]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/nvme/nvme_qpair.c
Import libxo-0.9.0:
[FreeBSD/FreeBSD.git] / sys / dev / nvme / nvme_qpair.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2012-2014 Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/bus.h>
34
35 #include <dev/pci/pcivar.h>
36
37 #include "nvme_private.h"
38
39 static void     _nvme_qpair_submit_request(struct nvme_qpair *qpair,
40                                            struct nvme_request *req);
41 static void     nvme_qpair_destroy(struct nvme_qpair *qpair);
42
43 struct nvme_opcode_string {
44
45         uint16_t        opc;
46         const char *    str;
47 };
48
49 static struct nvme_opcode_string admin_opcode[] = {
50         { NVME_OPC_DELETE_IO_SQ, "DELETE IO SQ" },
51         { NVME_OPC_CREATE_IO_SQ, "CREATE IO SQ" },
52         { NVME_OPC_GET_LOG_PAGE, "GET LOG PAGE" },
53         { NVME_OPC_DELETE_IO_CQ, "DELETE IO CQ" },
54         { NVME_OPC_CREATE_IO_CQ, "CREATE IO CQ" },
55         { NVME_OPC_IDENTIFY, "IDENTIFY" },
56         { NVME_OPC_ABORT, "ABORT" },
57         { NVME_OPC_SET_FEATURES, "SET FEATURES" },
58         { NVME_OPC_GET_FEATURES, "GET FEATURES" },
59         { NVME_OPC_ASYNC_EVENT_REQUEST, "ASYNC EVENT REQUEST" },
60         { NVME_OPC_FIRMWARE_ACTIVATE, "FIRMWARE ACTIVATE" },
61         { NVME_OPC_FIRMWARE_IMAGE_DOWNLOAD, "FIRMWARE IMAGE DOWNLOAD" },
62         { NVME_OPC_DEVICE_SELF_TEST, "DEVICE SELF-TEST" },
63         { NVME_OPC_NAMESPACE_ATTACHMENT, "NAMESPACE ATTACHMENT" },
64         { NVME_OPC_KEEP_ALIVE, "KEEP ALIVE" },
65         { NVME_OPC_DIRECTIVE_SEND, "DIRECTIVE SEND" },
66         { NVME_OPC_DIRECTIVE_RECEIVE, "DIRECTIVE RECEIVE" },
67         { NVME_OPC_VIRTUALIZATION_MANAGEMENT, "VIRTUALIZATION MANAGEMENT" },
68         { NVME_OPC_NVME_MI_SEND, "NVME-MI SEND" },
69         { NVME_OPC_NVME_MI_RECEIVE, "NVME-MI RECEIVE" },
70         { NVME_OPC_DOORBELL_BUFFER_CONFIG, "DOORBELL BUFFER CONFIG" },
71         { NVME_OPC_FORMAT_NVM, "FORMAT NVM" },
72         { NVME_OPC_SECURITY_SEND, "SECURITY SEND" },
73         { NVME_OPC_SECURITY_RECEIVE, "SECURITY RECEIVE" },
74         { NVME_OPC_SANITIZE, "SANITIZE" },
75         { 0xFFFF, "ADMIN COMMAND" }
76 };
77
78 static struct nvme_opcode_string io_opcode[] = {
79         { NVME_OPC_FLUSH, "FLUSH" },
80         { NVME_OPC_WRITE, "WRITE" },
81         { NVME_OPC_READ, "READ" },
82         { NVME_OPC_WRITE_UNCORRECTABLE, "WRITE UNCORRECTABLE" },
83         { NVME_OPC_COMPARE, "COMPARE" },
84         { NVME_OPC_WRITE_ZEROES, "WRITE ZEROES" },
85         { NVME_OPC_DATASET_MANAGEMENT, "DATASET MANAGEMENT" },
86         { NVME_OPC_RESERVATION_REGISTER, "RESERVATION REGISTER" },
87         { NVME_OPC_RESERVATION_REPORT, "RESERVATION REPORT" },
88         { NVME_OPC_RESERVATION_ACQUIRE, "RESERVATION ACQUIRE" },
89         { NVME_OPC_RESERVATION_RELEASE, "RESERVATION RELEASE" },
90         { 0xFFFF, "IO COMMAND" }
91 };
92
93 static const char *
94 get_admin_opcode_string(uint16_t opc)
95 {
96         struct nvme_opcode_string *entry;
97
98         entry = admin_opcode;
99
100         while (entry->opc != 0xFFFF) {
101                 if (entry->opc == opc)
102                         return (entry->str);
103                 entry++;
104         }
105         return (entry->str);
106 }
107
108 static const char *
109 get_io_opcode_string(uint16_t opc)
110 {
111         struct nvme_opcode_string *entry;
112
113         entry = io_opcode;
114
115         while (entry->opc != 0xFFFF) {
116                 if (entry->opc == opc)
117                         return (entry->str);
118                 entry++;
119         }
120         return (entry->str);
121 }
122
123
124 static void
125 nvme_admin_qpair_print_command(struct nvme_qpair *qpair,
126     struct nvme_command *cmd)
127 {
128         uint16_t opc;
129
130         opc = le16toh(cmd->opc_fuse) & NVME_CMD_OPC_MASK;
131         nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%x "
132             "cdw10:%08x cdw11:%08x\n",
133             get_admin_opcode_string(opc), opc, qpair->id, cmd->cid,
134             le32toh(cmd->nsid), le32toh(cmd->cdw10), le32toh(cmd->cdw11));
135 }
136
137 static void
138 nvme_io_qpair_print_command(struct nvme_qpair *qpair,
139     struct nvme_command *cmd)
140 {
141         uint16_t opc;
142
143         opc = le16toh(cmd->opc_fuse) & NVME_CMD_OPC_MASK;
144         switch (opc) {
145         case NVME_OPC_WRITE:
146         case NVME_OPC_READ:
147         case NVME_OPC_WRITE_UNCORRECTABLE:
148         case NVME_OPC_COMPARE:
149         case NVME_OPC_WRITE_ZEROES:
150                 nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d "
151                     "lba:%llu len:%d\n",
152                     get_io_opcode_string(opc), qpair->id, cmd->cid, le32toh(cmd->nsid),
