]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/nvme/nvme_qpair.c
MFC r350118 (by imp): Provide new tunable hw.nvme.verbose_cmd_dump
[FreeBSD/FreeBSD.git] / sys / dev / nvme / nvme_qpair.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2012-2014 Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/conf.h>
35 #include <sys/proc.h>
36
37 #include <dev/pci/pcivar.h>
38
39 #include "nvme_private.h"
40
41 typedef enum error_print { ERROR_PRINT_NONE, ERROR_PRINT_NO_RETRY, ERROR_PRINT_ALL } error_print_t;
42 #define DO_NOT_RETRY    1
43
44 static void     _nvme_qpair_submit_request(struct nvme_qpair *qpair,
45                                            struct nvme_request *req);
46 static void     nvme_qpair_destroy(struct nvme_qpair *qpair);
47
48 struct nvme_opcode_string {
49
50         uint16_t        opc;
51         const char *    str;
52 };
53
54 static struct nvme_opcode_string admin_opcode[] = {
55         { NVME_OPC_DELETE_IO_SQ, "DELETE IO SQ" },
56         { NVME_OPC_CREATE_IO_SQ, "CREATE IO SQ" },
57         { NVME_OPC_GET_LOG_PAGE, "GET LOG PAGE" },
58         { NVME_OPC_DELETE_IO_CQ, "DELETE IO CQ" },
59         { NVME_OPC_CREATE_IO_CQ, "CREATE IO CQ" },
60         { NVME_OPC_IDENTIFY, "IDENTIFY" },
61         { NVME_OPC_ABORT, "ABORT" },
62         { NVME_OPC_SET_FEATURES, "SET FEATURES" },
63         { NVME_OPC_GET_FEATURES, "GET FEATURES" },
64         { NVME_OPC_ASYNC_EVENT_REQUEST, "ASYNC EVENT REQUEST" },
65         { NVME_OPC_FIRMWARE_ACTIVATE, "FIRMWARE ACTIVATE" },
66         { NVME_OPC_FIRMWARE_IMAGE_DOWNLOAD, "FIRMWARE IMAGE DOWNLOAD" },
67         { NVME_OPC_DEVICE_SELF_TEST, "DEVICE SELF-TEST" },
68         { NVME_OPC_NAMESPACE_ATTACHMENT, "NAMESPACE ATTACHMENT" },
69         { NVME_OPC_KEEP_ALIVE, "KEEP ALIVE" },
70         { NVME_OPC_DIRECTIVE_SEND, "DIRECTIVE SEND" },
71         { NVME_OPC_DIRECTIVE_RECEIVE, "DIRECTIVE RECEIVE" },
72         { NVME_OPC_VIRTUALIZATION_MANAGEMENT, "VIRTUALIZATION MANAGEMENT" },
73         { NVME_OPC_NVME_MI_SEND, "NVME-MI SEND" },
74         { NVME_OPC_NVME_MI_RECEIVE, "NVME-MI RECEIVE" },
75         { NVME_OPC_DOORBELL_BUFFER_CONFIG, "DOORBELL BUFFER CONFIG" },
76         { NVME_OPC_FORMAT_NVM, "FORMAT NVM" },
77         { NVME_OPC_SECURITY_SEND, "SECURITY SEND" },
78         { NVME_OPC_SECURITY_RECEIVE, "SECURITY RECEIVE" },
79         { NVME_OPC_SANITIZE, "SANITIZE" },
80         { 0xFFFF, "ADMIN COMMAND" }
81 };
82
83 static struct nvme_opcode_string io_opcode[] = {
84         { NVME_OPC_FLUSH, "FLUSH" },
85         { NVME_OPC_WRITE, "WRITE" },
86         { NVME_OPC_READ, "READ" },
87         { NVME_OPC_WRITE_UNCORRECTABLE, "WRITE UNCORRECTABLE" },
88         { NVME_OPC_COMPARE, "COMPARE" },
89         { NVME_OPC_WRITE_ZEROES, "WRITE ZEROES" },
90         { NVME_OPC_DATASET_MANAGEMENT, "DATASET MANAGEMENT" },
91         { NVME_OPC_RESERVATION_REGISTER, "RESERVATION REGISTER" },
92         { NVME_OPC_RESERVATION_REPORT, "RESERVATION REPORT" },
93         { NVME_OPC_RESERVATION_ACQUIRE, "RESERVATION ACQUIRE" },
94         { NVME_OPC_RESERVATION_RELEASE, "RESERVATION RELEASE" },
95         { 0xFFFF, "IO COMMAND" }
96 };
97
98 static const char *
99 get_admin_opcode_string(uint16_t opc)
100 {
101         struct nvme_opcode_string *entry;
102
103         entry = admin_opcode;
104
105         while (entry->opc != 0xFFFF) {
106                 if (entry->opc == opc)
107                         return (entry->str);
108                 entry++;
109         }
110         return (entry->str);
111 }
112
113 static const char *
114 get_io_opcode_string(uint16_t opc)
115 {
116         struct nvme_opcode_string *entry;
117
118         entry = io_opcode;
119
120         while (entry->opc != 0xFFFF) {
121                 if (entry->opc == opc)
122                         return (entry->str);
123                 entry++;
124         }
125         return (entry->str);
126 }
127
128
129 static void
130 nvme_admin_qpair_print_command(struct nvme_qpair *qpair,
131     struct nvme_command *cmd)
132 {
133
134         nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%x "
135             "cdw10:%08x cdw11:%08x\n",
136             get_admin_opcode_string(cmd->opc), cmd->opc, qpair->id, cmd->cid,
137             le32toh(cmd->nsid), le32toh(cmd->cdw10), le32toh(cmd->cdw11));
138 }
139
140 static void
141 nvme_io_qpair_print_command(struct nvme_qpair *qpair,
142     struct nvme_command *cmd)
143 {
144
145         switch (cmd->opc) {
146         case NVME_OPC_WRITE:
147         case NVME_OPC_READ:
148         case NVME_OPC_WRITE_UNCORRECTABLE:
149         case NVME_OPC_COMPARE:
150         case NVME_OPC_WRITE_ZEROES:
151                 nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d "
152                     "lba:%llu len:%d\n",
153                     get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid),
154                     ((unsigned long long)le32toh(cmd->cdw11) << 32) + le32toh(cmd->cdw10),
155                     (le32toh(cmd->cdw12) & 0xFFFF) + 1);
156                 break;
157         case NVME_OPC_FLUSH:
