]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/nvme/nvme_qpair.c
contrib/tzdata: import tzdata 2021c
[FreeBSD/FreeBSD.git] / sys / dev / nvme / nvme_qpair.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2012-2014 Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/conf.h>
35 #include <sys/domainset.h>
36 #include <sys/proc.h>
37
38 #include <dev/pci/pcivar.h>
39
40 #include "nvme_private.h"
41
42 typedef enum error_print { ERROR_PRINT_NONE, ERROR_PRINT_NO_RETRY, ERROR_PRINT_ALL } error_print_t;
43 #define DO_NOT_RETRY    1
44
45 static void     _nvme_qpair_submit_request(struct nvme_qpair *qpair,
46                                            struct nvme_request *req);
47 static void     nvme_qpair_destroy(struct nvme_qpair *qpair);
48
49 struct nvme_opcode_string {
50         uint16_t        opc;
51         const char *    str;
52 };
53
54 static struct nvme_opcode_string admin_opcode[] = {
55         { NVME_OPC_DELETE_IO_SQ, "DELETE IO SQ" },
56         { NVME_OPC_CREATE_IO_SQ, "CREATE IO SQ" },
57         { NVME_OPC_GET_LOG_PAGE, "GET LOG PAGE" },
58         { NVME_OPC_DELETE_IO_CQ, "DELETE IO CQ" },
59         { NVME_OPC_CREATE_IO_CQ, "CREATE IO CQ" },
60         { NVME_OPC_IDENTIFY, "IDENTIFY" },
61         { NVME_OPC_ABORT, "ABORT" },
62         { NVME_OPC_SET_FEATURES, "SET FEATURES" },
63         { NVME_OPC_GET_FEATURES, "GET FEATURES" },
64         { NVME_OPC_ASYNC_EVENT_REQUEST, "ASYNC EVENT REQUEST" },
65         { NVME_OPC_FIRMWARE_ACTIVATE, "FIRMWARE ACTIVATE" },
66         { NVME_OPC_FIRMWARE_IMAGE_DOWNLOAD, "FIRMWARE IMAGE DOWNLOAD" },
67         { NVME_OPC_DEVICE_SELF_TEST, "DEVICE SELF-TEST" },
68         { NVME_OPC_NAMESPACE_ATTACHMENT, "NAMESPACE ATTACHMENT" },
69         { NVME_OPC_KEEP_ALIVE, "KEEP ALIVE" },
70         { NVME_OPC_DIRECTIVE_SEND, "DIRECTIVE SEND" },
71         { NVME_OPC_DIRECTIVE_RECEIVE, "DIRECTIVE RECEIVE" },
72         { NVME_OPC_VIRTUALIZATION_MANAGEMENT, "VIRTUALIZATION MANAGEMENT" },
73         { NVME_OPC_NVME_MI_SEND, "NVME-MI SEND" },
74         { NVME_OPC_NVME_MI_RECEIVE, "NVME-MI RECEIVE" },
75         { NVME_OPC_DOORBELL_BUFFER_CONFIG, "DOORBELL BUFFER CONFIG" },
76         { NVME_OPC_FORMAT_NVM, "FORMAT NVM" },
77         { NVME_OPC_SECURITY_SEND, "SECURITY SEND" },
78         { NVME_OPC_SECURITY_RECEIVE, "SECURITY RECEIVE" },
79         { NVME_OPC_SANITIZE, "SANITIZE" },
80         { NVME_OPC_GET_LBA_STATUS, "GET LBA STATUS" },
81         { 0xFFFF, "ADMIN COMMAND" }
82 };
83
84 static struct nvme_opcode_string io_opcode[] = {
85         { NVME_OPC_FLUSH, "FLUSH" },
86         { NVME_OPC_WRITE, "WRITE" },
87         { NVME_OPC_READ, "READ" },
88         { NVME_OPC_WRITE_UNCORRECTABLE, "WRITE UNCORRECTABLE" },
89         { NVME_OPC_COMPARE, "COMPARE" },
90         { NVME_OPC_WRITE_ZEROES, "WRITE ZEROES" },
91         { NVME_OPC_DATASET_MANAGEMENT, "DATASET MANAGEMENT" },
92         { NVME_OPC_VERIFY, "VERIFY" },
93         { NVME_OPC_RESERVATION_REGISTER, "RESERVATION REGISTER" },
94         { NVME_OPC_RESERVATION_REPORT, "RESERVATION REPORT" },
95         { NVME_OPC_RESERVATION_ACQUIRE, "RESERVATION ACQUIRE" },
96         { NVME_OPC_RESERVATION_RELEASE, "RESERVATION RELEASE" },
97         { 0xFFFF, "IO COMMAND" }
98 };
99
100 static const char *
101 get_admin_opcode_string(uint16_t opc)
102 {
103         struct nvme_opcode_string *entry;
104
105         entry = admin_opcode;
106
107         while (entry->opc != 0xFFFF) {
108                 if (entry->opc == opc)
109                         return (entry->str);
110                 entry++;
111         }
112         return (entry->str);
113 }
114
115 static const char *
116 get_io_opcode_string(uint16_t opc)
117 {
118         struct nvme_opcode_string *entry;
119
120         entry = io_opcode;
121
122         while (entry->opc != 0xFFFF) {
123                 if (entry->opc == opc)
124                         return (entry->str);
125                 entry++;
126         }
127         return (entry->str);
128 }
129
130 static void
131 nvme_admin_qpair_print_command(struct nvme_qpair *qpair,
132     struct nvme_command *cmd)
133 {
134
135         nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%x "
136             "cdw10:%08x cdw11:%08x\n",
137             get_admin_opcode_string(cmd->opc), cmd->opc, qpair->id, cmd->cid,
138             le32toh(cmd->nsid), le32toh(cmd->cdw10), le32toh(cmd->cdw11));
139 }
140
141 static void
142 nvme_io_qpair_print_command(struct nvme_qpair *qpair,
143     struct nvme_command *cmd)
144 {
145
146         switch (cmd->opc) {
147         case NVME_OPC_WRITE:
148         case NVME_OPC_READ:
149         case NVME_OPC_WRITE_UNCORRECTABLE:
150         case NVME_OPC_COMPARE:
151         case NVME_OPC_WRITE_ZEROES:
152         case NVME_OPC_VERIFY:
153                 nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d "
154                     "lba:%llu len:%d\n",
155                     get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid),
156                     ((unsigned long long)le32toh(cmd->cdw11) << 32) + le32toh(cmd->cdw10),
157                     (le32toh(cmd->cdw12) & 0xFFFF) + 1);
158                 break;
159         case NVME_OPC_FLUSH:
160         case NVME_OPC_DATASET_MANAGEMENT:
161         case NVME_OPC_RESERVATION_REGISTER:
162         case NVME_OPC_RESERVATION_REPORT:
163         case NVME_OPC_RESERVATION_ACQUIRE:
164         case NVME_OPC_RESERVATION_RELEASE:
165                 nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d\n",