153                     ((unsigned long long)le32toh(cmd->cdw11) << 32) + le32toh(cmd->cdw10),
154                     (le32toh(cmd->cdw12) & 0xFFFF) + 1);
155                 break;
156         case NVME_OPC_FLUSH:
157         case NVME_OPC_DATASET_MANAGEMENT:
158         case NVME_OPC_RESERVATION_REGISTER:
159         case NVME_OPC_RESERVATION_REPORT:
160         case NVME_OPC_RESERVATION_ACQUIRE:
161         case NVME_OPC_RESERVATION_RELEASE:
162                 nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d\n",
163                     get_io_opcode_string(opc), qpair->id, cmd->cid, le32toh(cmd->nsid));
164                 break;
165         default:
166                 nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%d\n",
167                     get_io_opcode_string(opc), opc, qpair->id,
168                     cmd->cid, le32toh(cmd->nsid));
169                 break;
170         }
171 }
172
173 static void
174 nvme_qpair_print_command(struct nvme_qpair *qpair, struct nvme_command *cmd)
175 {
176         if (qpair->id == 0)
177                 nvme_admin_qpair_print_command(qpair, cmd);
178         else
179                 nvme_io_qpair_print_command(qpair, cmd);
180 }
181
182 struct nvme_status_string {
183
184         uint16_t        sc;
185         const char *    str;
186 };
187
188 static struct nvme_status_string generic_status[] = {
189         { NVME_SC_SUCCESS, "SUCCESS" },
190         { NVME_SC_INVALID_OPCODE, "INVALID OPCODE" },
191         { NVME_SC_INVALID_FIELD, "INVALID_FIELD" },
192         { NVME_SC_COMMAND_ID_CONFLICT, "COMMAND ID CONFLICT" },
193         { NVME_SC_DATA_TRANSFER_ERROR, "DATA TRANSFER ERROR" },
194         { NVME_SC_ABORTED_POWER_LOSS, "ABORTED - POWER LOSS" },
195         { NVME_SC_INTERNAL_DEVICE_ERROR, "INTERNAL DEVICE ERROR" },
196         { NVME_SC_ABORTED_BY_REQUEST, "ABORTED - BY REQUEST" },
197         { NVME_SC_ABORTED_SQ_DELETION, "ABORTED - SQ DELETION" },
198         { NVME_SC_ABORTED_FAILED_FUSED, "ABORTED - FAILED FUSED" },
199         { NVME_SC_ABORTED_MISSING_FUSED, "ABORTED - MISSING FUSED" },
200         { NVME_SC_INVALID_NAMESPACE_OR_FORMAT, "INVALID NAMESPACE OR FORMAT" },
201         { NVME_SC_COMMAND_SEQUENCE_ERROR, "COMMAND SEQUENCE ERROR" },
202         { NVME_SC_INVALID_SGL_SEGMENT_DESCR, "INVALID SGL SEGMENT DESCRIPTOR" },
203         { NVME_SC_INVALID_NUMBER_OF_SGL_DESCR, "INVALID NUMBER OF SGL DESCRIPTORS" },
204         { NVME_SC_DATA_SGL_LENGTH_INVALID, "DATA SGL LENGTH INVALID" },
205         { NVME_SC_METADATA_SGL_LENGTH_INVALID, "METADATA SGL LENGTH INVALID" },
206         { NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID, "SGL DESCRIPTOR TYPE INVALID" },
207         { NVME_SC_INVALID_USE_OF_CMB, "INVALID USE OF CONTROLLER MEMORY BUFFER" },
208         { NVME_SC_PRP_OFFET_INVALID, "PRP OFFET INVALID" },
209         { NVME_SC_ATOMIC_WRITE_UNIT_EXCEEDED, "ATOMIC WRITE UNIT EXCEEDED" },
210         { NVME_SC_OPERATION_DENIED, "OPERATION DENIED" },
211         { NVME_SC_SGL_OFFSET_INVALID, "SGL OFFSET INVALID" },
212         { NVME_SC_HOST_ID_INCONSISTENT_FORMAT, "HOST IDENTIFIER INCONSISTENT FORMAT" },
213         { NVME_SC_KEEP_ALIVE_TIMEOUT_EXPIRED, "KEEP ALIVE TIMEOUT EXPIRED" },
214         { NVME_SC_KEEP_ALIVE_TIMEOUT_INVALID, "KEEP ALIVE TIMEOUT INVALID" },
215         { NVME_SC_ABORTED_DUE_TO_PREEMPT, "COMMAND ABORTED DUE TO PREEMPT AND ABORT" },
216         { NVME_SC_SANITIZE_FAILED, "SANITIZE FAILED" },
217         { NVME_SC_SANITIZE_IN_PROGRESS, "SANITIZE IN PROGRESS" },
218         { NVME_SC_SGL_DATA_BLOCK_GRAN_INVALID, "SGL_DATA_BLOCK_GRANULARITY_INVALID" },
219         { NVME_SC_NOT_SUPPORTED_IN_CMB, "COMMAND NOT SUPPORTED FOR QUEUE IN CMB" },
220
221         { NVME_SC_LBA_OUT_OF_RANGE, "LBA OUT OF RANGE" },
222         { NVME_SC_CAPACITY_EXCEEDED, "CAPACITY EXCEEDED" },
223         { NVME_SC_NAMESPACE_NOT_READY, "NAMESPACE NOT READY" },
224         { NVME_SC_RESERVATION_CONFLICT, "RESERVATION CONFLICT" },
225         { NVME_SC_FORMAT_IN_PROGRESS, "FORMAT IN PROGRESS" },
226         { 0xFFFF, "GENERIC" }
227 };
228
229 static struct nvme_status_string command_specific_status[] = {
230         { NVME_SC_COMPLETION_QUEUE_INVALID, "INVALID COMPLETION QUEUE" },
231         { NVME_SC_INVALID_QUEUE_IDENTIFIER, "INVALID QUEUE IDENTIFIER" },
232         { NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED, "MAX QUEUE SIZE EXCEEDED" },
233         { NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED, "ABORT CMD LIMIT EXCEEDED" },
234         { NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED, "ASYNC LIMIT EXCEEDED" },
235         { NVME_SC_INVALID_FIRMWARE_SLOT, "INVALID FIRMWARE SLOT" },
236         { NVME_SC_INVALID_FIRMWARE_IMAGE, "INVALID FIRMWARE IMAGE" },
237         { NVME_SC_INVALID_INTERRUPT_VECTOR, "INVALID INTERRUPT VECTOR" },
