]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/nvme/nvme_qpair.c
Add IOCTL to translate nvdX into nvmeY and NSID.
[FreeBSD/FreeBSD.git] / sys / dev / nvme / nvme_qpair.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2012-2014 Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/conf.h>
35 #include <sys/proc.h>
36
37 #include <dev/pci/pcivar.h>
38
39 #include "nvme_private.h"
40
41 typedef enum error_print { ERROR_PRINT_NONE, ERROR_PRINT_NO_RETRY, ERROR_PRINT_ALL } error_print_t;
42 #define DO_NOT_RETRY    1
43
44 static void     _nvme_qpair_submit_request(struct nvme_qpair *qpair,
45                                            struct nvme_request *req);
46 static void     nvme_qpair_destroy(struct nvme_qpair *qpair);
47
48 struct nvme_opcode_string {
49
50         uint16_t        opc;
51         const char *    str;
52 };
53
54 static struct nvme_opcode_string admin_opcode[] = {
55         { NVME_OPC_DELETE_IO_SQ, "DELETE IO SQ" },
56         { NVME_OPC_CREATE_IO_SQ, "CREATE IO SQ" },
57         { NVME_OPC_GET_LOG_PAGE, "GET LOG PAGE" },
58         { NVME_OPC_DELETE_IO_CQ, "DELETE IO CQ" },
59         { NVME_OPC_CREATE_IO_CQ, "CREATE IO CQ" },
60         { NVME_OPC_IDENTIFY, "IDENTIFY" },
61         { NVME_OPC_ABORT, "ABORT" },
62         { NVME_OPC_SET_FEATURES, "SET FEATURES" },
63         { NVME_OPC_GET_FEATURES, "GET FEATURES" },
64         { NVME_OPC_ASYNC_EVENT_REQUEST, "ASYNC EVENT REQUEST" },
65         { NVME_OPC_FIRMWARE_ACTIVATE, "FIRMWARE ACTIVATE" },
66         { NVME_OPC_FIRMWARE_IMAGE_DOWNLOAD, "FIRMWARE IMAGE DOWNLOAD" },
67         { NVME_OPC_DEVICE_SELF_TEST, "DEVICE SELF-TEST" },
68         { NVME_OPC_NAMESPACE_ATTACHMENT, "NAMESPACE ATTACHMENT" },
69         { NVME_OPC_KEEP_ALIVE, "KEEP ALIVE" },
70         { NVME_OPC_DIRECTIVE_SEND, "DIRECTIVE SEND" },
71         { NVME_OPC_DIRECTIVE_RECEIVE, "DIRECTIVE RECEIVE" },
72         { NVME_OPC_VIRTUALIZATION_MANAGEMENT, "VIRTUALIZATION MANAGEMENT" },
73         { NVME_OPC_NVME_MI_SEND, "NVME-MI SEND" },
74         { NVME_OPC_NVME_MI_RECEIVE, "NVME-MI RECEIVE" },
75         { NVME_OPC_DOORBELL_BUFFER_CONFIG, "DOORBELL BUFFER CONFIG" },
76         { NVME_OPC_FORMAT_NVM, "FORMAT NVM" },
77         { NVME_OPC_SECURITY_SEND, "SECURITY SEND" },
78         { NVME_OPC_SECURITY_RECEIVE, "SECURITY RECEIVE" },
79         { NVME_OPC_SANITIZE, "SANITIZE" },
80         { 0xFFFF, "ADMIN COMMAND" }
81 };
82
83 static struct nvme_opcode_string io_opcode[] = {
84         { NVME_OPC_FLUSH, "FLUSH" },
85         { NVME_OPC_WRITE, "WRITE" },
86         { NVME_OPC_READ, "READ" },
87         { NVME_OPC_WRITE_UNCORRECTABLE, "WRITE UNCORRECTABLE" },
88         { NVME_OPC_COMPARE, "COMPARE" },
89         { NVME_OPC_WRITE_ZEROES, "WRITE ZEROES" },
90         { NVME_OPC_DATASET_MANAGEMENT, "DATASET MANAGEMENT" },
91         { NVME_OPC_RESERVATION_REGISTER, "RESERVATION REGISTER" },
92         { NVME_OPC_RESERVATION_REPORT, "RESERVATION REPORT" },
93         { NVME_OPC_RESERVATION_ACQUIRE, "RESERVATION ACQUIRE" },
94         { NVME_OPC_RESERVATION_RELEASE, "RESERVATION RELEASE" },
95         { 0xFFFF, "IO COMMAND" }
96 };
97
98 static const char *
99 get_admin_opcode_string(uint16_t opc)
100 {
101         struct nvme_opcode_string *entry;
102
103         entry = admin_opcode;
104
105         while (entry->opc != 0xFFFF) {
106                 if (entry->opc == opc)
107                         return (entry->str);
108                 entry++;
109         }
110         return (entry->str);
111 }
112
113 static const char *
114 get_io_opcode_string(uint16_t opc)
115 {
116         struct nvme_opcode_string *entry;
117
118         entry = io_opcode;
119
120         while (entry->opc != 0xFFFF) {
121                 if (entry->opc == opc)
122                         return (entry->str);
123                 entry++;
124         }
125         return (entry->str);
126 }
127
128
129 static void
130 nvme_admin_qpair_print_command(struct nvme_qpair *qpair,
131     struct nvme_command *cmd)
132 {
133
134         nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%x "
135             "cdw10:%08x cdw11:%08x\n",
136             get_admin_opcode_string(cmd->opc), cmd->opc, qpair->id, cmd->cid,
137             le32toh(cmd->nsid), le32toh(cmd->cdw10), le32toh(cmd->cdw11));
138 }
139
140 static void
141 nvme_io_qpair_print_command(struct nvme_qpair *qpair,
142     struct nvme_command *cmd)
143 {
144
145         switch (cmd->opc) {
146         case NVME_OPC_WRITE:
147         case NVME_OPC_READ:
148         case NVME_OPC_WRITE_UNCORRECTABLE:
149         case NVME_OPC_COMPARE:
150         case NVME_OPC_WRITE_ZEROES:
151                 nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d "
152                     "lba:%llu len:%d\n",
153                     get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid),
154                     ((unsigned long long)le32toh(cmd->cdw11) << 32) + le32toh(cmd->cdw10),
155                     (le32toh(cmd->cdw12) & 0xFFFF) + 1);
156                 break;
157         case NVME_OPC_FLUSH:
