]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/nvme/nvme_qpair.c
Merge compiler-rt trunk r351319, and resolve conflicts.
[FreeBSD/FreeBSD.git] / sys / dev / nvme / nvme_qpair.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2012-2014 Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/bus.h>
34
35 #include <dev/pci/pcivar.h>
36
37 #include "nvme_private.h"
38
39 static void     _nvme_qpair_submit_request(struct nvme_qpair *qpair,
40                                            struct nvme_request *req);
41 static void     nvme_qpair_destroy(struct nvme_qpair *qpair);
42
43 struct nvme_opcode_string {
44
45         uint16_t        opc;
46         const char *    str;
47 };
48
49 static struct nvme_opcode_string admin_opcode[] = {
50         { NVME_OPC_DELETE_IO_SQ, "DELETE IO SQ" },
51         { NVME_OPC_CREATE_IO_SQ, "CREATE IO SQ" },
52         { NVME_OPC_GET_LOG_PAGE, "GET LOG PAGE" },
53         { NVME_OPC_DELETE_IO_CQ, "DELETE IO CQ" },
54         { NVME_OPC_CREATE_IO_CQ, "CREATE IO CQ" },
55         { NVME_OPC_IDENTIFY, "IDENTIFY" },
56         { NVME_OPC_ABORT, "ABORT" },
57         { NVME_OPC_SET_FEATURES, "SET FEATURES" },
58         { NVME_OPC_GET_FEATURES, "GET FEATURES" },
59         { NVME_OPC_ASYNC_EVENT_REQUEST, "ASYNC EVENT REQUEST" },
60         { NVME_OPC_FIRMWARE_ACTIVATE, "FIRMWARE ACTIVATE" },
61         { NVME_OPC_FIRMWARE_IMAGE_DOWNLOAD, "FIRMWARE IMAGE DOWNLOAD" },
62         { NVME_OPC_DEVICE_SELF_TEST, "DEVICE SELF-TEST" },
63         { NVME_OPC_NAMESPACE_ATTACHMENT, "NAMESPACE ATTACHMENT" },
64         { NVME_OPC_KEEP_ALIVE, "KEEP ALIVE" },
65         { NVME_OPC_DIRECTIVE_SEND, "DIRECTIVE SEND" },
66         { NVME_OPC_DIRECTIVE_RECEIVE, "DIRECTIVE RECEIVE" },
67         { NVME_OPC_VIRTUALIZATION_MANAGEMENT, "VIRTUALIZATION MANAGEMENT" },
68         { NVME_OPC_NVME_MI_SEND, "NVME-MI SEND" },
69         { NVME_OPC_NVME_MI_RECEIVE, "NVME-MI RECEIVE" },
70         { NVME_OPC_DOORBELL_BUFFER_CONFIG, "DOORBELL BUFFER CONFIG" },
71         { NVME_OPC_FORMAT_NVM, "FORMAT NVM" },
72         { NVME_OPC_SECURITY_SEND, "SECURITY SEND" },
73         { NVME_OPC_SECURITY_RECEIVE, "SECURITY RECEIVE" },
74         { NVME_OPC_SANITIZE, "SANITIZE" },
75         { 0xFFFF, "ADMIN COMMAND" }
76 };
77
78 static struct nvme_opcode_string io_opcode[] = {
79         { NVME_OPC_FLUSH, "FLUSH" },
80         { NVME_OPC_WRITE, "WRITE" },
81         { NVME_OPC_READ, "READ" },
82         { NVME_OPC_WRITE_UNCORRECTABLE, "WRITE UNCORRECTABLE" },
83         { NVME_OPC_COMPARE, "COMPARE" },
84         { NVME_OPC_WRITE_ZEROES, "WRITE ZEROES" },
85         { NVME_OPC_DATASET_MANAGEMENT, "DATASET MANAGEMENT" },
86         { NVME_OPC_RESERVATION_REGISTER, "RESERVATION REGISTER" },
87         { NVME_OPC_RESERVATION_REPORT, "RESERVATION REPORT" },
88         { NVME_OPC_RESERVATION_ACQUIRE, "RESERVATION ACQUIRE" },
89         { NVME_OPC_RESERVATION_RELEASE, "RESERVATION RELEASE" },
90         { 0xFFFF, "IO COMMAND" }
91 };
92
93 static const char *
94 get_admin_opcode_string(uint16_t opc)
95 {
96         struct nvme_opcode_string *entry;
97
98         entry = admin_opcode;
99
100         while (entry->opc != 0xFFFF) {
101                 if (entry->opc == opc)
102                         return (entry->str);
103                 entry++;
104         }
105         return (entry->str);
106 }
107
108 static const char *
109 get_io_opcode_string(uint16_t opc)
110 {
111         struct nvme_opcode_string *entry;
112
113         entry = io_opcode;
114
115         while (entry->opc != 0xFFFF) {
116                 if (entry->opc == opc)
117                         return (entry->str);
118                 entry++;
119         }
120         return (entry->str);
121 }
122
123
124 static void
125 nvme_admin_qpair_print_command(struct nvme_qpair *qpair,
126     struct nvme_command *cmd)
127 {
128
129         nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%x "
130             "cdw10:%08x cdw11:%08x\n",
131             get_admin_opcode_string(cmd->opc), cmd->opc, qpair->id, cmd->cid,
132             le32toh(cmd->nsid), le32toh(cmd->cdw10), le32toh(cmd->cdw11));
133 }
134
135 static void
136 nvme_io_qpair_print_command(struct nvme_qpair *qpair,
137     struct nvme_command *cmd)
138 {
139
140         switch (cmd->opc) {
141         case NVME_OPC_WRITE:
142         case NVME_OPC_READ:
143         case NVME_OPC_WRITE_UNCORRECTABLE:
144         case NVME_OPC_COMPARE:
145         case NVME_OPC_WRITE_ZEROES:
146                 nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d "
147                     "lba:%llu len:%d\n",
148                     get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid),
149                     ((unsigned long long)le32toh(cmd->cdw11) << 32) + le32toh(cmd->cdw10),