238         { NVME_SC_INVALID_LOG_PAGE, "INVALID LOG PAGE" },
239         { NVME_SC_INVALID_FORMAT, "INVALID FORMAT" },
240         { NVME_SC_FIRMWARE_REQUIRES_RESET, "FIRMWARE REQUIRES RESET" },
241         { NVME_SC_INVALID_QUEUE_DELETION, "INVALID QUEUE DELETION" },
242         { NVME_SC_FEATURE_NOT_SAVEABLE, "FEATURE IDENTIFIER NOT SAVEABLE" },
243         { NVME_SC_FEATURE_NOT_CHANGEABLE, "FEATURE NOT CHANGEABLE" },
244         { NVME_SC_FEATURE_NOT_NS_SPECIFIC, "FEATURE NOT NAMESPACE SPECIFIC" },
245         { NVME_SC_FW_ACT_REQUIRES_NVMS_RESET, "FIRMWARE ACTIVATION REQUIRES NVM SUBSYSTEM RESET" },
246         { NVME_SC_FW_ACT_REQUIRES_RESET, "FIRMWARE ACTIVATION REQUIRES RESET" },
247         { NVME_SC_FW_ACT_REQUIRES_TIME, "FIRMWARE ACTIVATION REQUIRES MAXIMUM TIME VIOLATION" },
248         { NVME_SC_FW_ACT_PROHIBITED, "FIRMWARE ACTIVATION PROHIBITED" },
249         { NVME_SC_OVERLAPPING_RANGE, "OVERLAPPING RANGE" },
250         { NVME_SC_NS_INSUFFICIENT_CAPACITY, "NAMESPACE INSUFFICIENT CAPACITY" },
251         { NVME_SC_NS_ID_UNAVAILABLE, "NAMESPACE IDENTIFIER UNAVAILABLE" },
252         { NVME_SC_NS_ALREADY_ATTACHED, "NAMESPACE ALREADY ATTACHED" },
253         { NVME_SC_NS_IS_PRIVATE, "NAMESPACE IS PRIVATE" },
254         { NVME_SC_NS_NOT_ATTACHED, "NS NOT ATTACHED" },
255         { NVME_SC_THIN_PROV_NOT_SUPPORTED, "THIN PROVISIONING NOT SUPPORTED" },
256         { NVME_SC_CTRLR_LIST_INVALID, "CONTROLLER LIST INVALID" },
257         { NVME_SC_SELT_TEST_IN_PROGRESS, "DEVICE SELT-TEST IN PROGRESS" },
258         { NVME_SC_BOOT_PART_WRITE_PROHIB, "BOOT PARTITION WRITE PROHIBITED" },
259         { NVME_SC_INVALID_CTRLR_ID, "INVALID CONTROLLER IDENTIFIER" },
260         { NVME_SC_INVALID_SEC_CTRLR_STATE, "INVALID SECONDARY CONTROLLER STATE" },
261         { NVME_SC_INVALID_NUM_OF_CTRLR_RESRC, "INVALID NUMBER OF CONTROLLER RESOURCES" },
262         { NVME_SC_INVALID_RESOURCE_ID, "INVALID RESOURCE IDENTIFIER" },
263
264         { NVME_SC_CONFLICTING_ATTRIBUTES, "CONFLICTING ATTRIBUTES" },
265         { NVME_SC_INVALID_PROTECTION_INFO, "INVALID PROTECTION INFO" },
266         { NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE, "WRITE TO RO PAGE" },
267         { 0xFFFF, "COMMAND SPECIFIC" }
268 };
269
270 static struct nvme_status_string media_error_status[] = {
271         { NVME_SC_WRITE_FAULTS, "WRITE FAULTS" },
272         { NVME_SC_UNRECOVERED_READ_ERROR, "UNRECOVERED READ ERROR" },
273         { NVME_SC_GUARD_CHECK_ERROR, "GUARD CHECK ERROR" },
274         { NVME_SC_APPLICATION_TAG_CHECK_ERROR, "APPLICATION TAG CHECK ERROR" },
275         { NVME_SC_REFERENCE_TAG_CHECK_ERROR, "REFERENCE TAG CHECK ERROR" },
276         { NVME_SC_COMPARE_FAILURE, "COMPARE FAILURE" },
277         { NVME_SC_ACCESS_DENIED, "ACCESS DENIED" },
278         { NVME_SC_DEALLOCATED_OR_UNWRITTEN, "DEALLOCATED OR UNWRITTEN LOGICAL BLOCK" },
279         { 0xFFFF, "MEDIA ERROR" }
280 };
281
282 static const char *
283 get_status_string(uint16_t sct, uint16_t sc)
284 {
285         struct nvme_status_string *entry;
286
287         switch (sct) {
288         case NVME_SCT_GENERIC:
289                 entry = generic_status;
290                 break;
291         case NVME_SCT_COMMAND_SPECIFIC:
292                 entry = command_specific_status;
293                 break;
294         case NVME_SCT_MEDIA_ERROR:
295                 entry = media_error_status;
296                 break;
297         case NVME_SCT_VENDOR_SPECIFIC:
298                 return ("VENDOR SPECIFIC");
299         default:
300                 return ("RESERVED");
301         }
302
303         while (entry->sc != 0xFFFF) {
304                 if (entry->sc == sc)
305                         return (entry->str);
306                 entry++;
307         }
308         return (entry->str);
309 }
310
311 static void
312 nvme_qpair_print_completion(struct nvme_qpair *qpair, 
313     struct nvme_completion *cpl)
314 {
315         uint16_t sct, sc;
316
317         sct = NVME_STATUS_GET_SCT(cpl->status);
318         sc = NVME_STATUS_GET_SC(cpl->status);
319
320         nvme_printf(qpair->ctrlr, "%s (%02x/%02x) sqid:%d cid:%d cdw0:%x\n",
321             get_status_string(sct, sc), sct, sc, cpl->sqid, cpl->cid,
322             cpl->cdw0);
323 }
324
325 static boolean_t
326 nvme_completion_is_retry(const struct nvme_completion *cpl)
327 {
328         uint8_t sct, sc, dnr;
329
330         sct = NVME_STATUS_GET_SCT(cpl->status);
331         sc = NVME_STATUS_GET_SC(cpl->status);
332         dnr = NVME_STATUS_GET_DNR(cpl->status);
333
334         /*
335          * TODO: spec is not clear how commands that are aborted due
336          *  to TLER will be marked.  So for now, it seems
337          *  NAMESPACE_NOT_READY is the only case where we should
338          *  look at the DNR bit.