158         case NVME_OPC_DATASET_MANAGEMENT:
159         case NVME_OPC_RESERVATION_REGISTER:
160         case NVME_OPC_RESERVATION_REPORT:
161         case NVME_OPC_RESERVATION_ACQUIRE:
162         case NVME_OPC_RESERVATION_RELEASE:
163                 nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d\n",
164                     get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid));
165                 break;
166         default:
167                 nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%d\n",
168                     get_io_opcode_string(cmd->opc), cmd->opc, qpair->id,
169                     cmd->cid, le32toh(cmd->nsid));
170                 break;
171         }
172 }
173
174 static void
175 nvme_qpair_print_command(struct nvme_qpair *qpair, struct nvme_command *cmd)
176 {
177         if (qpair->id == 0)
178                 nvme_admin_qpair_print_command(qpair, cmd);
179         else
180                 nvme_io_qpair_print_command(qpair, cmd);
181         if (nvme_verbose_cmd_dump) {
182                 nvme_printf(qpair->ctrlr,
183                     "nsid:%#x rsvd2:%#x rsvd3:%#x mptr:%#jx prp1:%#jx prp2:%#jx\n",
184                     cmd->nsid, cmd->rsvd2, cmd->rsvd3, (uintmax_t)cmd->mptr,
185                     (uintmax_t)cmd->prp1, (uintmax_t)cmd->prp2);
186                 nvme_printf(qpair->ctrlr,
187                     "cdw10: %#x cdw11:%#x cdw12:%#x cdw13:%#x cdw14:%#x cdw15:%#x\n",
188                     cmd->cdw10, cmd->cdw11, cmd->cdw12, cmd->cdw13, cmd->cdw14,
189                     cmd->cdw15);
190         }
191 }
192
193 struct nvme_status_string {
194
195         uint16_t        sc;
196         const char *    str;
197 };
198
199 static struct nvme_status_string generic_status[] = {
200         { NVME_SC_SUCCESS, "SUCCESS" },
201         { NVME_SC_INVALID_OPCODE, "INVALID OPCODE" },
202         { NVME_SC_INVALID_FIELD, "INVALID_FIELD" },
203         { NVME_SC_COMMAND_ID_CONFLICT, "COMMAND ID CONFLICT" },
204         { NVME_SC_DATA_TRANSFER_ERROR, "DATA TRANSFER ERROR" },
205         { NVME_SC_ABORTED_POWER_LOSS, "ABORTED - POWER LOSS" },
206         { NVME_SC_INTERNAL_DEVICE_ERROR, "INTERNAL DEVICE ERROR" },
207         { NVME_SC_ABORTED_BY_REQUEST, "ABORTED - BY REQUEST" },
208         { NVME_SC_ABORTED_SQ_DELETION, "ABORTED - SQ DELETION" },
209         { NVME_SC_ABORTED_FAILED_FUSED, "ABORTED - FAILED FUSED" },
210         { NVME_SC_ABORTED_MISSING_FUSED, "ABORTED - MISSING FUSED" },
211         { NVME_SC_INVALID_NAMESPACE_OR_FORMAT, "INVALID NAMESPACE OR FORMAT" },
212         { NVME_SC_COMMAND_SEQUENCE_ERROR, "COMMAND SEQUENCE ERROR" },
213         { NVME_SC_INVALID_SGL_SEGMENT_DESCR, "INVALID SGL SEGMENT DESCRIPTOR" },
214         { NVME_SC_INVALID_NUMBER_OF_SGL_DESCR, "INVALID NUMBER OF SGL DESCRIPTORS" },
215         { NVME_SC_DATA_SGL_LENGTH_INVALID, "DATA SGL LENGTH INVALID" },
216         { NVME_SC_METADATA_SGL_LENGTH_INVALID, "METADATA SGL LENGTH INVALID" },
217         { NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID, "SGL DESCRIPTOR TYPE INVALID" },
218         { NVME_SC_INVALID_USE_OF_CMB, "INVALID USE OF CONTROLLER MEMORY BUFFER" },
219         { NVME_SC_PRP_OFFET_INVALID, "PRP OFFET INVALID" },
220         { NVME_SC_ATOMIC_WRITE_UNIT_EXCEEDED, "ATOMIC WRITE UNIT EXCEEDED" },
221         { NVME_SC_OPERATION_DENIED, "OPERATION DENIED" },
222         { NVME_SC_SGL_OFFSET_INVALID, "SGL OFFSET INVALID" },
223         { NVME_SC_HOST_ID_INCONSISTENT_FORMAT, "HOST IDENTIFIER INCONSISTENT FORMAT" },
224         { NVME_SC_KEEP_ALIVE_TIMEOUT_EXPIRED, "KEEP ALIVE TIMEOUT EXPIRED" },
225         { NVME_SC_KEEP_ALIVE_TIMEOUT_INVALID, "KEEP ALIVE TIMEOUT INVALID" },
226         { NVME_SC_ABORTED_DUE_TO_PREEMPT, "COMMAND ABORTED DUE TO PREEMPT AND ABORT" },
227         { NVME_SC_SANITIZE_FAILED, "SANITIZE FAILED" },
228         { NVME_SC_SANITIZE_IN_PROGRESS, "SANITIZE IN PROGRESS" },
229         { NVME_SC_SGL_DATA_BLOCK_GRAN_INVALID, "SGL_DATA_BLOCK_GRANULARITY_INVALID" },
230         { NVME_SC_NOT_SUPPORTED_IN_CMB, "COMMAND NOT SUPPORTED FOR QUEUE IN CMB" },
231
232         { NVME_SC_LBA_OUT_OF_RANGE, "LBA OUT OF RANGE" },
233         { NVME_SC_CAPACITY_EXCEEDED, "CAPACITY EXCEEDED" },
234         { NVME_SC_NAMESPACE_NOT_READY, "NAMESPACE NOT READY" },
235         { NVME_SC_RESERVATION_CONFLICT, "RESERVATION CONFLICT" },
236         { NVME_SC_FORMAT_IN_PROGRESS, "FORMAT IN PROGRESS" },
237         { 0xFFFF, "GENERIC" }
238 };
239
240 static struct nvme_status_string command_specific_status[] = {
241         { NVME_SC_COMPLETION_QUEUE_INVALID, "INVALID COMPLETION QUEUE" },
242         { NVME_SC_INVALID_QUEUE_IDENTIFIER, "INVALID QUEUE IDENTIFIER" },
243         { NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED, "MAX QUEUE SIZE EXCEEDED" },
244         { NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED, "ABORT CMD LIMIT EXCEEDED" },
245         { NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED, "ASYNC LIMIT EXCEEDED" },
246         { NVME_SC_INVALID_FIRMWARE_SLOT, "INVALID FIRMWARE SLOT" },
