { NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED, "ASYNC LIMIT EXCEEDED" },
190         { NVME_SC_INVALID_FIRMWARE_SLOT, "INVALID FIRMWARE SLOT" },
191         { NVME_SC_INVALID_FIRMWARE_IMAGE, "INVALID FIRMWARE IMAGE" },
192         { NVME_SC_INVALID_INTERRUPT_VECTOR, "INVALID INTERRUPT VECTOR" },
193         { NVME_SC_INVALID_LOG_PAGE, "INVALID LOG PAGE" },
194         { NVME_SC_INVALID_FORMAT, "INVALID FORMAT" },
195         { NVME_SC_FIRMWARE_REQUIRES_RESET, "FIRMWARE REQUIRES RESET" },
196         { NVME_SC_CONFLICTING_ATTRIBUTES, "CONFLICTING ATTRIBUTES" },
197         { NVME_SC_INVALID_PROTECTION_INFO, "INVALID PROTECTION INFO" },
198         { NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE, "WRITE TO RO PAGE" },
199         { 0xFFFF, "COMMAND SPECIFIC" }
200 };
201
202 static struct nvme_status_string media_error_status[] = {
203         { NVME_SC_WRITE_FAULTS, "WRITE FAULTS" },
204         { NVME_SC_UNRECOVERED_READ_ERROR, "UNRECOVERED READ ERROR" },
205         { NVME_SC_GUARD_CHECK_ERROR, "GUARD CHECK ERROR" },
206         { NVME_SC_APPLICATION_TAG_CHECK_ERROR, "APPLICATION TAG CHECK ERROR" },
207         { NVME_SC_REFERENCE_TAG_CHECK_ERROR, "REFERENCE TAG CHECK ERROR" },
208         { NVME_SC_COMPARE_FAILURE, "COMPARE FAILURE" },
209         { NVME_SC_ACCESS_DENIED, "ACCESS DENIED" },
210         { 0xFFFF, "MEDIA ERROR" }
211 };
212
213 static const char *
214 get_status_string(uint16_t sct, uint16_t sc)
215 {
216         struct nvme_status_string *entry;
217
218         switch (sct) {
219         case NVME_SCT_GENERIC:
220                 entry = generic_status;
221                 break;
222         case NVME_SCT_COMMAND_SPECIFIC:
223                 entry = command_specific_status;
224                 break;
225         case NVME_SCT_MEDIA_ERROR:
226                 entry = media_error_status;
227                 break;
228         case NVME_SCT_VENDOR_SPECIFIC:
229                 return ("VENDOR SPECIFIC");
230         default:
231                 return ("RESERVED");
232         }
233
234         while (entry->sc != 0xFFFF) {
235                 if (entry->sc == sc)
236                         return (entry->str);
237                 entry++;
238         }
239         return (entry->str);
240 }
241
242 static void
243 nvme_qpair_print_completion(struct nvme_qpair *qpair, 
244     struct nvme_completion *cpl)
245 {
246         nvme_printf(qpair->ctrlr, "%s (%02x/%02x) sqid:%d cid:%d cdw0:%x\n",
247             get_status_string(cpl->status.sct, cpl->status.sc),
248             cpl->status.sct, cpl->status.sc, cpl->sqid, cpl->cid, cpl->cdw0);
249 }
250
251 static boolean_t
252 nvme_completion_is_retry(const struct nvme_completion *cpl)
253 {
254         /*
255          * TODO: spec is not clear how commands that are aborted due
256          *  to TLER will be marked.  So for now, it seems
257          *  NAMESPACE_NOT_READY is the only case where we should
258          *  look at the DNR bit.