150                     (le32toh(cmd->cdw12) & 0xFFFF) + 1);
151                 break;
152         case NVME_OPC_FLUSH:
153         case NVME_OPC_DATASET_MANAGEMENT:
154         case NVME_OPC_RESERVATION_REGISTER:
155         case NVME_OPC_RESERVATION_REPORT:
156         case NVME_OPC_RESERVATION_ACQUIRE:
157         case NVME_OPC_RESERVATION_RELEASE:
158                 nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d\n",
159                     get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid));
160                 break;
161         default:
162                 nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%d\n",
163                     get_io_opcode_string(cmd->opc), cmd->opc, qpair->id,
164                     cmd->cid, le32toh(cmd->nsid));
165                 break;
166         }
167 }
168
169 static void
170 nvme_qpair_print_command(struct nvme_qpair *qpair, struct nvme_command *cmd)
171 {
172         if (qpair->id == 0)
173                 nvme_admin_qpair_print_command(qpair, cmd);
174         else
175                 nvme_io_qpair_print_command(qpair, cmd);
176 }
177
178 struct nvme_status_string {
179
180         uint16_t        sc;
181         const char *    str;
182 };
183
184 static struct nvme_status_string generic_status[] = {
185         { NVME_SC_SUCCESS, "SUCCESS" },
186         { NVME_SC_INVALID_OPCODE, "INVALID OPCODE" },
187         { NVME_SC_INVALID_FIELD, "INVALID_FIELD" },
188         { NVME_SC_COMMAND_ID_CONFLICT, "COMMAND ID CONFLICT" },
189         { NVME_SC_DATA_TRANSFER_ERROR, "DATA TRANSFER ERROR" },
190         { NVME_SC_ABORTED_POWER_LOSS, "ABORTED - POWER LOSS" },
191         { NVME_SC_INTERNAL_DEVICE_ERROR, "INTERNAL DEVICE ERROR" },
192         { NVME_SC_ABORTED_BY_REQUEST, "ABORTED - BY REQUEST" },
193         { NVME_SC_ABORTED_SQ_DELETION, "ABORTED - SQ DELETION" },
194         { NVME_SC_ABORTED_FAILED_FUSED, "ABORTED - FAILED FUSED" },
195         { NVME_SC_ABORTED_MISSING_FUSED, "ABORTED - MISSING FUSED" },
196         { NVME_SC_INVALID_NAMESPACE_OR_FORMAT, "INVALID NAMESPACE OR FORMAT" },
197         { NVME_SC_COMMAND_SEQUENCE_ERROR, "COMMAND SEQUENCE ERROR" },
198         { NVME_SC_INVALID_SGL_SEGMENT_DESCR, "INVALID SGL SEGMENT DESCRIPTOR" },
199         { NVME_SC_INVALID_NUMBER_OF_SGL_DESCR, "INVALID NUMBER OF SGL DESCRIPTORS" },
200         { NVME_SC_DATA_SGL_LENGTH_INVALID, "DATA SGL LENGTH INVALID" },
201         { NVME_SC_METADATA_SGL_LENGTH_INVALID, "METADATA SGL LENGTH INVALID" },
202         { NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID, "SGL DESCRIPTOR TYPE INVALID" },
203         { NVME_SC_INVALID_USE_OF_CMB, "INVALID USE OF CONTROLLER MEMORY BUFFER" },
204         { NVME_SC_PRP_OFFET_INVALID, "PRP OFFET INVALID" },
205         { NVME_SC_ATOMIC_WRITE_UNIT_EXCEEDED, "ATOMIC WRITE UNIT EXCEEDED" },
206         { NVME_SC_OPERATION_DENIED, "OPERATION DENIED" },
207         { NVME_SC_SGL_OFFSET_INVALID, "SGL OFFSET INVALID" },
208         { NVME_SC_HOST_ID_INCONSISTENT_FORMAT, "HOST IDENTIFIER INCONSISTENT FORMAT" },
209         { NVME_SC_KEEP_ALIVE_TIMEOUT_EXPIRED, "KEEP ALIVE TIMEOUT EXPIRED" },
210         { NVME_SC_KEEP_ALIVE_TIMEOUT_INVALID, "KEEP ALIVE TIMEOUT INVALID" },
211         { NVME_SC_ABORTED_DUE_TO_PREEMPT, "COMMAND ABORTED DUE TO PREEMPT AND ABORT" },
212         { NVME_SC_SANITIZE_FAILED, "SANITIZE FAILED" },
213         { NVME_SC_SANITIZE_IN_PROGRESS, "SANITIZE IN PROGRESS" },
214         { NVME_SC_SGL_DATA_BLOCK_GRAN_INVALID, "SGL_DATA_BLOCK_GRANULARITY_INVALID" },
215         { NVME_SC_NOT_SUPPORTED_IN_CMB, "COMMAND NOT SUPPORTED FOR QUEUE IN CMB" },
216
217         { NVME_SC_LBA_OUT_OF_RANGE, "LBA OUT OF RANGE" },
218         { NVME_SC_CAPACITY_EXCEEDED, "CAPACITY EXCEEDED" },
219         { NVME_SC_NAMESPACE_NOT_READY, "NAMESPACE NOT READY" },
220         { NVME_SC_RESERVATION_CONFLICT, "RESERVATION CONFLICT" },
221         { NVME_SC_FORMAT_IN_PROGRESS, "FORMAT IN PROGRESS" },
222         { 0xFFFF, "GENERIC" }
223 };
224
225 static struct nvme_status_string command_specific_status[] = {
226         { NVME_SC_COMPLETION_QUEUE_INVALID, "INVALID COMPLETION QUEUE" },
227         { NVME_SC_INVALID_QUEUE_IDENTIFIER, "INVALID QUEUE IDENTIFIER" },
228         { NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED, "MAX QUEUE SIZE EXCEEDED" },
229         { NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED, "ABORT CMD LIMIT EXCEEDED" },
230         { NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED, "ASYNC LIMIT EXCEEDED" },
231         { NVME_SC_INVALID_FIRMWARE_SLOT, "INVALID FIRMWARE SLOT" },
232         { NVME_SC_INVALID_FIRMWARE_IMAGE, "INVALID FIRMWARE IMAGE" },
233         { NVME_SC_INVALID_INTERRUPT_VECTOR, "INVALID INTERRUPT VECTOR" },