247         { NVME_SC_INVALID_FIRMWARE_IMAGE, "INVALID FIRMWARE IMAGE" },
248         { NVME_SC_INVALID_INTERRUPT_VECTOR, "INVALID INTERRUPT VECTOR" },
249         { NVME_SC_INVALID_LOG_PAGE, "INVALID LOG PAGE" },
250         { NVME_SC_INVALID_FORMAT, "INVALID FORMAT" },
251         { NVME_SC_FIRMWARE_REQUIRES_RESET, "FIRMWARE REQUIRES RESET" },
252         { NVME_SC_INVALID_QUEUE_DELETION, "INVALID QUEUE DELETION" },
253         { NVME_SC_FEATURE_NOT_SAVEABLE, "FEATURE IDENTIFIER NOT SAVEABLE" },
254         { NVME_SC_FEATURE_NOT_CHANGEABLE, "FEATURE NOT CHANGEABLE" },
255         { NVME_SC_FEATURE_NOT_NS_SPECIFIC, "FEATURE NOT NAMESPACE SPECIFIC" },
256         { NVME_SC_FW_ACT_REQUIRES_NVMS_RESET, "FIRMWARE ACTIVATION REQUIRES NVM SUBSYSTEM RESET" },
257         { NVME_SC_FW_ACT_REQUIRES_RESET, "FIRMWARE ACTIVATION REQUIRES RESET" },
258         { NVME_SC_FW_ACT_REQUIRES_TIME, "FIRMWARE ACTIVATION REQUIRES MAXIMUM TIME VIOLATION" },
259         { NVME_SC_FW_ACT_PROHIBITED, "FIRMWARE ACTIVATION PROHIBITED" },
260         { NVME_SC_OVERLAPPING_RANGE, "OVERLAPPING RANGE" },
261         { NVME_SC_NS_INSUFFICIENT_CAPACITY, "NAMESPACE INSUFFICIENT CAPACITY" },
262         { NVME_SC_NS_ID_UNAVAILABLE, "NAMESPACE IDENTIFIER UNAVAILABLE" },
263         { NVME_SC_NS_ALREADY_ATTACHED, "NAMESPACE ALREADY ATTACHED" },
264         { NVME_SC_NS_IS_PRIVATE, "NAMESPACE IS PRIVATE" },
265         { NVME_SC_NS_NOT_ATTACHED, "NS NOT ATTACHED" },
266         { NVME_SC_THIN_PROV_NOT_SUPPORTED, "THIN PROVISIONING NOT SUPPORTED" },
267         { NVME_SC_CTRLR_LIST_INVALID, "CONTROLLER LIST INVALID" },
268         { NVME_SC_SELT_TEST_IN_PROGRESS, "DEVICE SELT-TEST IN PROGRESS" },
269         { NVME_SC_BOOT_PART_WRITE_PROHIB, "BOOT PARTITION WRITE PROHIBITED" },
270         { NVME_SC_INVALID_CTRLR_ID, "INVALID CONTROLLER IDENTIFIER" },
271         { NVME_SC_INVALID_SEC_CTRLR_STATE, "INVALID SECONDARY CONTROLLER STATE" },
272         { NVME_SC_INVALID_NUM_OF_CTRLR_RESRC, "INVALID NUMBER OF CONTROLLER RESOURCES" },
273         { NVME_SC_INVALID_RESOURCE_ID, "INVALID RESOURCE IDENTIFIER" },
274
275         { NVME_SC_CONFLICTING_ATTRIBUTES, "CONFLICTING ATTRIBUTES" },
276         { NVME_SC_INVALID_PROTECTION_INFO, "INVALID PROTECTION INFO" },
277         { NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE, "WRITE TO RO PAGE" },
278         { 0xFFFF, "COMMAND SPECIFIC" }
279 };
280
281 static struct nvme_status_string media_error_status[] = {
282         { NVME_SC_WRITE_FAULTS, "WRITE FAULTS" },
283         { NVME_SC_UNRECOVERED_READ_ERROR, "UNRECOVERED READ ERROR" },
284         { NVME_SC_GUARD_CHECK_ERROR, "GUARD CHECK ERROR" },
285         { NVME_SC_APPLICATION_TAG_CHECK_ERROR, "APPLICATION TAG CHECK ERROR" },
286         { NVME_SC_REFERENCE_TAG_CHECK_ERROR, "REFERENCE TAG CHECK ERROR" },
287         { NVME_SC_COMPARE_FAILURE, "COMPARE FAILURE" },
288         { NVME_SC_ACCESS_DENIED, "ACCESS DENIED" },
289         { NVME_SC_DEALLOCATED_OR_UNWRITTEN, "DEALLOCATED OR UNWRITTEN LOGICAL BLOCK" },
290         { 0xFFFF, "MEDIA ERROR" }
291 };
292
293 static const char *
294 get_status_string(uint16_t sct, uint16_t sc)
295 {
296         struct nvme_status_string *entry;
297
298         switch (sct) {
299         case NVME_SCT_GENERIC:
300                 entry = generic_status;
301                 break;
302         case NVME_SCT_COMMAND_SPECIFIC:
303                 entry = command_specific_status;
304                 break;
305         case NVME_SCT_MEDIA_ERROR:
306                 entry = media_error_status;
307                 break;
308         case NVME_SCT_VENDOR_SPECIFIC:
309                 return ("VENDOR SPECIFIC");
310         default:
311                 return ("RESERVED");
312         }
313
314         while (entry->sc != 0xFFFF) {
315                 if (entry->sc == sc)
316                         return (entry->str);
317                 entry++;
318         }
319         return (entry->str);
320 }
321
322 static void
323 nvme_qpair_print_completion(struct nvme_qpair *qpair,
324     struct nvme_completion *cpl)
325 {
326         uint16_t sct, sc;
327
328         sct = NVME_STATUS_GET_SCT(cpl->status);
329         sc = NVME_STATUS_GET_SC(cpl->status);
330
331         nvme_printf(qpair->ctrlr, "%s (%02x/%02x) sqid:%d cid:%d cdw0:%x\n",
332             get_status_string(sct, sc), sct, sc, cpl->sqid, cpl->cid,
333             cpl->cdw0);
334 }
335
336 static boolean_t
337 nvme_completion_is_retry(const struct nvme_completion *cpl)
338 {
339         uint8_t sct, sc, dnr;
340
341         sct = NVME_STATUS_GET_SCT(cpl->status);
342         sc = NVME_STATUS_GET_SC(cpl->status);
343         dnr = NVME_STATUS_GET_DNR(cpl->status); /* Do Not Retry Bit */
344
345         /*
346          * TODO: spec is not clear how commands that are aborted due
347          *  to TLER will be marked.  So for now, it seems
348          *  NAMESPACE_NOT_READY is the only case where we should
349          *  look at the DNR bit. Requests failed with ABORTED_BY_REQUEST
350          *  set the DNR bit correctly since the driver controls that.
