]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/nvme/nvme_qpair.c
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / sys / dev / nvme / nvme_qpair.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2012-2014 Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/conf.h>
35 #include <sys/domainset.h>
36 #include <sys/proc.h>
37
38 #include <dev/pci/pcivar.h>
39
40 #include "nvme_private.h"
41
42 typedef enum error_print { ERROR_PRINT_NONE, ERROR_PRINT_NO_RETRY, ERROR_PRINT_ALL } error_print_t;
43 #define DO_NOT_RETRY    1
44
45 static void     _nvme_qpair_submit_request(struct nvme_qpair *qpair,
46                                            struct nvme_request *req);
47 static void     nvme_qpair_destroy(struct nvme_qpair *qpair);
48
49 struct nvme_opcode_string {
50
51         uint16_t        opc;
52         const char *    str;
53 };
54
55 static struct nvme_opcode_string admin_opcode[] = {
56         { NVME_OPC_DELETE_IO_SQ, "DELETE IO SQ" },
57         { NVME_OPC_CREATE_IO_SQ, "CREATE IO SQ" },
58         { NVME_OPC_GET_LOG_PAGE, "GET LOG PAGE" },
59         { NVME_OPC_DELETE_IO_CQ, "DELETE IO CQ" },
60         { NVME_OPC_CREATE_IO_CQ, "CREATE IO CQ" },
61         { NVME_OPC_IDENTIFY, "IDENTIFY" },
62         { NVME_OPC_ABORT, "ABORT" },
63         { NVME_OPC_SET_FEATURES, "SET FEATURES" },
64         { NVME_OPC_GET_FEATURES, "GET FEATURES" },
65         { NVME_OPC_ASYNC_EVENT_REQUEST, "ASYNC EVENT REQUEST" },
66         { NVME_OPC_FIRMWARE_ACTIVATE, "FIRMWARE ACTIVATE" },
67         { NVME_OPC_FIRMWARE_IMAGE_DOWNLOAD, "FIRMWARE IMAGE DOWNLOAD" },
68         { NVME_OPC_DEVICE_SELF_TEST, "DEVICE SELF-TEST" },
69         { NVME_OPC_NAMESPACE_ATTACHMENT, "NAMESPACE ATTACHMENT" },
70         { NVME_OPC_KEEP_ALIVE, "KEEP ALIVE" },
71         { NVME_OPC_DIRECTIVE_SEND, "DIRECTIVE SEND" },
72         { NVME_OPC_DIRECTIVE_RECEIVE, "DIRECTIVE RECEIVE" },
73         { NVME_OPC_VIRTUALIZATION_MANAGEMENT, "VIRTUALIZATION MANAGEMENT" },
74         { NVME_OPC_NVME_MI_SEND, "NVME-MI SEND" },
75         { NVME_OPC_NVME_MI_RECEIVE, "NVME-MI RECEIVE" },
76         { NVME_OPC_DOORBELL_BUFFER_CONFIG, "DOORBELL BUFFER CONFIG" },
77         { NVME_OPC_FORMAT_NVM, "FORMAT NVM" },
78         { NVME_OPC_SECURITY_SEND, "SECURITY SEND" },
79         { NVME_OPC_SECURITY_RECEIVE, "SECURITY RECEIVE" },
80         { NVME_OPC_SANITIZE, "SANITIZE" },
81         { NVME_OPC_GET_LBA_STATUS, "GET LBA STATUS" },
82         { 0xFFFF, "ADMIN COMMAND" }
83 };
84
85 static struct nvme_opcode_string io_opcode[] = {
86         { NVME_OPC_FLUSH, "FLUSH" },
87         { NVME_OPC_WRITE, "WRITE" },
88         { NVME_OPC_READ, "READ" },
89         { NVME_OPC_WRITE_UNCORRECTABLE, "WRITE UNCORRECTABLE" },
90         { NVME_OPC_COMPARE, "COMPARE" },
91         { NVME_OPC_WRITE_ZEROES, "WRITE ZEROES" },
92         { NVME_OPC_DATASET_MANAGEMENT, "DATASET MANAGEMENT" },
93         { NVME_OPC_VERIFY, "VERIFY" },
94         { NVME_OPC_RESERVATION_REGISTER, "RESERVATION REGISTER" },
95         { NVME_OPC_RESERVATION_REPORT, "RESERVATION REPORT" },
96         { NVME_OPC_RESERVATION_ACQUIRE, "RESERVATION ACQUIRE" },
97         { NVME_OPC_RESERVATION_RELEASE, "RESERVATION RELEASE" },
98         { 0xFFFF, "IO COMMAND" }
99 };
100
101 static const char *
102 get_admin_opcode_string(uint16_t opc)
103 {
104         struct nvme_opcode_string *entry;
105
106         entry = admin_opcode;
107
108         while (entry->opc != 0xFFFF) {
109                 if (entry->opc == opc)
110                         return (entry->str);
111                 entry++;
112         }
113         return (entry->str);
114 }
115
116 static const char *
117 get_io_opcode_string(uint16_t opc)
118 {
119         struct nvme_opcode_string *entry;
120
121         entry = io_opcode;
122
123         while (entry->opc != 0xFFFF) {
124                 if (entry->opc == opc)
125                         return (entry->str);
126                 entry++;
127         }
128         return (entry->str);
129 }
130
131
132 static void
133 nvme_admin_qpair_print_command(struct nvme_qpair *qpair,
134     struct nvme_command *cmd)
135 {
136
137         nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%x "
138             "cdw10:%08x cdw11:%08x\n",
139             get_admin_opcode_string(cmd->opc), cmd->opc, qpair->id, cmd->cid,
140             le32toh(cmd->nsid), le32toh(cmd->cdw10), le32toh(cmd->cdw11));
141 }
142
143 static void
144 nvme_io_qpair_print_command(struct nvme_qpair *qpair,
145     struct nvme_command *cmd)
146 {
147
148         switch (cmd->opc) {
149         case NVME_OPC_WRITE:
150         case NVME_OPC_READ:
151         case NVME_OPC_WRITE_UNCORRECTABLE:
152         case NVME_OPC_COMPARE:
153         case NVME_OPC_WRITE_ZEROES:
154         case NVME_OPC_VERIFY:
155                 nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d "
156                     "lba:%llu len:%d\n",
157                     get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid),
158                     ((unsigned long long)le32toh(cmd->cdw11) << 32) + le32toh(cmd->cdw10),
159                     (le32toh(cmd->cdw12) & 0xFFFF) + 1);
160                 break;
161         case NVME_OPC_FLUSH:
162         case NVME_OPC_DATASET_MANAGEMENT:
163         case NVME_OPC_RESERVATION_REGISTER:
164         case NVME_OPC_RESERVATION_REPORT:
165         case NVME_OPC_RESERVATION_ACQUIRE:
166         case NVME_OPC_RESERVATION_RELEASE:
167                 nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d\n",