259          */
260         switch (cpl->status.sct) {
261         case NVME_SCT_GENERIC:
262                 switch (cpl->status.sc) {
263                 case NVME_SC_ABORTED_BY_REQUEST:
264                 case NVME_SC_NAMESPACE_NOT_READY:
265                         if (cpl->status.dnr)
266                                 return (0);
267                         else
268                                 return (1);
269                 case NVME_SC_INVALID_OPCODE:
270                 case NVME_SC_INVALID_FIELD:
271                 case NVME_SC_COMMAND_ID_CONFLICT:
272                 case NVME_SC_DATA_TRANSFER_ERROR:
273                 case NVME_SC_ABORTED_POWER_LOSS:
274                 case NVME_SC_INTERNAL_DEVICE_ERROR:
275                 case NVME_SC_ABORTED_SQ_DELETION:
276                 case NVME_SC_ABORTED_FAILED_FUSED:
277                 case NVME_SC_ABORTED_MISSING_FUSED:
278                 case NVME_SC_INVALID_NAMESPACE_OR_FORMAT:
279                 case NVME_SC_COMMAND_SEQUENCE_ERROR:
280                 case NVME_SC_LBA_OUT_OF_RANGE:
281                 case NVME_SC_CAPACITY_EXCEEDED:
282                 default:
283                         return (0);
284                 }
285         case NVME_SCT_COMMAND_SPECIFIC:
286         case NVME_SCT_MEDIA_ERROR:
287         case NVME_SCT_VENDOR_SPECIFIC:
288         default:
289                 return (0);
290         }
291 }
292
293 static void
294 nvme_qpair_complete_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr,
295     struct nvme_completion *cpl, boolean_t print_on_error)
296 {
297         struct nvme_request     *req;
298         boolean_t               retry, error;
299
300         req = tr->req;
301         error = nvme_completion_is_error(cpl);
302         retry = error && nvme_completion_is_retry(cpl) &&
303            req->retries < nvme_retry_count;
304
305         if (error && print_on_error) {
306                 nvme_qpair_print_command(qpair, &req->cmd);
307                 nvme_qpair_print_completion(qpair, cpl);
308         }
309
310         qpair->act_tr[cpl->cid] = NULL;
311
312         KASSERT(cpl->cid == req->cmd.cid, ("cpl cid does not match cmd cid\n"));
313
314         if (req->cb_fn && !retry)
315                 req->cb_fn(req->cb_arg, cpl);
316
317         mtx_lock(&qpair->lock);
318         callout_stop(&tr->timer);
319
320         if (retry) {
321                 req->retries++;
322                 nvme_qpair_submit_tracker(qpair, tr);
323         } else {
324                 if (req->type != NVME_REQUEST_NULL)
325                         bus_dmamap_unload(qpair->dma_tag_payload,
326                             tr->payload_dma_map);
327
328                 nvme_free_request(req);
329                 tr->req = NULL;
330
331                 TAILQ_REMOVE(&qpair->outstanding_tr, tr, tailq);
332                 TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
333
334                 /*
335                  * If the controller is in the middle of resetting, don't
336                  *  try to submit queued requests here - let the reset logic
337                  *  handle that instead.
338                  */
339                 if (!STAILQ_EMPTY(&qpair->queued_req) &&
340                     !qpair->ctrlr->is_resetting) {
341                         req = STAILQ_FIRST(&qpair->queued_req);
342                         STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
343                         _nvme_qpair_submit_request(qpair, req);
344                 }
345         }
346
347         mtx_unlock(&qpair->lock);
348 }
349
350 static void
351 nvme_qpair_manual_complete_tracker(struct nvme_qpair *qpair,
352     struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
353     boolean_t print_on_error)
354 {
355         struct nvme_completion  cpl;
356
357         memset(&cpl, 0, sizeof(cpl));
358         cpl.sqid = qpair->id;
359         cpl.cid = tr->cid;
360         cpl.status.sct = sct;
361         cpl.status.sc = sc;
362         cpl.status.dnr = dnr;
363         nvme_qpair_complete_tracker(qpair, tr, &cpl, print_on_error);
364 }
365
366 void
367 nvme_qpair_manual_complete_request(struct nvme_qpair *qpair,
368     struct nvme_request *req, uint32_t sct, uint32_t sc,
369     boolean_t print_on_error)
370 {
371         struct nvme_completion  cpl;
372         boolean_t               error;
373
374         memset(&cpl, 0, sizeof(cpl));
375         cpl.sqid = qpair->id;
376         cpl.status.sct = sct;
377         cpl.status.sc = sc;
378
379         error = nvme_completion_is_error(&cpl);
380
381         if (error && print_on_error) {
382                 nvme_qpair_print_command(qpair, &req->cmd);
383                 nvme_qpair_print_completion(qpair, &cpl);
384         }
385
386         if (req->cb_fn)
387                 req->cb_fn(req->cb_arg, &cpl);
388
389         nvme_free_request(req);
390 }
391
392 void
393 nvme_qpair_process_completions(struct nvme_qpair *qpair)
394 {
395         struct nvme_tracker     *tr;
396         struct nvme_completion  *cpl;
397
398         qpair->num_intr_handler_calls++;
399
400         if (!qpair->is_enabled)
401                 /*
402                  * qpair is not enabled, likely because a controller reset is
403                  *  is in progress.  Ignore the interrupt - any I/O that was
404                  *  associated with this interrupt will get retried when the
405                  *  reset is complete.