158         case NVME_OPC_DATASET_MANAGEMENT:
159         case NVME_OPC_RESERVATION_REGISTER:
160         case NVME_OPC_RESERVATION_REPORT:
161         case NVME_OPC_RESERVATION_ACQUIRE:
162         case NVME_OPC_RESERVATION_RELEASE:
163                 nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d\n",
164                     get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid));
165                 break;
166         default:
167                 nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%d\n",
168                     get_io_opcode_string(cmd->opc), cmd->opc, qpair->id,
169                     cmd->cid, le32toh(cmd->nsid));
170                 break;
171         }
172 }
173
174 static void
175 nvme_qpair_print_command(struct nvme_qpair *qpair, struct nvme_command *cmd)
176 {
177         if (qpair->id == 0)
178                 nvme_admin_qpair_print_command(qpair, cmd);
179         else
180                 nvme_io_qpair_print_command(qpair, cmd);
181         if (nvme_verbose_cmd_dump) {
182                 nvme_printf(qpair->ctrlr,
183                     "nsid:%#x rsvd2:%#x rsvd3:%#x mptr:%#jx prp1:%#jx prp2:%#jx\n",
184                     cmd->nsid, cmd->rsvd2, cmd->rsvd3, (uintmax_t)cmd->mptr,
185                     (uintmax_t)cmd->prp1, (uintmax_t)cmd->prp2);
186                 nvme_printf(qpair->ctrlr,
187                     "cdw10: %#x cdw11:%#x cdw12:%#x cdw13:%#x cdw14:%#x cdw15:%#x\n",
188                     cmd->cdw10, cmd->cdw11, cmd->cdw12, cmd->cdw13, cmd->cdw14,
189                     cmd->cdw15);
190         }
191 }
192
193 struct nvme_status_string {
194
195         uint16_t        sc;
196         const char *    str;
197 };
198
199 static struct nvme_status_string generic_status[] = {
200         { NVME_SC_SUCCESS, "SUCCESS" },
201         { NVME_SC_INVALID_OPCODE, "INVALID OPCODE" },
202         { NVME_SC_INVALID_FIELD, "INVALID_FIELD" },
203         { NVME_SC_COMMAND_ID_CONFLICT, "COMMAND ID CONFLICT" },
204         { NVME_SC_DATA_TRANSFER_ERROR, "DATA TRANSFER ERROR" },
205         { NVME_SC_ABORTED_POWER_LOSS, "ABORTED - POWER LOSS" },
206         { NVME_SC_INTERNAL_DEVICE_ERROR, "INTERNAL DEVICE ERROR" },
207         { NVME_SC_ABORTED_BY_REQUEST, "ABORTED - BY REQUEST" },
208         { NVME_SC_ABORTED_SQ_DELETION, "ABORTED - SQ DELETION" },
209         { NVME_SC_ABORTED_FAILED_FUSED, "ABORTED - FAILED FUSED" },
210         { NVME_SC_ABORTED_MISSING_FUSED, "ABORTED - MISSING FUSED" },
211         { NVME_SC_INVALID_NAMESPACE_OR_FORMAT, "INVALID NAMESPACE OR FORMAT" },
212         { NVME_SC_COMMAND_SEQUENCE_ERROR, "COMMAND SEQUENCE ERROR" },
213         { NVME_SC_INVALID_SGL_SEGMENT_DESCR, "INVALID SGL SEGMENT DESCRIPTOR" },
214         { NVME_SC_INVALID_NUMBER_OF_SGL_DESCR, "INVALID NUMBER OF SGL DESCRIPTORS" },
215         { NVME_SC_DATA_SGL_LENGTH_INVALID, "DATA SGL LENGTH INVALID" },
216         { NVME_SC_METADATA_SGL_LENGTH_INVALID, "METADATA SGL LENGTH INVALID" },
217         { NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID, "SGL DESCRIPTOR TYPE INVALID" },
218         { NVME_SC_INVALID_USE_OF_CMB, "INVALID USE OF CONTROLLER MEMORY BUFFER" },
219         { NVME_SC_PRP_OFFET_INVALID, "PRP OFFET INVALID" },
220         { NVME_SC_ATOMIC_WRITE_UNIT_EXCEEDED, "ATOMIC WRITE UNIT EXCEEDED" },
221         { NVME_SC_OPERATION_DENIED, "OPERATION DENIED" },
222         { NVME_SC_SGL_OFFSET_INVALID, "SGL OFFSET INVALID" },
223         { NVME_SC_HOST_ID_INCONSISTENT_FORMAT, "HOST IDENTIFIER INCONSISTENT FORMAT" },
224         { NVME_SC_KEEP_ALIVE_TIMEOUT_EXPIRED, "KEEP ALIVE TIMEOUT EXPIRED" },
225         { NVME_SC_KEEP_ALIVE_TIMEOUT_INVALID, "KEEP ALIVE TIMEOUT INVALID" },
226         { NVME_SC_ABORTED_DUE_TO_PREEMPT, "COMMAND ABORTED DUE TO PREEMPT AND ABORT" },
227         { NVME_SC_SANITIZE_FAILED, "SANITIZE FAILED" },
228         { NVME_SC_SANITIZE_IN_PROGRESS, "SANITIZE IN PROGRESS" },
229         { NVME_SC_SGL_DATA_BLOCK_GRAN_INVALID, "SGL_DATA_BLOCK_GRANULARITY_INVALID" },
230         { NVME_SC_NOT_SUPPORTED_IN_CMB, "COMMAND NOT SUPPORTED FOR QUEUE IN CMB" },
231
232         { NVME_SC_LBA_OUT_OF_RANGE, "LBA OUT OF RANGE" },
233         { NVME_SC_CAPACITY_EXCEEDED, "CAPACITY EXCEEDED" },
234         { NVME_SC_NAMESPACE_NOT_READY, "NAMESPACE NOT READY" },
235         { NVME_SC_RESERVATION_CONFLICT, "RESERVATION CONFLICT" },
236         { NVME_SC_FORMAT_IN_PROGRESS, "FORMAT IN PROGRESS" },
237         { 0xFFFF, "GENERIC" }
238 };
239
240 static struct nvme_status_string command_specific_status[] = {
241         { NVME_SC_COMPLETION_QUEUE_INVALID, "INVALID COMPLETION QUEUE" },
242         { NVME_SC_INVALID_QUEUE_IDENTIFIER, "INVALID QUEUE IDENTIFIER" },
243         { NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED, "MAX QUEUE SIZE EXCEEDED" },
244         { NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED, "ABORT CMD LIMIT EXCEEDED" },
245         { NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED, "ASYNC LIMIT EXCEEDED" },
246         { NVME_SC_INVALID_FIRMWARE_SLOT, "INVALID FIRMWARE SLOT" },