168                     get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid));
169                 break;
170         default:
171                 nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%d\n",
172                     get_io_opcode_string(cmd->opc), cmd->opc, qpair->id,
173                     cmd->cid, le32toh(cmd->nsid));
174                 break;
175         }
176 }
177
178 static void
179 nvme_qpair_print_command(struct nvme_qpair *qpair, struct nvme_command *cmd)
180 {
181         if (qpair->id == 0)
182                 nvme_admin_qpair_print_command(qpair, cmd);
183         else
184                 nvme_io_qpair_print_command(qpair, cmd);
185         if (nvme_verbose_cmd_dump) {
186                 nvme_printf(qpair->ctrlr,
187                     "nsid:%#x rsvd2:%#x rsvd3:%#x mptr:%#jx prp1:%#jx prp2:%#jx\n",
188                     cmd->nsid, cmd->rsvd2, cmd->rsvd3, (uintmax_t)cmd->mptr,
189                     (uintmax_t)cmd->prp1, (uintmax_t)cmd->prp2);
190                 nvme_printf(qpair->ctrlr,
191                     "cdw10: %#x cdw11:%#x cdw12:%#x cdw13:%#x cdw14:%#x cdw15:%#x\n",
192                     cmd->cdw10, cmd->cdw11, cmd->cdw12, cmd->cdw13, cmd->cdw14,
193                     cmd->cdw15);
194         }
195 }
196
197 struct nvme_status_string {
198
199         uint16_t        sc;
200         const char *    str;
201 };
202
203 static struct nvme_status_string generic_status[] = {
204         { NVME_SC_SUCCESS, "SUCCESS" },
205         { NVME_SC_INVALID_OPCODE, "INVALID OPCODE" },
206         { NVME_SC_INVALID_FIELD, "INVALID_FIELD" },
207         { NVME_SC_COMMAND_ID_CONFLICT, "COMMAND ID CONFLICT" },
208         { NVME_SC_DATA_TRANSFER_ERROR, "DATA TRANSFER ERROR" },
209         { NVME_SC_ABORTED_POWER_LOSS, "ABORTED - POWER LOSS" },
210         { NVME_SC_INTERNAL_DEVICE_ERROR, "INTERNAL DEVICE ERROR" },
211         { NVME_SC_ABORTED_BY_REQUEST, "ABORTED - BY REQUEST" },
212         { NVME_SC_ABORTED_SQ_DELETION, "ABORTED - SQ DELETION" },
213         { NVME_SC_ABORTED_FAILED_FUSED, "ABORTED - FAILED FUSED" },
214         { NVME_SC_ABORTED_MISSING_FUSED, "ABORTED - MISSING FUSED" },
215         { NVME_SC_INVALID_NAMESPACE_OR_FORMAT, "INVALID NAMESPACE OR FORMAT" },
216         { NVME_SC_COMMAND_SEQUENCE_ERROR, "COMMAND SEQUENCE ERROR" },
217         { NVME_SC_INVALID_SGL_SEGMENT_DESCR, "INVALID SGL SEGMENT DESCRIPTOR" },
218         { NVME_SC_INVALID_NUMBER_OF_SGL_DESCR, "INVALID NUMBER OF SGL DESCRIPTORS" },
219         { NVME_SC_DATA_SGL_LENGTH_INVALID, "DATA SGL LENGTH INVALID" },
220         { NVME_SC_METADATA_SGL_LENGTH_INVALID, "METADATA SGL LENGTH INVALID" },
221         { NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID, "SGL DESCRIPTOR TYPE INVALID" },
222         { NVME_SC_INVALID_USE_OF_CMB, "INVALID USE OF CONTROLLER MEMORY BUFFER" },
223         { NVME_SC_PRP_OFFET_INVALID, "PRP OFFET INVALID" },
224         { NVME_SC_ATOMIC_WRITE_UNIT_EXCEEDED, "ATOMIC WRITE UNIT EXCEEDED" },
225         { NVME_SC_OPERATION_DENIED, "OPERATION DENIED" },
226         { NVME_SC_SGL_OFFSET_INVALID, "SGL OFFSET INVALID" },
227         { NVME_SC_HOST_ID_INCONSISTENT_FORMAT, "HOST IDENTIFIER INCONSISTENT FORMAT" },
228         { NVME_SC_KEEP_ALIVE_TIMEOUT_EXPIRED, "KEEP ALIVE TIMEOUT EXPIRED" },
229         { NVME_SC_KEEP_ALIVE_TIMEOUT_INVALID, "KEEP ALIVE TIMEOUT INVALID" },
230         { NVME_SC_ABORTED_DUE_TO_PREEMPT, "COMMAND ABORTED DUE TO PREEMPT AND ABORT" },
231         { NVME_SC_SANITIZE_FAILED, "SANITIZE FAILED" },
232         { NVME_SC_SANITIZE_IN_PROGRESS, "SANITIZE IN PROGRESS" },
233         { NVME_SC_SGL_DATA_BLOCK_GRAN_INVALID, "SGL_DATA_BLOCK_GRANULARITY_INVALID" },
234         { NVME_SC_NOT_SUPPORTED_IN_CMB, "COMMAND NOT SUPPORTED FOR QUEUE IN CMB" },
235         { NVME_SC_NAMESPACE_IS_WRITE_PROTECTED, "NAMESPACE IS WRITE PROTECTED" },
236         { NVME_SC_COMMAND_INTERRUPTED, "COMMAND INTERRUPTED" },
237         { NVME_SC_TRANSIENT_TRANSPORT_ERROR, "TRANSIENT TRANSPORT ERROR" },
238
239         { NVME_SC_LBA_OUT_OF_RANGE, "LBA OUT OF RANGE" },
240         { NVME_SC_CAPACITY_EXCEEDED, "CAPACITY EXCEEDED" },
241         { NVME_SC_NAMESPACE_NOT_READY, "NAMESPACE NOT READY" },
242         { NVME_SC_RESERVATION_CONFLICT, "RESERVATION CONFLICT" },
243         { NVME_SC_FORMAT_IN_PROGRESS, "FORMAT IN PROGRESS" },
244         { 0xFFFF, "GENERIC" }
245 };
246
247 static struct nvme_status_string command_specific_status[] = {
248         { NVME_SC_COMPLETION_QUEUE_INVALID, "INVALID COMPLETION QUEUE" },
249         { NVME_SC_INVALID_QUEUE_IDENTIFIER, "INVALID QUEUE IDENTIFIER" },
250         { NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED, "MAX QUEUE SIZE EXCEEDED" },
251         { NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED, "ABORT CMD LIMIT EXCEEDED" },
252         { NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED, "ASYNC LIMIT EXCEEDED" },
253         { NVME_SC_INVALID_FIRMWARE_SLOT, "INVALID FIRMWARE SLOT" },
254         { NVME_SC_INVALID_FIRMWARE_IMAGE, "INVALID FIRMWARE IMAGE" },
255         { NVME_SC_INVALID_INTERRUPT_VECTOR, "INVALID INTERRUPT VECTOR" },
256         { NVME_SC_INVALID_LOG_PAGE, "INVALID LOG PAGE" },
257         { NVME_SC_INVALID_FORMAT, "INVALID FORMAT" },
258         { NVME_SC_FIRMWARE_REQUIRES_RESET, "FIRMWARE REQUIRES RESET" },
259         { NVME_SC_INVALID_QUEUE_DELETION, "INVALID QUEUE DELETION" },
260         { NVME_SC_FEATURE_NOT_SAVEABLE, "FEATURE IDENTIFIER NOT SAVEABLE" },
261         { NVME_SC_FEATURE_NOT_CHANGEABLE, "FEATURE NOT CHANGEABLE" },