234         { NVME_SC_INVALID_LOG_PAGE, "INVALID LOG PAGE" },
235         { NVME_SC_INVALID_FORMAT, "INVALID FORMAT" },
236         { NVME_SC_FIRMWARE_REQUIRES_RESET, "FIRMWARE REQUIRES RESET" },
237         { NVME_SC_INVALID_QUEUE_DELETION, "INVALID QUEUE DELETION" },
238         { NVME_SC_FEATURE_NOT_SAVEABLE, "FEATURE IDENTIFIER NOT SAVEABLE" },
239         { NVME_SC_FEATURE_NOT_CHANGEABLE, "FEATURE NOT CHANGEABLE" },
240         { NVME_SC_FEATURE_NOT_NS_SPECIFIC, "FEATURE NOT NAMESPACE SPECIFIC" },
241         { NVME_SC_FW_ACT_REQUIRES_NVMS_RESET, "FIRMWARE ACTIVATION REQUIRES NVM SUBSYSTEM RESET" },
242         { NVME_SC_FW_ACT_REQUIRES_RESET, "FIRMWARE ACTIVATION REQUIRES RESET" },
243         { NVME_SC_FW_ACT_REQUIRES_TIME, "FIRMWARE ACTIVATION REQUIRES MAXIMUM TIME VIOLATION" },
244         { NVME_SC_FW_ACT_PROHIBITED, "FIRMWARE ACTIVATION PROHIBITED" },
245         { NVME_SC_OVERLAPPING_RANGE, "OVERLAPPING RANGE" },
246         { NVME_SC_NS_INSUFFICIENT_CAPACITY, "NAMESPACE INSUFFICIENT CAPACITY" },
247         { NVME_SC_NS_ID_UNAVAILABLE, "NAMESPACE IDENTIFIER UNAVAILABLE" },
248         { NVME_SC_NS_ALREADY_ATTACHED, "NAMESPACE ALREADY ATTACHED" },
249         { NVME_SC_NS_IS_PRIVATE, "NAMESPACE IS PRIVATE" },
250         { NVME_SC_NS_NOT_ATTACHED, "NS NOT ATTACHED" },
251         { NVME_SC_THIN_PROV_NOT_SUPPORTED, "THIN PROVISIONING NOT SUPPORTED" },
252         { NVME_SC_CTRLR_LIST_INVALID, "CONTROLLER LIST INVALID" },
253         { NVME_SC_SELT_TEST_IN_PROGRESS, "DEVICE SELT-TEST IN PROGRESS" },
254         { NVME_SC_BOOT_PART_WRITE_PROHIB, "BOOT PARTITION WRITE PROHIBITED" },
255         { NVME_SC_INVALID_CTRLR_ID, "INVALID CONTROLLER IDENTIFIER" },
256         { NVME_SC_INVALID_SEC_CTRLR_STATE, "INVALID SECONDARY CONTROLLER STATE" },
257         { NVME_SC_INVALID_NUM_OF_CTRLR_RESRC, "INVALID NUMBER OF CONTROLLER RESOURCES" },
258         { NVME_SC_INVALID_RESOURCE_ID, "INVALID RESOURCE IDENTIFIER" },
259
260         { NVME_SC_CONFLICTING_ATTRIBUTES, "CONFLICTING ATTRIBUTES" },
261         { NVME_SC_INVALID_PROTECTION_INFO, "INVALID PROTECTION INFO" },
262         { NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE, "WRITE TO RO PAGE" },
263         { 0xFFFF, "COMMAND SPECIFIC" }
264 };
265
266 static struct nvme_status_string media_error_status[] = {
267         { NVME_SC_WRITE_FAULTS, "WRITE FAULTS" },
268         { NVME_SC_UNRECOVERED_READ_ERROR, "UNRECOVERED READ ERROR" },
269         { NVME_SC_GUARD_CHECK_ERROR, "GUARD CHECK ERROR" },
270         { NVME_SC_APPLICATION_TAG_CHECK_ERROR, "APPLICATION TAG CHECK ERROR" },
271         { NVME_SC_REFERENCE_TAG_CHECK_ERROR, "REFERENCE TAG CHECK ERROR" },
272         { NVME_SC_COMPARE_FAILURE, "COMPARE FAILURE" },
273         { NVME_SC_ACCESS_DENIED, "ACCESS DENIED" },
274         { NVME_SC_DEALLOCATED_OR_UNWRITTEN, "DEALLOCATED OR UNWRITTEN LOGICAL BLOCK" },
275         { 0xFFFF, "MEDIA ERROR" }
276 };
277
278 static const char *
279 get_status_string(uint16_t sct, uint16_t sc)
280 {
281         struct nvme_status_string *entry;
282
283         switch (sct) {
284         case NVME_SCT_GENERIC:
285                 entry = generic_status;
286                 break;
287         case NVME_SCT_COMMAND_SPECIFIC:
288                 entry = command_specific_status;
289                 break;
290         case NVME_SCT_MEDIA_ERROR:
291                 entry = media_error_status;
292                 break;
293         case NVME_SCT_VENDOR_SPECIFIC:
294                 return ("VENDOR SPECIFIC");
295         default:
296                 return ("RESERVED");
297         }
298
299         while (entry->sc != 0xFFFF) {
300                 if (entry->sc == sc)
301                         return (entry->str);
302                 entry++;
303         }
304         return (entry->str);
305 }
306
307 static void
308 nvme_qpair_print_completion(struct nvme_qpair *qpair, 
309     struct nvme_completion *cpl)
310 {
311         uint16_t sct, sc;
312
313         sct = NVME_STATUS_GET_SCT(cpl->status);
314         sc = NVME_STATUS_GET_SC(cpl->status);
315
316         nvme_printf(qpair->ctrlr, "%s (%02x/%02x) sqid:%d cid:%d cdw0:%x\n",
317             get_status_string(sct, sc), sct, sc, cpl->sqid, cpl->cid,
318             cpl->cdw0);
319 }
320
321 static boolean_t
322 nvme_completion_is_retry(const struct nvme_completion *cpl)
323 {
324         uint8_t sct, sc, dnr;
325
326         sct = NVME_STATUS_GET_SCT(cpl->status);
327         sc = NVME_STATUS_GET_SC(cpl->status);
328         dnr = NVME_STATUS_GET_DNR(cpl->status);
329
330         /*
331          * TODO: spec is not clear how commands that are aborted due
332          *  to TLER will be marked.  So for now, it seems
333          *  NAMESPACE_NOT_READY is the only case where we should
334          *  look at the DNR bit.