247         { NVME_SC_INVALID_FIRMWARE_IMAGE, "INVALID FIRMWARE IMAGE" },
248         { NVME_SC_INVALID_INTERRUPT_VECTOR, "INVALID INTERRUPT VECTOR" },
249         { NVME_SC_INVALID_LOG_PAGE, "INVALID LOG PAGE" },
250         { NVME_SC_INVALID_FORMAT, "INVALID FORMAT" },
251         { NVME_SC_FIRMWARE_REQUIRES_RESET, "FIRMWARE REQUIRES RESET" },
252         { NVME_SC_INVALID_QUEUE_DELETION, "INVALID QUEUE DELETION" },
253         { NVME_SC_FEATURE_NOT_SAVEABLE, "FEATURE IDENTIFIER NOT SAVEABLE" },
254         { NVME_SC_FEATURE_NOT_CHANGEABLE, "FEATURE NOT CHANGEABLE" },
255         { NVME_SC_FEATURE_NOT_NS_SPECIFIC, "FEATURE NOT NAMESPACE SPECIFIC" },
256         { NVME_SC_FW_ACT_REQUIRES_NVMS_RESET, "FIRMWARE ACTIVATION REQUIRES NVM SUBSYSTEM RESET" },
257         { NVME_SC_FW_ACT_REQUIRES_RESET, "FIRMWARE ACTIVATION REQUIRES RESET" },
258         { NVME_SC_FW_ACT_REQUIRES_TIME, "FIRMWARE ACTIVATION REQUIRES MAXIMUM TIME VIOLATION" },
259         { NVME_SC_FW_ACT_PROHIBITED, "FIRMWARE ACTIVATION PROHIBITED" },
260         { NVME_SC_OVERLAPPING_RANGE, "OVERLAPPING RANGE" },
261         { NVME_SC_NS_INSUFFICIENT_CAPACITY, "NAMESPACE INSUFFICIENT CAPACITY" },
262         { NVME_SC_NS_ID_UNAVAILABLE, "NAMESPACE IDENTIFIER UNAVAILABLE" },
263         { NVME_SC_NS_ALREADY_ATTACHED, "NAMESPACE ALREADY ATTACHED" },
264         { NVME_SC_NS_IS_PRIVATE, "NAMESPACE IS PRIVATE" },
265         { NVME_SC_NS_NOT_ATTACHED, "NS NOT ATTACHED" },
266         { NVME_SC_THIN_PROV_NOT_SUPPORTED, "THIN PROVISIONING NOT SUPPORTED" },
267         { NVME_SC_CTRLR_LIST_INVALID, "CONTROLLER LIST INVALID" },
268         { NVME_SC_SELT_TEST_IN_PROGRESS, "DEVICE SELT-TEST IN PROGRESS" },
269         { NVME_SC_BOOT_PART_WRITE_PROHIB, "BOOT PARTITION WRITE PROHIBITED" },
270         { NVME_SC_INVALID_CTRLR_ID, "INVALID CONTROLLER IDENTIFIER" },
271         { NVME_SC_INVALID_SEC_CTRLR_STATE, "INVALID SECONDARY CONTROLLER STATE" },
272         { NVME_SC_INVALID_NUM_OF_CTRLR_RESRC, "INVALID NUMBER OF CONTROLLER RESOURCES" },
273         { NVME_SC_INVALID_RESOURCE_ID, "INVALID RESOURCE IDENTIFIER" },
274
275         { NVME_SC_CONFLICTING_ATTRIBUTES, "CONFLICTING ATTRIBUTES" },
276         { NVME_SC_INVALID_PROTECTION_INFO, "INVALID PROTECTION INFO" },
277         { NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE, "WRITE TO RO PAGE" },
278         { 0xFFFF, "COMMAND SPECIFIC" }
279 };
280
281 static struct nvme_status_string media_error_status[] = {
282         { NVME_SC_WRITE_FAULTS, "WRITE FAULTS" },
283         { NVME_SC_UNRECOVERED_READ_ERROR, "UNRECOVERED READ ERROR" },
284         { NVME_SC_GUARD_CHECK_ERROR, "GUARD CHECK ERROR" },
285         { NVME_SC_APPLICATION_TAG_CHECK_ERROR, "APPLICATION TAG CHECK ERROR" },
286         { NVME_SC_REFERENCE_TAG_CHECK_ERROR, "REFERENCE TAG CHECK ERROR" },
287         { NVME_SC_COMPARE_FAILURE, "COMPARE FAILURE" },
288         { NVME_SC_ACCESS_DENIED, "ACCESS DENIED" },
289         { NVME_SC_DEALLOCATED_OR_UNWRITTEN, "DEALLOCATED OR UNWRITTEN LOGICAL BLOCK" },
290         { 0xFFFF, "MEDIA ERROR" }
291 };
292
293 static const char *
294 get_status_string(uint16_t sct, uint16_t sc)
295 {
296         struct nvme_status_string *entry;
297
298         switch (sct) {
299         case NVME_SCT_GENERIC:
300                 entry = generic_status;
301                 break;
302         case NVME_SCT_COMMAND_SPECIFIC:
303                 entry = command_specific_status;
304                 break;
305         case NVME_SCT_MEDIA_ERROR:
306                 entry = media_error_status;
307                 break;
308         case NVME_SCT_VENDOR_SPECIFIC:
309                 return ("VENDOR SPECIFIC");
310         default:
311                 return ("RESERVED");
312         }
313
314         while (entry->sc != 0xFFFF) {
315                 if (entry->sc == sc)
316                         return (entry->str);
317                 entry++;
318         }
319         return (entry->str);
320 }
321
322 static void
323 nvme_qpair_print_completion(struct nvme_qpair *qpair,
324     struct nvme_completion *cpl)
325 {
326         uint16_t sct, sc;
327
328         sct = NVME_STATUS_GET_SCT(cpl->status);
329         sc = NVME_STATUS_GET_SC(cpl->status);
330
331         nvme_printf(qpair->ctrlr, "%s (%02x/%02x) sqid:%d cid:%d cdw0:%x\n",
332             get_status_string(sct, sc), sct, sc, cpl->sqid, cpl->cid,
333             cpl->cdw0);
334 }
335
336 static boolean_t
337 nvme_completion_is_retry(const struct nvme_completion *cpl)
338 {
339         uint8_t sct, sc, dnr;
340
341         sct = NVME_STATUS_GET_SCT(cpl->status);
342         sc = NVME_STATUS_GET_SC(cpl->status);
343         dnr = NVME_STATUS_GET_DNR(cpl->status); /* Do Not Retry Bit */
344
345         /*
346          * TODO: spec is not clear how commands that are aborted due
347          *  to TLER will be marked.  So for now, it seems
348          *  NAMESPACE_NOT_READY is the only case where we should
349          *  look at the DNR bit. Requests failed with ABORTED_BY_REQUEST
350          *  set the DNR bit correctly since the driver controls that.