262         { NVME_SC_FEATURE_NOT_NS_SPECIFIC, "FEATURE NOT NAMESPACE SPECIFIC" },
263         { NVME_SC_FW_ACT_REQUIRES_NVMS_RESET, "FIRMWARE ACTIVATION REQUIRES NVM SUBSYSTEM RESET" },
264         { NVME_SC_FW_ACT_REQUIRES_RESET, "FIRMWARE ACTIVATION REQUIRES RESET" },
265         { NVME_SC_FW_ACT_REQUIRES_TIME, "FIRMWARE ACTIVATION REQUIRES MAXIMUM TIME VIOLATION" },
266         { NVME_SC_FW_ACT_PROHIBITED, "FIRMWARE ACTIVATION PROHIBITED" },
267         { NVME_SC_OVERLAPPING_RANGE, "OVERLAPPING RANGE" },
268         { NVME_SC_NS_INSUFFICIENT_CAPACITY, "NAMESPACE INSUFFICIENT CAPACITY" },
269         { NVME_SC_NS_ID_UNAVAILABLE, "NAMESPACE IDENTIFIER UNAVAILABLE" },
270         { NVME_SC_NS_ALREADY_ATTACHED, "NAMESPACE ALREADY ATTACHED" },
271         { NVME_SC_NS_IS_PRIVATE, "NAMESPACE IS PRIVATE" },
272         { NVME_SC_NS_NOT_ATTACHED, "NS NOT ATTACHED" },
273         { NVME_SC_THIN_PROV_NOT_SUPPORTED, "THIN PROVISIONING NOT SUPPORTED" },
274         { NVME_SC_CTRLR_LIST_INVALID, "CONTROLLER LIST INVALID" },
275         { NVME_SC_SELT_TEST_IN_PROGRESS, "DEVICE SELT-TEST IN PROGRESS" },
276         { NVME_SC_BOOT_PART_WRITE_PROHIB, "BOOT PARTITION WRITE PROHIBITED" },
277         { NVME_SC_INVALID_CTRLR_ID, "INVALID CONTROLLER IDENTIFIER" },
278         { NVME_SC_INVALID_SEC_CTRLR_STATE, "INVALID SECONDARY CONTROLLER STATE" },
279         { NVME_SC_INVALID_NUM_OF_CTRLR_RESRC, "INVALID NUMBER OF CONTROLLER RESOURCES" },
280         { NVME_SC_INVALID_RESOURCE_ID, "INVALID RESOURCE IDENTIFIER" },
281         { NVME_SC_SANITIZE_PROHIBITED_WPMRE, "SANITIZE PROHIBITED WRITE PERSISTENT MEMORY REGION ENABLED" },
282         { NVME_SC_ANA_GROUP_ID_INVALID, "ANA GROUP IDENTIFIED INVALID" },
283         { NVME_SC_ANA_ATTACH_FAILED, "ANA ATTACH FAILED" },
284
285         { NVME_SC_CONFLICTING_ATTRIBUTES, "CONFLICTING ATTRIBUTES" },
286         { NVME_SC_INVALID_PROTECTION_INFO, "INVALID PROTECTION INFO" },
287         { NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE, "WRITE TO RO PAGE" },
288         { 0xFFFF, "COMMAND SPECIFIC" }
289 };
290
291 static struct nvme_status_string media_error_status[] = {
292         { NVME_SC_WRITE_FAULTS, "WRITE FAULTS" },
293         { NVME_SC_UNRECOVERED_READ_ERROR, "UNRECOVERED READ ERROR" },
294         { NVME_SC_GUARD_CHECK_ERROR, "GUARD CHECK ERROR" },
295         { NVME_SC_APPLICATION_TAG_CHECK_ERROR, "APPLICATION TAG CHECK ERROR" },
296         { NVME_SC_REFERENCE_TAG_CHECK_ERROR, "REFERENCE TAG CHECK ERROR" },
297         { NVME_SC_COMPARE_FAILURE, "COMPARE FAILURE" },
298         { NVME_SC_ACCESS_DENIED, "ACCESS DENIED" },
299         { NVME_SC_DEALLOCATED_OR_UNWRITTEN, "DEALLOCATED OR UNWRITTEN LOGICAL BLOCK" },
300         { 0xFFFF, "MEDIA ERROR" }
301 };
302
303 static struct nvme_status_string path_related_status[] = {
304         { NVME_SC_INTERNAL_PATH_ERROR, "INTERNAL PATH ERROR" },
305         { NVME_SC_ASYMMETRIC_ACCESS_PERSISTENT_LOSS, "ASYMMETRIC ACCESS PERSISTENT LOSS" },
306         { NVME_SC_ASYMMETRIC_ACCESS_INACCESSIBLE, "ASYMMETRIC ACCESS INACCESSIBLE" },
307         { NVME_SC_ASYMMETRIC_ACCESS_TRANSITION, "ASYMMETRIC ACCESS TRANSITION" },
308         { NVME_SC_CONTROLLER_PATHING_ERROR, "CONTROLLER PATHING ERROR" },
309         { NVME_SC_HOST_PATHING_ERROR, "HOST PATHING ERROR" },
310         { NVME_SC_COMMAND_ABOTHED_BY_HOST, "COMMAND ABOTHED BY HOST" },
311         { 0xFFFF, "PATH RELATED" },
312 };
313
314 static const char *
315 get_status_string(uint16_t sct, uint16_t sc)
316 {
317         struct nvme_status_string *entry;
318
319         switch (sct) {
320         case NVME_SCT_GENERIC:
321                 entry = generic_status;
322                 break;
323         case NVME_SCT_COMMAND_SPECIFIC:
324                 entry = command_specific_status;
325                 break;
326         case NVME_SCT_MEDIA_ERROR:
327                 entry = media_error_status;
328                 break;
329         case NVME_SCT_PATH_RELATED:
330                 entry = path_related_status;
331                 break;
332         case NVME_SCT_VENDOR_SPECIFIC:
333                 return ("VENDOR SPECIFIC");
334         default:
335                 return ("RESERVED");
336         }
337
338         while (entry->sc != 0xFFFF) {
339                 if (entry->sc == sc)
340                         return (entry->str);
341                 entry++;
342         }
343         return (entry->str);
344 }
345
346 static void
347 nvme_qpair_print_completion(struct nvme_qpair *qpair,
348     struct nvme_completion *cpl)
349 {
350         uint16_t sct, sc;
351
352         sct = NVME_STATUS_GET_SCT(cpl->status);
353         sc = NVME_STATUS_GET_SC(cpl->status);
354
355         nvme_printf(qpair->ctrlr, "%s (%02x/%02x) sqid:%d cid:%d cdw0:%x\n",
356             get_status_string(sct, sc), sct, sc, cpl->sqid, cpl->cid,
357             cpl->cdw0);
358 }
359
360 static bool
361 nvme_completion_is_retry(const struct nvme_completion *cpl)
362 {
363         uint8_t sct, sc, dnr;
364
365         sct = NVME_STATUS_GET_SCT(cpl->status);
366         sc = NVME_STATUS_GET_SC(cpl->status);
367         dnr = NVME_STATUS_GET_DNR(cpl->status); /* Do Not Retry Bit */
368
369         /*
370          * TODO: spec is not clear how commands that are aborted due
371          *  to TLER will be marked.  So for now, it seems
372          *  NAMESPACE_NOT_READY is the only case where we should
373          *  look at the DNR bit. Requests failed with ABORTED_BY_REQUEST
374          *  set the DNR bit correctly since the driver controls that.