166                     get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid));
167                 break;
168         default:
169                 nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%d\n",
170                     get_io_opcode_string(cmd->opc), cmd->opc, qpair->id,
171                     cmd->cid, le32toh(cmd->nsid));
172                 break;
173         }
174 }
175
176 static void
177 nvme_qpair_print_command(struct nvme_qpair *qpair, struct nvme_command *cmd)
178 {
179         if (qpair->id == 0)
180                 nvme_admin_qpair_print_command(qpair, cmd);
181         else
182                 nvme_io_qpair_print_command(qpair, cmd);
183         if (nvme_verbose_cmd_dump) {
184                 nvme_printf(qpair->ctrlr,
185                     "nsid:%#x rsvd2:%#x rsvd3:%#x mptr:%#jx prp1:%#jx prp2:%#jx\n",
186                     cmd->nsid, cmd->rsvd2, cmd->rsvd3, (uintmax_t)cmd->mptr,
187                     (uintmax_t)cmd->prp1, (uintmax_t)cmd->prp2);
188                 nvme_printf(qpair->ctrlr,
189                     "cdw10: %#x cdw11:%#x cdw12:%#x cdw13:%#x cdw14:%#x cdw15:%#x\n",
190                     cmd->cdw10, cmd->cdw11, cmd->cdw12, cmd->cdw13, cmd->cdw14,
191                     cmd->cdw15);
192         }
193 }
194
195 struct nvme_status_string {
196         uint16_t        sc;
197         const char *    str;
198 };
199
200 static struct nvme_status_string generic_status[] = {
201         { NVME_SC_SUCCESS, "SUCCESS" },
202         { NVME_SC_INVALID_OPCODE, "INVALID OPCODE" },
203         { NVME_SC_INVALID_FIELD, "INVALID_FIELD" },
204         { NVME_SC_COMMAND_ID_CONFLICT, "COMMAND ID CONFLICT" },
205         { NVME_SC_DATA_TRANSFER_ERROR, "DATA TRANSFER ERROR" },
206         { NVME_SC_ABORTED_POWER_LOSS, "ABORTED - POWER LOSS" },
207         { NVME_SC_INTERNAL_DEVICE_ERROR, "INTERNAL DEVICE ERROR" },
208         { NVME_SC_ABORTED_BY_REQUEST, "ABORTED - BY REQUEST" },
209         { NVME_SC_ABORTED_SQ_DELETION, "ABORTED - SQ DELETION" },
210         { NVME_SC_ABORTED_FAILED_FUSED, "ABORTED - FAILED FUSED" },
211         { NVME_SC_ABORTED_MISSING_FUSED, "ABORTED - MISSING FUSED" },
212         { NVME_SC_INVALID_NAMESPACE_OR_FORMAT, "INVALID NAMESPACE OR FORMAT" },
213         { NVME_SC_COMMAND_SEQUENCE_ERROR, "COMMAND SEQUENCE ERROR" },
214         { NVME_SC_INVALID_SGL_SEGMENT_DESCR, "INVALID SGL SEGMENT DESCRIPTOR" },
215         { NVME_SC_INVALID_NUMBER_OF_SGL_DESCR, "INVALID NUMBER OF SGL DESCRIPTORS" },
216         { NVME_SC_DATA_SGL_LENGTH_INVALID, "DATA SGL LENGTH INVALID" },
217         { NVME_SC_METADATA_SGL_LENGTH_INVALID, "METADATA SGL LENGTH INVALID" },
218         { NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID, "SGL DESCRIPTOR TYPE INVALID" },
219         { NVME_SC_INVALID_USE_OF_CMB, "INVALID USE OF CONTROLLER MEMORY BUFFER" },
220         { NVME_SC_PRP_OFFET_INVALID, "PRP OFFET INVALID" },
221         { NVME_SC_ATOMIC_WRITE_UNIT_EXCEEDED, "ATOMIC WRITE UNIT EXCEEDED" },
222         { NVME_SC_OPERATION_DENIED, "OPERATION DENIED" },
223         { NVME_SC_SGL_OFFSET_INVALID, "SGL OFFSET INVALID" },
224         { NVME_SC_HOST_ID_INCONSISTENT_FORMAT, "HOST IDENTIFIER INCONSISTENT FORMAT" },
225         { NVME_SC_KEEP_ALIVE_TIMEOUT_EXPIRED, "KEEP ALIVE TIMEOUT EXPIRED" },
226         { NVME_SC_KEEP_ALIVE_TIMEOUT_INVALID, "KEEP ALIVE TIMEOUT INVALID" },
227         { NVME_SC_ABORTED_DUE_TO_PREEMPT, "COMMAND ABORTED DUE TO PREEMPT AND ABORT" },
228         { NVME_SC_SANITIZE_FAILED, "SANITIZE FAILED" },
229         { NVME_SC_SANITIZE_IN_PROGRESS, "SANITIZE IN PROGRESS" },
230         { NVME_SC_SGL_DATA_BLOCK_GRAN_INVALID, "SGL_DATA_BLOCK_GRANULARITY_INVALID" },
231         { NVME_SC_NOT_SUPPORTED_IN_CMB, "COMMAND NOT SUPPORTED FOR QUEUE IN CMB" },
232         { NVME_SC_NAMESPACE_IS_WRITE_PROTECTED, "NAMESPACE IS WRITE PROTECTED" },
233         { NVME_SC_COMMAND_INTERRUPTED, "COMMAND INTERRUPTED" },
234         { NVME_SC_TRANSIENT_TRANSPORT_ERROR, "TRANSIENT TRANSPORT ERROR" },
235
236         { NVME_SC_LBA_OUT_OF_RANGE, "LBA OUT OF RANGE" },
237         { NVME_SC_CAPACITY_EXCEEDED, "CAPACITY EXCEEDED" },
238         { NVME_SC_NAMESPACE_NOT_READY, "NAMESPACE NOT READY" },
239         { NVME_SC_RESERVATION_CONFLICT, "RESERVATION CONFLICT" },
240         { NVME_SC_FORMAT_IN_PROGRESS, "FORMAT IN PROGRESS" },
241         { 0xFFFF, "GENERIC" }
242 };
243
244 static struct nvme_status_string command_specific_status[] = {
245         { NVME_SC_COMPLETION_QUEUE_INVALID, "INVALID COMPLETION QUEUE" },
246         { NVME_SC_INVALID_QUEUE_IDENTIFIER, "INVALID QUEUE IDENTIFIER" },
247         { NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED, "MAX QUEUE SIZE EXCEEDED" },
248         { NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED, "ABORT CMD LIMIT EXCEEDED" },
249         { NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED, "ASYNC LIMIT EXCEEDED" },
250         { NVME_SC_INVALID_FIRMWARE_SLOT, "INVALID FIRMWARE SLOT" },
251         { NVME_SC_INVALID_FIRMWARE_IMAGE, "INVALID FIRMWARE IMAGE" },
252         { NVME_SC_INVALID_INTERRUPT_VECTOR, "INVALID INTERRUPT VECTOR" },
253         { NVME_SC_INVALID_LOG_PAGE, "INVALID LOG PAGE" },
254         { NVME_SC_INVALID_FORMAT, "INVALID FORMAT" },
255         { NVME_SC_FIRMWARE_REQUIRES_RESET, "FIRMWARE REQUIRES RESET" },
256         { NVME_SC_INVALID_QUEUE_DELETION, "INVALID QUEUE DELETION" },
257         { NVME_SC_FEATURE_NOT_SAVEABLE, "FEATURE IDENTIFIER NOT SAVEABLE" },
258         { NVME_SC_FEATURE_NOT_CHANGEABLE, "FEATURE NOT CHANGEABLE" },