339          */
340         switch (sct) {
341         case NVME_SCT_GENERIC:
342                 switch (sc) {
343                 case NVME_SC_ABORTED_BY_REQUEST:
344                 case NVME_SC_NAMESPACE_NOT_READY:
345                         if (dnr)
346                                 return (0);
347                         else
348                                 return (1);
349                 case NVME_SC_INVALID_OPCODE:
350                 case NVME_SC_INVALID_FIELD:
351                 case NVME_SC_COMMAND_ID_CONFLICT:
352                 case NVME_SC_DATA_TRANSFER_ERROR:
353                 case NVME_SC_ABORTED_POWER_LOSS:
354                 case NVME_SC_INTERNAL_DEVICE_ERROR:
355                 case NVME_SC_ABORTED_SQ_DELETION:
356                 case NVME_SC_ABORTED_FAILED_FUSED:
357                 case NVME_SC_ABORTED_MISSING_FUSED:
358                 case NVME_SC_INVALID_NAMESPACE_OR_FORMAT:
359                 case NVME_SC_COMMAND_SEQUENCE_ERROR:
360                 case NVME_SC_LBA_OUT_OF_RANGE:
361                 case NVME_SC_CAPACITY_EXCEEDED:
362                 default:
363                         return (0);
364                 }
365         case NVME_SCT_COMMAND_SPECIFIC:
366         case NVME_SCT_MEDIA_ERROR:
367         case NVME_SCT_VENDOR_SPECIFIC:
368         default:
369                 return (0);
370         }
371 }
372
373 static void
374 nvme_qpair_complete_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr,
375     struct nvme_completion *cpl, boolean_t print_on_error)
376 {
377         struct nvme_request     *req;
378         boolean_t               retry, error;
379
380         req = tr->req;
381         error = nvme_completion_is_error(cpl);
382         retry = error && nvme_completion_is_retry(cpl) &&
383            req->retries < nvme_retry_count;
384
385         if (error && print_on_error) {
386                 nvme_qpair_print_command(qpair, &req->cmd);
387                 nvme_qpair_print_completion(qpair, cpl);
388         }
389
390         qpair->act_tr[cpl->cid] = NULL;
391
392         KASSERT(cpl->cid == req->cmd.cid, ("cpl cid does not match cmd cid\n"));
393
394         if (req->cb_fn && !retry)
395                 req->cb_fn(req->cb_arg, cpl);
396
397         mtx_lock(&qpair->lock);
398         callout_stop(&tr->timer);
399
400         if (retry) {
401                 req->retries++;
402                 nvme_qpair_submit_tracker(qpair, tr);
403         } else {
404                 if (req->type != NVME_REQUEST_NULL)
405                         bus_dmamap_unload(qpair->dma_tag_payload,
406                             tr->payload_dma_map);
407
408                 nvme_free_request(req);
409                 tr->req = NULL;
410
411                 TAILQ_REMOVE(&qpair->outstanding_tr, tr, tailq);
412                 TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
413
414                 /*
415                  * If the controller is in the middle of resetting, don't
416                  *  try to submit queued requests here - let the reset logic
417                  *  handle that instead.
418                  */
419                 if (!STAILQ_EMPTY(&qpair->queued_req) &&
420                     !qpair->ctrlr->is_resetting) {
421                         req = STAILQ_FIRST(&qpair->queued_req);
422                         STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
423                         _nvme_qpair_submit_request(qpair, req);
424                 }
425         }
426
427         mtx_unlock(&qpair->lock);
428 }
429
430 static void
431 nvme_qpair_manual_complete_tracker(struct nvme_qpair *qpair,
432     struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
433     boolean_t print_on_error)
434 {
435         struct nvme_completion  cpl;
436
437         memset(&cpl, 0, sizeof(cpl));
438         cpl.sqid = qpair->id;
439         cpl.cid = tr->cid;
440         cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
441         cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
442         cpl.status |= (dnr & NVME_STATUS_DNR_MASK) << NVME_STATUS_DNR_SHIFT;
443         nvme_qpair_complete_tracker(qpair, tr, &cpl, print_on_error);
444 }
445
446 void
447 nvme_qpair_manual_complete_request(struct nvme_qpair *qpair,
448     struct nvme_request *req, uint32_t sct, uint32_t sc,
449     boolean_t print_on_error)
450 {
451         struct nvme_completion  cpl;
452         boolean_t               error;
453
454         memset(&cpl, 0, sizeof(cpl));
455         cpl.sqid = qpair->id;
456         cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
457         cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
458
459         error = nvme_completion_is_error(&cpl);
460
461         if (error && print_on_error) {
462                 nvme_qpair_print_command(qpair, &req->cmd);
463                 nvme_qpair_print_completion(qpair, &cpl);
464         }
465
466         if (req->cb_fn)
467                 req->cb_fn(req->cb_arg, &cpl);
468
469         nvme_free_request(req);
470 }
471
472 bool
473 nvme_qpair_process_completions(struct nvme_qpair *qpair)
474 {
475         struct nvme_tracker     *tr;
476         struct nvme_completion  cpl;
477         int done = 0;
478
479         qpair->num_intr_handler_calls++;
480
481         if (!qpair->is_enabled)
482                 /*
483                  * qpair is not enabled, likely because a controller reset is
484                  *  is in progress.  Ignore the interrupt - any I/O that was
485                  *  associated with this interrupt will get retried when the
486                  *  reset is complete.
