]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/qlnx/qlnxe/ecore_cxt.c
MFV r353143 (phillip):
[FreeBSD/FreeBSD.git] / sys / dev / qlnx / qlnxe / ecore_cxt.c
1 /*
2  * Copyright (c) 2017-2018 Cavium, Inc.
3  * All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions
7  *  are met:
8  *
9  *  1. Redistributions of source code must retain the above copyright
10  *     notice, this list of conditions and the following disclaimer.
11  *  2. Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  *
15  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  *  POSSIBILITY OF SUCH DAMAGE.
26  */
27
28 /*
29  * File : ecore_cxt.c
30  */
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33
34 #include "bcm_osal.h"
35 #include "reg_addr.h"
36 #include "common_hsi.h"
37 #include "ecore_hsi_common.h"
38 #include "ecore_hsi_eth.h"
39 #include "tcp_common.h"
40 #include "ecore_hsi_iscsi.h"
41 #include "ecore_hsi_fcoe.h"
42 #include "ecore_hsi_roce.h"
43 #include "ecore_hsi_iwarp.h"
44 #include "ecore_rt_defs.h"
45 #include "ecore_status.h"
46 #include "ecore.h"
47 #include "ecore_init_ops.h"
48 #include "ecore_init_fw_funcs.h"
49 #include "ecore_cxt.h"
50 #include "ecore_hw.h"
51 #include "ecore_dev_api.h"
52 #include "ecore_sriov.h"
53 #include "ecore_rdma.h"
54 #include "ecore_mcp.h"
55
56 /* Max number of connection types in HW (DQ/CDU etc.) */
57 #define MAX_CONN_TYPES          PROTOCOLID_COMMON
58 #define NUM_TASK_TYPES          2
59 #define NUM_TASK_PF_SEGMENTS    4
60 #define NUM_TASK_VF_SEGMENTS    1
61
62 /* Doorbell-Queue constants */
63 #define DQ_RANGE_SHIFT  4
64 #define DQ_RANGE_ALIGN  (1 << DQ_RANGE_SHIFT)
65
66 /* Searcher constants */
67 #define SRC_MIN_NUM_ELEMS 256
68
69 /* Timers constants */
70 #define TM_SHIFT        7
71 #define TM_ALIGN        (1 << TM_SHIFT)
72 #define TM_ELEM_SIZE    4
73
74 /* ILT constants */
75 #define ILT_PAGE_IN_BYTES(hw_p_size)    (1U << ((hw_p_size) + 12))
76 #define ILT_CFG_REG(cli, reg)           PSWRQ2_REG_##cli##_##reg##_RT_OFFSET
77
78 /* ILT entry structure */
79 #define ILT_ENTRY_PHY_ADDR_MASK         0x000FFFFFFFFFFFULL
80 #define ILT_ENTRY_PHY_ADDR_SHIFT        0
81 #define ILT_ENTRY_VALID_MASK            0x1ULL
82 #define ILT_ENTRY_VALID_SHIFT           52
83 #define ILT_ENTRY_IN_REGS               2
84 #define ILT_REG_SIZE_IN_BYTES           4
85
86 /* connection context union */
87 union conn_context {
88         struct e4_core_conn_context  core_ctx;
89         struct e4_eth_conn_context        eth_ctx;
90         struct e4_iscsi_conn_context iscsi_ctx;
91         struct e4_fcoe_conn_context  fcoe_ctx;
92         struct e4_roce_conn_context  roce_ctx;
93 };
94
95 /* TYPE-0 task context - iSCSI, FCOE */
96 union type0_task_context {
97         struct e4_iscsi_task_context iscsi_ctx;
98         struct e4_fcoe_task_context  fcoe_ctx;
99 };
100
101 /* TYPE-1 task context - ROCE */
102 union type1_task_context {
103         struct e4_rdma_task_context roce_ctx;
104 };
105
106 struct src_ent {
107         u8  opaque[56];
108         u64 next;
109 };
110
111 #define CDUT_SEG_ALIGNMET 3 /* in 4k chunks */
112 #define CDUT_SEG_ALIGNMET_IN_BYTES (1 << (CDUT_SEG_ALIGNMET + 12))
113
114 #define CONN_CXT_SIZE(p_hwfn) \