335          */
336         switch (sct) {
337         case NVME_SCT_GENERIC:
338                 switch (sc) {
339                 case NVME_SC_ABORTED_BY_REQUEST:
340                 case NVME_SC_NAMESPACE_NOT_READY:
341                         if (dnr)
342                                 return (0);
343                         else
344                                 return (1);
345                 case NVME_SC_INVALID_OPCODE:
346                 case NVME_SC_INVALID_FIELD:
347                 case NVME_SC_COMMAND_ID_CONFLICT:
348                 case NVME_SC_DATA_TRANSFER_ERROR:
349                 case NVME_SC_ABORTED_POWER_LOSS:
350                 case NVME_SC_INTERNAL_DEVICE_ERROR:
351                 case NVME_SC_ABORTED_SQ_DELETION:
352                 case NVME_SC_ABORTED_FAILED_FUSED:
353                 case NVME_SC_ABORTED_MISSING_FUSED:
354                 case NVME_SC_INVALID_NAMESPACE_OR_FORMAT:
355                 case NVME_SC_COMMAND_SEQUENCE_ERROR:
356                 case NVME_SC_LBA_OUT_OF_RANGE:
357                 case NVME_SC_CAPACITY_EXCEEDED:
358                 default:
359                         return (0);
360                 }
361         case NVME_SCT_COMMAND_SPECIFIC:
362         case NVME_SCT_MEDIA_ERROR:
363         case NVME_SCT_VENDOR_SPECIFIC:
364         default:
365                 return (0);
366         }
367 }
368
369 static void
370 nvme_qpair_complete_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr,
371     struct nvme_completion *cpl, boolean_t print_on_error)
372 {
373         struct nvme_request     *req;
374         boolean_t               retry, error;
375
376         req = tr->req;
377         error = nvme_completion_is_error(cpl);
378         retry = error && nvme_completion_is_retry(cpl) &&
379            req->retries < nvme_retry_count;
380
381         if (error && print_on_error) {
382                 nvme_qpair_print_command(qpair, &req->cmd);
383                 nvme_qpair_print_completion(qpair, cpl);
384         }
385
386         qpair->act_tr[cpl->cid] = NULL;
387
388         KASSERT(cpl->cid == req->cmd.cid, ("cpl cid does not match cmd cid\n"));
389
390         if (req->cb_fn && !retry)
391                 req->cb_fn(req->cb_arg, cpl);
392
393         mtx_lock(&qpair->lock);
394         callout_stop(&tr->timer);
395
396         if (retry) {
397                 req->retries++;
398                 nvme_qpair_submit_tracker(qpair, tr);
399         } else {
400                 if (req->type != NVME_REQUEST_NULL) {
401                         bus_dmamap_sync(qpair->dma_tag_payload,
402                             tr->payload_dma_map,
403                             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
404                         bus_dmamap_unload(qpair->dma_tag_payload,
405                             tr->payload_dma_map);
406                 }
407
408                 nvme_free_request(req);
409                 tr->req = NULL;
410
411                 TAILQ_REMOVE(&qpair->outstanding_tr, tr, tailq);
412                 TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
413
414                 /*
415                  * If the controller is in the middle of resetting, don't
416                  *  try to submit queued requests here - let the reset logic
417                  *  handle that instead.
418                  */
419                 if (!STAILQ_EMPTY(&qpair->queued_req) &&
420                     !qpair->ctrlr->is_resetting) {
421                         req = STAILQ_FIRST(&qpair->queued_req);
422                         STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
423                         _nvme_qpair_submit_request(qpair, req);
424                 }
425         }
426
427         mtx_unlock(&qpair->lock);
428 }
429
430 static void
431 nvme_qpair_manual_complete_tracker(struct nvme_qpair *qpair,
432     struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
433     boolean_t print_on_error)
434 {
435         struct nvme_completion  cpl;
436
437         memset(&cpl, 0, sizeof(cpl));
438         cpl.sqid = qpair->id;
439         cpl.cid = tr->cid;
440         cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
441         cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
442         cpl.status |= (dnr & NVME_STATUS_DNR_MASK) << NVME_STATUS_DNR_SHIFT;
443         nvme_qpair_complete_tracker(qpair, tr, &cpl, print_on_error);
444 }
445
446 void
447 nvme_qpair_manual_complete_request(struct nvme_qpair *qpair,
448     struct nvme_request *req, uint32_t sct, uint32_t sc,
449     boolean_t print_on_error)
450 {
451         struct nvme_completion  cpl;
452         boolean_t               error;
453
454         memset(&cpl, 0, sizeof(cpl));
455         cpl.sqid = qpair->id;
456         cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
457         cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
458
459         error = nvme_completion_is_error(&cpl);
460
461         if (error && print_on_error) {
462                 nvme_qpair_print_command(qpair, &req->cmd);
463                 nvme_qpair_print_completion(qpair, &cpl);
464         }
465
466         if (req->cb_fn)
467                 req->cb_fn(req->cb_arg, &cpl);
468
469         nvme_free_request(req);
470 }
471
472 bool
473 nvme_qpair_process_completions(struct nvme_qpair *qpair)
474 {
475         struct nvme_tracker     *tr;
476         struct nvme_completion  cpl;
477         int done = 0;
478
479         qpair->num_intr_handler_calls++;
480
481         if (!qpair->is_enabled)
482                 /*
483                  * qpair is not enabled, likely because a controller reset is
484                  *  is in progress.  Ignore the interrupt - any I/O that was
485                  *  associated with this interrupt will get retried when the
486                  *  reset is complete.