487                  */
488                 return (false);
489
490         while (1) {
491                 cpl = qpair->cpl[qpair->cq_head];
492
493                 /* Convert to host endian */
494                 nvme_completion_swapbytes(&cpl);
495
496                 if (NVME_STATUS_GET_P(cpl.status) != qpair->phase)
497                         break;
498
499                 tr = qpair->act_tr[cpl.cid];
500
501                 if (tr != NULL) {
502                         nvme_qpair_complete_tracker(qpair, tr, &cpl, TRUE);
503                         qpair->sq_head = cpl.sqhd;
504                         done++;
505                 } else {
506                         nvme_printf(qpair->ctrlr, 
507                             "cpl does not map to outstanding cmd\n");
508                         /* nvme_dump_completion expects device endianess */
509                         nvme_dump_completion(&qpair->cpl[qpair->cq_head]);
510                         KASSERT(0, ("received completion for unknown cmd\n"));
511                 }
512
513                 if (++qpair->cq_head == qpair->num_entries) {
514                         qpair->cq_head = 0;
515                         qpair->phase = !qpair->phase;
516                 }
517
518                 nvme_mmio_write_4(qpair->ctrlr, doorbell[qpair->id].cq_hdbl,
519                     qpair->cq_head);
520         }
521         return (done != 0);
522 }
523
524 static void
525 nvme_qpair_msix_handler(void *arg)
526 {
527         struct nvme_qpair *qpair = arg;
528
529         nvme_qpair_process_completions(qpair);
530 }
531
532 int
533 nvme_qpair_construct(struct nvme_qpair *qpair, uint32_t id,
534     uint16_t vector, uint32_t num_entries, uint32_t num_trackers,
535     struct nvme_controller *ctrlr)
536 {
537         struct nvme_tracker     *tr;
538         size_t                  cmdsz, cplsz, prpsz, allocsz, prpmemsz;
539         uint64_t                queuemem_phys, prpmem_phys, list_phys;
540         uint8_t                 *queuemem, *prpmem, *prp_list;
541         int                     i, err;
542
543         qpair->id = id;
544         qpair->vector = vector;
545         qpair->num_entries = num_entries;
546         qpair->num_trackers = num_trackers;
547         qpair->ctrlr = ctrlr;
548
549         if (ctrlr->msix_enabled) {
550
551                 /*
552                  * MSI-X vector resource IDs start at 1, so we add one to
553                  *  the queue's vector to get the corresponding rid to use.
554                  */
555                 qpair->rid = vector + 1;
556
557                 qpair->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
558                     &qpair->rid, RF_ACTIVE);
559                 bus_setup_intr(ctrlr->dev, qpair->res,
560                     INTR_TYPE_MISC | INTR_MPSAFE, NULL,
561                     nvme_qpair_msix_handler, qpair, &qpair->tag);
562         }
563
564         mtx_init(&qpair->lock, "nvme qpair lock", NULL, MTX_DEF);
565
566         /* Note: NVMe PRP format is restricted to 4-byte alignment. */
567         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
568             4, PAGE_SIZE, BUS_SPACE_MAXADDR,
569             BUS_SPACE_MAXADDR, NULL, NULL, NVME_MAX_XFER_SIZE,
570             (NVME_MAX_XFER_SIZE/PAGE_SIZE)+1, PAGE_SIZE, 0,
571             NULL, NULL, &qpair->dma_tag_payload);
572         if (err != 0) {
573                 nvme_printf(ctrlr, "payload tag create failed %d\n", err);
574                 goto out;
575         }
576
577         /*
578          * Each component must be page aligned, and individual PRP lists
579          * cannot cross a page boundary.
580          */
581         cmdsz = qpair->num_entries * sizeof(struct nvme_command);
582         cmdsz = roundup2(cmdsz, PAGE_SIZE);
583         cplsz = qpair->num_entries * sizeof(struct nvme_completion);
584         cplsz = roundup2(cplsz, PAGE_SIZE);
585         prpsz = sizeof(uint64_t) * NVME_MAX_PRP_LIST_ENTRIES;;
586         prpmemsz = qpair->num_trackers * prpsz;
587         allocsz = cmdsz + cplsz + prpmemsz;
588
589         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
590             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
591             allocsz, 1, allocsz, 0, NULL, NULL, &qpair->dma_tag);
592         if (err != 0) {
593                 nvme_printf(ctrlr, "tag create failed %d\n", err);
594                 goto out;
595         }
596
597         if (bus_dmamem_alloc(qpair->dma_tag, (void **)&queuemem,
598             BUS_DMA_NOWAIT, &qpair->queuemem_map)) {
599                 nvme_printf(ctrlr, "failed to alloc qpair memory\n");
600                 goto out;
601         }
602
603         if (bus_dmamap_load(qpair->dma_tag, qpair->queuemem_map,
604             queuemem, allocsz, nvme_single_map, &queuemem_phys, 0) != 0) {
605                 nvme_printf(ctrlr, "failed to load qpair memory\n");
606                 goto out;
607         }
608
609         qpair->num_cmds = 0;
610         qpair->num_intr_handler_calls = 0;
611         qpair->cmd = (struct nvme_command *)queuemem;
612         qpair->cpl = (struct nvme_completion *)(queuemem + cmdsz);
613         prpmem = (uint8_t *)(queuemem + cmdsz + cplsz);
614         qpair->cmd_bus_addr = queuemem_phys;
615         qpair->cpl_bus_addr = queuemem_phys + cmdsz;
616         prpmem_phys = queuemem_phys + cmdsz + cplsz;
617
618         qpair->sq_tdbl_off = nvme_mmio_offsetof(doorbell[id].sq_tdbl);
619         qpair->cq_hdbl_off = nvme_mmio_offsetof(doorbell[id].cq_hdbl);
620
621         TAILQ_INIT(&qpair->free_tr);
622         TAILQ_INIT(&qpair->outstanding_tr);
623         STAILQ_INIT(&qpair->queued_req);
624
625         list_phys = prpmem_phys;
626         prp_list = prpmem;
627         for (i = 0; i < qpair->num_trackers; i++) {
628
629                 if (list_phys + prpsz > prpmem_phys + prpmemsz) {
630                         qpair->num_trackers = i;
631                         break;
632                 }
633
634                 /*
635                  * Make sure that the PRP list for this tracker doesn't
636                  * overflow to another page.