375          */
376         switch (sct) {
377         case NVME_SCT_GENERIC:
378                 switch (sc) {
379                 case NVME_SC_ABORTED_BY_REQUEST:
380                 case NVME_SC_NAMESPACE_NOT_READY:
381                         if (dnr)
382                                 return (0);
383                         else
384                                 return (1);
385                 case NVME_SC_INVALID_OPCODE:
386                 case NVME_SC_INVALID_FIELD:
387                 case NVME_SC_COMMAND_ID_CONFLICT:
388                 case NVME_SC_DATA_TRANSFER_ERROR:
389                 case NVME_SC_ABORTED_POWER_LOSS:
390                 case NVME_SC_INTERNAL_DEVICE_ERROR:
391                 case NVME_SC_ABORTED_SQ_DELETION:
392                 case NVME_SC_ABORTED_FAILED_FUSED:
393                 case NVME_SC_ABORTED_MISSING_FUSED:
394                 case NVME_SC_INVALID_NAMESPACE_OR_FORMAT:
395                 case NVME_SC_COMMAND_SEQUENCE_ERROR:
396                 case NVME_SC_LBA_OUT_OF_RANGE:
397                 case NVME_SC_CAPACITY_EXCEEDED:
398                 default:
399                         return (0);
400                 }
401         case NVME_SCT_COMMAND_SPECIFIC:
402         case NVME_SCT_MEDIA_ERROR:
403                 return (0);
404         case NVME_SCT_PATH_RELATED:
405                 switch (sc) {
406                 case NVME_SC_INTERNAL_PATH_ERROR:
407                         if (dnr)
408                                 return (0);
409                         else
410                                 return (1);
411                 default:
412                         return (0);
413                 }
414         case NVME_SCT_VENDOR_SPECIFIC:
415         default:
416                 return (0);
417         }
418 }
419
420 static void
421 nvme_qpair_complete_tracker(struct nvme_tracker *tr,
422     struct nvme_completion *cpl, error_print_t print_on_error)
423 {
424         struct nvme_qpair * qpair = tr->qpair;
425         struct nvme_request     *req;
426         bool                    retry, error, retriable;
427
428         req = tr->req;
429         error = nvme_completion_is_error(cpl);
430         retriable = nvme_completion_is_retry(cpl);
431         retry = error && retriable && req->retries < nvme_retry_count;
432         if (retry)
433                 qpair->num_retries++;
434         if (error && req->retries >= nvme_retry_count && retriable)
435                 qpair->num_failures++;
436
437         if (error && (print_on_error == ERROR_PRINT_ALL ||
438                 (!retry && print_on_error == ERROR_PRINT_NO_RETRY))) {
439                 nvme_qpair_print_command(qpair, &req->cmd);
440                 nvme_qpair_print_completion(qpair, cpl);
441         }
442
443         qpair->act_tr[cpl->cid] = NULL;
444
445         KASSERT(cpl->cid == req->cmd.cid, ("cpl cid does not match cmd cid\n"));
446
447         if (!retry) {
448                 if (req->type != NVME_REQUEST_NULL) {
449                         bus_dmamap_sync(qpair->dma_tag_payload,
450                             tr->payload_dma_map,
451                             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
452                 }
453                 if (req->cb_fn)
454                         req->cb_fn(req->cb_arg, cpl);
455         }
456
457         mtx_lock(&qpair->lock);
458         callout_stop(&tr->timer);
459
460         if (retry) {
461                 req->retries++;
462                 nvme_qpair_submit_tracker(qpair, tr);
463         } else {
464                 if (req->type != NVME_REQUEST_NULL) {
465                         bus_dmamap_unload(qpair->dma_tag_payload,
466                             tr->payload_dma_map);
467                 }
468
469                 nvme_free_request(req);
470                 tr->req = NULL;
471
472                 TAILQ_REMOVE(&qpair->outstanding_tr, tr, tailq);
473                 TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
474
475                 /*
476                  * If the controller is in the middle of resetting, don't
477                  *  try to submit queued requests here - let the reset logic
478                  *  handle that instead.
479                  */
480                 if (!STAILQ_EMPTY(&qpair->queued_req) &&
481                     !qpair->ctrlr->is_resetting) {
482                         req = STAILQ_FIRST(&qpair->queued_req);
483                         STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
484                         _nvme_qpair_submit_request(qpair, req);
485                 }
486         }
487
488         mtx_unlock(&qpair->lock);
489 }
490
491 static void
492 nvme_qpair_manual_complete_tracker(
493     struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
494     error_print_t print_on_error)
495 {
496         struct nvme_completion  cpl;
497
498         memset(&cpl, 0, sizeof(cpl));
499
500         struct nvme_qpair * qpair = tr->qpair;
501
502         cpl.sqid = qpair->id;
503         cpl.cid = tr->cid;
504         cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
505         cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
506         cpl.status |= (dnr & NVME_STATUS_DNR_MASK) << NVME_STATUS_DNR_SHIFT;
507         nvme_qpair_complete_tracker(tr, &cpl, print_on_error);
508 }
509
510 void
511 nvme_qpair_manual_complete_request(struct nvme_qpair *qpair,
512     struct nvme_request *req, uint32_t sct, uint32_t sc)
513 {
514         struct nvme_completion  cpl;
515         bool                    error;
516
517         memset(&cpl, 0, sizeof(cpl));
518         cpl.sqid = qpair->id;
519         cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
520         cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
521
522         error = nvme_completion_is_error(&cpl);
523
524         if (error) {
525                 nvme_qpair_print_command(qpair, &req->cmd);
526                 nvme_qpair_print_completion(qpair, &cpl);
527         }
528
529         if (req->cb_fn)
530                 req->cb_fn(req->cb_arg, &cpl);
531
532         nvme_free_request(req);
533 }
534
535 bool
536 nvme_qpair_process_completions(struct nvme_qpair *qpair)
537 {
538         struct nvme_tracker     *tr;
539         struct nvme_completion  cpl;
540         int done = 0;
541         bool in_panic = dumping || SCHEDULER_STOPPED();
542
543         qpair->num_intr_handler_calls++;
544
545         /*
546          * qpair is not enabled, likely because a controller reset is is in
547          * progress.  Ignore the interrupt - any I/O that was associated with
548          * this interrupt will get retried when the reset is complete.
549          */
550         if (!qpair->is_enabled)
551                 return (false);
552
553         /*
554          * A panic can stop the CPU this routine is running on at any point.  If
555          * we're called during a panic, complete the sq_head wrap protocol for
556          * the case where we are interrupted just after the increment at 1
557          * below, but before we can reset cq_head to zero at 2. Also cope with
558          * the case where we do the zero at 2, but may or may not have done the
559          * phase adjustment at step 3. The panic machinery flushes all pending
560          * memory writes, so we can make these strong ordering assumptions
561          * that would otherwise be unwise if we were racing in real time.