406                  */
407                 return;
408
409         while (1) {
410                 cpl = &qpair->cpl[qpair->cq_head];
411
412                 if (cpl->status.p != qpair->phase)
413                         break;
414
415                 tr = qpair->act_tr[cpl->cid];
416
417                 if (tr != NULL) {
418                         nvme_qpair_complete_tracker(qpair, tr, cpl, TRUE);
419                         qpair->sq_head = cpl->sqhd;
420                 } else {
421                         nvme_printf(qpair->ctrlr, 
422                             "cpl does not map to outstanding cmd\n");
423                         nvme_dump_completion(cpl);
424                         KASSERT(0, ("received completion for unknown cmd\n"));
425                 }
426
427                 if (++qpair->cq_head == qpair->num_entries) {
428                         qpair->cq_head = 0;
429                         qpair->phase = !qpair->phase;
430                 }
431
432                 nvme_mmio_write_4(qpair->ctrlr, doorbell[qpair->id].cq_hdbl,
433                     qpair->cq_head);
434         }
435 }
436
437 static void
438 nvme_qpair_msix_handler(void *arg)
439 {
440         struct nvme_qpair *qpair = arg;
441
442         nvme_qpair_process_completions(qpair);
443 }
444
445 int
446 nvme_qpair_construct(struct nvme_qpair *qpair, uint32_t id,
447     uint16_t vector, uint32_t num_entries, uint32_t num_trackers,
448     struct nvme_controller *ctrlr)
449 {
450         struct nvme_tracker     *tr;
451         size_t                  cmdsz, cplsz, prpsz, allocsz, prpmemsz;
452         uint64_t                queuemem_phys, prpmem_phys, list_phys;
453         uint8_t                 *queuemem, *prpmem, *prp_list;
454         int                     i, err;
455
456         qpair->id = id;
457         qpair->vector = vector;
458         qpair->num_entries = num_entries;
459         qpair->num_trackers = num_trackers;
460         qpair->ctrlr = ctrlr;
461
462         if (ctrlr->msix_enabled) {
463
464                 /*
465                  * MSI-X vector resource IDs start at 1, so we add one to
466                  *  the queue's vector to get the corresponding rid to use.
467                  */
468                 qpair->rid = vector + 1;
469
470                 qpair->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
471                     &qpair->rid, RF_ACTIVE);
472                 bus_setup_intr(ctrlr->dev, qpair->res,
473                     INTR_TYPE_MISC | INTR_MPSAFE, NULL,
474                     nvme_qpair_msix_handler, qpair, &qpair->tag);
475         }
476
477         mtx_init(&qpair->lock, "nvme qpair lock", NULL, MTX_DEF);
478
479         /* Note: NVMe PRP format is restricted to 4-byte alignment. */
480         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
481             4, PAGE_SIZE, BUS_SPACE_MAXADDR,
482             BUS_SPACE_MAXADDR, NULL, NULL, NVME_MAX_XFER_SIZE,
483             (NVME_MAX_XFER_SIZE/PAGE_SIZE)+1, PAGE_SIZE, 0,
484             NULL, NULL, &qpair->dma_tag_payload);
485         if (err != 0) {
486                 nvme_printf(ctrlr, "payload tag create failed %d\n", err);
487                 goto out;
488         }
489
490         /*
491          * Each component must be page aligned, and individual PRP lists
492          * cannot cross a page boundary.