351          */
352         switch (sct) {
353         case NVME_SCT_GENERIC:
354                 switch (sc) {
355                 case NVME_SC_ABORTED_BY_REQUEST:
356                 case NVME_SC_NAMESPACE_NOT_READY:
357                         if (dnr)
358                                 return (0);
359                         else
360                                 return (1);
361                 case NVME_SC_INVALID_OPCODE:
362                 case NVME_SC_INVALID_FIELD:
363                 case NVME_SC_COMMAND_ID_CONFLICT:
364                 case NVME_SC_DATA_TRANSFER_ERROR:
365                 case NVME_SC_ABORTED_POWER_LOSS:
366                 case NVME_SC_INTERNAL_DEVICE_ERROR:
367                 case NVME_SC_ABORTED_SQ_DELETION:
368                 case NVME_SC_ABORTED_FAILED_FUSED:
369                 case NVME_SC_ABORTED_MISSING_FUSED:
370                 case NVME_SC_INVALID_NAMESPACE_OR_FORMAT:
371                 case NVME_SC_COMMAND_SEQUENCE_ERROR:
372                 case NVME_SC_LBA_OUT_OF_RANGE:
373                 case NVME_SC_CAPACITY_EXCEEDED:
374                 default:
375                         return (0);
376                 }
377         case NVME_SCT_COMMAND_SPECIFIC:
378         case NVME_SCT_MEDIA_ERROR:
379         case NVME_SCT_VENDOR_SPECIFIC:
380         default:
381                 return (0);
382         }
383 }
384
385 static void
386 nvme_qpair_complete_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr,
387     struct nvme_completion *cpl, error_print_t print_on_error)
388 {
389         struct nvme_request     *req;
390         boolean_t               retry, error;
391
392         req = tr->req;
393         error = nvme_completion_is_error(cpl);
394         retry = error && nvme_completion_is_retry(cpl) &&
395            req->retries < nvme_retry_count;
396
397         if (error && (print_on_error == ERROR_PRINT_ALL ||
398                 (!retry && print_on_error == ERROR_PRINT_NO_RETRY))) {
399                 nvme_qpair_print_command(qpair, &req->cmd);
400                 nvme_qpair_print_completion(qpair, cpl);
401         }
402
403         qpair->act_tr[cpl->cid] = NULL;
404
405         KASSERT(cpl->cid == req->cmd.cid, ("cpl cid does not match cmd cid\n"));
406
407         if (req->cb_fn && !retry)
408                 req->cb_fn(req->cb_arg, cpl);
409
410         mtx_lock(&qpair->lock);
411         callout_stop(&tr->timer);
412
413         if (retry) {
414                 req->retries++;
415                 nvme_qpair_submit_tracker(qpair, tr);
416         } else {
417                 if (req->type != NVME_REQUEST_NULL) {
418                         bus_dmamap_sync(qpair->dma_tag_payload,
419                             tr->payload_dma_map,
420                             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
421                         bus_dmamap_unload(qpair->dma_tag_payload,
422                             tr->payload_dma_map);
423                 }
424
425                 nvme_free_request(req);
426                 tr->req = NULL;
427
428                 TAILQ_REMOVE(&qpair->outstanding_tr, tr, tailq);
429                 TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
430
431                 /*
432                  * If the controller is in the middle of resetting, don't
433                  *  try to submit queued requests here - let the reset logic
434                  *  handle that instead.
435                  */
436                 if (!STAILQ_EMPTY(&qpair->queued_req) &&
437                     !qpair->ctrlr->is_resetting) {
438                         req = STAILQ_FIRST(&qpair->queued_req);
439                         STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
440                         _nvme_qpair_submit_request(qpair, req);
441                 }
442         }
443
444         mtx_unlock(&qpair->lock);
445 }
446
447 static void
448 nvme_qpair_manual_complete_tracker(struct nvme_qpair *qpair,
449     struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
450     error_print_t print_on_error)
451 {
452         struct nvme_completion  cpl;
453
454         memset(&cpl, 0, sizeof(cpl));
455         cpl.sqid = qpair->id;
456         cpl.cid = tr->cid;
457         cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
458         cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
459         cpl.status |= (dnr & NVME_STATUS_DNR_MASK) << NVME_STATUS_DNR_SHIFT;
460         nvme_qpair_complete_tracker(qpair, tr, &cpl, print_on_error);
461 }
462
463 void
464 nvme_qpair_manual_complete_request(struct nvme_qpair *qpair,
465     struct nvme_request *req, uint32_t sct, uint32_t sc)
466 {
467         struct nvme_completion  cpl;
468         boolean_t               error;
469
470         memset(&cpl, 0, sizeof(cpl));
471         cpl.sqid = qpair->id;
472         cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
473         cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
474
475         error = nvme_completion_is_error(&cpl);
476
477         if (error) {
478                 nvme_qpair_print_command(qpair, &req->cmd);
479                 nvme_qpair_print_completion(qpair, &cpl);
480         }
481
482         if (req->cb_fn)
483                 req->cb_fn(req->cb_arg, &cpl);
484
485         nvme_free_request(req);
486 }
487
488 bool
489 nvme_qpair_process_completions(struct nvme_qpair *qpair)
490 {
491         struct nvme_tracker     *tr;
492         struct nvme_completion  cpl;
493         int done = 0;
494         bool in_panic = dumping || SCHEDULER_STOPPED();
495
496         qpair->num_intr_handler_calls++;
497
498         /*
499          * qpair is not enabled, likely because a controller reset is is in
500          * progress.  Ignore the interrupt - any I/O that was associated with
501          * this interrupt will get retried when the reset is complete.
502          */
503         if (!qpair->is_enabled)
504                 return (false);
505
506         /*
507          * A panic can stop the CPU this routine is running on at any point.  If
508          * we're called during a panic, complete the sq_head wrap protocol for
509          * the case where we are interrupted just after the increment at 1
510          * below, but before we can reset cq_head to zero at 2. Also cope with
511          * the case where we do the zero at 2, but may or may not have done the
512          * phase adjustment at step 3. The panic machinery flushes all pending
513          * memory writes, so we can make these strong ordering assumptions
514          * that would otherwise be unwise if we were racing in real time.
515          */
516         if (__predict_false(in_panic)) {
517                 if (qpair->cq_head == qpair->num_entries) {
518                         /*
519                          * Here we know that we need to zero cq_head and then negate
520                          * the phase, which hasn't been assigned if cq_head isn't
521                          * zero due to the atomic_store_rel.