562          */
563         if (__predict_false(in_panic)) {
564                 if (qpair->cq_head == qpair->num_entries) {
565                         /*
566                          * Here we know that we need to zero cq_head and then negate
567                          * the phase, which hasn't been assigned if cq_head isn't
568                          * zero due to the atomic_store_rel.
569                          */
570                         qpair->cq_head = 0;
571                         qpair->phase = !qpair->phase;
572                 } else if (qpair->cq_head == 0) {
573                         /*
574                          * In this case, we know that the assignment at 2
575                          * happened below, but we don't know if it 3 happened or
576                          * not. To do this, we look at the last completion
577                          * entry and set the phase to the opposite phase
578                          * that it has. This gets us back in sync
579                          */
580                         cpl = qpair->cpl[qpair->num_entries - 1];
581                         nvme_completion_swapbytes(&cpl);
582                         qpair->phase = !NVME_STATUS_GET_P(cpl.status);
583                 }
584         }
585
586         bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
587             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
588         while (1) {
589                 cpl = qpair->cpl[qpair->cq_head];
590
591                 /* Convert to host endian */
592                 nvme_completion_swapbytes(&cpl);
593
594                 if (NVME_STATUS_GET_P(cpl.status) != qpair->phase)
595                         break;
596
597                 tr = qpair->act_tr[cpl.cid];
598
599                 if (tr != NULL) {
600                         nvme_qpair_complete_tracker(tr, &cpl, ERROR_PRINT_ALL);
601                         qpair->sq_head = cpl.sqhd;
602                         done++;
603                 } else if (!in_panic) {
604                         /*
605                          * A missing tracker is normally an error.  However, a
606                          * panic can stop the CPU this routine is running on
607                          * after completing an I/O but before updating
608                          * qpair->cq_head at 1 below.  Later, we re-enter this
609                          * routine to poll I/O associated with the kernel
610                          * dump. We find that the tr has been set to null before
611                          * calling the completion routine.  If it hasn't
612                          * completed (or it triggers a panic), then '1' below
613                          * won't have updated cq_head. Rather than panic again,
614                          * ignore this condition because it's not unexpected.
615                          */
616                         nvme_printf(qpair->ctrlr,
617                             "cpl does not map to outstanding cmd\n");
618                         /* nvme_dump_completion expects device endianess */
619                         nvme_dump_completion(&qpair->cpl[qpair->cq_head]);
620                         KASSERT(0, ("received completion for unknown cmd"));
621                 }
622
623                 /*
624                  * There's a number of races with the following (see above) when
625                  * the system panics. We compensate for each one of them by
626                  * using the atomic store to force strong ordering (at least when
627                  * viewed in the aftermath of a panic).
628                  */
629                 if (++qpair->cq_head == qpair->num_entries) {           /* 1 */
630                         atomic_store_rel_int(&qpair->cq_head, 0);       /* 2 */
631                         qpair->phase = !qpair->phase;                   /* 3 */
632                 }
633
634                 bus_space_write_4(qpair->ctrlr->bus_tag, qpair->ctrlr->bus_handle,
635                     qpair->cq_hdbl_off, qpair->cq_head);
636         }
637         return (done != 0);
638 }
639
640 static void
641 nvme_qpair_msix_handler(void *arg)
642 {
643         struct nvme_qpair *qpair = arg;
644
645         nvme_qpair_process_completions(qpair);
646 }
647
648 int
649 nvme_qpair_construct(struct nvme_qpair *qpair,
650     uint32_t num_entries, uint32_t num_trackers,
651     struct nvme_controller *ctrlr)
652 {
653         struct nvme_tracker     *tr;
654         size_t                  cmdsz, cplsz, prpsz, allocsz, prpmemsz;
655         uint64_t                queuemem_phys, prpmem_phys, list_phys;
656         uint8_t                 *queuemem, *prpmem, *prp_list;
657         int                     i, err;
658
659         qpair->vector = ctrlr->msix_enabled ? qpair->id : 0;
660         qpair->num_entries = num_entries;
661         qpair->num_trackers = num_trackers;
662         qpair->ctrlr = ctrlr;
663
664         if (ctrlr->msix_enabled) {
665
666                 /*
667                  * MSI-X vector resource IDs start at 1, so we add one to
668                  *  the queue's vector to get the corresponding rid to use.
669                  */
670                 qpair->rid = qpair->vector + 1;
671
672                 qpair->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
673                     &qpair->rid, RF_ACTIVE);
674                 if (bus_setup_intr(ctrlr->dev, qpair->res,
675                     INTR_TYPE_MISC | INTR_MPSAFE, NULL,
676                     nvme_qpair_msix_handler, qpair, &qpair->tag) != 0) {
677                         nvme_printf(ctrlr, "unable to setup intx handler\n");
678                         goto out;
679                 }
680                 if (qpair->id == 0) {
681                         bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
682                             "admin");
683                 } else {
684                         bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
685                             "io%d", qpair->id - 1);
686                 }
687         }
688
689         mtx_init(&qpair->lock, "nvme qpair lock", NULL, MTX_DEF);
690
691         /* Note: NVMe PRP format is restricted to 4-byte alignment. */
692         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
693             4, PAGE_SIZE, BUS_SPACE_MAXADDR,
694             BUS_SPACE_MAXADDR, NULL, NULL, NVME_MAX_XFER_SIZE,
695             (NVME_MAX_XFER_SIZE/PAGE_SIZE)+1, PAGE_SIZE, 0,
696             NULL, NULL, &qpair->dma_tag_payload);
697         if (err != 0) {
698                 nvme_printf(ctrlr, "payload tag create failed %d\n", err);
699                 goto out;
700         }
701
702         /*
703          * Each component must be page aligned, and individual PRP lists
704          * cannot cross a page boundary.
705          */
706         cmdsz = qpair->num_entries * sizeof(struct nvme_command);
707         cmdsz = roundup2(cmdsz, PAGE_SIZE);
708         cplsz = qpair->num_entries * sizeof(struct nvme_completion);
709         cplsz = roundup2(cplsz, PAGE_SIZE);
710         prpsz = sizeof(uint64_t) * NVME_MAX_PRP_LIST_ENTRIES;
711         prpmemsz = qpair->num_trackers * prpsz;
712         allocsz = cmdsz + cplsz + prpmemsz;
713
714         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
715             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
716             allocsz, 1, allocsz, 0, NULL, NULL, &qpair->dma_tag);
717         if (err != 0) {
718                 nvme_printf(ctrlr, "tag create failed %d\n", err);
719                 goto out;
720         }
721         bus_dma_tag_set_domain(qpair->dma_tag, qpair->domain);
722
723         if (bus_dmamem_alloc(qpair->dma_tag, (void **)&queuemem,
724             BUS_DMA_NOWAIT, &qpair->queuemem_map)) {
725                 nvme_printf(ctrlr, "failed to alloc qpair memory\n");
726                 goto out;
727         }
728
729         if (bus_dmamap_load(qpair->dma_tag, qpair->queuemem_map,
730             queuemem, allocsz, nvme_single_map, &queuemem_phys, 0) != 0) {
731                 nvme_printf(ctrlr, "failed to load qpair memory\n");
732                 bus_dmamem_free(qpair->dma_tag, qpair->cmd,
733                     qpair->queuemem_map);
734                 goto out;
735         }
736
737         qpair->num_cmds = 0;
738         qpair->num_intr_handler_calls = 0;
739         qpair->num_retries = 0;
740         qpair->num_failures = 0;
741         qpair->cmd = (struct nvme_command *)queuemem;
742         qpair->cpl = (struct nvme_completion *)(queuemem + cmdsz);
743         prpmem = (uint8_t *)(queuemem + cmdsz + cplsz);
744         qpair->cmd_bus_addr = queuemem_phys;
745         qpair->cpl_bus_addr = queuemem_phys + cmdsz;
746         prpmem_phys = queuemem_phys + cmdsz + cplsz;
747
748         /*
749          * Calcuate the stride of the doorbell register. Many emulators set this
750          * value to correspond to a cache line. However, some hardware has set
751          * it to various small values.