259         { NVME_SC_FEATURE_NOT_NS_SPECIFIC, "FEATURE NOT NAMESPACE SPECIFIC" },
260         { NVME_SC_FW_ACT_REQUIRES_NVMS_RESET, "FIRMWARE ACTIVATION REQUIRES NVM SUBSYSTEM RESET" },
261         { NVME_SC_FW_ACT_REQUIRES_RESET, "FIRMWARE ACTIVATION REQUIRES RESET" },
262         { NVME_SC_FW_ACT_REQUIRES_TIME, "FIRMWARE ACTIVATION REQUIRES MAXIMUM TIME VIOLATION" },
263         { NVME_SC_FW_ACT_PROHIBITED, "FIRMWARE ACTIVATION PROHIBITED" },
264         { NVME_SC_OVERLAPPING_RANGE, "OVERLAPPING RANGE" },
265         { NVME_SC_NS_INSUFFICIENT_CAPACITY, "NAMESPACE INSUFFICIENT CAPACITY" },
266         { NVME_SC_NS_ID_UNAVAILABLE, "NAMESPACE IDENTIFIER UNAVAILABLE" },
267         { NVME_SC_NS_ALREADY_ATTACHED, "NAMESPACE ALREADY ATTACHED" },
268         { NVME_SC_NS_IS_PRIVATE, "NAMESPACE IS PRIVATE" },
269         { NVME_SC_NS_NOT_ATTACHED, "NS NOT ATTACHED" },
270         { NVME_SC_THIN_PROV_NOT_SUPPORTED, "THIN PROVISIONING NOT SUPPORTED" },
271         { NVME_SC_CTRLR_LIST_INVALID, "CONTROLLER LIST INVALID" },
272         { NVME_SC_SELF_TEST_IN_PROGRESS, "DEVICE SELF-TEST IN PROGRESS" },
273         { NVME_SC_BOOT_PART_WRITE_PROHIB, "BOOT PARTITION WRITE PROHIBITED" },
274         { NVME_SC_INVALID_CTRLR_ID, "INVALID CONTROLLER IDENTIFIER" },
275         { NVME_SC_INVALID_SEC_CTRLR_STATE, "INVALID SECONDARY CONTROLLER STATE" },
276         { NVME_SC_INVALID_NUM_OF_CTRLR_RESRC, "INVALID NUMBER OF CONTROLLER RESOURCES" },
277         { NVME_SC_INVALID_RESOURCE_ID, "INVALID RESOURCE IDENTIFIER" },
278         { NVME_SC_SANITIZE_PROHIBITED_WPMRE, "SANITIZE PROHIBITED WRITE PERSISTENT MEMORY REGION ENABLED" },
279         { NVME_SC_ANA_GROUP_ID_INVALID, "ANA GROUP IDENTIFIED INVALID" },
280         { NVME_SC_ANA_ATTACH_FAILED, "ANA ATTACH FAILED" },
281
282         { NVME_SC_CONFLICTING_ATTRIBUTES, "CONFLICTING ATTRIBUTES" },
283         { NVME_SC_INVALID_PROTECTION_INFO, "INVALID PROTECTION INFO" },
284         { NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE, "WRITE TO RO PAGE" },
285         { 0xFFFF, "COMMAND SPECIFIC" }
286 };
287
288 static struct nvme_status_string media_error_status[] = {
289         { NVME_SC_WRITE_FAULTS, "WRITE FAULTS" },
290         { NVME_SC_UNRECOVERED_READ_ERROR, "UNRECOVERED READ ERROR" },
291         { NVME_SC_GUARD_CHECK_ERROR, "GUARD CHECK ERROR" },
292         { NVME_SC_APPLICATION_TAG_CHECK_ERROR, "APPLICATION TAG CHECK ERROR" },
293         { NVME_SC_REFERENCE_TAG_CHECK_ERROR, "REFERENCE TAG CHECK ERROR" },
294         { NVME_SC_COMPARE_FAILURE, "COMPARE FAILURE" },
295         { NVME_SC_ACCESS_DENIED, "ACCESS DENIED" },
296         { NVME_SC_DEALLOCATED_OR_UNWRITTEN, "DEALLOCATED OR UNWRITTEN LOGICAL BLOCK" },
297         { 0xFFFF, "MEDIA ERROR" }
298 };
299
300 static struct nvme_status_string path_related_status[] = {
301         { NVME_SC_INTERNAL_PATH_ERROR, "INTERNAL PATH ERROR" },
302         { NVME_SC_ASYMMETRIC_ACCESS_PERSISTENT_LOSS, "ASYMMETRIC ACCESS PERSISTENT LOSS" },
303         { NVME_SC_ASYMMETRIC_ACCESS_INACCESSIBLE, "ASYMMETRIC ACCESS INACCESSIBLE" },
304         { NVME_SC_ASYMMETRIC_ACCESS_TRANSITION, "ASYMMETRIC ACCESS TRANSITION" },
305         { NVME_SC_CONTROLLER_PATHING_ERROR, "CONTROLLER PATHING ERROR" },
306         { NVME_SC_HOST_PATHING_ERROR, "HOST PATHING ERROR" },
307         { NVME_SC_COMMAND_ABOTHED_BY_HOST, "COMMAND ABOTHED BY HOST" },
308         { 0xFFFF, "PATH RELATED" },
309 };
310
311 static const char *
312 get_status_string(uint16_t sct, uint16_t sc)
313 {
314         struct nvme_status_string *entry;
315
316         switch (sct) {
317         case NVME_SCT_GENERIC:
318                 entry = generic_status;
319                 break;
320         case NVME_SCT_COMMAND_SPECIFIC:
321                 entry = command_specific_status;
322                 break;
323         case NVME_SCT_MEDIA_ERROR:
324                 entry = media_error_status;
325                 break;
326         case NVME_SCT_PATH_RELATED:
327                 entry = path_related_status;
328                 break;
329         case NVME_SCT_VENDOR_SPECIFIC:
330                 return ("VENDOR SPECIFIC");
331         default:
332                 return ("RESERVED");
333         }
334
335         while (entry->sc != 0xFFFF) {
336                 if (entry->sc == sc)
337                         return (entry->str);
338                 entry++;
339         }
340         return (entry->str);
341 }
342
343 static void
344 nvme_qpair_print_completion(struct nvme_qpair *qpair,
345     struct nvme_completion *cpl)
346 {
347         uint16_t sct, sc;
348
349         sct = NVME_STATUS_GET_SCT(cpl->status);
350         sc = NVME_STATUS_GET_SC(cpl->status);
351
352         nvme_printf(qpair->ctrlr, "%s (%02x/%02x) sqid:%d cid:%d cdw0:%x\n",
353             get_status_string(sct, sc), sct, sc, cpl->sqid, cpl->cid,
354             cpl->cdw0);
355 }
356
357 static bool
358 nvme_completion_is_retry(const struct nvme_completion *cpl)
359 {
360         uint8_t sct, sc, dnr;
361
362         sct = NVME_STATUS_GET_SCT(cpl->status);
363         sc = NVME_STATUS_GET_SC(cpl->status);
364         dnr = NVME_STATUS_GET_DNR(cpl->status); /* Do Not Retry Bit */
365
366         /*
367          * TODO: spec is not clear how commands that are aborted due
368          *  to TLER will be marked.  So for now, it seems
369          *  NAMESPACE_NOT_READY is the only case where we should
370          *  look at the DNR bit. Requests failed with ABORTED_BY_REQUEST
371          *  set the DNR bit correctly since the driver controls that.