493          */
494         cmdsz = qpair->num_entries * sizeof(struct nvme_command);
495         cmdsz = roundup2(cmdsz, PAGE_SIZE);
496         cplsz = qpair->num_entries * sizeof(struct nvme_completion);
497         cplsz = roundup2(cplsz, PAGE_SIZE);
498         prpsz = sizeof(uint64_t) * NVME_MAX_PRP_LIST_ENTRIES;;
499         prpmemsz = qpair->num_trackers * prpsz;
500         allocsz = cmdsz + cplsz + prpmemsz;
501
502         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
503             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
504             allocsz, 1, allocsz, 0, NULL, NULL, &qpair->dma_tag);
505         if (err != 0) {
506                 nvme_printf(ctrlr, "tag create failed %d\n", err);
507                 goto out;
508         }
509
510         if (bus_dmamem_alloc(qpair->dma_tag, (void **)&queuemem,
511             BUS_DMA_NOWAIT, &qpair->queuemem_map)) {
512                 nvme_printf(ctrlr, "failed to alloc qpair memory\n");
513                 goto out;
514         }
515
516         if (bus_dmamap_load(qpair->dma_tag, qpair->queuemem_map,
517             queuemem, allocsz, nvme_single_map, &queuemem_phys, 0) != 0) {
518                 nvme_printf(ctrlr, "failed to load qpair memory\n");
519                 goto out;
520         }
521
522         qpair->num_cmds = 0;
523         qpair->num_intr_handler_calls = 0;
524         qpair->cmd = (struct nvme_command *)queuemem;
525         qpair->cpl = (struct nvme_completion *)(queuemem + cmdsz);
526         prpmem = (uint8_t *)(queuemem + cmdsz + cplsz);
527         qpair->cmd_bus_addr = queuemem_phys;
528         qpair->cpl_bus_addr = queuemem_phys + cmdsz;
529         prpmem_phys = queuemem_phys + cmdsz + cplsz;
530
531         qpair->sq_tdbl_off = nvme_mmio_offsetof(doorbell[id].sq_tdbl);
532         qpair->cq_hdbl_off = nvme_mmio_offsetof(doorbell[id].cq_hdbl);
533
534         TAILQ_INIT(&qpair->free_tr);
535         TAILQ_INIT(&qpair->outstanding_tr);
536         STAILQ_INIT(&qpair->queued_req);
537
538         list_phys = prpmem_phys;
539         prp_list = prpmem;
540         for (i = 0; i < qpair->num_trackers; i++) {
541
542                 if (list_phys + prpsz > prpmem_phys + prpmemsz) {
543                         qpair->num_trackers = i;
544                         break;
545                 }
546
547                 /*
548                  * Make sure that the PRP list for this tracker doesn't
549                  * overflow to another page.
550                  */
551                 if (trunc_page(list_phys) !=
552                     trunc_page(list_phys + prpsz - 1)) {
553                         list_phys = roundup2(list_phys, PAGE_SIZE);
554                         prp_list =
555                             (uint8_t *)roundup2((uintptr_t)prp_list, PAGE_SIZE);
556                 }
557
558                 tr = malloc(sizeof(*tr), M_NVME, M_ZERO | M_WAITOK);
559                 bus_dmamap_create(qpair->dma_tag_payload, 0,
560                     &tr->payload_dma_map);
561                 callout_init(&tr->timer, 1);
562                 tr->cid = i;
563                 tr->qpair = qpair;
564                 tr->prp = (uint64_t *)prp_list;
565                 tr->prp_bus_addr = list_phys;
566                 TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
567                 list_phys += prpsz;
568                 prp_list += prpsz;
569         }
570
571         if (qpair->num_trackers == 0) {
572                 nvme_printf(ctrlr, "failed to allocate enough trackers\n");
573                 goto out;
574         }
575
576         qpair->act_tr = malloc(sizeof(struct nvme_tracker *) *
577             qpair->num_entries, M_NVME, M_ZERO | M_WAITOK);
578         return (0);
579
580 out:
581         nvme_qpair_destroy(qpair);
582         return (ENOMEM);
583 }
584
585 static void
586 nvme_qpair_destroy(struct nvme_qpair *qpair)
587 {
588         struct nvme_tracker     *tr;