351          */
352         switch (sct) {
353         case NVME_SCT_GENERIC:
354                 switch (sc) {
355                 case NVME_SC_ABORTED_BY_REQUEST:
356                 case NVME_SC_NAMESPACE_NOT_READY:
357                         if (dnr)
358                                 return (0);
359                         else
360                                 return (1);
361                 case NVME_SC_INVALID_OPCODE:
362                 case NVME_SC_INVALID_FIELD:
363                 case NVME_SC_COMMAND_ID_CONFLICT:
364                 case NVME_SC_DATA_TRANSFER_ERROR:
365                 case NVME_SC_ABORTED_POWER_LOSS:
366                 case NVME_SC_INTERNAL_DEVICE_ERROR:
367                 case NVME_SC_ABORTED_SQ_DELETION:
368                 case NVME_SC_ABORTED_FAILED_FUSED:
369                 case NVME_SC_ABORTED_MISSING_FUSED:
370                 case NVME_SC_INVALID_NAMESPACE_OR_FORMAT:
371                 case NVME_SC_COMMAND_SEQUENCE_ERROR:
372                 case NVME_SC_LBA_OUT_OF_RANGE:
373                 case NVME_SC_CAPACITY_EXCEEDED:
374                 default:
375                         return (0);
376                 }
377         case NVME_SCT_COMMAND_SPECIFIC:
378         case NVME_SCT_MEDIA_ERROR:
379         case NVME_SCT_VENDOR_SPECIFIC:
380         default:
381                 return (0);
382         }
383 }
384
385 static void
386 nvme_qpair_complete_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr,
387     struct nvme_completion *cpl, error_print_t print_on_error)
388 {
389         struct nvme_request     *req;
390         boolean_t               retry, error, retriable;
391
392         req = tr->req;
393         error = nvme_completion_is_error(cpl);
394         retriable = nvme_completion_is_retry(cpl);
395         retry = error && retriable && req->retries < nvme_retry_count;
396         if (retry)
397                 qpair->num_retries++;
398         if (error && req->retries >= nvme_retry_count && retriable)
399                 qpair->num_failures++;
400
401         if (error && (print_on_error == ERROR_PRINT_ALL ||
402                 (!retry && print_on_error == ERROR_PRINT_NO_RETRY))) {
403                 nvme_qpair_print_command(qpair, &req->cmd);
404                 nvme_qpair_print_completion(qpair, cpl);
405         }
406
407         qpair->act_tr[cpl->cid] = NULL;
408
409         KASSERT(cpl->cid == req->cmd.cid, ("cpl cid does not match cmd cid\n"));
410
411         if (req->cb_fn && !retry)
412                 req->cb_fn(req->cb_arg, cpl);
413
414         mtx_lock(&qpair->lock);
415         callout_stop(&tr->timer);
416
417         if (retry) {
418                 req->retries++;
419                 nvme_qpair_submit_tracker(qpair, tr);
420         } else {
421                 if (req->type != NVME_REQUEST_NULL) {
422                         bus_dmamap_sync(qpair->dma_tag_payload,
423                             tr->payload_dma_map,
424                             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
425                         bus_dmamap_unload(qpair->dma_tag_payload,
426                             tr->payload_dma_map);
427                 }
428
429                 nvme_free_request(req);
430                 tr->req = NULL;
431
432                 TAILQ_REMOVE(&qpair->outstanding_tr, tr, tailq);
433                 TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
434
435                 /*
436                  * If the controller is in the middle of resetting, don't
437                  *  try to submit queued requests here - let the reset logic
438                  *  handle that instead.
439                  */
440                 if (!STAILQ_EMPTY(&qpair->queued_req) &&
441                     !qpair->ctrlr->is_resetting) {
442                         req = STAILQ_FIRST(&qpair->queued_req);
443                         STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
444                         _nvme_qpair_submit_request(qpair, req);
445                 }
446         }
447
448         mtx_unlock(&qpair->lock);
449 }
450
451 static void
452 nvme_qpair_manual_complete_tracker(struct nvme_qpair *qpair,
453     struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
454     error_print_t print_on_error)
455 {
456         struct nvme_completion  cpl;
457
458         memset(&cpl, 0, sizeof(cpl));
459         cpl.sqid = qpair->id;
460         cpl.cid = tr->cid;
461         cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
462         cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
463         cpl.status |= (dnr & NVME_STATUS_DNR_MASK) << NVME_STATUS_DNR_SHIFT;
464         nvme_qpair_complete_tracker(qpair, tr, &cpl, print_on_error);
465 }
466
467 void
468 nvme_qpair_manual_complete_request(struct nvme_qpair *qpair,
469     struct nvme_request *req, uint32_t sct, uint32_t sc)
470 {
471         struct nvme_completion  cpl;
472         boolean_t               error;
473
474         memset(&cpl, 0, sizeof(cpl));
475         cpl.sqid = qpair->id;
476         cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
477         cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
478
479         error = nvme_completion_is_error(&cpl);
480
481         if (error) {
482                 nvme_qpair_print_command(qpair, &req->cmd);
483                 nvme_qpair_print_completion(qpair, &cpl);
484         }
485
486         if (req->cb_fn)
487                 req->cb_fn(req->cb_arg, &cpl);
488
489         nvme_free_request(req);
490 }
491
492 bool
493 nvme_qpair_process_completions(struct nvme_qpair *qpair)
494 {
495         struct nvme_tracker     *tr;
496         struct nvme_completion  cpl;
497         int done = 0;
498         bool in_panic = dumping || SCHEDULER_STOPPED();
499
500         qpair->num_intr_handler_calls++;
501
502         /*
503          * qpair is not enabled, likely because a controller reset is is in
504          * progress.  Ignore the interrupt - any I/O that was associated with
505          * this interrupt will get retried when the reset is complete.
506          */
507         if (!qpair->is_enabled)
508                 return (false);
509
510         /*
511          * A panic can stop the CPU this routine is running on at any point.  If
512          * we're called during a panic, complete the sq_head wrap protocol for
513          * the case where we are interrupted just after the increment at 1
514          * below, but before we can reset cq_head to zero at 2. Also cope with
515          * the case where we do the zero at 2, but may or may not have done the
516          * phase adjustment at step 3. The panic machinery flushes all pending
517          * memory writes, so we can make these strong ordering assumptions
518          * that would otherwise be unwise if we were racing in real time.
519          */
520         if (__predict_false(in_panic)) {
521                 if (qpair->cq_head == qpair->num_entries) {
522                         /*
523                          * Here we know that we need to zero cq_head and then negate
524                          * the phase, which hasn't been assigned if cq_head isn't
525                          * zero due to the atomic_store_rel.