752          */
753         qpair->sq_tdbl_off = nvme_mmio_offsetof(doorbell[0]) +
754             (qpair->id << (ctrlr->dstrd + 1));
755         qpair->cq_hdbl_off = nvme_mmio_offsetof(doorbell[0]) +
756             (qpair->id << (ctrlr->dstrd + 1)) + (1 << ctrlr->dstrd);
757
758         TAILQ_INIT(&qpair->free_tr);
759         TAILQ_INIT(&qpair->outstanding_tr);
760         STAILQ_INIT(&qpair->queued_req);
761
762         list_phys = prpmem_phys;
763         prp_list = prpmem;
764         for (i = 0; i < qpair->num_trackers; i++) {
765
766                 if (list_phys + prpsz > prpmem_phys + prpmemsz) {
767                         qpair->num_trackers = i;
768                         break;
769                 }
770
771                 /*
772                  * Make sure that the PRP list for this tracker doesn't
773                  * overflow to another page.
774                  */
775                 if (trunc_page(list_phys) !=
776                     trunc_page(list_phys + prpsz - 1)) {
777                         list_phys = roundup2(list_phys, PAGE_SIZE);
778                         prp_list =
779                             (uint8_t *)roundup2((uintptr_t)prp_list, PAGE_SIZE);
780                 }
781
782                 tr = malloc_domainset(sizeof(*tr), M_NVME,
783                     DOMAINSET_PREF(qpair->domain), M_ZERO | M_WAITOK);
784                 bus_dmamap_create(qpair->dma_tag_payload, 0,
785                     &tr->payload_dma_map);
786                 callout_init(&tr->timer, 1);
787                 tr->cid = i;
788                 tr->qpair = qpair;
789                 tr->prp = (uint64_t *)prp_list;
790                 tr->prp_bus_addr = list_phys;
791                 TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
792                 list_phys += prpsz;
793                 prp_list += prpsz;
794         }
795
796         if (qpair->num_trackers == 0) {
797                 nvme_printf(ctrlr, "failed to allocate enough trackers\n");
798                 goto out;
799         }
800
801         qpair->act_tr = malloc_domainset(sizeof(struct nvme_tracker *) *
802             qpair->num_entries, M_NVME, DOMAINSET_PREF(qpair->domain),
803             M_ZERO | M_WAITOK);
804         return (0);
805
806 out:
807         nvme_qpair_destroy(qpair);
808         return (ENOMEM);
809 }
810
811 static void
812 nvme_qpair_destroy(struct nvme_qpair *qpair)
813 {
814         struct nvme_tracker     *tr;
815
816         if (qpair->tag) {
817                 bus_teardown_intr(qpair->ctrlr->dev, qpair->res, qpair->tag);
818                 qpair->tag = NULL;
819         }
820
821         if (qpair->act_tr) {
822                 free_domain(qpair->act_tr, M_NVME);
823                 qpair->act_tr = NULL;
824         }
825
826         while (!TAILQ_EMPTY(&qpair->free_tr)) {
827                 tr = TAILQ_FIRST(&qpair->free_tr);
828                 TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
829                 bus_dmamap_destroy(qpair->dma_tag_payload,
830                     tr->payload_dma_map);
831                 free_domain(tr, M_NVME);
832         }
833
834         if (qpair->cmd != NULL) {
835                 bus_dmamap_unload(qpair->dma_tag, qpair->queuemem_map);
836                 bus_dmamem_free(qpair->dma_tag, qpair->cmd,
837                     qpair->queuemem_map);
838                 qpair->cmd = NULL;
839         }
840
841         if (qpair->dma_tag) {
842                 bus_dma_tag_destroy(qpair->dma_tag);
843                 qpair->dma_tag = NULL;
844         }
845
846         if (qpair->dma_tag_payload) {
847                 bus_dma_tag_destroy(qpair->dma_tag_payload);
848                 qpair->dma_tag_payload = NULL;
849         }
850
851         if (mtx_initialized(&qpair->lock))
852                 mtx_destroy(&qpair->lock);
853
854         if (qpair->res) {
855                 bus_release_resource(qpair->ctrlr->dev, SYS_RES_IRQ,
856                     rman_get_rid(qpair->res), qpair->res);
857                 qpair->res = NULL;
858         }
859 }
860
861 static void
862 nvme_admin_qpair_abort_aers(struct nvme_qpair *qpair)
863 {
864         struct nvme_tracker     *tr;
865
866         tr = TAILQ_FIRST(&qpair->outstanding_tr);
867         while (tr != NULL) {
868                 if (tr->req->cmd.opc == NVME_OPC_ASYNC_EVENT_REQUEST) {
869                         nvme_qpair_manual_complete_tracker(tr,
870                             NVME_SCT_GENERIC, NVME_SC_ABORTED_SQ_DELETION, 0,
871                             ERROR_PRINT_NONE);
872                         tr = TAILQ_FIRST(&qpair->outstanding_tr);
873                 } else {
874                         tr = TAILQ_NEXT(tr, tailq);
875                 }
876         }
877 }
878
879 void
880 nvme_admin_qpair_destroy(struct nvme_qpair *qpair)
881 {
882
883         nvme_admin_qpair_abort_aers(qpair);
884         nvme_qpair_destroy(qpair);
885 }
886
887 void
888 nvme_io_qpair_destroy(struct nvme_qpair *qpair)
889 {
890
891         nvme_qpair_destroy(qpair);
892 }
893
894 static void
895 nvme_abort_complete(void *arg, const struct nvme_completion *status)
896 {
897         struct nvme_tracker     *tr = arg;
898
899         /*
900          * If cdw0 == 1, the controller was not able to abort the command
901          *  we requested.  We still need to check the active tracker array,
902          *  to cover race where I/O timed out at same time controller was
903          *  completing the I/O.
904          */
905         if (status->cdw0 == 1 && tr->qpair->act_tr[tr->cid] != NULL) {
906                 /*
907                  * An I/O has timed out, and the controller was unable to
908                  *  abort it for some reason.  Construct a fake completion
909                  *  status, and then complete the I/O's tracker manually.
910                  */
911                 nvme_printf(tr->qpair->ctrlr,
912                     "abort command failed, aborting command manually\n");
913                 nvme_qpair_manual_complete_tracker(tr,
914                     NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_ALL);
915         }
916 }
917
918 static void
919 nvme_timeout(void *arg)
920 {
921         struct nvme_tracker     *tr = arg;
922         struct nvme_qpair       *qpair = tr->qpair;
923         struct nvme_controller  *ctrlr = qpair->ctrlr;
924         uint32_t                csts;
925         uint8_t                 cfs;
926
927         /*
928          * Read csts to get value of cfs - controller fatal status.