487                  */
488                 return (false);
489
490         bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
491             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
492         while (1) {
493                 cpl = qpair->cpl[qpair->cq_head];
494
495                 /* Convert to host endian */
496                 nvme_completion_swapbytes(&cpl);
497
498                 if (NVME_STATUS_GET_P(cpl.status) != qpair->phase)
499                         break;
500
501                 tr = qpair->act_tr[cpl.cid];
502
503                 if (tr != NULL) {
504                         nvme_qpair_complete_tracker(qpair, tr, &cpl, TRUE);
505                         qpair->sq_head = cpl.sqhd;
506                         done++;
507                 } else {
508                         nvme_printf(qpair->ctrlr, 
509                             "cpl does not map to outstanding cmd\n");
510                         /* nvme_dump_completion expects device endianess */
511                         nvme_dump_completion(&qpair->cpl[qpair->cq_head]);
512                         KASSERT(0, ("received completion for unknown cmd\n"));
513                 }
514
515                 if (++qpair->cq_head == qpair->num_entries) {
516                         qpair->cq_head = 0;
517                         qpair->phase = !qpair->phase;
518                 }
519
520                 nvme_mmio_write_4(qpair->ctrlr, doorbell[qpair->id].cq_hdbl,
521                     qpair->cq_head);
522         }
523         return (done != 0);
524 }
525
526 static void
527 nvme_qpair_msix_handler(void *arg)
528 {
529         struct nvme_qpair *qpair = arg;
530
531         nvme_qpair_process_completions(qpair);
532 }
533
534 int
535 nvme_qpair_construct(struct nvme_qpair *qpair, uint32_t id,
536     uint16_t vector, uint32_t num_entries, uint32_t num_trackers,
537     struct nvme_controller *ctrlr)
538 {
539         struct nvme_tracker     *tr;
540         size_t                  cmdsz, cplsz, prpsz, allocsz, prpmemsz;
541         uint64_t                queuemem_phys, prpmem_phys, list_phys;
542         uint8_t                 *queuemem, *prpmem, *prp_list;
543         int                     i, err;
544
545         qpair->id = id;
546         qpair->vector = vector;
547         qpair->num_entries = num_entries;
548         qpair->num_trackers = num_trackers;
549         qpair->ctrlr = ctrlr;
550
551         if (ctrlr->msix_enabled) {
552
553                 /*
554                  * MSI-X vector resource IDs start at 1, so we add one to
555                  *  the queue's vector to get the corresponding rid to use.
556                  */
557                 qpair->rid = vector + 1;
558
559                 qpair->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
560                     &qpair->rid, RF_ACTIVE);
561                 bus_setup_intr(ctrlr->dev, qpair->res,
562                     INTR_TYPE_MISC | INTR_MPSAFE, NULL,
563                     nvme_qpair_msix_handler, qpair, &qpair->tag);
564                 if (id == 0) {
565                         bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
566                             "admin");
567                 } else {
568                         bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
569                             "io%d", id - 1);
570                 }
571         }
572
573         mtx_init(&qpair->lock, "nvme qpair lock", NULL, MTX_DEF);
574
575         /* Note: NVMe PRP format is restricted to 4-byte alignment. */
576         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
577             4, PAGE_SIZE, BUS_SPACE_MAXADDR,
578             BUS_SPACE_MAXADDR, NULL, NULL, NVME_MAX_XFER_SIZE,
579             (NVME_MAX_XFER_SIZE/PAGE_SIZE)+1, PAGE_SIZE, 0,
580             NULL, NULL, &qpair->dma_tag_payload);
581         if (err != 0) {
582                 nvme_printf(ctrlr, "payload tag create failed %d\n", err);
583                 goto out;
584         }
585
586         /*
587          * Each component must be page aligned, and individual PRP lists
588          * cannot cross a page boundary.
589          */
590         cmdsz = qpair->num_entries * sizeof(struct nvme_command);
591         cmdsz = roundup2(cmdsz, PAGE_SIZE);
592         cplsz = qpair->num_entries * sizeof(struct nvme_completion);
593         cplsz = roundup2(cplsz, PAGE_SIZE);
594         prpsz = sizeof(uint64_t) * NVME_MAX_PRP_LIST_ENTRIES;;
595         prpmemsz = qpair->num_trackers * prpsz;
596         allocsz = cmdsz + cplsz + prpmemsz;
597
598         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
599             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
600             allocsz, 1, allocsz, 0, NULL, NULL, &qpair->dma_tag);
601         if (err != 0) {
602                 nvme_printf(ctrlr, "tag create failed %d\n", err);
603                 goto out;
604         }
605
606         if (bus_dmamem_alloc(qpair->dma_tag, (void **)&queuemem,
607             BUS_DMA_NOWAIT, &qpair->queuemem_map)) {
608                 nvme_printf(ctrlr, "failed to alloc qpair memory\n");
609                 goto out;
610         }
611
612         if (bus_dmamap_load(qpair->dma_tag, qpair->queuemem_map,
613             queuemem, allocsz, nvme_single_map, &queuemem_phys, 0) != 0) {
614                 nvme_printf(ctrlr, "failed to load qpair memory\n");
615                 goto out;
616         }
617
618         qpair->num_cmds = 0;
619         qpair->num_intr_handler_calls = 0;
620         qpair->cmd = (struct nvme_command *)queuemem;
621         qpair->cpl = (struct nvme_completion *)(queuemem + cmdsz);
622         prpmem = (uint8_t *)(queuemem + cmdsz + cplsz);
623         qpair->cmd_bus_addr = queuemem_phys;
624         qpair->cpl_bus_addr = queuemem_phys + cmdsz;
625         prpmem_phys = queuemem_phys + cmdsz + cplsz;
626
627         qpair->sq_tdbl_off = nvme_mmio_offsetof(doorbell[id].sq_tdbl);
628         qpair->cq_hdbl_off = nvme_mmio_offsetof(doorbell[id].cq_hdbl);
629
630         TAILQ_INIT(&qpair->free_tr);
631         TAILQ_INIT(&qpair->outstanding_tr);
632         STAILQ_INIT(&qpair->queued_req);
633
634         list_phys = prpmem_phys;
635         prp_list = prpmem;
636         for (i = 0; i < qpair->num_trackers; i++) {
637
638                 if (list_phys + prpsz > prpmem_phys + prpmemsz) {
639                         qpair->num_trackers = i;
640                         break;
641                 }
642
643                 /*
644                  * Make sure that the PRP list for this tracker doesn't
645                  * overflow to another page.