526                          */
527                         qpair->cq_head = 0;
528                         qpair->phase = !qpair->phase;
529                 } else if (qpair->cq_head == 0) {
530                         /*
531                          * In this case, we know that the assignment at 2
532                          * happened below, but we don't know if it 3 happened or
533                          * not. To do this, we look at the last completion
534                          * entry and set the phase to the opposite phase
535                          * that it has. This gets us back in sync
536                          */
537                         cpl = qpair->cpl[qpair->num_entries - 1];
538                         nvme_completion_swapbytes(&cpl);
539                         qpair->phase = !NVME_STATUS_GET_P(cpl.status);
540                 }
541         }
542
543         bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
544             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
545         while (1) {
546                 cpl = qpair->cpl[qpair->cq_head];
547
548                 /* Convert to host endian */
549                 nvme_completion_swapbytes(&cpl);
550
551                 if (NVME_STATUS_GET_P(cpl.status) != qpair->phase)
552                         break;
553
554                 tr = qpair->act_tr[cpl.cid];
555
556                 if (tr != NULL) {
557                         nvme_qpair_complete_tracker(qpair, tr, &cpl, ERROR_PRINT_ALL);
558                         qpair->sq_head = cpl.sqhd;
559                         done++;
560                 } else if (!in_panic) {
561                         /*
562                          * A missing tracker is normally an error.  However, a
563                          * panic can stop the CPU this routine is running on
564                          * after completing an I/O but before updating
565                          * qpair->cq_head at 1 below.  Later, we re-enter this
566                          * routine to poll I/O associated with the kernel
567                          * dump. We find that the tr has been set to null before
568                          * calling the completion routine.  If it hasn't
569                          * completed (or it triggers a panic), then '1' below
570                          * won't have updated cq_head. Rather than panic again,
571                          * ignore this condition because it's not unexpected.
572                          */
573                         nvme_printf(qpair->ctrlr,
574                             "cpl does not map to outstanding cmd\n");
575                         /* nvme_dump_completion expects device endianess */
576                         nvme_dump_completion(&qpair->cpl[qpair->cq_head]);
577                         KASSERT(0, ("received completion for unknown cmd"));
578                 }
579
580                 /*
581                  * There's a number of races with the following (see above) when
582                  * the system panics. We compensate for each one of them by
583                  * using the atomic store to force strong ordering (at least when
584                  * viewed in the aftermath of a panic).
585                  */
586                 if (++qpair->cq_head == qpair->num_entries) {           /* 1 */
587                         atomic_store_rel_int(&qpair->cq_head, 0);       /* 2 */
588                         qpair->phase = !qpair->phase;                   /* 3 */
589                 }
590
591                 nvme_mmio_write_4(qpair->ctrlr, doorbell[qpair->id].cq_hdbl,
592                     qpair->cq_head);
593         }
594         return (done != 0);
595 }
596
597 static void
598 nvme_qpair_msix_handler(void *arg)
599 {
600         struct nvme_qpair *qpair = arg;
601
602         nvme_qpair_process_completions(qpair);
603 }
604
605 int
606 nvme_qpair_construct(struct nvme_qpair *qpair, uint32_t id,
607     uint16_t vector, uint32_t num_entries, uint32_t num_trackers,
608     struct nvme_controller *ctrlr)
609 {
610         struct nvme_tracker     *tr;
611         size_t                  cmdsz, cplsz, prpsz, allocsz, prpmemsz;
612         uint64_t                queuemem_phys, prpmem_phys, list_phys;
613         uint8_t                 *queuemem, *prpmem, *prp_list;
614         int                     i, err;
615
616         qpair->id = id;
617         qpair->vector = vector;
618         qpair->num_entries = num_entries;
619         qpair->num_trackers = num_trackers;
620         qpair->ctrlr = ctrlr;
621
622         if (ctrlr->msix_enabled) {
623
624                 /*
625                  * MSI-X vector resource IDs start at 1, so we add one to
626                  *  the queue's vector to get the corresponding rid to use.
627                  */
628                 qpair->rid = vector + 1;
629
630                 qpair->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
631                     &qpair->rid, RF_ACTIVE);
632                 bus_setup_intr(ctrlr->dev, qpair->res,
633                     INTR_TYPE_MISC | INTR_MPSAFE, NULL,
634                     nvme_qpair_msix_handler, qpair, &qpair->tag);
635                 if (id == 0) {
636                         bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
637                             "admin");
638                 } else {
639                         bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
640                             "io%d", id - 1);
641                 }
642         }
643
644         mtx_init(&qpair->lock, "nvme qpair lock", NULL, MTX_DEF);
645
646         /* Note: NVMe PRP format is restricted to 4-byte alignment. */
647         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
648             4, PAGE_SIZE, BUS_SPACE_MAXADDR,
649             BUS_SPACE_MAXADDR, NULL, NULL, NVME_MAX_XFER_SIZE,
650             (NVME_MAX_XFER_SIZE/PAGE_SIZE)+1, PAGE_SIZE, 0,
651             NULL, NULL, &qpair->dma_tag_payload);
652         if (err != 0) {
653                 nvme_printf(ctrlr, "payload tag create failed %d\n", err);
654                 goto out;
655         }
656
657         /*
658          * Each component must be page aligned, and individual PRP lists
659          * cannot cross a page boundary.
660          */
661         cmdsz = qpair->num_entries * sizeof(struct nvme_command);
662         cmdsz = roundup2(cmdsz, PAGE_SIZE);
663         cplsz = qpair->num_entries * sizeof(struct nvme_completion);
664         cplsz = roundup2(cplsz, PAGE_SIZE);
665         prpsz = sizeof(uint64_t) * NVME_MAX_PRP_LIST_ENTRIES;;
666         prpmemsz = qpair->num_trackers * prpsz;
667         allocsz = cmdsz + cplsz + prpmemsz;
668
669         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
670             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
671             allocsz, 1, allocsz, 0, NULL, NULL, &qpair->dma_tag);
672         if (err != 0) {
673                 nvme_printf(ctrlr, "tag create failed %d\n", err);
674                 goto out;
675         }
676
677         if (bus_dmamem_alloc(qpair->dma_tag, (void **)&queuemem,
678             BUS_DMA_NOWAIT, &qpair->queuemem_map)) {
679                 nvme_printf(ctrlr, "failed to alloc qpair memory\n");
680                 goto out;
681         }
682
683         if (bus_dmamap_load(qpair->dma_tag, qpair->queuemem_map,
684             queuemem, allocsz, nvme_single_map, &queuemem_phys, 0) != 0) {
685                 nvme_printf(ctrlr, "failed to load qpair memory\n");
686                 goto out;
687         }
688
689         qpair->num_cmds = 0;
690         qpair->num_intr_handler_calls = 0;
691         qpair->num_retries = 0;
692         qpair->num_failures = 0;
693         qpair->cmd = (struct nvme_command *)queuemem;
694         qpair->cpl = (struct nvme_completion *)(queuemem + cmdsz);
695         prpmem = (uint8_t *)(queuemem + cmdsz + cplsz);
696         qpair->cmd_bus_addr = queuemem_phys;
697         qpair->cpl_bus_addr = queuemem_phys + cmdsz;
698         prpmem_phys = queuemem_phys + cmdsz + cplsz;
699
700         qpair->sq_tdbl_off = nvme_mmio_offsetof(doorbell[id].sq_tdbl);
701         qpair->cq_hdbl_off = nvme_mmio_offsetof(doorbell[id].cq_hdbl);
702
703         TAILQ_INIT(&qpair->free_tr);
704         TAILQ_INIT(&qpair->outstanding_tr);
705         STAILQ_INIT(&qpair->queued_req);
706
707         list_phys = prpmem_phys;
708         prp_list = prpmem;
709         for (i = 0; i < qpair->num_trackers; i++) {
710
711                 if (list_phys + prpsz > prpmem_phys + prpmemsz) {
712                         qpair->num_trackers = i;
713                         break;
714                 }
715
716                 /*
717                  * Make sure that the PRP list for this tracker doesn't
718                  * overflow to another page.