522                          */
523                         qpair->cq_head = 0;
524                         qpair->phase = !qpair->phase;
525                 } else if (qpair->cq_head == 0) {
526                         /*
527                          * In this case, we know that the assignment at 2
528                          * happened below, but we don't know if it 3 happened or
529                          * not. To do this, we look at the last completion
530                          * entry and set the phase to the opposite phase
531                          * that it has. This gets us back in sync
532                          */
533                         cpl = qpair->cpl[qpair->num_entries - 1];
534                         nvme_completion_swapbytes(&cpl);
535                         qpair->phase = !NVME_STATUS_GET_P(cpl.status);
536                 }
537         }
538
539         bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
540             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
541         while (1) {
542                 cpl = qpair->cpl[qpair->cq_head];
543
544                 /* Convert to host endian */
545                 nvme_completion_swapbytes(&cpl);
546
547                 if (NVME_STATUS_GET_P(cpl.status) != qpair->phase)
548                         break;
549
550                 tr = qpair->act_tr[cpl.cid];
551
552                 if (tr != NULL) {
553                         nvme_qpair_complete_tracker(qpair, tr, &cpl, ERROR_PRINT_ALL);
554                         qpair->sq_head = cpl.sqhd;
555                         done++;
556                 } else if (!in_panic) {
557                         /*
558                          * A missing tracker is normally an error.  However, a
559                          * panic can stop the CPU this routine is running on
560                          * after completing an I/O but before updating
561                          * qpair->cq_head at 1 below.  Later, we re-enter this
562                          * routine to poll I/O associated with the kernel
563                          * dump. We find that the tr has been set to null before
564                          * calling the completion routine.  If it hasn't
565                          * completed (or it triggers a panic), then '1' below
566                          * won't have updated cq_head. Rather than panic again,
567                          * ignore this condition because it's not unexpected.
568                          */
569                         nvme_printf(qpair->ctrlr,
570                             "cpl does not map to outstanding cmd\n");
571                         /* nvme_dump_completion expects device endianess */
572                         nvme_dump_completion(&qpair->cpl[qpair->cq_head]);
573                         KASSERT(0, ("received completion for unknown cmd"));
574                 }
575
576                 /*
577                  * There's a number of races with the following (see above) when
578                  * the system panics. We compensate for each one of them by
579                  * using the atomic store to force strong ordering (at least when
580                  * viewed in the aftermath of a panic).
581                  */
582                 if (++qpair->cq_head == qpair->num_entries) {           /* 1 */
583                         atomic_store_rel_int(&qpair->cq_head, 0);       /* 2 */
584                         qpair->phase = !qpair->phase;                   /* 3 */
585                 }
586
587                 nvme_mmio_write_4(qpair->ctrlr, doorbell[qpair->id].cq_hdbl,
588                     qpair->cq_head);
589         }
590         return (done != 0);
591 }
592
593 static void
594 nvme_qpair_msix_handler(void *arg)
595 {
596         struct nvme_qpair *qpair = arg;
597
598         nvme_qpair_process_completions(qpair);
599 }
600
601 int
602 nvme_qpair_construct(struct nvme_qpair *qpair, uint32_t id,
603     uint16_t vector, uint32_t num_entries, uint32_t num_trackers,
604     struct nvme_controller *ctrlr)
605 {
606         struct nvme_tracker     *tr;
607         size_t                  cmdsz, cplsz, prpsz, allocsz, prpmemsz;
608         uint64_t                queuemem_phys, prpmem_phys, list_phys;
609         uint8_t                 *queuemem, *prpmem, *prp_list;
610         int                     i, err;
611
612         qpair->id = id;
613         qpair->vector = vector;
614         qpair->num_entries = num_entries;
615         qpair->num_trackers = num_trackers;
616         qpair->ctrlr = ctrlr;
617
618         if (ctrlr->msix_enabled) {
619
620                 /*
621                  * MSI-X vector resource IDs start at 1, so we add one to
622                  *  the queue's vector to get the corresponding rid to use.
623                  */
624                 qpair->rid = vector + 1;
625
626                 qpair->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
627                     &qpair->rid, RF_ACTIVE);
628                 bus_setup_intr(ctrlr->dev, qpair->res,
629                     INTR_TYPE_MISC | INTR_MPSAFE, NULL,
630                     nvme_qpair_msix_handler, qpair, &qpair->tag);
631                 if (id == 0) {
632                         bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
633                             "admin");
634                 } else {
635                         bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
636                             "io%d", id - 1);
637                 }
638         }
639
640         mtx_init(&qpair->lock, "nvme qpair lock", NULL, MTX_DEF);
641
642         /* Note: NVMe PRP format is restricted to 4-byte alignment. */
643         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
644             4, PAGE_SIZE, BUS_SPACE_MAXADDR,
645             BUS_SPACE_MAXADDR, NULL, NULL, NVME_MAX_XFER_SIZE,
646             (NVME_MAX_XFER_SIZE/PAGE_SIZE)+1, PAGE_SIZE, 0,
647             NULL, NULL, &qpair->dma_tag_payload);
648         if (err != 0) {
649                 nvme_printf(ctrlr, "payload tag create failed %d\n", err);
650                 goto out;
651         }
652
653         /*
654          * Each component must be page aligned, and individual PRP lists
655          * cannot cross a page boundary.
656          */
657         cmdsz = qpair->num_entries * sizeof(struct nvme_command);
658         cmdsz = roundup2(cmdsz, PAGE_SIZE);
659         cplsz = qpair->num_entries * sizeof(struct nvme_completion);
660         cplsz = roundup2(cplsz, PAGE_SIZE);
661         prpsz = sizeof(uint64_t) * NVME_MAX_PRP_LIST_ENTRIES;;
662         prpmemsz = qpair->num_trackers * prpsz;
663         allocsz = cmdsz + cplsz + prpmemsz;
664
665         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
666             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
667             allocsz, 1, allocsz, 0, NULL, NULL, &qpair->dma_tag);
668         if (err != 0) {
669                 nvme_printf(ctrlr, "tag create failed %d\n", err);
670                 goto out;
671         }
672
673         if (bus_dmamem_alloc(qpair->dma_tag, (void **)&queuemem,
674             BUS_DMA_NOWAIT, &qpair->queuemem_map)) {
675                 nvme_printf(ctrlr, "failed to alloc qpair memory\n");
676                 goto out;
677         }
678
679         if (bus_dmamap_load(qpair->dma_tag, qpair->queuemem_map,
680             queuemem, allocsz, nvme_single_map, &queuemem_phys, 0) != 0) {
681                 nvme_printf(ctrlr, "failed to load qpair memory\n");
682                 goto out;
683         }
684
685         qpair->num_cmds = 0;
686         qpair->num_intr_handler_calls = 0;
687         qpair->cmd = (struct nvme_command *)queuemem;
688         qpair->cpl = (struct nvme_completion *)(queuemem + cmdsz);
689         prpmem = (uint8_t *)(queuemem + cmdsz + cplsz);
690         qpair->cmd_bus_addr = queuemem_phys;
691         qpair->cpl_bus_addr = queuemem_phys + cmdsz;
692         prpmem_phys = queuemem_phys + cmdsz + cplsz;
693
694         qpair->sq_tdbl_off = nvme_mmio_offsetof(doorbell[id].sq_tdbl);
695         qpair->cq_hdbl_off = nvme_mmio_offsetof(doorbell[id].cq_hdbl);
696
697         TAILQ_INIT(&qpair->free_tr);
698         TAILQ_INIT(&qpair->outstanding_tr);
699         STAILQ_INIT(&qpair->queued_req);
700
701         list_phys = prpmem_phys;
702         prp_list = prpmem;
703         for (i = 0; i < qpair->num_trackers; i++) {
704
705                 if (list_phys + prpsz > prpmem_phys + prpmemsz) {
706                         qpair->num_trackers = i;
707                         break;
708                 }
709
710                 /*
711                  * Make sure that the PRP list for this tracker doesn't
712                  * overflow to another page.