637                  */
638                 if (trunc_page(list_phys) !=
639                     trunc_page(list_phys + prpsz - 1)) {
640                         list_phys = roundup2(list_phys, PAGE_SIZE);
641                         prp_list =
642                             (uint8_t *)roundup2((uintptr_t)prp_list, PAGE_SIZE);
643                 }
644
645                 tr = malloc(sizeof(*tr), M_NVME, M_ZERO | M_WAITOK);
646                 bus_dmamap_create(qpair->dma_tag_payload, 0,
647                     &tr->payload_dma_map);
648                 callout_init(&tr->timer, 1);
649                 tr->cid = i;
650                 tr->qpair = qpair;
651                 tr->prp = (uint64_t *)prp_list;
652                 tr->prp_bus_addr = list_phys;
653                 TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
654                 list_phys += prpsz;
655                 prp_list += prpsz;
656         }
657
658         if (qpair->num_trackers == 0) {
659                 nvme_printf(ctrlr, "failed to allocate enough trackers\n");
660                 goto out;
661         }
662
663         qpair->act_tr = malloc(sizeof(struct nvme_tracker *) *
664             qpair->num_entries, M_NVME, M_ZERO | M_WAITOK);
665         return (0);
666
667 out:
668         nvme_qpair_destroy(qpair);
669         return (ENOMEM);
670 }
671
672 static void
673 nvme_qpair_destroy(struct nvme_qpair *qpair)
674 {
675         struct nvme_tracker     *tr;
676
677         if (qpair->tag)
678                 bus_teardown_intr(qpair->ctrlr->dev, qpair->res, qpair->tag);
679
680         if (mtx_initialized(&qpair->lock))
681                 mtx_destroy(&qpair->lock);
682
683         if (qpair->res)
684                 bus_release_resource(qpair->ctrlr->dev, SYS_RES_IRQ,
685                     rman_get_rid(qpair->res), qpair->res);
686
687         if (qpair->cmd != NULL) {
688                 bus_dmamap_unload(qpair->dma_tag, qpair->queuemem_map);
689                 bus_dmamem_free(qpair->dma_tag, qpair->cmd,
690                     qpair->queuemem_map);
691         }
692
693         if (qpair->act_tr)
694                 free(qpair->act_tr, M_NVME);
695
696         while (!TAILQ_EMPTY(&qpair->free_tr)) {
697                 tr = TAILQ_FIRST(&qpair->free_tr);
698                 TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
699                 bus_dmamap_destroy(qpair->dma_tag_payload,
700                     tr->payload_dma_map);
701                 free(tr, M_NVME);
702         }
703
704         if (qpair->dma_tag)
705                 bus_dma_tag_destroy(qpair->dma_tag);
706
707         if (qpair->dma_tag_payload)
708                 bus_dma_tag_destroy(qpair->dma_tag_payload);
709 }
710
711 static void
712 nvme_admin_qpair_abort_aers(struct nvme_qpair *qpair)
713 {
714         struct nvme_tracker     *tr;
715
716         tr = TAILQ_FIRST(&qpair->outstanding_tr);
717         while (tr != NULL) {
718                 if ((le16toh(tr->req->cmd.opc_fuse) & NVME_CMD_OPC_MASK) == NVME_OPC_ASYNC_EVENT_REQUEST) {
719                         nvme_qpair_manual_complete_tracker(qpair, tr,
720                             NVME_SCT_GENERIC, NVME_SC_ABORTED_SQ_DELETION, 0,
721                             FALSE);
722                         tr = TAILQ_FIRST(&qpair->outstanding_tr);
723                 } else {
724                         tr = TAILQ_NEXT(tr, tailq);
725                 }
726         }
727 }
728
729 void
730 nvme_admin_qpair_destroy(struct nvme_qpair *qpair)
731 {
732
733         nvme_admin_qpair_abort_aers(qpair);
734         nvme_qpair_destroy(qpair);
735 }
736
737 void
738 nvme_io_qpair_destroy(struct nvme_qpair *qpair)
739 {
740
741         nvme_qpair_destroy(qpair);
742 }
743
744 static void
745 nvme_abort_complete(void *arg, const struct nvme_completion *status)
746 {
747         struct nvme_tracker     *tr = arg;
748
749         /*
750          * If cdw0 == 1, the controller was not able to abort the command
751          *  we requested.  We still need to check the active tracker array,
752          *  to cover race where I/O timed out at same time controller was
753          *  completing the I/O.
754          */
755         if (status->cdw0 == 1 && tr->qpair->act_tr[tr->cid] != NULL) {
756                 /*
757                  * An I/O has timed out, and the controller was unable to
758                  *  abort it for some reason.  Construct a fake completion
759                  *  status, and then complete the I/O's tracker manually.
760                  */
761                 nvme_printf(tr->qpair->ctrlr,
762                     "abort command failed, aborting command manually\n");
763                 nvme_qpair_manual_complete_tracker(tr->qpair, tr,
764                     NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, 0, TRUE);
765         }
766 }
767
768 static void
769 nvme_timeout(void *arg)
770 {
771         struct nvme_tracker     *tr = arg;
772         struct nvme_qpair       *qpair = tr->qpair;
773         struct nvme_controller  *ctrlr = qpair->ctrlr;
774         uint32_t                csts;
775         uint8_t                 cfs;
776
777         /*
778          * Read csts to get value of cfs - controller fatal status.
779          * If no fatal status, try to call the completion routine, and
780          * if completes transactions, report a missed interrupt and
781          * return (this may need to be rate limited). Otherwise, if
782          * aborts are enabled and the controller is not reporting
783          * fatal status, abort the command. Otherwise, just reset the
784          * controller and hope for the best.