719                  */
720                 if (trunc_page(list_phys) !=
721                     trunc_page(list_phys + prpsz - 1)) {
722                         list_phys = roundup2(list_phys, PAGE_SIZE);
723                         prp_list =
724                             (uint8_t *)roundup2((uintptr_t)prp_list, PAGE_SIZE);
725                 }
726
727                 tr = malloc(sizeof(*tr), M_NVME, M_ZERO | M_WAITOK);
728                 bus_dmamap_create(qpair->dma_tag_payload, 0,
729                     &tr->payload_dma_map);
730                 callout_init(&tr->timer, 1);
731                 tr->cid = i;
732                 tr->qpair = qpair;
733                 tr->prp = (uint64_t *)prp_list;
734                 tr->prp_bus_addr = list_phys;
735                 TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
736                 list_phys += prpsz;
737                 prp_list += prpsz;
738         }
739
740         if (qpair->num_trackers == 0) {
741                 nvme_printf(ctrlr, "failed to allocate enough trackers\n");
742                 goto out;
743         }
744
745         qpair->act_tr = malloc(sizeof(struct nvme_tracker *) *
746             qpair->num_entries, M_NVME, M_ZERO | M_WAITOK);
747         return (0);
748
749 out:
750         nvme_qpair_destroy(qpair);
751         return (ENOMEM);
752 }
753
754 static void
755 nvme_qpair_destroy(struct nvme_qpair *qpair)
756 {
757         struct nvme_tracker     *tr;
758
759         if (qpair->tag)
760                 bus_teardown_intr(qpair->ctrlr->dev, qpair->res, qpair->tag);
761
762         if (mtx_initialized(&qpair->lock))
763                 mtx_destroy(&qpair->lock);
764
765         if (qpair->res)
766                 bus_release_resource(qpair->ctrlr->dev, SYS_RES_IRQ,
767                     rman_get_rid(qpair->res), qpair->res);
768
769         if (qpair->cmd != NULL) {
770                 bus_dmamap_unload(qpair->dma_tag, qpair->queuemem_map);
771                 bus_dmamem_free(qpair->dma_tag, qpair->cmd,
772                     qpair->queuemem_map);
773         }
774
775         if (qpair->act_tr)
776                 free(qpair->act_tr, M_NVME);
777
778         while (!TAILQ_EMPTY(&qpair->free_tr)) {
779                 tr = TAILQ_FIRST(&qpair->free_tr);
780                 TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
781                 bus_dmamap_destroy(qpair->dma_tag_payload,
782                     tr->payload_dma_map);
783                 free(tr, M_NVME);
784         }
785
786         if (qpair->dma_tag)
787                 bus_dma_tag_destroy(qpair->dma_tag);
788
789         if (qpair->dma_tag_payload)
790                 bus_dma_tag_destroy(qpair->dma_tag_payload);
791 }
792
793 static void
794 nvme_admin_qpair_abort_aers(struct nvme_qpair *qpair)
795 {
796         struct nvme_tracker     *tr;
797
798         tr = TAILQ_FIRST(&qpair->outstanding_tr);
799         while (tr != NULL) {
800                 if (tr->req->cmd.opc == NVME_OPC_ASYNC_EVENT_REQUEST) {
801                         nvme_qpair_manual_complete_tracker(qpair, tr,
802                             NVME_SCT_GENERIC, NVME_SC_ABORTED_SQ_DELETION, 0,
803                             ERROR_PRINT_NONE);
804                         tr = TAILQ_FIRST(&qpair->outstanding_tr);
805                 } else {
806                         tr = TAILQ_NEXT(tr, tailq);
807                 }
808         }
809 }
810
811 void
812 nvme_admin_qpair_destroy(struct nvme_qpair *qpair)
813 {
814
815         nvme_admin_qpair_abort_aers(qpair);
816         nvme_qpair_destroy(qpair);
817 }
818
819 void
820 nvme_io_qpair_destroy(struct nvme_qpair *qpair)
821 {
822
823         nvme_qpair_destroy(qpair);
824 }
825
826 static void
827 nvme_abort_complete(void *arg, const struct nvme_completion *status)
828 {
829         struct nvme_tracker     *tr = arg;
830
831         /*
832          * If cdw0 == 1, the controller was not able to abort the command
833          *  we requested.  We still need to check the active tracker array,
834          *  to cover race where I/O timed out at same time controller was
835          *  completing the I/O.
836          */
837         if (status->cdw0 == 1 && tr->qpair->act_tr[tr->cid] != NULL) {
838                 /*
839                  * An I/O has timed out, and the controller was unable to
840                  *  abort it for some reason.  Construct a fake completion
841                  *  status, and then complete the I/O's tracker manually.
842                  */
843                 nvme_printf(tr->qpair->ctrlr,
844                     "abort command failed, aborting command manually\n");
845                 nvme_qpair_manual_complete_tracker(tr->qpair, tr,
846                     NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_ALL);
847         }
848 }
849
850 static void
851 nvme_timeout(void *arg)
852 {
853         struct nvme_tracker     *tr = arg;
854         struct nvme_qpair       *qpair = tr->qpair;
855         struct nvme_controller  *ctrlr = qpair->ctrlr;
856         uint32_t                csts;
857         uint8_t                 cfs;
858
859         /*
860          * Read csts to get value of cfs - controller fatal status.
861          * If no fatal status, try to call the completion routine, and
862          * if completes transactions, report a missed interrupt and
863          * return (this may need to be rate limited). Otherwise, if
864          * aborts are enabled and the controller is not reporting
865          * fatal status, abort the command. Otherwise, just reset the
866          * controller and hope for the best.