929          * If no fatal status, try to call the completion routine, and
930          * if completes transactions, report a missed interrupt and
931          * return (this may need to be rate limited). Otherwise, if
932          * aborts are enabled and the controller is not reporting
933          * fatal status, abort the command. Otherwise, just reset the
934          * controller and hope for the best.
935          */
936         csts = nvme_mmio_read_4(ctrlr, csts);
937         cfs = (csts >> NVME_CSTS_REG_CFS_SHIFT) & NVME_CSTS_REG_CFS_MASK;
938         if (cfs == 0 && nvme_qpair_process_completions(qpair)) {
939                 nvme_printf(ctrlr, "Missing interrupt\n");
940                 return;
941         }
942         if (ctrlr->enable_aborts && cfs == 0) {
943                 nvme_printf(ctrlr, "Aborting command due to a timeout.\n");
944                 nvme_ctrlr_cmd_abort(ctrlr, tr->cid, qpair->id,
945                     nvme_abort_complete, tr);
946         } else {
947                 nvme_printf(ctrlr, "Resetting controller due to a timeout%s.\n",
948                     (csts == 0xffffffff) ? " and possible hot unplug" :
949                     (cfs ? " and fatal error status" : ""));
950                 nvme_ctrlr_reset(ctrlr);
951         }
952 }
953
954 void
955 nvme_qpair_submit_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr)
956 {
957         struct nvme_request     *req;
958         struct nvme_controller  *ctrlr;
959         int timeout;
960
961         mtx_assert(&qpair->lock, MA_OWNED);
962
963         req = tr->req;
964         req->cmd.cid = tr->cid;
965         qpair->act_tr[tr->cid] = tr;
966         ctrlr = qpair->ctrlr;
967
968         if (req->timeout) {
969                 if (req->cb_fn == nvme_completion_poll_cb)
970                         timeout = hz;
971                 else
972                         timeout = ctrlr->timeout_period * hz;
973                 callout_reset_on(&tr->timer, timeout, nvme_timeout, tr,
974                     qpair->cpu);
975         }
976
977         /* Copy the command from the tracker to the submission queue. */
978         memcpy(&qpair->cmd[qpair->sq_tail], &req->cmd, sizeof(req->cmd));
979
980         if (++qpair->sq_tail == qpair->num_entries)
981                 qpair->sq_tail = 0;
982
983         bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
984             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
985 #ifndef __powerpc__
986         /*
987          * powerpc's bus_dmamap_sync() already includes a heavyweight sync, but
988          * no other archs do.
989          */
990         wmb();
991 #endif
992
993         bus_space_write_4(qpair->ctrlr->bus_tag, qpair->ctrlr->bus_handle,
994             qpair->sq_tdbl_off, qpair->sq_tail);
995         qpair->num_cmds++;
996 }
997
998 static void
999 nvme_payload_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
1000 {
1001         struct nvme_tracker     *tr = arg;
1002         uint32_t                cur_nseg;
1003
1004         /*
1005          * If the mapping operation failed, return immediately.  The caller
1006          *  is responsible for detecting the error status and failing the
1007          *  tracker manually.
1008          */
1009         if (error != 0) {
1010                 nvme_printf(tr->qpair->ctrlr,
1011                     "nvme_payload_map err %d\n", error);
1012                 return;
1013         }
1014
1015         /*
1016          * Note that we specified PAGE_SIZE for alignment and max
1017          *  segment size when creating the bus dma tags.  So here
1018          *  we can safely just transfer each segment to its
1019          *  associated PRP entry.
1020          */
1021         tr->req->cmd.prp1 = htole64(seg[0].ds_addr);
1022
1023         if (nseg == 2) {
1024                 tr->req->cmd.prp2 = htole64(seg[1].ds_addr);
1025         } else if (nseg > 2) {
1026                 cur_nseg = 1;
1027                 tr->req->cmd.prp2 = htole64((uint64_t)tr->prp_bus_addr);
1028                 while (cur_nseg < nseg) {
1029                         tr->prp[cur_nseg-1] =
1030                             htole64((uint64_t)seg[cur_nseg].ds_addr);
1031                         cur_nseg++;
1032                 }
1033         } else {
1034                 /*
1035                  * prp2 should not be used by the controller
1036                  *  since there is only one segment, but set
1037                  *  to 0 just to be safe.
1038                  */
1039                 tr->req->cmd.prp2 = 0;
1040         }
1041
1042         bus_dmamap_sync(tr->qpair->dma_tag_payload, tr->payload_dma_map,
1043             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1044         nvme_qpair_submit_tracker(tr->qpair, tr);
1045 }
1046
1047 static void
1048 _nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
1049 {
1050         struct nvme_tracker     *tr;
1051         int                     err = 0;
1052
1053         mtx_assert(&qpair->lock, MA_OWNED);
1054
1055         tr = TAILQ_FIRST(&qpair->free_tr);
1056         req->qpair = qpair;
1057
1058         if (tr == NULL || !qpair->is_enabled) {
1059                 /*
1060                  * No tracker is available, or the qpair is disabled due to
1061                  *  an in-progress controller-level reset or controller
1062                  *  failure.
1063                  */
1064
1065                 if (qpair->ctrlr->is_failed) {
1066                         /*
1067                          * The controller has failed.  Post the request to a
1068                          *  task where it will be aborted, so that we do not
1069                          *  invoke the request's callback in the context
1070                          *  of the submission.
1071                          */
1072                         nvme_ctrlr_post_failed_request(qpair->ctrlr, req);
1073                 } else {
1074                         /*
1075                          * Put the request on the qpair's request queue to be
1076                          *  processed when a tracker frees up via a command
1077                          *  completion or when the controller reset is
1078                          *  completed.
1079                          */
1080                         STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
1081                 }
1082                 return;
1083         }
1084
1085         TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
1086         TAILQ_INSERT_TAIL(&qpair->outstanding_tr, tr, tailq);
1087         tr->req = req;
1088
1089         switch (req->type) {
1090         case NVME_REQUEST_VADDR:
1091                 KASSERT(req->payload_size <= qpair->ctrlr->max_xfer_size,
1092                     ("payload_size (%d) exceeds max_xfer_size (%d)\n",
1093                     req->payload_size, qpair->ctrlr->max_xfer_size));
1094                 err = bus_dmamap_load(tr->qpair->dma_tag_payload,
1095                     tr->payload_dma_map, req->u.payload, req->payload_size,
1096                     nvme_payload_map, tr, 0);
1097                 if (err != 0)
1098                         nvme_printf(qpair->ctrlr,
1099                             "bus_dmamap_load returned 0x%x!\n", err);
1100                 break;
1101         case NVME_REQUEST_NULL:
1102                 nvme_qpair_submit_tracker(tr->qpair, tr);
1103                 break;
1104         case NVME_REQUEST_BIO:
1105                 KASSERT(req->u.bio->bio_bcount <= qpair->ctrlr->max_xfer_size,
1106                     ("bio->bio_bcount (%jd) exceeds max_xfer_size (%d)\n",
1107                     (intmax_t)req->u.bio->bio_bcount,
1108                     qpair->ctrlr->max_xfer_size));
1109                 err = bus_dmamap_load_bio(tr->qpair->dma_tag_payload,
1110                     tr->payload_dma_map, req->u.bio, nvme_payload_map, tr, 0);
1111                 if (err != 0)
1112                         nvme_printf(qpair->ctrlr,
1113                             "bus_dmamap_load_bio returned 0x%x!\n", err);
1114                 break;
1115         case NVME_REQUEST_CCB:
1116                 err = bus_dmamap_load_ccb(tr->qpair->dma_tag_payload,
1117                     tr->payload_dma_map, req->u.payload,
1118                     nvme_payload_map, tr, 0);
1119                 if (err != 0)
1120                         nvme_printf(qpair->ctrlr,
1121                             "bus_dmamap_load_ccb returned 0x%x!\n", err);
1122                 break;
1123         default:
1124                 panic("unknown nvme request type 0x%x\n", req->type);
1125                 break;
1126         }
1127
1128         if (err != 0) {
1129                 /*
1130                  * The dmamap operation failed, so we manually fail the
1131                  *  tracker here with DATA_TRANSFER_ERROR status.