646                  */
647                 if (trunc_page(list_phys) !=
648                     trunc_page(list_phys + prpsz - 1)) {
649                         list_phys = roundup2(list_phys, PAGE_SIZE);
650                         prp_list =
651                             (uint8_t *)roundup2((uintptr_t)prp_list, PAGE_SIZE);
652                 }
653
654                 tr = malloc(sizeof(*tr), M_NVME, M_ZERO | M_WAITOK);
655                 bus_dmamap_create(qpair->dma_tag_payload, 0,
656                     &tr->payload_dma_map);
657                 callout_init(&tr->timer, 1);
658                 tr->cid = i;
659                 tr->qpair = qpair;
660                 tr->prp = (uint64_t *)prp_list;
661                 tr->prp_bus_addr = list_phys;
662                 TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
663                 list_phys += prpsz;
664                 prp_list += prpsz;
665         }
666
667         if (qpair->num_trackers == 0) {
668                 nvme_printf(ctrlr, "failed to allocate enough trackers\n");
669                 goto out;
670         }
671
672         qpair->act_tr = malloc(sizeof(struct nvme_tracker *) *
673             qpair->num_entries, M_NVME, M_ZERO | M_WAITOK);
674         return (0);
675
676 out:
677         nvme_qpair_destroy(qpair);
678         return (ENOMEM);
679 }
680
681 static void
682 nvme_qpair_destroy(struct nvme_qpair *qpair)
683 {
684         struct nvme_tracker     *tr;
685
686         if (qpair->tag)
687                 bus_teardown_intr(qpair->ctrlr->dev, qpair->res, qpair->tag);
688
689         if (mtx_initialized(&qpair->lock))
690                 mtx_destroy(&qpair->lock);
691
692         if (qpair->res)
693                 bus_release_resource(qpair->ctrlr->dev, SYS_RES_IRQ,
694                     rman_get_rid(qpair->res), qpair->res);
695
696         if (qpair->cmd != NULL) {
697                 bus_dmamap_unload(qpair->dma_tag, qpair->queuemem_map);
698                 bus_dmamem_free(qpair->dma_tag, qpair->cmd,
699                     qpair->queuemem_map);
700         }
701
702         if (qpair->act_tr)
703                 free(qpair->act_tr, M_NVME);
704
705         while (!TAILQ_EMPTY(&qpair->free_tr)) {
706                 tr = TAILQ_FIRST(&qpair->free_tr);
707                 TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
708                 bus_dmamap_destroy(qpair->dma_tag_payload,
709                     tr->payload_dma_map);
710                 free(tr, M_NVME);
711         }
712
713         if (qpair->dma_tag)
714                 bus_dma_tag_destroy(qpair->dma_tag);
715
716         if (qpair->dma_tag_payload)
717                 bus_dma_tag_destroy(qpair->dma_tag_payload);
718 }
719
720 static void
721 nvme_admin_qpair_abort_aers(struct nvme_qpair *qpair)
722 {
723         struct nvme_tracker     *tr;
724
725         tr = TAILQ_FIRST(&qpair->outstanding_tr);
726         while (tr != NULL) {
727                 if (tr->req->cmd.opc == NVME_OPC_ASYNC_EVENT_REQUEST) {
728                         nvme_qpair_manual_complete_tracker(qpair, tr,
729                             NVME_SCT_GENERIC, NVME_SC_ABORTED_SQ_DELETION, 0,
730                             FALSE);
731                         tr = TAILQ_FIRST(&qpair->outstanding_tr);
732                 } else {
733                         tr = TAILQ_NEXT(tr, tailq);
734                 }
735         }
736 }
737
738 void
739 nvme_admin_qpair_destroy(struct nvme_qpair *qpair)
740 {
741
742         nvme_admin_qpair_abort_aers(qpair);
743         nvme_qpair_destroy(qpair);
744 }
745
746 void
747 nvme_io_qpair_destroy(struct nvme_qpair *qpair)
748 {
749
750         nvme_qpair_destroy(qpair);
751 }
752
753 static void
754 nvme_abort_complete(void *arg, const struct nvme_completion *status)
755 {
756         struct nvme_tracker     *tr = arg;
757
758         /*
759          * If cdw0 == 1, the controller was not able to abort the command
760          *  we requested.  We still need to check the active tracker array,
761          *  to cover race where I/O timed out at same time controller was
762          *  completing the I/O.
763          */
764         if (status->cdw0 == 1 && tr->qpair->act_tr[tr->cid] != NULL) {
765                 /*
766                  * An I/O has timed out, and the controller was unable to
767                  *  abort it for some reason.  Construct a fake completion
768                  *  status, and then complete the I/O's tracker manually.
769                  */
770                 nvme_printf(tr->qpair->ctrlr,
771                     "abort command failed, aborting command manually\n");
772                 nvme_qpair_manual_complete_tracker(tr->qpair, tr,
773                     NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, 0, TRUE);
774         }
775 }
776
777 static void
778 nvme_timeout(void *arg)
779 {
780         struct nvme_tracker     *tr = arg;
781         struct nvme_qpair       *qpair = tr->qpair;
782         struct nvme_controller  *ctrlr = qpair->ctrlr;
783         uint32_t                csts;
784         uint8_t                 cfs;
785
786         /*
787          * Read csts to get value of cfs - controller fatal status.
788          * If no fatal status, try to call the completion routine, and
789          * if completes transactions, report a missed interrupt and
790          * return (this may need to be rate limited). Otherwise, if
791          * aborts are enabled and the controller is not reporting
792          * fatal status, abort the command. Otherwise, just reset the
793          * controller and hope for the best.
794          */
795         csts = nvme_mmio_read_4(ctrlr, csts);
796         cfs = (csts >> NVME_CSTS_REG_CFS_SHIFT) & NVME_CSTS_REG_CFS_MASK;
797         if (cfs == 0 && nvme_qpair_process_completions(qpair)) {
798                 nvme_printf(ctrlr, "Missing interrupt\n");
799                 return;
800         }
801         if (ctrlr->enable_aborts && cfs == 0) {
802                 nvme_printf(ctrlr, "Aborting command due to a timeout.\n");
803                 nvme_ctrlr_cmd_abort(ctrlr, tr->cid, qpair->id,
804                     nvme_abort_complete, tr);
805         } else {
806                 nvme_printf(ctrlr, "Resetting controller due to a timeout%s.\n",
807                     cfs ? " and fatal error status" : "");
808                 nvme_ctrlr_reset(ctrlr);
809         }
810 }
811
812 void
813 nvme_qpair_submit_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr)
814 {
815         struct nvme_request     *req;
816         struct nvme_controller  *ctrlr;
817
818         mtx_assert(&qpair->lock, MA_OWNED);
819
820         req = tr->req;
821         req->cmd.cid = tr->cid;
822         qpair->act_tr[tr->cid] = tr;
823         ctrlr = qpair->ctrlr;
824
825         if (req->timeout)
826 #if __FreeBSD_version >= 800030
827                 callout_reset_curcpu(&tr->timer, ctrlr->timeout_period * hz,
828                     nvme_timeout, tr);
829 #else
830                 callout_reset(&tr->timer, ctrlr->timeout_period * hz,
831                     nvme_timeout, tr);
832 #endif
833
834         /* Copy the command from the tracker to the submission queue. */
835         memcpy(&qpair->cmd[qpair->sq_tail], &req->cmd, sizeof(req->cmd));
836
837         if (++qpair->sq_tail == qpair->num_entries)
838                 qpair->sq_tail = 0;
839
840         bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
841             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
842 #ifndef __powerpc__
843         /*
844          * powerpc's bus_dmamap_sync() already includes a heavyweight sync, but
845          * no other archs do.