867          */
868         csts = nvme_mmio_read_4(ctrlr, csts);
869         cfs = (csts >> NVME_CSTS_REG_CFS_SHIFT) & NVME_CSTS_REG_CFS_MASK;
870         if (cfs == 0 && nvme_qpair_process_completions(qpair)) {
871                 nvme_printf(ctrlr, "Missing interrupt\n");
872                 return;
873         }
874         if (ctrlr->enable_aborts && cfs == 0) {
875                 nvme_printf(ctrlr, "Aborting command due to a timeout.\n");
876                 nvme_ctrlr_cmd_abort(ctrlr, tr->cid, qpair->id,
877                     nvme_abort_complete, tr);
878         } else {
879                 nvme_printf(ctrlr, "Resetting controller due to a timeout%s.\n",
880                     cfs ? " and fatal error status" : "");
881                 nvme_ctrlr_reset(ctrlr);
882         }
883 }
884
885 void
886 nvme_qpair_submit_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr)
887 {
888         struct nvme_request     *req;
889         struct nvme_controller  *ctrlr;
890
891         mtx_assert(&qpair->lock, MA_OWNED);
892
893         req = tr->req;
894         req->cmd.cid = tr->cid;
895         qpair->act_tr[tr->cid] = tr;
896         ctrlr = qpair->ctrlr;
897
898         if (req->timeout)
899                 callout_reset_curcpu(&tr->timer, ctrlr->timeout_period * hz,
900                     nvme_timeout, tr);
901
902         /* Copy the command from the tracker to the submission queue. */
903         memcpy(&qpair->cmd[qpair->sq_tail], &req->cmd, sizeof(req->cmd));
904
905         if (++qpair->sq_tail == qpair->num_entries)
906                 qpair->sq_tail = 0;
907
908         bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
909             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
910 #ifndef __powerpc__
911         /*
912          * powerpc's bus_dmamap_sync() already includes a heavyweight sync, but
913          * no other archs do.
914          */
915         wmb();
916 #endif
917
918         nvme_mmio_write_4(qpair->ctrlr, doorbell[qpair->id].sq_tdbl,
919             qpair->sq_tail);
920
921         qpair->num_cmds++;
922 }
923
924 static void
925 nvme_payload_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
926 {
927         struct nvme_tracker     *tr = arg;
928         uint32_t                cur_nseg;
929
930         /*
931          * If the mapping operation failed, return immediately.  The caller
932          *  is responsible for detecting the error status and failing the
933          *  tracker manually.
934          */
935         if (error != 0) {
936                 nvme_printf(tr->qpair->ctrlr,
937                     "nvme_payload_map err %d\n", error);
938                 return;
939         }
940
941         /*
942          * Note that we specified PAGE_SIZE for alignment and max
943          *  segment size when creating the bus dma tags.  So here
944          *  we can safely just transfer each segment to its
945          *  associated PRP entry.
946          */
947         tr->req->cmd.prp1 = htole64(seg[0].ds_addr);
948
949         if (nseg == 2) {
950                 tr->req->cmd.prp2 = htole64(seg[1].ds_addr);
951         } else if (nseg > 2) {
952                 cur_nseg = 1;
953                 tr->req->cmd.prp2 = htole64((uint64_t)tr->prp_bus_addr);
954                 while (cur_nseg < nseg) {
955                         tr->prp[cur_nseg-1] =
956                             htole64((uint64_t)seg[cur_nseg].ds_addr);
957                         cur_nseg++;
958                 }
959         } else {
960                 /*
961                  * prp2 should not be used by the controller
962                  *  since there is only one segment, but set
963                  *  to 0 just to be safe.
964                  */
965                 tr->req->cmd.prp2 = 0;
966         }
967
968         bus_dmamap_sync(tr->qpair->dma_tag_payload, tr->payload_dma_map,
969             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
970         nvme_qpair_submit_tracker(tr->qpair, tr);
971 }
972
973 static void
974 _nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
975 {
976         struct nvme_tracker     *tr;
977         int                     err = 0;
978
979         mtx_assert(&qpair->lock, MA_OWNED);
980
981         tr = TAILQ_FIRST(&qpair->free_tr);
982         req->qpair = qpair;
983
984         if (tr == NULL || !qpair->is_enabled) {
985                 /*
986                  * No tracker is available, or the qpair is disabled due to
987                  *  an in-progress controller-level reset or controller
988                  *  failure.
989                  */
990
991                 if (qpair->ctrlr->is_failed) {
992                         /*
993                          * The controller has failed.  Post the request to a
994                          *  task where it will be aborted, so that we do not
995                          *  invoke the request's callback in the context
996                          *  of the submission.
997                          */
998                         nvme_ctrlr_post_failed_request(qpair->ctrlr, req);
999                 } else {
1000                         /*
1001                          * Put the request on the qpair's request queue to be
1002                          *  processed when a tracker frees up via a command
1003                          *  completion or when the controller reset is
1004                          *  completed.
1005                          */
1006                         STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
1007                 }
1008                 return;
1009         }
1010
1011         TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
1012         TAILQ_INSERT_TAIL(&qpair->outstanding_tr, tr, tailq);
1013         tr->req = req;
1014
1015         switch (req->type) {
1016         case NVME_REQUEST_VADDR:
1017                 KASSERT(req->payload_size <= qpair->ctrlr->max_xfer_size,
1018                     ("payload_size (%d) exceeds max_xfer_size (%d)\n",
1019                     req->payload_size, qpair->ctrlr->max_xfer_size));
1020                 err = bus_dmamap_load(tr->qpair->dma_tag_payload,
1021                     tr->payload_dma_map, req->u.payload, req->payload_size,
1022                     nvme_payload_map, tr, 0);
1023                 if (err != 0)
1024                         nvme_printf(qpair->ctrlr,
1025                             "bus_dmamap_load returned 0x%x!\n", err);
1026                 break;
1027         case NVME_REQUEST_NULL:
1028                 nvme_qpair_submit_tracker(tr->qpair, tr);
1029                 break;
1030         case NVME_REQUEST_BIO:
1031                 KASSERT(req->u.bio->bio_bcount <= qpair->ctrlr->max_xfer_size,
1032                     ("bio->bio_bcount (%jd) exceeds max_xfer_size (%d)\n",
1033                     (intmax_t)req->u.bio->bio_bcount,
1034                     qpair->ctrlr->max_xfer_size));
1035                 err = bus_dmamap_load_bio(tr->qpair->dma_tag_payload,
1036                     tr->payload_dma_map, req->u.bio, nvme_payload_map, tr, 0);
1037                 if (err != 0)
1038                         nvme_printf(qpair->ctrlr,
1039                             "bus_dmamap_load_bio returned 0x%x!\n", err);
1040                 break;
1041         case NVME_REQUEST_CCB:
1042                 err = bus_dmamap_load_ccb(tr->qpair->dma_tag_payload,
1043                     tr->payload_dma_map, req->u.payload,
1044                     nvme_payload_map, tr, 0);
1045                 if (err != 0)
1046                         nvme_printf(qpair->ctrlr,
1047                             "bus_dmamap_load_ccb returned 0x%x!\n", err);
1048                 break;
1049         default:
1050                 panic("unknown nvme request type 0x%x\n", req->type);
1051                 break;
1052         }
1053
1054         if (err != 0) {
1055                 /*
1056                  * The dmamap operation failed, so we manually fail the
1057                  *  tracker here with DATA_TRANSFER_ERROR status.