713                  */
714                 if (trunc_page(list_phys) !=
715                     trunc_page(list_phys + prpsz - 1)) {
716                         list_phys = roundup2(list_phys, PAGE_SIZE);
717                         prp_list =
718                             (uint8_t *)roundup2((uintptr_t)prp_list, PAGE_SIZE);
719                 }
720
721                 tr = malloc(sizeof(*tr), M_NVME, M_ZERO | M_WAITOK);
722                 bus_dmamap_create(qpair->dma_tag_payload, 0,
723                     &tr->payload_dma_map);
724                 callout_init(&tr->timer, 1);
725                 tr->cid = i;
726                 tr->qpair = qpair;
727                 tr->prp = (uint64_t *)prp_list;
728                 tr->prp_bus_addr = list_phys;
729                 TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
730                 list_phys += prpsz;
731                 prp_list += prpsz;
732         }
733
734         if (qpair->num_trackers == 0) {
735                 nvme_printf(ctrlr, "failed to allocate enough trackers\n");
736                 goto out;
737         }
738
739         qpair->act_tr = malloc(sizeof(struct nvme_tracker *) *
740             qpair->num_entries, M_NVME, M_ZERO | M_WAITOK);
741         return (0);
742
743 out:
744         nvme_qpair_destroy(qpair);
745         return (ENOMEM);
746 }
747
748 static void
749 nvme_qpair_destroy(struct nvme_qpair *qpair)
750 {
751         struct nvme_tracker     *tr;
752
753         if (qpair->tag)
754                 bus_teardown_intr(qpair->ctrlr->dev, qpair->res, qpair->tag);
755
756         if (mtx_initialized(&qpair->lock))
757                 mtx_destroy(&qpair->lock);
758
759         if (qpair->res)
760                 bus_release_resource(qpair->ctrlr->dev, SYS_RES_IRQ,
761                     rman_get_rid(qpair->res), qpair->res);
762
763         if (qpair->cmd != NULL) {
764                 bus_dmamap_unload(qpair->dma_tag, qpair->queuemem_map);
765                 bus_dmamem_free(qpair->dma_tag, qpair->cmd,
766                     qpair->queuemem_map);
767         }
768
769         if (qpair->act_tr)
770                 free(qpair->act_tr, M_NVME);
771
772         while (!TAILQ_EMPTY(&qpair->free_tr)) {
773                 tr = TAILQ_FIRST(&qpair->free_tr);
774                 TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
775                 bus_dmamap_destroy(qpair->dma_tag_payload,
776                     tr->payload_dma_map);
777                 free(tr, M_NVME);
778         }
779
780         if (qpair->dma_tag)
781                 bus_dma_tag_destroy(qpair->dma_tag);
782
783         if (qpair->dma_tag_payload)
784                 bus_dma_tag_destroy(qpair->dma_tag_payload);
785 }
786
787 static void
788 nvme_admin_qpair_abort_aers(struct nvme_qpair *qpair)
789 {
790         struct nvme_tracker     *tr;
791
792         tr = TAILQ_FIRST(&qpair->outstanding_tr);
793         while (tr != NULL) {
794                 if (tr->req->cmd.opc == NVME_OPC_ASYNC_EVENT_REQUEST) {
795                         nvme_qpair_manual_complete_tracker(qpair, tr,
796                             NVME_SCT_GENERIC, NVME_SC_ABORTED_SQ_DELETION, 0,
797                             ERROR_PRINT_NONE);
798                         tr = TAILQ_FIRST(&qpair->outstanding_tr);
799                 } else {
800                         tr = TAILQ_NEXT(tr, tailq);
801                 }
802         }
803 }
804
805 void
806 nvme_admin_qpair_destroy(struct nvme_qpair *qpair)
807 {
808
809         nvme_admin_qpair_abort_aers(qpair);
810         nvme_qpair_destroy(qpair);
811 }
812
813 void
814 nvme_io_qpair_destroy(struct nvme_qpair *qpair)
815 {
816
817         nvme_qpair_destroy(qpair);
818 }
819
820 static void
821 nvme_abort_complete(void *arg, const struct nvme_completion *status)
822 {
823         struct nvme_tracker     *tr = arg;
824
825         /*
826          * If cdw0 == 1, the controller was not able to abort the command
827          *  we requested.  We still need to check the active tracker array,
828          *  to cover race where I/O timed out at same time controller was
829          *  completing the I/O.
830          */
831         if (status->cdw0 == 1 && tr->qpair->act_tr[tr->cid] != NULL) {
832                 /*
833                  * An I/O has timed out, and the controller was unable to
834                  *  abort it for some reason.  Construct a fake completion
835                  *  status, and then complete the I/O's tracker manually.
836                  */
837                 nvme_printf(tr->qpair->ctrlr,
838                     "abort command failed, aborting command manually\n");
839                 nvme_qpair_manual_complete_tracker(tr->qpair, tr,
840                     NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_ALL);
841         }
842 }
843
844 static void
845 nvme_timeout(void *arg)
846 {
847         struct nvme_tracker     *tr = arg;
848         struct nvme_qpair       *qpair = tr->qpair;
849         struct nvme_controller  *ctrlr = qpair->ctrlr;
850         uint32_t                csts;
851         uint8_t                 cfs;
852
853         /*
854          * Read csts to get value of cfs - controller fatal status.
855          * If no fatal status, try to call the completion routine, and
856          * if completes transactions, report a missed interrupt and
857          * return (this may need to be rate limited). Otherwise, if
858          * aborts are enabled and the controller is not reporting
859          * fatal status, abort the command. Otherwise, just reset the
860          * controller and hope for the best.