846          */
847         wmb();
848 #endif
849
850         nvme_mmio_write_4(qpair->ctrlr, doorbell[qpair->id].sq_tdbl,
851             qpair->sq_tail);
852
853         qpair->num_cmds++;
854 }
855
856 static void
857 nvme_payload_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
858 {
859         struct nvme_tracker     *tr = arg;
860         uint32_t                cur_nseg;
861
862         /*
863          * If the mapping operation failed, return immediately.  The caller
864          *  is responsible for detecting the error status and failing the
865          *  tracker manually.
866          */
867         if (error != 0) {
868                 nvme_printf(tr->qpair->ctrlr,
869                     "nvme_payload_map err %d\n", error);
870                 return;
871         }
872
873         /*
874          * Note that we specified PAGE_SIZE for alignment and max
875          *  segment size when creating the bus dma tags.  So here
876          *  we can safely just transfer each segment to its
877          *  associated PRP entry.
878          */
879         tr->req->cmd.prp1 = htole64(seg[0].ds_addr);
880
881         if (nseg == 2) {
882                 tr->req->cmd.prp2 = htole64(seg[1].ds_addr);
883         } else if (nseg > 2) {
884                 cur_nseg = 1;
885                 tr->req->cmd.prp2 = htole64((uint64_t)tr->prp_bus_addr);
886                 while (cur_nseg < nseg) {
887                         tr->prp[cur_nseg-1] =
888                             htole64((uint64_t)seg[cur_nseg].ds_addr);
889                         cur_nseg++;
890                 }
891         } else {
892                 /*
893                  * prp2 should not be used by the controller
894                  *  since there is only one segment, but set
895                  *  to 0 just to be safe.
896                  */
897                 tr->req->cmd.prp2 = 0;
898         }
899
900         bus_dmamap_sync(tr->qpair->dma_tag_payload, tr->payload_dma_map,
901             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
902         nvme_qpair_submit_tracker(tr->qpair, tr);
903 }
904
905 static void
906 _nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
907 {
908         struct nvme_tracker     *tr;
909         int                     err = 0;
910
911         mtx_assert(&qpair->lock, MA_OWNED);
912
913         tr = TAILQ_FIRST(&qpair->free_tr);
914         req->qpair = qpair;
915
916         if (tr == NULL || !qpair->is_enabled) {
917                 /*
918                  * No tracker is available, or the qpair is disabled due to
919                  *  an in-progress controller-level reset or controller
920                  *  failure.
921                  */
922
923                 if (qpair->ctrlr->is_failed) {
924                         /*
925                          * The controller has failed.  Post the request to a
926                          *  task where it will be aborted, so that we do not
927                          *  invoke the request's callback in the context
928                          *  of the submission.
929                          */
930                         nvme_ctrlr_post_failed_request(qpair->ctrlr, req);
931                 } else {
932                         /*
933                          * Put the request on the qpair's request queue to be
934                          *  processed when a tracker frees up via a command
935                          *  completion or when the controller reset is
936                          *  completed.
937                          */
938                         STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
939                 }
940                 return;
941         }
942
943         TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
944         TAILQ_INSERT_TAIL(&qpair->outstanding_tr, tr, tailq);
945         tr->req = req;
946
947         switch (req->type) {
948         case NVME_REQUEST_VADDR:
949                 KASSERT(req->payload_size <= qpair->ctrlr->max_xfer_size,
950                     ("payload_size (%d) exceeds max_xfer_size (%d)\n",
951                     req->payload_size, qpair->ctrlr->max_xfer_size));
952                 err = bus_dmamap_load(tr->qpair->dma_tag_payload,
953                     tr->payload_dma_map, req->u.payload, req->payload_size,
954                     nvme_payload_map, tr, 0);
955                 if (err != 0)
956                         nvme_printf(qpair->ctrlr,
957                             "bus_dmamap_load returned 0x%x!\n", err);
958                 break;
959         case NVME_REQUEST_NULL:
960                 nvme_qpair_submit_tracker(tr->qpair, tr);
961                 break;
962 #ifdef NVME_UNMAPPED_BIO_SUPPORT
963         case NVME_REQUEST_BIO:
964                 KASSERT(req->u.bio->bio_bcount <= qpair->ctrlr->max_xfer_size,
965                     ("bio->bio_bcount (%jd) exceeds max_xfer_size (%d)\n",
966                     (intmax_t)req->u.bio->bio_bcount,
967                     qpair->ctrlr->max_xfer_size));
968                 err = bus_dmamap_load_bio(tr->qpair->dma_tag_payload,
969                     tr->payload_dma_map, req->u.bio, nvme_payload_map, tr, 0);
970                 if (err != 0)
971                         nvme_printf(qpair->ctrlr,
972                             "bus_dmamap_load_bio returned 0x%x!\n", err);
973                 break;
974 #endif
975         case NVME_REQUEST_CCB:
976                 err = bus_dmamap_load_ccb(tr->qpair->dma_tag_payload,
977                     tr->payload_dma_map, req->u.payload,
978                     nvme_payload_map, tr, 0);
979                 if (err != 0)
980                         nvme_printf(qpair->ctrlr,
981                             "bus_dmamap_load_ccb returned 0x%x!\n", err);
982                 break;
983         default:
984                 panic("unknown nvme request type 0x%x\n", req->type);
985                 break;
986         }
987
988         if (err != 0) {
989                 /*
990                  * The dmamap operation failed, so we manually fail the
991                  *  tracker here with DATA_TRANSFER_ERROR status.