372          */
373         switch (sct) {
374         case NVME_SCT_GENERIC:
375                 switch (sc) {
376                 case NVME_SC_ABORTED_BY_REQUEST:
377                 case NVME_SC_NAMESPACE_NOT_READY:
378                         if (dnr)
379                                 return (0);
380                         else
381                                 return (1);
382                 case NVME_SC_INVALID_OPCODE:
383                 case NVME_SC_INVALID_FIELD:
384                 case NVME_SC_COMMAND_ID_CONFLICT:
385                 case NVME_SC_DATA_TRANSFER_ERROR:
386                 case NVME_SC_ABORTED_POWER_LOSS:
387                 case NVME_SC_INTERNAL_DEVICE_ERROR:
388                 case NVME_SC_ABORTED_SQ_DELETION:
389                 case NVME_SC_ABORTED_FAILED_FUSED:
390                 case NVME_SC_ABORTED_MISSING_FUSED:
391                 case NVME_SC_INVALID_NAMESPACE_OR_FORMAT:
392                 case NVME_SC_COMMAND_SEQUENCE_ERROR:
393                 case NVME_SC_LBA_OUT_OF_RANGE:
394                 case NVME_SC_CAPACITY_EXCEEDED:
395                 default:
396                         return (0);
397                 }
398         case NVME_SCT_COMMAND_SPECIFIC:
399         case NVME_SCT_MEDIA_ERROR:
400                 return (0);
401         case NVME_SCT_PATH_RELATED:
402                 switch (sc) {
403                 case NVME_SC_INTERNAL_PATH_ERROR:
404                         if (dnr)
405                                 return (0);
406                         else
407                                 return (1);
408                 default:
409                         return (0);
410                 }
411         case NVME_SCT_VENDOR_SPECIFIC:
412         default:
413                 return (0);
414         }
415 }
416
417 static void
418 nvme_qpair_complete_tracker(struct nvme_tracker *tr,
419     struct nvme_completion *cpl, error_print_t print_on_error)
420 {
421         struct nvme_qpair * qpair = tr->qpair;
422         struct nvme_request     *req;
423         bool                    retry, error, retriable;
424
425         req = tr->req;
426         error = nvme_completion_is_error(cpl);
427         retriable = nvme_completion_is_retry(cpl);
428         retry = error && retriable && req->retries < nvme_retry_count;
429         if (retry)
430                 qpair->num_retries++;
431         if (error && req->retries >= nvme_retry_count && retriable)
432                 qpair->num_failures++;
433
434         if (error && (print_on_error == ERROR_PRINT_ALL ||
435                 (!retry && print_on_error == ERROR_PRINT_NO_RETRY))) {
436                 nvme_qpair_print_command(qpair, &req->cmd);
437                 nvme_qpair_print_completion(qpair, cpl);
438         }
439
440         qpair->act_tr[cpl->cid] = NULL;
441
442         KASSERT(cpl->cid == req->cmd.cid, ("cpl cid does not match cmd cid\n"));
443
444         if (!retry) {
445                 if (req->type != NVME_REQUEST_NULL) {
446                         bus_dmamap_sync(qpair->dma_tag_payload,
447                             tr->payload_dma_map,
448                             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
449                 }
450                 if (req->cb_fn)
451                         req->cb_fn(req->cb_arg, cpl);
452         }
453
454         mtx_lock(&qpair->lock);
455
456         if (retry) {
457                 req->retries++;
458                 nvme_qpair_submit_tracker(qpair, tr);
459         } else {
460                 if (req->type != NVME_REQUEST_NULL) {
461                         bus_dmamap_unload(qpair->dma_tag_payload,
462                             tr->payload_dma_map);
463                 }
464
465                 nvme_free_request(req);
466                 tr->req = NULL;
467
468                 TAILQ_REMOVE(&qpair->outstanding_tr, tr, tailq);
469                 TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
470
471                 /*
472                  * If the controller is in the middle of resetting, don't
473                  *  try to submit queued requests here - let the reset logic
474                  *  handle that instead.
475                  */
476                 if (!STAILQ_EMPTY(&qpair->queued_req) &&
477                     !qpair->ctrlr->is_resetting) {
478                         req = STAILQ_FIRST(&qpair->queued_req);
479                         STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
480                         _nvme_qpair_submit_request(qpair, req);
481                 }
482         }
483
484         mtx_unlock(&qpair->lock);
485 }
486
487 static void
488 nvme_qpair_manual_complete_tracker(
489     struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
490     error_print_t print_on_error)
491 {
492         struct nvme_completion  cpl;
493
494         memset(&cpl, 0, sizeof(cpl));
495
496         struct nvme_qpair * qpair = tr->qpair;
497
498         cpl.sqid = qpair->id;
499         cpl.cid = tr->cid;
500         cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
501         cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
502         cpl.status |= (dnr & NVME_STATUS_DNR_MASK) << NVME_STATUS_DNR_SHIFT;
503         nvme_qpair_complete_tracker(tr, &cpl, print_on_error);
504 }
505
506 void
507 nvme_qpair_manual_complete_request(struct nvme_qpair *qpair,
508     struct nvme_request *req, uint32_t sct, uint32_t sc)
509 {
510         struct nvme_completion  cpl;
511         bool                    error;
512
513         memset(&cpl, 0, sizeof(cpl));
514         cpl.sqid = qpair->id;
515         cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
516         cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
517
518         error = nvme_completion_is_error(&cpl);
519
520         if (error) {
521                 nvme_qpair_print_command(qpair, &req->cmd);
522                 nvme_qpair_print_completion(qpair, &cpl);
523         }
524
525         if (req->cb_fn)
526                 req->cb_fn(req->cb_arg, &cpl);
527
528         nvme_free_request(req);
529 }
530
531 bool
532 nvme_qpair_process_completions(struct nvme_qpair *qpair)
533 {
534         struct nvme_tracker     *tr;
535         struct nvme_completion  cpl;
536         int done = 0;
537         bool in_panic = dumping || SCHEDULER_STOPPED();
538
539         /*
540          * qpair is not enabled, likely because a controller reset is is in
541          * progress.  Ignore the interrupt - any I/O that was associated with
542          * this interrupt will get retried when the reset is complete. Any
543          * pending completions for when we're in startup will be completed
544          * as soon as initialization is complete and we start sending commands
545          * to the device.
546          */
547         if (qpair->recovery_state != RECOVERY_NONE) {
548                 qpair->num_ignored++;
549                 return (false);
550         }
551
552         /*
553          * Sanity check initialization. After we reset the hardware, the phase
554          * is defined to be 1. So if we get here with zero prior calls and the
555          * phase is 0, it means that we've lost a race between the
556          * initialization and the ISR running. With the phase wrong, we'll
557          * process a bunch of completions that aren't really completions leading
558          * to a KASSERT below.
559          */
560         KASSERT(!(qpair->num_intr_handler_calls == 0 && qpair->phase == 0),
561             ("%s: Phase wrong for first interrupt call.",
562                 device_get_nameunit(qpair->ctrlr->dev)));
563
564         qpair->num_intr_handler_calls++;
565
566         bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
567             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
568         /*
569          * A panic can stop the CPU this routine is running on at any point.  If
570          * we're called during a panic, complete the sq_head wrap protocol for
571          * the case where we are interrupted just after the increment at 1
572          * below, but before we can reset cq_head to zero at 2. Also cope with
573          * the case where we do the zero at 2, but may or may not have done the
574          * phase adjustment at step 3. The panic machinery flushes all pending
575          * memory writes, so we can make these strong ordering assumptions
576          * that would otherwise be unwise if we were racing in real time.
577          */
578         if (__predict_false(in_panic)) {
579                 if (qpair->cq_head == qpair->num_entries) {
580                         /*
581                          * Here we know that we need to zero cq_head and then negate
582                          * the phase, which hasn't been assigned if cq_head isn't
583                          * zero due to the atomic_store_rel.
584                          */
585                         qpair->cq_head = 0;
586                         qpair->phase = !qpair->phase;
587                 } else if (qpair->cq_head == 0) {
588                         /*
589                          * In this case, we know that the assignment at 2
590                          * happened below, but we don't know if it 3 happened or
591                          * not. To do this, we look at the last completion
592                          * entry and set the phase to the opposite phase
593                          * that it has. This gets us back in sync
594                          */
595                         cpl = qpair->cpl[qpair->num_entries - 1];
596                         nvme_completion_swapbytes(&cpl);
597                         qpair->phase = !NVME_STATUS_GET_P(cpl.status);
598                 }
599         }
600
601         while (1) {
602                 uint16_t status;
603
604                 /*
605                  * We need to do this dance to avoid a race between the host and
606                  * the device where the device overtakes the host while the host
607                  * is reading this record, leaving the status field 'new' and
608                  * the sqhd and cid fields potentially stale. If the phase
609                  * doesn't match, that means status hasn't yet been updated and
610                  * we'll get any pending changes next time. It also means that
611                  * the phase must be the same the second time. We have to sync
612                  * before reading to ensure any bouncing completes.