785          */
786         csts = nvme_mmio_read_4(ctrlr, csts);
787         cfs = (csts >> NVME_CSTS_REG_CFS_SHIFT) & NVME_CSTS_REG_CFS_MASK;
788         if (cfs == 0 && nvme_qpair_process_completions(qpair)) {
789                 nvme_printf(ctrlr, "Missing interrupt\n");
790                 return;
791         }
792         if (ctrlr->enable_aborts && cfs == 0) {
793                 nvme_printf(ctrlr, "Aborting command due to a timeout.\n");
794                 nvme_ctrlr_cmd_abort(ctrlr, tr->cid, qpair->id,
795                     nvme_abort_complete, tr);
796         } else {
797                 nvme_printf(ctrlr, "Resetting controller due to a timeout%s.\n",
798                     cfs ? " and fatal error status" : "");
799                 nvme_ctrlr_reset(ctrlr);
800         }
801 }
802
803 void
804 nvme_qpair_submit_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr)
805 {
806         struct nvme_request     *req;
807         struct nvme_controller  *ctrlr;
808
809         mtx_assert(&qpair->lock, MA_OWNED);
810
811         req = tr->req;
812         req->cmd.cid = tr->cid;
813         qpair->act_tr[tr->cid] = tr;
814         ctrlr = qpair->ctrlr;
815
816         if (req->timeout)
817 #if __FreeBSD_version >= 800030
818                 callout_reset_curcpu(&tr->timer, ctrlr->timeout_period * hz,
819                     nvme_timeout, tr);
820 #else
821                 callout_reset(&tr->timer, ctrlr->timeout_period * hz,
822                     nvme_timeout, tr);
823 #endif
824
825         /* Copy the command from the tracker to the submission queue. */
826         memcpy(&qpair->cmd[qpair->sq_tail], &req->cmd, sizeof(req->cmd));
827
828         if (++qpair->sq_tail == qpair->num_entries)
829                 qpair->sq_tail = 0;
830
831         wmb();
832         nvme_mmio_write_4(qpair->ctrlr, doorbell[qpair->id].sq_tdbl,
833             qpair->sq_tail);
834
835         qpair->num_cmds++;
836 }
837
838 static void
839 nvme_payload_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
840 {
841         struct nvme_tracker     *tr = arg;
842         uint32_t                cur_nseg;
843
844         /*
845          * If the mapping operation failed, return immediately.  The caller
846          *  is responsible for detecting the error status and failing the
847          *  tracker manually.
848          */
849         if (error != 0) {
850                 nvme_printf(tr->qpair->ctrlr,
851                     "nvme_payload_map err %d\n", error);
852                 return;
853         }
854
855         /*
856          * Note that we specified PAGE_SIZE for alignment and max
857          *  segment size when creating the bus dma tags.  So here
858          *  we can safely just transfer each segment to its
859          *  associated PRP entry.
860          */
861         tr->req->cmd.prp1 = htole64(seg[0].ds_addr);
862
863         if (nseg == 2) {
864                 tr->req->cmd.prp2 = htole64(seg[1].ds_addr);
865         } else if (nseg > 2) {
866                 cur_nseg = 1;
867                 tr->req->cmd.prp2 = htole64((uint64_t)tr->prp_bus_addr);
868                 while (cur_nseg < nseg) {
869                         tr->prp[cur_nseg-1] =
870                             htole64((uint64_t)seg[cur_nseg].ds_addr);
871                         cur_nseg++;
872                 }
873         } else {
874                 /*
875                  * prp2 should not be used by the controller
876                  *  since there is only one segment, but set
877                  *  to 0 just to be safe.
878                  */
879                 tr->req->cmd.prp2 = 0;
880         }
881
882         nvme_qpair_submit_tracker(tr->qpair, tr);
883 }
884
885 static void
886 _nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
887 {
888         struct nvme_tracker     *tr;
889         int                     err = 0;
890
891         mtx_assert(&qpair->lock, MA_OWNED);
892
893         tr = TAILQ_FIRST(&qpair->free_tr);
894         req->qpair = qpair;
895
896         if (tr == NULL || !qpair->is_enabled) {
897                 /*
898                  * No tracker is available, or the qpair is disabled due to
899                  *  an in-progress controller-level reset or controller
900                  *  failure.
901                  */
902
903                 if (qpair->ctrlr->is_failed) {
904                         /*
905                          * The controller has failed.  Post the request to a
906                          *  task where it will be aborted, so that we do not
907                          *  invoke the request's callback in the context
908                          *  of the submission.
909                          */
910                         nvme_ctrlr_post_failed_request(qpair->ctrlr, req);
911                 } else {
912                         /*
913                          * Put the request on the qpair's request queue to be
914                          *  processed when a tracker frees up via a command
915                          *  completion or when the controller reset is
916                          *  completed.
917                          */
918                         STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
919                 }
920                 return;
921         }
922
923         TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
924         TAILQ_INSERT_TAIL(&qpair->outstanding_tr, tr, tailq);
925         tr->req = req;
926
927         switch (req->type) {
928         case NVME_REQUEST_VADDR:
929                 KASSERT(req->payload_size <= qpair->ctrlr->max_xfer_size,
930                     ("payload_size (%d) exceeds max_xfer_size (%d)\n",
931                     req->payload_size, qpair->ctrlr->max_xfer_size));
932                 err = bus_dmamap_load(tr->qpair->dma_tag_payload,
933                     tr->payload_dma_map, req->u.payload, req->payload_size,
934                     nvme_payload_map, tr, 0);
935                 if (err != 0)
936                         nvme_printf(qpair->ctrlr,
937                             "bus_dmamap_load returned 0x%x!\n", err);
938                 break;
939         case NVME_REQUEST_NULL:
940                 nvme_qpair_submit_tracker(tr->qpair, tr);
941                 break;
942 #ifdef NVME_UNMAPPED_BIO_SUPPORT
943         case NVME_REQUEST_BIO:
944                 KASSERT(req->u.bio->bio_bcount <= qpair->ctrlr->max_xfer_size,
945                     ("bio->bio_bcount (%jd) exceeds max_xfer_size (%d)\n",
946                     (intmax_t)req->u.bio->bio_bcount,
947                     qpair->ctrlr->max_xfer_size));
948                 err = bus_dmamap_load_bio(tr->qpair->dma_tag_payload,
949                     tr->payload_dma_map, req->u.bio, nvme_payload_map, tr, 0);
950                 if (err != 0)
951                         nvme_printf(qpair->ctrlr,
952                             "bus_dmamap_load_bio returned 0x%x!\n", err);
953                 break;
954 #endif
955         case NVME_REQUEST_CCB:
956                 err = bus_dmamap_load_ccb(tr->qpair->dma_tag_payload,
957                     tr->payload_dma_map, req->u.payload,
958                     nvme_payload_map, tr, 0);
959                 if (err != 0)
960                         nvme_printf(qpair->ctrlr,
961                             "bus_dmamap_load_ccb returned 0x%x!\n", err);
962                 break;
963         default:
964                 panic("unknown nvme request type 0x%x\n", req->type);
965                 break;
966         }
967
968         if (err != 0) {
969                 /*
970                  * The dmamap operation failed, so we manually fail the
971                  *  tracker here with DATA_TRANSFER_ERROR status.