589
590         if (qpair->tag)
591                 bus_teardown_intr(qpair->ctrlr->dev, qpair->res, qpair->tag);
592
593         if (mtx_initialized(&qpair->lock))
594                 mtx_destroy(&qpair->lock);
595
596         if (qpair->res)
597                 bus_release_resource(qpair->ctrlr->dev, SYS_RES_IRQ,
598                     rman_get_rid(qpair->res), qpair->res);
599
600         if (qpair->cmd != NULL) {
601                 bus_dmamap_unload(qpair->dma_tag, qpair->queuemem_map);
602                 bus_dmamem_free(qpair->dma_tag, qpair->cmd,
603                     qpair->queuemem_map);
604         }
605
606         if (qpair->dma_tag)
607                 bus_dma_tag_destroy(qpair->dma_tag);
608
609         if (qpair->dma_tag_payload)
610                 bus_dma_tag_destroy(qpair->dma_tag_payload);
611
612         if (qpair->act_tr)
613                 free(qpair->act_tr, M_NVME);
614
615         while (!TAILQ_EMPTY(&qpair->free_tr)) {
616                 tr = TAILQ_FIRST(&qpair->free_tr);
617                 TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
618                 bus_dmamap_destroy(qpair->dma_tag, tr->payload_dma_map);
619                 free(tr, M_NVME);
620         }
621 }
622
623 static void
624 nvme_admin_qpair_abort_aers(struct nvme_qpair *qpair)
625 {
626         struct nvme_tracker     *tr;
627
628         tr = TAILQ_FIRST(&qpair->outstanding_tr);
629         while (tr != NULL) {
630                 if (tr->req->cmd.opc == NVME_OPC_ASYNC_EVENT_REQUEST) {
631                         nvme_qpair_manual_complete_tracker(qpair, tr,
632                             NVME_SCT_GENERIC, NVME_SC_ABORTED_SQ_DELETION, 0,
633                             FALSE);
634                         tr = TAILQ_FIRST(&qpair->outstanding_tr);
635                 } else {
636                         tr = TAILQ_NEXT(tr, tailq);
637                 }
638         }
639 }
640
641 void
642 nvme_admin_qpair_destroy(struct nvme_qpair *qpair)
643 {
644
645         nvme_admin_qpair_abort_aers(qpair);
646         nvme_qpair_destroy(qpair);
647 }
648
649 void
650 nvme_io_qpair_destroy(struct nvme_qpair *qpair)
651 {
652
653         nvme_qpair_destroy(qpair);
654 }
655
656 static void
657 nvme_abort_complete(void *arg, const struct nvme_completion *status)
658 {
659         struct nvme_tracker     *tr = arg;
660
661         /*
662          * If cdw0 == 1, the controller was not able to abort the command
663          *  we requested.  We still need to check the active tracker array,
664          *  to cover race where I/O timed out at same time controller was
665          *  completing the I/O.
666          */
667         if (status->cdw0 == 1 && tr->qpair->act_tr[tr->cid] != NULL) {
668                 /*
669                  * An I/O has timed out, and the controller was unable to
670                  *  abort it for some reason.  Construct a fake completion
671                  *  status, and then complete the I/O's tracker manually.
672                  */
673                 nvme_printf(tr->qpair->ctrlr,
674                     "abort command failed, aborting command manually\n");
675                 nvme_qpair_manual_complete_tracker(tr->qpair, tr,
676                     NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, 0, TRUE);
677         }
678 }
679
680 static void
681 nvme_timeout(void *arg)
682 {
683         struct nvme_tracker     *tr = arg;
684         struct nvme_qpair       *qpair = tr->qpair;
685         struct nvme_controller  *ctrlr = qpair->ctrlr;
686         union csts_register     csts;
687
688         /* Read csts to get value of cfs - controller fatal status. */
689         csts.raw = nvme_mmio_read_4(ctrlr, csts);
690
691         if (ctrlr->enable_aborts && csts.bits.cfs == 0) {
692                 /*
693                  * If aborts are enabled, only use them if the controller is
694                  *  not reporting fatal status.