1058                  *
1059                  * nvme_qpair_manual_complete_tracker must not be called
1060                  *  with the qpair lock held.
1061                  */
1062                 mtx_unlock(&qpair->lock);
1063                 nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1064                     NVME_SC_DATA_TRANSFER_ERROR, DO_NOT_RETRY, ERROR_PRINT_ALL);
1065                 mtx_lock(&qpair->lock);
1066         }
1067 }
1068
1069 void
1070 nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
1071 {
1072
1073         mtx_lock(&qpair->lock);
1074         _nvme_qpair_submit_request(qpair, req);
1075         mtx_unlock(&qpair->lock);
1076 }
1077
1078 static void
1079 nvme_qpair_enable(struct nvme_qpair *qpair)
1080 {
1081
1082         qpair->is_enabled = TRUE;
1083 }
1084
1085 void
1086 nvme_qpair_reset(struct nvme_qpair *qpair)
1087 {
1088
1089         qpair->sq_head = qpair->sq_tail = qpair->cq_head = 0;
1090
1091         /*
1092          * First time through the completion queue, HW will set phase
1093          *  bit on completions to 1.  So set this to 1 here, indicating
1094          *  we're looking for a 1 to know which entries have completed.
1095          *  we'll toggle the bit each time when the completion queue
1096          *  rolls over.
1097          */
1098         qpair->phase = 1;
1099
1100         memset(qpair->cmd, 0,
1101             qpair->num_entries * sizeof(struct nvme_command));
1102         memset(qpair->cpl, 0,
1103             qpair->num_entries * sizeof(struct nvme_completion));
1104 }
1105
1106 void
1107 nvme_admin_qpair_enable(struct nvme_qpair *qpair)
1108 {
1109         struct nvme_tracker             *tr;
1110         struct nvme_tracker             *tr_temp;
1111
1112         /*
1113          * Manually abort each outstanding admin command.  Do not retry
1114          *  admin commands found here, since they will be left over from
1115          *  a controller reset and its likely the context in which the
1116          *  command was issued no longer applies.
1117          */
1118         TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
1119                 nvme_printf(qpair->ctrlr,
1120                     "aborting outstanding admin command\n");
1121                 nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1122                     NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
1123         }
1124
1125         nvme_qpair_enable(qpair);
1126 }
1127
1128 void
1129 nvme_io_qpair_enable(struct nvme_qpair *qpair)
1130 {
1131         STAILQ_HEAD(, nvme_request)     temp;
1132         struct nvme_tracker             *tr;
1133         struct nvme_tracker             *tr_temp;
1134         struct nvme_request             *req;
1135
1136         /*
1137          * Manually abort each outstanding I/O.  This normally results in a
1138          *  retry, unless the retry count on the associated request has
1139          *  reached its limit.
1140          */
1141         TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
1142                 nvme_printf(qpair->ctrlr, "aborting outstanding i/o\n");
1143                 nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1144                     NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_NO_RETRY);
1145         }
1146
1147         mtx_lock(&qpair->lock);
1148
1149         nvme_qpair_enable(qpair);
1150
1151         STAILQ_INIT(&temp);
1152         STAILQ_SWAP(&qpair->queued_req, &temp, nvme_request);
1153
1154         while (!STAILQ_EMPTY(&temp)) {
1155                 req = STAILQ_FIRST(&temp);
1156                 STAILQ_REMOVE_HEAD(&temp, stailq);
1157                 nvme_printf(qpair->ctrlr, "resubmitting queued i/o\n");
1158                 nvme_qpair_print_command(qpair, &req->cmd);
1159                 _nvme_qpair_submit_request(qpair, req);
1160         }
1161
1162         mtx_unlock(&qpair->lock);
1163 }
1164
1165 static void
1166 nvme_qpair_disable(struct nvme_qpair *qpair)
1167 {
1168         struct nvme_tracker *tr;
1169
1170         qpair->is_enabled = FALSE;
1171         mtx_lock(&qpair->lock);
1172         TAILQ_FOREACH(tr, &qpair->outstanding_tr, tailq)
1173                 callout_stop(&tr->timer);
1174         mtx_unlock(&qpair->lock);
1175 }
1176
1177 void
1178 nvme_admin_qpair_disable(struct nvme_qpair *qpair)
1179 {
1180
1181         nvme_qpair_disable(qpair);
1182         nvme_admin_qpair_abort_aers(qpair);
1183 }
1184
1185 void
1186 nvme_io_qpair_disable(struct nvme_qpair *qpair)
1187 {
1188
1189         nvme_qpair_disable(qpair);
1190 }
1191
1192 void
1193 nvme_qpair_fail(struct nvme_qpair *qpair)
1194 {
1195         struct nvme_tracker             *tr;
1196         struct nvme_request             *req;
1197
1198         if (!mtx_initialized(&qpair->lock))
1199                 return;
1200
1201         mtx_lock(&qpair->lock);
1202
1203         while (!STAILQ_EMPTY(&qpair->queued_req)) {
1204                 req = STAILQ_FIRST(&qpair->queued_req);
1205                 STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
1206                 nvme_printf(qpair->ctrlr, "failing queued i/o\n");
1207                 mtx_unlock(&qpair->lock);
1208                 nvme_qpair_manual_complete_request(qpair, req, NVME_SCT_GENERIC,
1209                     NVME_SC_ABORTED_BY_REQUEST);
1210                 mtx_lock(&qpair->lock);
1211         }
1212
1213         /* Manually abort each outstanding I/O. */
1214         while (!TAILQ_EMPTY(&qpair->outstanding_tr)) {
1215                 tr = TAILQ_FIRST(&qpair->outstanding_tr);
1216                 /*
1217                  * Do not remove the tracker.  The abort_tracker path will
1218                  *  do that for us.
1219                  */
1220                 nvme_printf(qpair->ctrlr, "failing outstanding i/o\n");
1221                 mtx_unlock(&qpair->lock);
1222                 nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1223                     NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
1224                 mtx_lock(&qpair->lock);
1225         }
1226
1227         mtx_unlock(&qpair->lock);
1228 }
1229