972                  *
973                  * nvme_qpair_manual_complete_tracker must not be called
974                  *  with the qpair lock held.
975                  */
976                 mtx_unlock(&qpair->lock);
977                 nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
978                     NVME_SC_DATA_TRANSFER_ERROR, 1 /* do not retry */, TRUE);
979                 mtx_lock(&qpair->lock);
980         }
981 }
982
983 void
984 nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
985 {
986
987         mtx_lock(&qpair->lock);
988         _nvme_qpair_submit_request(qpair, req);
989         mtx_unlock(&qpair->lock);
990 }
991
992 static void
993 nvme_qpair_enable(struct nvme_qpair *qpair)
994 {
995
996         qpair->is_enabled = TRUE;
997 }
998
999 void
1000 nvme_qpair_reset(struct nvme_qpair *qpair)
1001 {
1002
1003         qpair->sq_head = qpair->sq_tail = qpair->cq_head = 0;
1004
1005         /*
1006          * First time through the completion queue, HW will set phase
1007          *  bit on completions to 1.  So set this to 1 here, indicating
1008          *  we're looking for a 1 to know which entries have completed.
1009          *  we'll toggle the bit each time when the completion queue
1010          *  rolls over.
1011          */
1012         qpair->phase = 1;
1013
1014         memset(qpair->cmd, 0,
1015             qpair->num_entries * sizeof(struct nvme_command));
1016         memset(qpair->cpl, 0,
1017             qpair->num_entries * sizeof(struct nvme_completion));
1018 }
1019
1020 void
1021 nvme_admin_qpair_enable(struct nvme_qpair *qpair)
1022 {
1023         struct nvme_tracker             *tr;
1024         struct nvme_tracker             *tr_temp;
1025
1026         /*
1027          * Manually abort each outstanding admin command.  Do not retry
1028          *  admin commands found here, since they will be left over from
1029          *  a controller reset and its likely the context in which the
1030          *  command was issued no longer applies.
1031          */
1032         TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
1033                 nvme_printf(qpair->ctrlr,
1034                     "aborting outstanding admin command\n");
1035                 nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1036                     NVME_SC_ABORTED_BY_REQUEST, 1 /* do not retry */, TRUE);
1037         }
1038
1039         nvme_qpair_enable(qpair);
1040 }
1041
1042 void
1043 nvme_io_qpair_enable(struct nvme_qpair *qpair)
1044 {
1045         STAILQ_HEAD(, nvme_request)     temp;
1046         struct nvme_tracker             *tr;
1047         struct nvme_tracker             *tr_temp;
1048         struct nvme_request             *req;
1049
1050         /*
1051          * Manually abort each outstanding I/O.  This normally results in a
1052          *  retry, unless the retry count on the associated request has
1053          *  reached its limit.
1054          */
1055         TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
1056                 nvme_printf(qpair->ctrlr, "aborting outstanding i/o\n");
1057                 nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1058                     NVME_SC_ABORTED_BY_REQUEST, 0, TRUE);
1059         }
1060
1061         mtx_lock(&qpair->lock);
1062
1063         nvme_qpair_enable(qpair);
1064
1065         STAILQ_INIT(&temp);
1066         STAILQ_SWAP(&qpair->queued_req, &temp, nvme_request);
1067
1068         while (!STAILQ_EMPTY(&temp)) {
1069                 req = STAILQ_FIRST(&temp);
1070                 STAILQ_REMOVE_HEAD(&temp, stailq);
1071                 nvme_printf(qpair->ctrlr, "resubmitting queued i/o\n");
1072                 nvme_qpair_print_command(qpair, &req->cmd);
1073                 _nvme_qpair_submit_request(qpair, req);
1074         }
1075
1076         mtx_unlock(&qpair->lock);
1077 }
1078
1079 static void
1080 nvme_qpair_disable(struct nvme_qpair *qpair)
1081 {
1082         struct nvme_tracker *tr;
1083
1084         qpair->is_enabled = FALSE;
1085         mtx_lock(&qpair->lock);
1086         TAILQ_FOREACH(tr, &qpair->outstanding_tr, tailq)
1087                 callout_stop(&tr->timer);
1088         mtx_unlock(&qpair->lock);
1089 }
1090
1091 void
1092 nvme_admin_qpair_disable(struct nvme_qpair *qpair)
1093 {
1094
1095         nvme_qpair_disable(qpair);
1096         nvme_admin_qpair_abort_aers(qpair);
1097 }
1098
1099 void
1100 nvme_io_qpair_disable(struct nvme_qpair *qpair)
1101 {
1102
1103         nvme_qpair_disable(qpair);
1104 }
1105
1106 void
1107 nvme_qpair_fail(struct nvme_qpair *qpair)
1108 {
1109         struct nvme_tracker             *tr;
1110         struct nvme_request             *req;
1111
1112         if (!mtx_initialized(&qpair->lock))
1113                 return;
1114
1115         mtx_lock(&qpair->lock);
1116
1117         while (!STAILQ_EMPTY(&qpair->queued_req)) {
1118                 req = STAILQ_FIRST(&qpair->queued_req);
1119                 STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
1120                 nvme_printf(qpair->ctrlr, "failing queued i/o\n");
1121                 mtx_unlock(&qpair->lock);
1122                 nvme_qpair_manual_complete_request(qpair, req, NVME_SCT_GENERIC,
1123                     NVME_SC_ABORTED_BY_REQUEST, TRUE);
1124                 mtx_lock(&qpair->lock);
1125         }
1126
1127         /* Manually abort each outstanding I/O. */
1128         while (!TAILQ_EMPTY(&qpair->outstanding_tr)) {
1129                 tr = TAILQ_FIRST(&qpair->outstanding_tr);
1130                 /*
1131                  * Do not remove the tracker.  The abort_tracker path will
1132                  *  do that for us.
1133                  */
1134                 nvme_printf(qpair->ctrlr, "failing outstanding i/o\n");
1135                 mtx_unlock(&qpair->lock);
1136                 nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1137                     NVME_SC_ABORTED_BY_REQUEST, 1 /* do not retry */, TRUE);
1138                 mtx_lock(&qpair->lock);
1139         }
1140
1141         mtx_unlock(&qpair->lock);
1142 }
1143