695                  */
696                 nvme_ctrlr_cmd_abort(ctrlr, tr->cid, qpair->id,
697                     nvme_abort_complete, tr);
698         } else
699                 nvme_ctrlr_reset(ctrlr);
700 }
701
702 void
703 nvme_qpair_submit_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr)
704 {
705         struct nvme_request     *req;
706         struct nvme_controller  *ctrlr;
707
708         mtx_assert(&qpair->lock, MA_OWNED);
709
710         req = tr->req;
711         req->cmd.cid = tr->cid;
712         qpair->act_tr[tr->cid] = tr;
713         ctrlr = qpair->ctrlr;
714
715         if (req->timeout)
716 #if __FreeBSD_version >= 800030
717                 callout_reset_curcpu(&tr->timer, ctrlr->timeout_period * hz,
718                     nvme_timeout, tr);
719 #else
720                 callout_reset(&tr->timer, ctrlr->timeout_period * hz,
721                     nvme_timeout, tr);
722 #endif
723
724         /* Copy the command from the tracker to the submission queue. */
725         memcpy(&qpair->cmd[qpair->sq_tail], &req->cmd, sizeof(req->cmd));
726
727         if (++qpair->sq_tail == qpair->num_entries)
728                 qpair->sq_tail = 0;
729
730         wmb();
731         nvme_mmio_write_4(qpair->ctrlr, doorbell[qpair->id].sq_tdbl,
732             qpair->sq_tail);
733
734         qpair->num_cmds++;
735 }
736
737 static void
738 nvme_payload_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
739 {
740         struct nvme_tracker     *tr = arg;
741         uint32_t                cur_nseg;
742
743         /*
744          * If the mapping operation failed, return immediately.  The caller
745          *  is responsible for detecting the error status and failing the
746          *  tracker manually.
747          */
748         if (error != 0) {
749                 nvme_printf(tr->qpair->ctrlr,
750                     "nvme_payload_map err %d\n", error);
751                 return;
752         }
753
754         /*
755          * Note that we specified PAGE_SIZE for alignment and max
756          *  segment size when creating the bus dma tags.  So here
757          *  we can safely just transfer each segment to its
758          *  associated PRP entry.
759          */
760         tr->req->cmd.prp1 = seg[0].ds_addr;
761
762         if (nseg == 2) {
763                 tr->req->cmd.prp2 = seg[1].ds_addr;
764         } else if (nseg > 2) {
765                 cur_nseg = 1;
766                 tr->req->cmd.prp2 = (uint64_t)tr->prp_bus_addr;
767                 while (cur_nseg < nseg) {
768                         tr->prp[cur_nseg-1] =
769                             (uint64_t)seg[cur_nseg].ds_addr;
770                         cur_nseg++;
771                 }
772         } else {
773                 /*
774                  * prp2 should not be used by the controller
775                  *  since there is only one segment, but set
776                  *  to 0 just to be safe.
777                  */
778                 tr->req->cmd.prp2 = 0;
779         }
780
781         nvme_qpair_submit_tracker(tr->qpair, tr);
782 }
783
784 static void
785 _nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
786 {
787         struct nvme_tracker     *tr;
788         int                     err = 0;
789
790         mtx_assert(&qpair->lock, MA_OWNED);
791
792         tr = TAILQ_FIRST(&qpair->free_tr);
793         req->qpair = qpair;
794
795         if (tr == NULL || !qpair->is_enabled) {
796                 /*
797                  * No tracker is available, or the qpair is disabled due to
798                  *  an in-progress controller-level reset or controller
799                  *  failure.
800                  */
801
802                 if (qpair->ctrlr->is_failed) {
803                         /*
804                          * The controller has failed.  Post the request to a
805                          *  task where it will be aborted, so that we do not
806                          *  invoke the request's callback in the context
807                          *  of the submission.
808                          */
809                         nvme_ctrlr_post_failed_request(qpair->ctrlr, req);
810                 } else {
811                         /*
812                          * Put the request on the qpair's request queue to be
813                          *  processed when a tracker frees up via a command
814                          *  completion or when the controller reset is
815                          *  completed.