613                  */
614                 status = le16toh(qpair->cpl[qpair->cq_head].status);
615                 if (NVME_STATUS_GET_P(status) != qpair->phase)
616                         break;
617
618                 bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
619                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
620                 cpl = qpair->cpl[qpair->cq_head];
621                 nvme_completion_swapbytes(&cpl);
622
623                 KASSERT(
624                     NVME_STATUS_GET_P(status) == NVME_STATUS_GET_P(cpl.status),
625                     ("Phase unexpectedly inconsistent"));
626
627                 if (cpl.cid < qpair->num_trackers)
628                         tr = qpair->act_tr[cpl.cid];
629                 else
630                         tr = NULL;
631
632                 if (tr != NULL) {
633                         nvme_qpair_complete_tracker(tr, &cpl, ERROR_PRINT_ALL);
634                         qpair->sq_head = cpl.sqhd;
635                         done++;
636                 } else if (!in_panic) {
637                         /*
638                          * A missing tracker is normally an error.  However, a
639                          * panic can stop the CPU this routine is running on
640                          * after completing an I/O but before updating
641                          * qpair->cq_head at 1 below.  Later, we re-enter this
642                          * routine to poll I/O associated with the kernel
643                          * dump. We find that the tr has been set to null before
644                          * calling the completion routine.  If it hasn't
645                          * completed (or it triggers a panic), then '1' below
646                          * won't have updated cq_head. Rather than panic again,
647                          * ignore this condition because it's not unexpected.
648                          */
649                         nvme_printf(qpair->ctrlr,
650                             "cpl (cid = %u) does not map to outstanding cmd\n",
651                                 cpl.cid);
652                         /* nvme_dump_completion expects device endianess */
653                         nvme_dump_completion(&qpair->cpl[qpair->cq_head]);
654                         KASSERT(0, ("received completion for unknown cmd"));
655                 }
656
657                 /*
658                  * There's a number of races with the following (see above) when
659                  * the system panics. We compensate for each one of them by
660                  * using the atomic store to force strong ordering (at least when
661                  * viewed in the aftermath of a panic).
662                  */
663                 if (++qpair->cq_head == qpair->num_entries) {           /* 1 */
664                         atomic_store_rel_int(&qpair->cq_head, 0);       /* 2 */
665                         qpair->phase = !qpair->phase;                   /* 3 */
666                 }
667
668                 bus_space_write_4(qpair->ctrlr->bus_tag, qpair->ctrlr->bus_handle,
669                     qpair->cq_hdbl_off, qpair->cq_head);
670         }
671         return (done != 0);
672 }
673
674 static void
675 nvme_qpair_msi_handler(void *arg)
676 {
677         struct nvme_qpair *qpair = arg;
678
679         nvme_qpair_process_completions(qpair);
680 }
681
682 int
683 nvme_qpair_construct(struct nvme_qpair *qpair,
684     uint32_t num_entries, uint32_t num_trackers,
685     struct nvme_controller *ctrlr)
686 {
687         struct nvme_tracker     *tr;
688         size_t                  cmdsz, cplsz, prpsz, allocsz, prpmemsz;
689         uint64_t                queuemem_phys, prpmem_phys, list_phys;
690         uint8_t                 *queuemem, *prpmem, *prp_list;
691         int                     i, err;
692
693         qpair->vector = ctrlr->msi_count > 1 ? qpair->id : 0;
694         qpair->num_entries = num_entries;
695         qpair->num_trackers = num_trackers;
696         qpair->ctrlr = ctrlr;
697
698         mtx_init(&qpair->lock, "nvme qpair lock", NULL, MTX_DEF);
699
700         /* Note: NVMe PRP format is restricted to 4-byte alignment. */
701         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
702             4, PAGE_SIZE, BUS_SPACE_MAXADDR,
703             BUS_SPACE_MAXADDR, NULL, NULL, ctrlr->max_xfer_size,
704             btoc(ctrlr->max_xfer_size) + 1, PAGE_SIZE, 0,
705             NULL, NULL, &qpair->dma_tag_payload);
706         if (err != 0) {
707                 nvme_printf(ctrlr, "payload tag create failed %d\n", err);
708                 goto out;
709         }
710
711         /*
712          * Each component must be page aligned, and individual PRP lists
713          * cannot cross a page boundary.
714          */
715         cmdsz = qpair->num_entries * sizeof(struct nvme_command);
716         cmdsz = roundup2(cmdsz, PAGE_SIZE);
717         cplsz = qpair->num_entries * sizeof(struct nvme_completion);
718         cplsz = roundup2(cplsz, PAGE_SIZE);
719         /*
720          * For commands requiring more than 2 PRP entries, one PRP will be
721          * embedded in the command (prp1), and the rest of the PRP entries
722          * will be in a list pointed to by the command (prp2).
723          */
724         prpsz = sizeof(uint64_t) * btoc(ctrlr->max_xfer_size);
725         prpmemsz = qpair->num_trackers * prpsz;
726         allocsz = cmdsz + cplsz + prpmemsz;
727
728         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
729             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
730             allocsz, 1, allocsz, 0, NULL, NULL, &qpair->dma_tag);
731         if (err != 0) {
732                 nvme_printf(ctrlr, "tag create failed %d\n", err);
733                 goto out;
734         }
735         bus_dma_tag_set_domain(qpair->dma_tag, qpair->domain);
736
737         if (bus_dmamem_alloc(qpair->dma_tag, (void **)&queuemem,
738              BUS_DMA_COHERENT | BUS_DMA_NOWAIT, &qpair->queuemem_map)) {
739                 nvme_printf(ctrlr, "failed to alloc qpair memory\n");
740                 goto out;
741         }
742
743         if (bus_dmamap_load(qpair->dma_tag, qpair->queuemem_map,
744             queuemem, allocsz, nvme_single_map, &queuemem_phys, 0) != 0) {
745                 nvme_printf(ctrlr, "failed to load qpair memory\n");
746                 bus_dmamem_free(qpair->dma_tag, qpair->cmd,
747                     qpair->queuemem_map);
748                 goto out;
749         }
750
751         qpair->num_cmds = 0;
752         qpair->num_intr_handler_calls = 0;
753         qpair->num_retries = 0;
754         qpair->num_failures = 0;
755         qpair->num_ignored = 0;
756         qpair->cmd = (struct nvme_command *)queuemem;
757         qpair->cpl = (struct nvme_completion *)(queuemem + cmdsz);
758         prpmem = (uint8_t *)(queuemem + cmdsz + cplsz);
759         qpair->cmd_bus_addr = queuemem_phys;
760         qpair->cpl_bus_addr = queuemem_phys + cmdsz;
761         prpmem_phys = queuemem_phys + cmdsz + cplsz;
762
763         callout_init(&qpair->timer, 1);
764         qpair->timer_armed = false;
765         qpair->recovery_state = RECOVERY_WAITING;
766
767         /*
768          * Calcuate the stride of the doorbell register. Many emulators set this
769          * value to correspond to a cache line. However, some hardware has set
770          * it to various small values.