861          */
862         csts = nvme_mmio_read_4(ctrlr, csts);
863         cfs = (csts >> NVME_CSTS_REG_CFS_SHIFT) & NVME_CSTS_REG_CFS_MASK;
864         if (cfs == 0 && nvme_qpair_process_completions(qpair)) {
865                 nvme_printf(ctrlr, "Missing interrupt\n");
866                 return;
867         }
868         if (ctrlr->enable_aborts && cfs == 0) {
869                 nvme_printf(ctrlr, "Aborting command due to a timeout.\n");
870                 nvme_ctrlr_cmd_abort(ctrlr, tr->cid, qpair->id,
871                     nvme_abort_complete, tr);
872         } else {
873                 nvme_printf(ctrlr, "Resetting controller due to a timeout%s.\n",
874                     cfs ? " and fatal error status" : "");
875                 nvme_ctrlr_reset(ctrlr);
876         }
877 }
878
879 void
880 nvme_qpair_submit_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr)
881 {
882         struct nvme_request     *req;
883         struct nvme_controller  *ctrlr;
884
885         mtx_assert(&qpair->lock, MA_OWNED);
886
887         req = tr->req;
888         req->cmd.cid = tr->cid;
889         qpair->act_tr[tr->cid] = tr;
890         ctrlr = qpair->ctrlr;
891
892         if (req->timeout)
893                 callout_reset_curcpu(&tr->timer, ctrlr->timeout_period * hz,
894                     nvme_timeout, tr);
895
896         /* Copy the command from the tracker to the submission queue. */
897         memcpy(&qpair->cmd[qpair->sq_tail], &req->cmd, sizeof(req->cmd));
898
899         if (++qpair->sq_tail == qpair->num_entries)
900                 qpair->sq_tail = 0;
901
902         bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
903             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
904 #ifndef __powerpc__
905         /*
906          * powerpc's bus_dmamap_sync() already includes a heavyweight sync, but
907          * no other archs do.
908          */
909         wmb();
910 #endif
911
912         nvme_mmio_write_4(qpair->ctrlr, doorbell[qpair->id].sq_tdbl,
913             qpair->sq_tail);
914
915         qpair->num_cmds++;
916 }
917
918 static void
919 nvme_payload_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
920 {
921         struct nvme_tracker     *tr = arg;
922         uint32_t                cur_nseg;
923
924         /*
925          * If the mapping operation failed, return immediately.  The caller
926          *  is responsible for detecting the error status and failing the
927          *  tracker manually.
928          */
929         if (error != 0) {
930                 nvme_printf(tr->qpair->ctrlr,
931                     "nvme_payload_map err %d\n", error);
932                 return;
933         }
934
935         /*
936          * Note that we specified PAGE_SIZE for alignment and max
937          *  segment size when creating the bus dma tags.  So here
938          *  we can safely just transfer each segment to its
939          *  associated PRP entry.
940          */
941         tr->req->cmd.prp1 = htole64(seg[0].ds_addr);
942
943         if (nseg == 2) {
944                 tr->req->cmd.prp2 = htole64(seg[1].ds_addr);
945         } else if (nseg > 2) {
946                 cur_nseg = 1;
947                 tr->req->cmd.prp2 = htole64((uint64_t)tr->prp_bus_addr);
948                 while (cur_nseg < nseg) {
949                         tr->prp[cur_nseg-1] =
950                             htole64((uint64_t)seg[cur_nseg].ds_addr);
951                         cur_nseg++;
952                 }
953         } else {
954                 /*
955                  * prp2 should not be used by the controller
956                  *  since there is only one segment, but set
957                  *  to 0 just to be safe.
958                  */
959                 tr->req->cmd.prp2 = 0;
960         }
961
962         bus_dmamap_sync(tr->qpair->dma_tag_payload, tr->payload_dma_map,
963             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
964         nvme_qpair_submit_tracker(tr->qpair, tr);
965 }
966
967 static void
968 _nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
969 {
970         struct nvme_tracker     *tr;
971         int                     err = 0;
972
973         mtx_assert(&qpair->lock, MA_OWNED);
974
975         tr = TAILQ_FIRST(&qpair->free_tr);
976         req->qpair = qpair;
977
978         if (tr == NULL || !qpair->is_enabled) {
979                 /*
980                  * No tracker is available, or the qpair is disabled due to
981                  *  an in-progress controller-level reset or controller
982                  *  failure.
983                  */
984
985                 if (qpair->ctrlr->is_failed) {
986                         /*
987                          * The controller has failed.  Post the request to a
988                          *  task where it will be aborted, so that we do not
989                          *  invoke the request's callback in the context
990                          *  of the submission.
991                          */
992                         nvme_ctrlr_post_failed_request(qpair->ctrlr, req);
993                 } else {
994                         /*
995                          * Put the request on the qpair's request queue to be
996                          *  processed when a tracker frees up via a command
997                          *  completion or when the controller reset is
998                          *  completed.
999                          */
1000                         STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
1001                 }
1002                 return;
1003         }
1004
1005         TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
1006         TAILQ_INSERT_TAIL(&qpair->outstanding_tr, tr, tailq);
1007         tr->req = req;
1008
1009         switch (req->type) {
1010         case NVME_REQUEST_VADDR:
1011                 KASSERT(req->payload_size <= qpair->ctrlr->max_xfer_size,
1012                     ("payload_size (%d) exceeds max_xfer_size (%d)\n",
1013                     req->payload_size, qpair->ctrlr->max_xfer_size));
1014                 err = bus_dmamap_load(tr->qpair->dma_tag_payload,
1015                     tr->payload_dma_map, req->u.payload, req->payload_size,
1016                     nvme_payload_map, tr, 0);
1017                 if (err != 0)
1018                         nvme_printf(qpair->ctrlr,
1019                             "bus_dmamap_load returned 0x%x!\n", err);
1020                 break;
1021         case NVME_REQUEST_NULL:
1022                 nvme_qpair_submit_tracker(tr->qpair, tr);
1023                 break;
1024         case NVME_REQUEST_BIO:
1025                 KASSERT(req->u.bio->bio_bcount <= qpair->ctrlr->max_xfer_size,
1026                     ("bio->bio_bcount (%jd) exceeds max_xfer_size (%d)\n",
1027                     (intmax_t)req->u.bio->bio_bcount,
1028                     qpair->ctrlr->max_xfer_size));
1029                 err = bus_dmamap_load_bio(tr->qpair->dma_tag_payload,
1030                     tr->payload_dma_map, req->u.bio, nvme_payload_map, tr, 0);
1031                 if (err != 0)
1032                         nvme_printf(qpair->ctrlr,
1033                             "bus_dmamap_load_bio returned 0x%x!\n", err);
1034                 break;
1035         case NVME_REQUEST_CCB:
1036                 err = bus_dmamap_load_ccb(tr->qpair->dma_tag_payload,
1037                     tr->payload_dma_map, req->u.payload,
1038                     nvme_payload_map, tr, 0);
1039                 if (err != 0)
1040                         nvme_printf(qpair->ctrlr,
1041                             "bus_dmamap_load_ccb returned 0x%x!\n", err);
1042                 break;
1043         default:
1044                 panic("unknown nvme request type 0x%x\n", req->type);
1045                 break;
1046         }
1047
1048         if (err != 0) {
1049                 /*
1050                  * The dmamap operation failed, so we manually fail the
1051                  *  tracker here with DATA_TRANSFER_ERROR status.