1132                  *
1133                  * nvme_qpair_manual_complete_tracker must not be called
1134                  *  with the qpair lock held.
1135                  */
1136                 mtx_unlock(&qpair->lock);
1137                 nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC,
1138                     NVME_SC_DATA_TRANSFER_ERROR, DO_NOT_RETRY, ERROR_PRINT_ALL);
1139                 mtx_lock(&qpair->lock);
1140         }
1141 }
1142
1143 void
1144 nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
1145 {
1146
1147         mtx_lock(&qpair->lock);
1148         _nvme_qpair_submit_request(qpair, req);
1149         mtx_unlock(&qpair->lock);
1150 }
1151
1152 static void
1153 nvme_qpair_enable(struct nvme_qpair *qpair)
1154 {
1155
1156         qpair->is_enabled = true;
1157 }
1158
1159 void
1160 nvme_qpair_reset(struct nvme_qpair *qpair)
1161 {
1162
1163         qpair->sq_head = qpair->sq_tail = qpair->cq_head = 0;
1164
1165         /*
1166          * First time through the completion queue, HW will set phase
1167          *  bit on completions to 1.  So set this to 1 here, indicating
1168          *  we're looking for a 1 to know which entries have completed.
1169          *  we'll toggle the bit each time when the completion queue
1170          *  rolls over.
1171          */
1172         qpair->phase = 1;
1173
1174         memset(qpair->cmd, 0,
1175             qpair->num_entries * sizeof(struct nvme_command));
1176         memset(qpair->cpl, 0,
1177             qpair->num_entries * sizeof(struct nvme_completion));
1178 }
1179
1180 void
1181 nvme_admin_qpair_enable(struct nvme_qpair *qpair)
1182 {
1183         struct nvme_tracker             *tr;
1184         struct nvme_tracker             *tr_temp;
1185
1186         /*
1187          * Manually abort each outstanding admin command.  Do not retry
1188          *  admin commands found here, since they will be left over from
1189          *  a controller reset and its likely the context in which the
1190          *  command was issued no longer applies.
1191          */
1192         TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
1193                 nvme_printf(qpair->ctrlr,
1194                     "aborting outstanding admin command\n");
1195                 nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC,
1196                     NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
1197         }
1198
1199         nvme_qpair_enable(qpair);
1200 }
1201
1202 void
1203 nvme_io_qpair_enable(struct nvme_qpair *qpair)
1204 {
1205         STAILQ_HEAD(, nvme_request)     temp;
1206         struct nvme_tracker             *tr;
1207         struct nvme_tracker             *tr_temp;
1208         struct nvme_request             *req;
1209
1210         /*
1211          * Manually abort each outstanding I/O.  This normally results in a
1212          *  retry, unless the retry count on the associated request has
1213          *  reached its limit.
1214          */
1215         TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
1216                 nvme_printf(qpair->ctrlr, "aborting outstanding i/o\n");
1217                 nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC,
1218                     NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_NO_RETRY);
1219         }
1220
1221         mtx_lock(&qpair->lock);
1222
1223         nvme_qpair_enable(qpair);
1224
1225         STAILQ_INIT(&temp);
1226         STAILQ_SWAP(&qpair->queued_req, &temp, nvme_request);
1227
1228         while (!STAILQ_EMPTY(&temp)) {
1229                 req = STAILQ_FIRST(&temp);
1230                 STAILQ_REMOVE_HEAD(&temp, stailq);
1231                 nvme_printf(qpair->ctrlr, "resubmitting queued i/o\n");
1232                 nvme_qpair_print_command(qpair, &req->cmd);
1233                 _nvme_qpair_submit_request(qpair, req);
1234         }
1235
1236         mtx_unlock(&qpair->lock);
1237 }
1238
1239 static void
1240 nvme_qpair_disable(struct nvme_qpair *qpair)
1241 {
1242         struct nvme_tracker *tr;
1243
1244         qpair->is_enabled = false;
1245         mtx_lock(&qpair->lock);
1246         TAILQ_FOREACH(tr, &qpair->outstanding_tr, tailq)
1247                 callout_stop(&tr->timer);
1248         mtx_unlock(&qpair->lock);
1249 }
1250
1251 void
1252 nvme_admin_qpair_disable(struct nvme_qpair *qpair)
1253 {
1254
1255         nvme_qpair_disable(qpair);
1256         nvme_admin_qpair_abort_aers(qpair);
1257 }
1258
1259 void
1260 nvme_io_qpair_disable(struct nvme_qpair *qpair)
1261 {
1262
1263         nvme_qpair_disable(qpair);
1264 }
1265
1266 void
1267 nvme_qpair_fail(struct nvme_qpair *qpair)
1268 {
1269         struct nvme_tracker             *tr;
1270         struct nvme_request             *req;
1271
1272         if (!mtx_initialized(&qpair->lock))
1273                 return;
1274
1275         mtx_lock(&qpair->lock);
1276
1277         while (!STAILQ_EMPTY(&qpair->queued_req)) {
1278                 req = STAILQ_FIRST(&qpair->queued_req);
1279                 STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
1280                 nvme_printf(qpair->ctrlr, "failing queued i/o\n");
1281                 mtx_unlock(&qpair->lock);
1282                 nvme_qpair_manual_complete_request(qpair, req, NVME_SCT_GENERIC,
1283                     NVME_SC_ABORTED_BY_REQUEST);
1284                 mtx_lock(&qpair->lock);
1285         }
1286
1287         /* Manually abort each outstanding I/O. */
1288         while (!TAILQ_EMPTY(&qpair->outstanding_tr)) {
1289                 tr = TAILQ_FIRST(&qpair->outstanding_tr);
1290                 /*
1291                  * Do not remove the tracker.  The abort_tracker path will
1292                  *  do that for us.
1293                  */
1294                 nvme_printf(qpair->ctrlr, "failing outstanding i/o\n");
1295                 mtx_unlock(&qpair->lock);
1296                 nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC,
1297                     NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
1298                 mtx_lock(&qpair->lock);
1299         }
1300
1301         mtx_unlock(&qpair->lock);
1302 }