771          */
772         qpair->sq_tdbl_off = nvme_mmio_offsetof(doorbell[0]) +
773             (qpair->id << (ctrlr->dstrd + 1));
774         qpair->cq_hdbl_off = nvme_mmio_offsetof(doorbell[0]) +
775             (qpair->id << (ctrlr->dstrd + 1)) + (1 << ctrlr->dstrd);
776
777         TAILQ_INIT(&qpair->free_tr);
778         TAILQ_INIT(&qpair->outstanding_tr);
779         STAILQ_INIT(&qpair->queued_req);
780
781         list_phys = prpmem_phys;
782         prp_list = prpmem;
783         for (i = 0; i < qpair->num_trackers; i++) {
784                 if (list_phys + prpsz > prpmem_phys + prpmemsz) {
785                         qpair->num_trackers = i;
786                         break;
787                 }
788
789                 /*
790                  * Make sure that the PRP list for this tracker doesn't
791                  * overflow to another page.
792                  */
793                 if (trunc_page(list_phys) !=
794                     trunc_page(list_phys + prpsz - 1)) {
795                         list_phys = roundup2(list_phys, PAGE_SIZE);
796                         prp_list =
797                             (uint8_t *)roundup2((uintptr_t)prp_list, PAGE_SIZE);
798                 }
799
800                 tr = malloc_domainset(sizeof(*tr), M_NVME,
801                     DOMAINSET_PREF(qpair->domain), M_ZERO | M_WAITOK);
802                 bus_dmamap_create(qpair->dma_tag_payload, 0,
803                     &tr->payload_dma_map);
804                 tr->cid = i;
805                 tr->qpair = qpair;
806                 tr->prp = (uint64_t *)prp_list;
807                 tr->prp_bus_addr = list_phys;
808                 TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
809                 list_phys += prpsz;
810                 prp_list += prpsz;
811         }
812
813         if (qpair->num_trackers == 0) {
814                 nvme_printf(ctrlr, "failed to allocate enough trackers\n");
815                 goto out;
816         }
817
818         qpair->act_tr = malloc_domainset(sizeof(struct nvme_tracker *) *
819             qpair->num_entries, M_NVME, DOMAINSET_PREF(qpair->domain),
820             M_ZERO | M_WAITOK);
821
822         if (ctrlr->msi_count > 1) {
823                 /*
824                  * MSI-X vector resource IDs start at 1, so we add one to
825                  *  the queue's vector to get the corresponding rid to use.
826                  */
827                 qpair->rid = qpair->vector + 1;
828
829                 qpair->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
830                     &qpair->rid, RF_ACTIVE);
831                 if (qpair->res == NULL) {
832                         nvme_printf(ctrlr, "unable to allocate MSI\n");
833                         goto out;
834                 }
835                 if (bus_setup_intr(ctrlr->dev, qpair->res,
836                     INTR_TYPE_MISC | INTR_MPSAFE, NULL,
837                     nvme_qpair_msi_handler, qpair, &qpair->tag) != 0) {
838                         nvme_printf(ctrlr, "unable to setup MSI\n");
839                         goto out;
840                 }
841                 if (qpair->id == 0) {
842                         bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
843                             "admin");
844                 } else {
845                         bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
846                             "io%d", qpair->id - 1);
847                 }
848         }
849
850         return (0);
851
852 out:
853         nvme_qpair_destroy(qpair);
854         return (ENOMEM);
855 }
856
857 static void
858 nvme_qpair_destroy(struct nvme_qpair *qpair)
859 {
860         struct nvme_tracker     *tr;
861
862         callout_drain(&qpair->timer);
863
864         if (qpair->tag) {
865                 bus_teardown_intr(qpair->ctrlr->dev, qpair->res, qpair->tag);
866                 qpair->tag = NULL;
867         }
868
869         if (qpair->act_tr) {
870                 free(qpair->act_tr, M_NVME);
871                 qpair->act_tr = NULL;
872         }
873
874         while (!TAILQ_EMPTY(&qpair->free_tr)) {
875                 tr = TAILQ_FIRST(&qpair->free_tr);
876                 TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
877                 bus_dmamap_destroy(qpair->dma_tag_payload,
878                     tr->payload_dma_map);
879                 free(tr, M_NVME);
880         }
881
882         if (qpair->cmd != NULL) {
883                 bus_dmamap_unload(qpair->dma_tag, qpair->queuemem_map);
884                 bus_dmamem_free(qpair->dma_tag, qpair->cmd,
885                     qpair->queuemem_map);
886                 qpair->cmd = NULL;
887         }
888
889         if (qpair->dma_tag) {
890                 bus_dma_tag_destroy(qpair->dma_tag);
891                 qpair->dma_tag = NULL;
892         }
893
894         if (qpair->dma_tag_payload) {
895                 bus_dma_tag_destroy(qpair->dma_tag_payload);
896                 qpair->dma_tag_payload = NULL;
897         }
898
899         if (mtx_initialized(&qpair->lock))
900                 mtx_destroy(&qpair->lock);
901
902         if (qpair->res) {
903                 bus_release_resource(qpair->ctrlr->dev, SYS_RES_IRQ,
904                     rman_get_rid(qpair->res), qpair->res);
905                 qpair->res = NULL;
906         }
907 }
908
909 static void
910 nvme_admin_qpair_abort_aers(struct nvme_qpair *qpair)
911 {
912         struct nvme_tracker     *tr;
913
914         tr = TAILQ_FIRST(&qpair->outstanding_tr);
915         while (tr != NULL) {
916                 if (tr->req->cmd.opc == NVME_OPC_ASYNC_EVENT_REQUEST) {
917                         nvme_qpair_manual_complete_tracker(tr,
918                             NVME_SCT_GENERIC, NVME_SC_ABORTED_SQ_DELETION, 0,
919                             ERROR_PRINT_NONE);
920                         tr = TAILQ_FIRST(&qpair->outstanding_tr);
921                 } else {
922                         tr = TAILQ_NEXT(tr, tailq);
923                 }
924         }
925 }
926
927 void
928 nvme_admin_qpair_destroy(struct nvme_qpair *qpair)
929 {
930
931         nvme_admin_qpair_abort_aers(qpair);
932         nvme_qpair_destroy(qpair);
933 }
934
935 void
936 nvme_io_qpair_destroy(struct nvme_qpair *qpair)
937 {
938
939         nvme_qpair_destroy(qpair);
940 }
941
942 static void
943 nvme_qpair_timeout(void *arg)
944 {
945         struct nvme_qpair       *qpair = arg;
946         struct nvme_controller  *ctrlr = qpair->ctrlr;
947         struct nvme_tracker     *tr;
948         struct nvme_tracker     *tr_temp;
949         sbintime_t              now;
950         bool                    idle;
951         uint32_t                csts;
952         uint8_t                 cfs;
953
954         mtx_lock(&qpair->lock);
955         idle = TAILQ_EMPTY(&qpair->outstanding_tr);
956 again:
957         switch (qpair->recovery_state) {
958         case RECOVERY_NONE:
959                 if (idle)
960                         break;
961                 now = getsbinuptime();
962                 TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
963                         if (now > tr->deadline && tr->deadline != 0) {
964                                 /*
965                                  * We're now passed our earliest deadline. We
966                                  * need to do expensive things to cope, but next
967                                  * time. Flag that and close the door to any
968                                  * further processing.
969                                  */
970                                 qpair->recovery_state = RECOVERY_START;
971                                 nvme_printf(ctrlr, "RECOVERY_START %jd vs %jd\n",
972                                     (uintmax_t)now, (uintmax_t)tr->deadline);
973                                 break;
974                         }
975                 }
976                 break;
977         case RECOVERY_START:
978                 /*
979                  * Read csts to get value of cfs - controller fatal status.
980                  * If no fatal status, try to call the completion routine, and
981                  * if completes transactions, report a missed interrupt and
982                  * return (this may need to be rate limited). Otherwise, if
983                  * aborts are enabled and the controller is not reporting
984                  * fatal status, abort the command. Otherwise, just reset the
985                  * controller and hope for the best.