1052                  *
1053                  * nvme_qpair_manual_complete_tracker must not be called
1054                  *  with the qpair lock held.
1055                  */
1056                 mtx_unlock(&qpair->lock);
1057                 nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1058                     NVME_SC_DATA_TRANSFER_ERROR, DO_NOT_RETRY, ERROR_PRINT_ALL);
1059                 mtx_lock(&qpair->lock);
1060         }
1061 }
1062
1063 void
1064 nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
1065 {
1066
1067         mtx_lock(&qpair->lock);
1068         _nvme_qpair_submit_request(qpair, req);
1069         mtx_unlock(&qpair->lock);
1070 }
1071
1072 static void
1073 nvme_qpair_enable(struct nvme_qpair *qpair)
1074 {
1075
1076         qpair->is_enabled = TRUE;
1077 }
1078
1079 void
1080 nvme_qpair_reset(struct nvme_qpair *qpair)
1081 {
1082
1083         qpair->sq_head = qpair->sq_tail = qpair->cq_head = 0;
1084
1085         /*
1086          * First time through the completion queue, HW will set phase
1087          *  bit on completions to 1.  So set this to 1 here, indicating
1088          *  we're looking for a 1 to know which entries have completed.
1089          *  we'll toggle the bit each time when the completion queue
1090          *  rolls over.
1091          */
1092         qpair->phase = 1;
1093
1094         memset(qpair->cmd, 0,
1095             qpair->num_entries * sizeof(struct nvme_command));
1096         memset(qpair->cpl, 0,
1097             qpair->num_entries * sizeof(struct nvme_completion));
1098 }
1099
1100 void
1101 nvme_admin_qpair_enable(struct nvme_qpair *qpair)
1102 {
1103         struct nvme_tracker             *tr;
1104         struct nvme_tracker             *tr_temp;
1105
1106         /*
1107          * Manually abort each outstanding admin command.  Do not retry
1108          *  admin commands found here, since they will be left over from
1109          *  a controller reset and its likely the context in which the
1110          *  command was issued no longer applies.
1111          */
1112         TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
1113                 nvme_printf(qpair->ctrlr,
1114                     "aborting outstanding admin command\n");
1115                 nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1116                     NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
1117         }
1118
1119         nvme_qpair_enable(qpair);
1120 }
1121
1122 void
1123 nvme_io_qpair_enable(struct nvme_qpair *qpair)
1124 {
1125         STAILQ_HEAD(, nvme_request)     temp;
1126         struct nvme_tracker             *tr;
1127         struct nvme_tracker             *tr_temp;
1128         struct nvme_request             *req;
1129
1130         /*
1131          * Manually abort each outstanding I/O.  This normally results in a
1132          *  retry, unless the retry count on the associated request has
1133          *  reached its limit.
1134          */
1135         TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
1136                 nvme_printf(qpair->ctrlr, "aborting outstanding i/o\n");
1137                 nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1138                     NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_NO_RETRY);
1139         }
1140
1141         mtx_lock(&qpair->lock);
1142
1143         nvme_qpair_enable(qpair);
1144
1145         STAILQ_INIT(&temp);
1146         STAILQ_SWAP(&qpair->queued_req, &temp, nvme_request);
1147
1148         while (!STAILQ_EMPTY(&temp)) {
1149                 req = STAILQ_FIRST(&temp);
1150                 STAILQ_REMOVE_HEAD(&temp, stailq);
1151                 nvme_printf(qpair->ctrlr, "resubmitting queued i/o\n");
1152                 nvme_qpair_print_command(qpair, &req->cmd);
1153                 _nvme_qpair_submit_request(qpair, req);
1154         }
1155
1156         mtx_unlock(&qpair->lock);
1157 }
1158
1159 static void
1160 nvme_qpair_disable(struct nvme_qpair *qpair)
1161 {
1162         struct nvme_tracker *tr;
1163
1164         qpair->is_enabled = FALSE;
1165         mtx_lock(&qpair->lock);
1166         TAILQ_FOREACH(tr, &qpair->outstanding_tr, tailq)
1167                 callout_stop(&tr->timer);
1168         mtx_unlock(&qpair->lock);
1169 }
1170
1171 void
1172 nvme_admin_qpair_disable(struct nvme_qpair *qpair)
1173 {
1174
1175         nvme_qpair_disable(qpair);
1176         nvme_admin_qpair_abort_aers(qpair);
1177 }
1178
1179 void
1180 nvme_io_qpair_disable(struct nvme_qpair *qpair)
1181 {
1182
1183         nvme_qpair_disable(qpair);
1184 }
1185
1186 void
1187 nvme_qpair_fail(struct nvme_qpair *qpair)
1188 {
1189         struct nvme_tracker             *tr;
1190         struct nvme_request             *req;
1191
1192         if (!mtx_initialized(&qpair->lock))
1193                 return;
1194
1195         mtx_lock(&qpair->lock);
1196
1197         while (!STAILQ_EMPTY(&qpair->queued_req)) {
1198                 req = STAILQ_FIRST(&qpair->queued_req);
1199                 STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
1200                 nvme_printf(qpair->ctrlr, "failing queued i/o\n");
1201                 mtx_unlock(&qpair->lock);
1202                 nvme_qpair_manual_complete_request(qpair, req, NVME_SCT_GENERIC,
1203                     NVME_SC_ABORTED_BY_REQUEST);
1204                 mtx_lock(&qpair->lock);
1205         }
1206
1207         /* Manually abort each outstanding I/O. */
1208         while (!TAILQ_EMPTY(&qpair->outstanding_tr)) {
1209                 tr = TAILQ_FIRST(&qpair->outstanding_tr);
1210                 /*
1211                  * Do not remove the tracker.  The abort_tracker path will
1212                  *  do that for us.
1213                  */
1214                 nvme_printf(qpair->ctrlr, "failing outstanding i/o\n");
1215                 mtx_unlock(&qpair->lock);
1216                 nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1217                     NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
1218                 mtx_lock(&qpair->lock);
1219         }
1220
1221         mtx_unlock(&qpair->lock);
1222 }
1223