816                          */
817                         STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
818                 }
819                 return;
820         }
821
822         TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
823         TAILQ_INSERT_TAIL(&qpair->outstanding_tr, tr, tailq);
824         tr->req = req;
825
826         switch (req->type) {
827         case NVME_REQUEST_VADDR:
828                 KASSERT(req->payload_size <= qpair->ctrlr->max_xfer_size,
829                     ("payload_size (%d) exceeds max_xfer_size (%d)\n",
830                     req->payload_size, qpair->ctrlr->max_xfer_size));
831                 err = bus_dmamap_load(tr->qpair->dma_tag_payload,
832                     tr->payload_dma_map, req->u.payload, req->payload_size,
833                     nvme_payload_map, tr, 0);
834                 if (err != 0)
835                         nvme_printf(qpair->ctrlr,
836                             "bus_dmamap_load returned 0x%x!\n", err);
837                 break;
838         case NVME_REQUEST_NULL:
839                 nvme_qpair_submit_tracker(tr->qpair, tr);
840                 break;
841 #ifdef NVME_UNMAPPED_BIO_SUPPORT
842         case NVME_REQUEST_BIO:
843                 KASSERT(req->u.bio->bio_bcount <= qpair->ctrlr->max_xfer_size,
844                     ("bio->bio_bcount (%jd) exceeds max_xfer_size (%d)\n",
845                     (intmax_t)req->u.bio->bio_bcount,
846                     qpair->ctrlr->max_xfer_size));
847                 err = bus_dmamap_load_bio(tr->qpair->dma_tag_payload,
848                     tr->payload_dma_map, req->u.bio, nvme_payload_map, tr, 0);
849                 if (err != 0)
850                         nvme_printf(qpair->ctrlr,
851                             "bus_dmamap_load_bio returned 0x%x!\n", err);
852                 break;
853 #endif
854         case NVME_REQUEST_CCB:
855                 err = bus_dmamap_load_ccb(tr->qpair->dma_tag_payload,
856                     tr->payload_dma_map, req->u.payload,
857                     nvme_payload_map, tr, 0);
858                 if (err != 0)
859                         nvme_printf(qpair->ctrlr,
860                             "bus_dmamap_load_ccb returned 0x%x!\n", err);
861                 break;
862         default:
863                 panic("unknown nvme request type 0x%x\n", req->type);
864                 break;
865         }
866
867         if (err != 0) {
868                 /*
869                  * The dmamap operation failed, so we manually fail the
870                  *  tracker here with DATA_TRANSFER_ERROR status.
871                  *
872                  * nvme_qpair_manual_complete_tracker must not be called
873                  *  with the qpair lock held.
874                  */
875                 mtx_unlock(&qpair->lock);
876                 nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
877                     NVME_SC_DATA_TRANSFER_ERROR, 1 /* do not retry */, TRUE);
878                 mtx_lock(&qpair->lock);
879         }
880 }
881
882 void
883 nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
884 {
885
886         mtx_lock(&qpair->lock);
887         _nvme_qpair_submit_request(qpair, req);
888         mtx_unlock(&qpair->lock);
889 }
890
891 static void
892 nvme_qpair_enable(struct nvme_qpair *qpair)
893 {
894
895         qpair->is_enabled = TRUE;
896 }
897
898 void
899 nvme_qpair_reset(struct nvme_qpair *qpair)
900 {
901
902         qpair->sq_head = qpair->sq_tail = qpair->cq_head = 0;
903
904         /*
905          * First time through the completion queue, HW will set phase
906          *  bit on completions to 1.  So set this to 1 here, indicating
907          *  we're looking for a 1 to know which entries have completed.
908          *  we'll toggle the bit each time when the completion queue
909          *  rolls over.
910          */
911         qpair->phase = 1;
912
913         memset(qpair->cmd, 0,
914             qpair->num_entries * sizeof(struct nvme_command));
915         memset(qpair->cpl, 0,
916             qpair->num_entries * sizeof(struct nvme_completion));
917 }
918
919 void
920 nvme_admin_qpair_enable(struct nvme_qpair *qpair)
921 {
922         struct nvme_tracker             *tr;
923         struct nvme_tracker             *tr_temp;
924
925         /*
926          * Manually abort each outstanding admin command.  Do not retry
927          *  admin commands found here, since they will be left over from
928          *  a controller reset and its likely the context in which the
929          *  command was issued no longer applies.