986                  */
987                 csts = nvme_mmio_read_4(ctrlr, csts);
988                 cfs = (csts >> NVME_CSTS_REG_CFS_SHIFT) & NVME_CSTS_REG_CFS_MASK;
989                 if (cfs) {
990                         nvme_printf(ctrlr, "Controller in fatal status, resetting\n");
991                         qpair->recovery_state = RECOVERY_RESET;
992                         goto again;
993                 }
994                 mtx_unlock(&qpair->lock);
995                 if (nvme_qpair_process_completions(qpair)) {
996                         nvme_printf(ctrlr, "Completions present in output without an interrupt\n");
997                         qpair->recovery_state = RECOVERY_NONE;
998                 } else {
999                         nvme_printf(ctrlr, "timeout with nothing complete, resetting\n");
1000                         qpair->recovery_state = RECOVERY_RESET;
1001                         mtx_lock(&qpair->lock);
1002                         goto again;
1003                 }
1004                 mtx_lock(&qpair->lock);
1005                 break;
1006         case RECOVERY_RESET:
1007                 /*
1008                  * If we get here due to a possible surprise hot-unplug event,
1009                  * then we let nvme_ctrlr_reset confirm and fail the
1010                  * controller.
1011                  */
1012                 nvme_printf(ctrlr, "Resetting controller due to a timeout%s.\n",
1013                     cfs ? " and fatal error status" : "");
1014                 nvme_printf(ctrlr, "RECOVERY_WAITING\n");
1015                 qpair->recovery_state = RECOVERY_WAITING;
1016                 nvme_ctrlr_reset(ctrlr);
1017                 break;
1018         case RECOVERY_WAITING:
1019                 nvme_printf(ctrlr, "waiting\n");
1020                 break;
1021         }
1022
1023         /*
1024          * Rearm the timeout.
1025          */
1026         if (!idle) {
1027                 callout_schedule(&qpair->timer, hz / 2);
1028         } else {
1029                 qpair->timer_armed = false;
1030         }
1031         mtx_unlock(&qpair->lock);
1032 }
1033
1034 /*
1035  * Submit the tracker to the hardware. Must already be in the
1036  * outstanding queue when called.
1037  */
1038 void
1039 nvme_qpair_submit_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr)
1040 {
1041         struct nvme_request     *req;
1042         struct nvme_controller  *ctrlr;
1043         int timeout;
1044
1045         mtx_assert(&qpair->lock, MA_OWNED);
1046
1047         req = tr->req;
1048         req->cmd.cid = tr->cid;
1049         qpair->act_tr[tr->cid] = tr;
1050         ctrlr = qpair->ctrlr;
1051
1052         if (req->timeout) {
1053                 if (req->cb_fn == nvme_completion_poll_cb)
1054                         timeout = 1;
1055                 else
1056                         timeout = ctrlr->timeout_period;
1057                 tr->deadline = getsbinuptime() + timeout * SBT_1S;
1058                 if (!qpair->timer_armed) {
1059                         qpair->timer_armed = true;
1060                         callout_reset_on(&qpair->timer, hz / 2,
1061                             nvme_qpair_timeout, qpair, qpair->cpu);
1062                 }
1063         } else
1064                 tr->deadline = SBT_MAX;
1065
1066         /* Copy the command from the tracker to the submission queue. */
1067         memcpy(&qpair->cmd[qpair->sq_tail], &req->cmd, sizeof(req->cmd));
1068
1069         if (++qpair->sq_tail == qpair->num_entries)
1070                 qpair->sq_tail = 0;
1071
1072         bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
1073             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1074         bus_space_write_4(qpair->ctrlr->bus_tag, qpair->ctrlr->bus_handle,
1075             qpair->sq_tdbl_off, qpair->sq_tail);
1076         qpair->num_cmds++;
1077 }
1078
1079 static void
1080 nvme_payload_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
1081 {
1082         struct nvme_tracker     *tr = arg;
1083         uint32_t                cur_nseg;
1084
1085         /*
1086          * If the mapping operation failed, return immediately.  The caller
1087          *  is responsible for detecting the error status and failing the
1088          *  tracker manually.
1089          */
1090         if (error != 0) {
1091                 nvme_printf(tr->qpair->ctrlr,
1092                     "nvme_payload_map err %d\n", error);
1093                 return;
1094         }
1095
1096         /*
1097          * Note that we specified PAGE_SIZE for alignment and max
1098          *  segment size when creating the bus dma tags.  So here
1099          *  we can safely just transfer each segment to its
1100          *  associated PRP entry.
1101          */
1102         tr->req->cmd.prp1 = htole64(seg[0].ds_addr);
1103
1104         if (nseg == 2) {
1105                 tr->req->cmd.prp2 = htole64(seg[1].ds_addr);
1106         } else if (nseg > 2) {
1107                 cur_nseg = 1;
1108                 tr->req->cmd.prp2 = htole64((uint64_t)tr->prp_bus_addr);
1109                 while (cur_nseg < nseg) {
1110                         tr->prp[cur_nseg-1] =
1111                             htole64((uint64_t)seg[cur_nseg].ds_addr);
1112                         cur_nseg++;
1113                 }
1114         } else {
1115                 /*
1116                  * prp2 should not be used by the controller
1117                  *  since there is only one segment, but set
1118                  *  to 0 just to be safe.
1119                  */
1120                 tr->req->cmd.prp2 = 0;
1121         }
1122
1123         bus_dmamap_sync(tr->qpair->dma_tag_payload, tr->payload_dma_map,
1124             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1125         nvme_qpair_submit_tracker(tr->qpair, tr);
1126 }
1127
1128 static void
1129 _nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
1130 {
1131         struct nvme_tracker     *tr;
1132         int                     err = 0;
1133
1134         mtx_assert(&qpair->lock, MA_OWNED);
1135
1136         tr = TAILQ_FIRST(&qpair->free_tr);
1137         req->qpair = qpair;
1138
1139         if (tr == NULL || qpair->recovery_state != RECOVERY_NONE) {
1140                 /*
1141                  * No tracker is available, or the qpair is disabled due to
1142                  *  an in-progress controller-level reset or controller
1143                  *  failure.
1144                  */
1145
1146                 if (qpair->ctrlr->is_failed) {
1147                         /*
1148                          * The controller has failed, so fail the request.
1149                          */
1150                         nvme_qpair_manual_complete_request(qpair, req,
1151                             NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST);
1152                 } else {
1153                         /*
1154                          * Put the request on the qpair's request queue to be
1155                          *  processed when a tracker frees up via a command
1156                          *  completion or when the controller reset is
1157                          *  completed.