992                  *
993                  * nvme_qpair_manual_complete_tracker must not be called
994                  *  with the qpair lock held.
995                  */
996                 mtx_unlock(&qpair->lock);
997                 nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
998                     NVME_SC_DATA_TRANSFER_ERROR, 1 /* do not retry */, TRUE);
999                 mtx_lock(&qpair->lock);
1000         }
1001 }
1002
1003 void
1004 nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
1005 {
1006
1007         mtx_lock(&qpair->lock);
1008         _nvme_qpair_submit_request(qpair, req);
1009         mtx_unlock(&qpair->lock);
1010 }
1011
1012 static void
1013 nvme_qpair_enable(struct nvme_qpair *qpair)
1014 {
1015
1016         qpair->is_enabled = TRUE;
1017 }
1018
1019 void
1020 nvme_qpair_reset(struct nvme_qpair *qpair)
1021 {
1022
1023         qpair->sq_head = qpair->sq_tail = qpair->cq_head = 0;
1024
1025         /*
1026          * First time through the completion queue, HW will set phase
1027          *  bit on completions to 1.  So set this to 1 here, indicating
1028          *  we're looking for a 1 to know which entries have completed.
1029          *  we'll toggle the bit each time when the completion queue
1030          *  rolls over.
1031          */
1032         qpair->phase = 1;
1033
1034         memset(qpair->cmd, 0,
1035             qpair->num_entries * sizeof(struct nvme_command));
1036         memset(qpair->cpl, 0,
1037             qpair->num_entries * sizeof(struct nvme_completion));
1038 }
1039
1040 void
1041 nvme_admin_qpair_enable(struct nvme_qpair *qpair)
1042 {
1043         struct nvme_tracker             *tr;
1044         struct nvme_tracker             *tr_temp;
1045
1046         /*
1047          * Manually abort each outstanding admin command.  Do not retry
1048          *  admin commands found here, since they will be left over from
1049          *  a controller reset and its likely the context in which the
1050          *  command was issued no longer applies.
1051          */
1052         TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
1053                 nvme_printf(qpair->ctrlr,
1054                     "aborting outstanding admin command\n");
1055                 nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1056                     NVME_SC_ABORTED_BY_REQUEST, 1 /* do not retry */, TRUE);
1057         }
1058
1059         nvme_qpair_enable(qpair);
1060 }
1061
1062 void
1063 nvme_io_qpair_enable(struct nvme_qpair *qpair)
1064 {
1065         STAILQ_HEAD(, nvme_request)     temp;
1066         struct nvme_tracker             *tr;
1067         struct nvme_tracker             *tr_temp;
1068         struct nvme_request             *req;
1069
1070         /*
1071          * Manually abort each outstanding I/O.  This normally results in a
1072          *  retry, unless the retry count on the associated request has
1073          *  reached its limit.
1074          */
1075         TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
1076                 nvme_printf(qpair->ctrlr, "aborting outstanding i/o\n");
1077                 nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1078                     NVME_SC_ABORTED_BY_REQUEST, 0, TRUE);
1079         }
1080
1081         mtx_lock(&qpair->lock);
1082
1083         nvme_qpair_enable(qpair);
1084
1085         STAILQ_INIT(&temp);
1086         STAILQ_SWAP(&qpair->queued_req, &temp, nvme_request);
1087
1088         while (!STAILQ_EMPTY(&temp)) {
1089                 req = STAILQ_FIRST(&temp);
1090                 STAILQ_REMOVE_HEAD(&temp, stailq);
1091                 nvme_printf(qpair->ctrlr, "resubmitting queued i/o\n");
1092                 nvme_qpair_print_command(qpair, &req->cmd);
1093                 _nvme_qpair_submit_request(qpair, req);
1094         }
1095
1096         mtx_unlock(&qpair->lock);
1097 }
1098
1099 static void
1100 nvme_qpair_disable(struct nvme_qpair *qpair)
1101 {
1102         struct nvme_tracker *tr;
1103
1104         qpair->is_enabled = FALSE;
1105         mtx_lock(&qpair->lock);
1106         TAILQ_FOREACH(tr, &qpair->outstanding_tr, tailq)
1107                 callout_stop(&tr->timer);
1108         mtx_unlock(&qpair->lock);
1109 }
1110
1111 void
1112 nvme_admin_qpair_disable(struct nvme_qpair *qpair)
1113 {
1114
1115         nvme_qpair_disable(qpair);
1116         nvme_admin_qpair_abort_aers(qpair);
1117 }
1118
1119 void
1120 nvme_io_qpair_disable(struct nvme_qpair *qpair)
1121 {
1122
1123         nvme_qpair_disable(qpair);
1124 }
1125
1126 void
1127 nvme_qpair_fail(struct nvme_qpair *qpair)
1128 {
1129         struct nvme_tracker             *tr;
1130         struct nvme_request             *req;
1131
1132         if (!mtx_initialized(&qpair->lock))
1133                 return;
1134
1135         mtx_lock(&qpair->lock);
1136
1137         while (!STAILQ_EMPTY(&qpair->queued_req)) {
1138                 req = STAILQ_FIRST(&qpair->queued_req);
1139                 STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
1140                 nvme_printf(qpair->ctrlr, "failing queued i/o\n");
1141                 mtx_unlock(&qpair->lock);
1142                 nvme_qpair_manual_complete_request(qpair, req, NVME_SCT_GENERIC,
1143                     NVME_SC_ABORTED_BY_REQUEST, TRUE);
1144                 mtx_lock(&qpair->lock);
1145         }
1146
1147         /* Manually abort each outstanding I/O. */
1148         while (!TAILQ_EMPTY(&qpair->outstanding_tr)) {
1149                 tr = TAILQ_FIRST(&qpair->outstanding_tr);
1150                 /*
1151                  * Do not remove the tracker.  The abort_tracker path will
1152                  *  do that for us.
1153                  */
1154                 nvme_printf(qpair->ctrlr, "failing outstanding i/o\n");
1155                 mtx_unlock(&qpair->lock);
1156                 nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1157                     NVME_SC_ABORTED_BY_REQUEST, 1 /* do not retry */, TRUE);
1158                 mtx_lock(&qpair->lock);
1159         }
1160
1161         mtx_unlock(&qpair->lock);
1162 }
1163