930          */
931         TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
932                 nvme_printf(qpair->ctrlr,
933                     "aborting outstanding admin command\n");
934                 nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
935                     NVME_SC_ABORTED_BY_REQUEST, 1 /* do not retry */, TRUE);
936         }
937
938         nvme_qpair_enable(qpair);
939 }
940
941 void
942 nvme_io_qpair_enable(struct nvme_qpair *qpair)
943 {
944         STAILQ_HEAD(, nvme_request)     temp;
945         struct nvme_tracker             *tr;
946         struct nvme_tracker             *tr_temp;
947         struct nvme_request             *req;
948
949         /*
950          * Manually abort each outstanding I/O.  This normally results in a
951          *  retry, unless the retry count on the associated request has
952          *  reached its limit.
953          */
954         TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
955                 nvme_printf(qpair->ctrlr, "aborting outstanding i/o\n");
956                 nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
957                     NVME_SC_ABORTED_BY_REQUEST, 0, TRUE);
958         }
959
960         mtx_lock(&qpair->lock);
961
962         nvme_qpair_enable(qpair);
963
964         STAILQ_INIT(&temp);
965         STAILQ_SWAP(&qpair->queued_req, &temp, nvme_request);
966
967         while (!STAILQ_EMPTY(&temp)) {
968                 req = STAILQ_FIRST(&temp);
969                 STAILQ_REMOVE_HEAD(&temp, stailq);
970                 nvme_printf(qpair->ctrlr, "resubmitting queued i/o\n");
971                 nvme_qpair_print_command(qpair, &req->cmd);
972                 _nvme_qpair_submit_request(qpair, req);
973         }
974
975         mtx_unlock(&qpair->lock);
976 }
977
978 static void
979 nvme_qpair_disable(struct nvme_qpair *qpair)
980 {
981         struct nvme_tracker *tr;
982
983         qpair->is_enabled = FALSE;
984         mtx_lock(&qpair->lock);
985         TAILQ_FOREACH(tr, &qpair->outstanding_tr, tailq)
986                 callout_stop(&tr->timer);
987         mtx_unlock(&qpair->lock);
988 }
989
990 void
991 nvme_admin_qpair_disable(struct nvme_qpair *qpair)
992 {
993
994         nvme_qpair_disable(qpair);
995         nvme_admin_qpair_abort_aers(qpair);
996 }
997
998 void
999 nvme_io_qpair_disable(struct nvme_qpair *qpair)
1000 {
1001
1002         nvme_qpair_disable(qpair);
1003 }
1004
1005 void
1006 nvme_qpair_fail(struct nvme_qpair *qpair)
1007 {
1008         struct nvme_tracker             *tr;
1009         struct nvme_request             *req;
1010
1011         if (!mtx_initialized(&qpair->lock))
1012                 return;
1013
1014         mtx_lock(&qpair->lock);
1015
1016         while (!STAILQ_EMPTY(&qpair->queued_req)) {
1017                 req = STAILQ_FIRST(&qpair->queued_req);
1018                 STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
1019                 nvme_printf(qpair->ctrlr, "failing queued i/o\n");
1020                 mtx_unlock(&qpair->lock);
1021                 nvme_qpair_manual_complete_request(qpair, req, NVME_SCT_GENERIC,
1022                     NVME_SC_ABORTED_BY_REQUEST, TRUE);
1023                 mtx_lock(&qpair->lock);
1024         }
1025
1026         /* Manually abort each outstanding I/O. */
1027         while (!TAILQ_EMPTY(&qpair->outstanding_tr)) {
1028                 tr = TAILQ_FIRST(&qpair->outstanding_tr);
1029                 /*
1030                  * Do not remove the tracker.  The abort_tracker path will
1031                  *  do that for us.
1032                  */
1033                 nvme_printf(qpair->ctrlr, "failing outstanding i/o\n");
1034                 mtx_unlock(&qpair->lock);
1035                 nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1036                     NVME_SC_ABORTED_BY_REQUEST, 1 /* do not retry */, TRUE);
1037                 mtx_lock(&qpair->lock);
1038         }
1039
1040         mtx_unlock(&qpair->lock);
1041 }
1042