1158                          */
1159                         STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
1160                 }
1161                 return;
1162         }
1163
1164         TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
1165         TAILQ_INSERT_TAIL(&qpair->outstanding_tr, tr, tailq);
1166         if (!qpair->timer_armed)
1167                 tr->deadline = SBT_MAX;
1168         tr->req = req;
1169
1170         switch (req->type) {
1171         case NVME_REQUEST_VADDR:
1172                 KASSERT(req->payload_size <= qpair->ctrlr->max_xfer_size,
1173                     ("payload_size (%d) exceeds max_xfer_size (%d)\n",
1174                     req->payload_size, qpair->ctrlr->max_xfer_size));
1175                 err = bus_dmamap_load(tr->qpair->dma_tag_payload,
1176                     tr->payload_dma_map, req->u.payload, req->payload_size,
1177                     nvme_payload_map, tr, 0);
1178                 if (err != 0)
1179                         nvme_printf(qpair->ctrlr,
1180                             "bus_dmamap_load returned 0x%x!\n", err);
1181                 break;
1182         case NVME_REQUEST_NULL:
1183                 nvme_qpair_submit_tracker(tr->qpair, tr);
1184                 break;
1185         case NVME_REQUEST_BIO:
1186                 KASSERT(req->u.bio->bio_bcount <= qpair->ctrlr->max_xfer_size,
1187                     ("bio->bio_bcount (%jd) exceeds max_xfer_size (%d)\n",
1188                     (intmax_t)req->u.bio->bio_bcount,
1189                     qpair->ctrlr->max_xfer_size));
1190                 err = bus_dmamap_load_bio(tr->qpair->dma_tag_payload,
1191                     tr->payload_dma_map, req->u.bio, nvme_payload_map, tr, 0);
1192                 if (err != 0)
1193                         nvme_printf(qpair->ctrlr,
1194                             "bus_dmamap_load_bio returned 0x%x!\n", err);
1195                 break;
1196         case NVME_REQUEST_CCB:
1197                 err = bus_dmamap_load_ccb(tr->qpair->dma_tag_payload,
1198                     tr->payload_dma_map, req->u.payload,
1199                     nvme_payload_map, tr, 0);
1200                 if (err != 0)
1201                         nvme_printf(qpair->ctrlr,
1202                             "bus_dmamap_load_ccb returned 0x%x!\n", err);
1203                 break;
1204         default:
1205                 panic("unknown nvme request type 0x%x\n", req->type);
1206                 break;
1207         }
1208
1209         if (err != 0) {
1210                 /*
1211                  * The dmamap operation failed, so we manually fail the
1212                  *  tracker here with DATA_TRANSFER_ERROR status.
1213                  *
1214                  * nvme_qpair_manual_complete_tracker must not be called
1215                  *  with the qpair lock held.
1216                  */
1217                 mtx_unlock(&qpair->lock);
1218                 nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC,
1219                     NVME_SC_DATA_TRANSFER_ERROR, DO_NOT_RETRY, ERROR_PRINT_ALL);
1220                 mtx_lock(&qpair->lock);
1221         }
1222 }
1223
1224 void
1225 nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
1226 {
1227
1228         mtx_lock(&qpair->lock);
1229         _nvme_qpair_submit_request(qpair, req);
1230         mtx_unlock(&qpair->lock);
1231 }
1232
1233 static void
1234 nvme_qpair_enable(struct nvme_qpair *qpair)
1235 {
1236         mtx_assert(&qpair->lock, MA_OWNED);
1237
1238         qpair->recovery_state = RECOVERY_NONE;
1239 }
1240
1241 void
1242 nvme_qpair_reset(struct nvme_qpair *qpair)
1243 {
1244
1245         qpair->sq_head = qpair->sq_tail = qpair->cq_head = 0;
1246
1247         /*
1248          * First time through the completion queue, HW will set phase
1249          *  bit on completions to 1.  So set this to 1 here, indicating
1250          *  we're looking for a 1 to know which entries have completed.
1251          *  we'll toggle the bit each time when the completion queue
1252          *  rolls over.
1253          */
1254         qpair->phase = 1;
1255
1256         memset(qpair->cmd, 0,
1257             qpair->num_entries * sizeof(struct nvme_command));
1258         memset(qpair->cpl, 0,
1259             qpair->num_entries * sizeof(struct nvme_completion));
1260 }
1261
1262 void
1263 nvme_admin_qpair_enable(struct nvme_qpair *qpair)
1264 {
1265         struct nvme_tracker             *tr;
1266         struct nvme_tracker             *tr_temp;
1267
1268         /*
1269          * Manually abort each outstanding admin command.  Do not retry
1270          *  admin commands found here, since they will be left over from
1271          *  a controller reset and its likely the context in which the
1272          *  command was issued no longer applies.
1273          */
1274         TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
1275                 nvme_printf(qpair->ctrlr,
1276                     "aborting outstanding admin command\n");
1277                 nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC,
1278                     NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
1279         }
1280
1281         mtx_lock(&qpair->lock);
1282         nvme_qpair_enable(qpair);
1283         mtx_unlock(&qpair->lock);
1284 }
1285
1286 void
1287 nvme_io_qpair_enable(struct nvme_qpair *qpair)
1288 {
1289         STAILQ_HEAD(, nvme_request)     temp;
1290         struct nvme_tracker             *tr;
1291         struct nvme_tracker             *tr_temp;
1292         struct nvme_request             *req;
1293
1294         /*
1295          * Manually abort each outstanding I/O.  This normally results in a
1296          *  retry, unless the retry count on the associated request has
1297          *  reached its limit.
1298          */
1299         TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
1300                 nvme_printf(qpair->ctrlr, "aborting outstanding i/o\n");
1301                 nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC,
1302                     NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_NO_RETRY);
1303         }
1304
1305         mtx_lock(&qpair->lock);
1306
1307         nvme_qpair_enable(qpair);
1308
1309         STAILQ_INIT(&temp);
1310         STAILQ_SWAP(&qpair->queued_req, &temp, nvme_request);
1311
1312         while (!STAILQ_EMPTY(&temp)) {
1313                 req = STAILQ_FIRST(&temp);
1314                 STAILQ_REMOVE_HEAD(&temp, stailq);
1315                 nvme_printf(qpair->ctrlr, "resubmitting queued i/o\n");
1316                 nvme_qpair_print_command(qpair, &req->cmd);
1317                 _nvme_qpair_submit_request(qpair, req);
1318         }
1319
1320         mtx_unlock(&qpair->lock);
1321 }
1322
1323 static void
1324 nvme_qpair_disable(struct nvme_qpair *qpair)
1325 {
1326         struct nvme_tracker     *tr, *tr_temp;
1327
1328         mtx_lock(&qpair->lock);
1329         qpair->recovery_state = RECOVERY_WAITING;
1330         TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
1331                 tr->deadline = SBT_MAX;
1332         }
1333         mtx_unlock(&qpair->lock);
1334 }
1335
1336 void
1337 nvme_admin_qpair_disable(struct nvme_qpair *qpair)
1338 {
1339
1340         nvme_qpair_disable(qpair);
1341         nvme_admin_qpair_abort_aers(qpair);
1342 }
1343
1344 void
1345 nvme_io_qpair_disable(struct nvme_qpair *qpair)
1346 {
1347
1348         nvme_qpair_disable(qpair);
1349 }
1350
1351 void
1352 nvme_qpair_fail(struct nvme_qpair *qpair)
1353 {
1354         struct nvme_tracker             *tr;
1355         struct nvme_request             *req;
1356
1357         if (!mtx_initialized(&qpair->lock))
1358                 return;
1359
1360         mtx_lock(&qpair->lock);
1361
1362         while (!STAILQ_EMPTY(&qpair->queued_req)) {
1363                 req = STAILQ_FIRST(&qpair->queued_req);
1364                 STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
1365                 nvme_printf(qpair->ctrlr, "failing queued i/o\n");
1366                 mtx_unlock(&qpair->lock);
1367                 nvme_qpair_manual_complete_request(qpair, req, NVME_SCT_GENERIC,
1368                     NVME_SC_ABORTED_BY_REQUEST);
1369                 mtx_lock(&qpair->lock);
1370         }
1371
1372         /* Manually abort each outstanding I/O. */
1373         while (!TAILQ_EMPTY(&qpair->outstanding_tr)) {
1374                 tr = TAILQ_FIRST(&qpair->outstanding_tr);
1375                 /*
1376                  * Do not remove the tracker.  The abort_tracker path will
1377                  *  do that for us.
1378                  */
1379                 nvme_printf(qpair->ctrlr, "failing outstanding i/o\n");
1380                 mtx_unlock(&qpair->lock);
1381                 nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC,
1382                     NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
1383                 mtx_lock(&qpair->lock);
1384         }
1385
1386         mtx_unlock(&qpair->lock);
1387 }