115         ALIGNED_TYPE_SIZE(union conn_context, p_hwfn)
116
117 #define SRQ_CXT_SIZE (sizeof(struct rdma_srq_context))
118 #define XRC_SRQ_CXT_SIZE (sizeof(struct rdma_xrc_srq_context))
119
120 #define TYPE0_TASK_CXT_SIZE(p_hwfn) \
121         ALIGNED_TYPE_SIZE(union type0_task_context, p_hwfn)
122
123 /* Alignment is inherent to the type1_task_context structure */
124 #define TYPE1_TASK_CXT_SIZE(p_hwfn) sizeof(union type1_task_context)
125
126 /* PF per protocl configuration object */
127 #define TASK_SEGMENTS   (NUM_TASK_PF_SEGMENTS + NUM_TASK_VF_SEGMENTS)
128 #define TASK_SEGMENT_VF (NUM_TASK_PF_SEGMENTS)
129
130 struct ecore_tid_seg {
131         u32     count;
132         u8      type;
133         bool    has_fl_mem;
134 };
135
136 struct ecore_conn_type_cfg {
137         u32                     cid_count;
138         u32                     cids_per_vf;
139         struct ecore_tid_seg    tid_seg[TASK_SEGMENTS];
140 };
141
142 /* ILT Client configuration,
143  * Per connection type (protocol) resources (cids, tis, vf cids etc.)
144  * 1 - for connection context (CDUC) and for each task context we need two
145  * values, for regular task context and for force load memory
146  */
147 #define ILT_CLI_PF_BLOCKS       (1 + NUM_TASK_PF_SEGMENTS * 2)
148 #define ILT_CLI_VF_BLOCKS       (1 + NUM_TASK_VF_SEGMENTS * 2)
149 #define CDUC_BLK                (0)
150 #define SRQ_BLK                 (0)
151 #define CDUT_SEG_BLK(n)         (1 + (u8)(n))
152 #define CDUT_FL_SEG_BLK(n, X)   (1 + (n) + NUM_TASK_##X##_SEGMENTS)
153
154 struct ilt_cfg_pair {
155         u32 reg;
156         u32 val;
157 };
158
159 struct ecore_ilt_cli_blk {
160         u32 total_size; /* 0 means not active */
161         u32 real_size_in_page;
162         u32 start_line;
163         u32 dynamic_line_cnt;
164 };
165
166 struct ecore_ilt_client_cfg {
167         bool                            active;
168
169         /* ILT boundaries */
170         struct ilt_cfg_pair             first;
171         struct ilt_cfg_pair             last;
172         struct ilt_cfg_pair             p_size;
173
174         /* ILT client blocks for PF */
175         struct ecore_ilt_cli_blk        pf_blks[ILT_CLI_PF_BLOCKS];
176         u32                             pf_total_lines;
177
178         /* ILT client blocks for VFs */
179         struct ecore_ilt_cli_blk        vf_blks[ILT_CLI_VF_BLOCKS];
180         u32                             vf_total_lines;
181 };
182
183 /* Per Path -
184  *      ILT shadow table
185  *      Protocol acquired CID lists
186  *      PF start line in ILT
187  */
188 struct ecore_dma_mem {
189         dma_addr_t      p_phys;
190         void            *p_virt;
191         osal_size_t     size;
192 };
193
194 #define MAP_WORD_SIZE           sizeof(unsigned long)
195 #define BITS_PER_MAP_WORD       (MAP_WORD_SIZE * 8)
196
197 struct ecore_cid_acquired_map {
198         u32             start_cid;
199         u32             max_count;
200         unsigned long   *cid_map;
201 };
202
203 struct ecore_cxt_mngr {
204         /* Per protocl configuration */
205         struct ecore_conn_type_cfg      conn_cfg[MAX_CONN_TYPES];
206
207         /* computed ILT structure */
208         struct ecore_ilt_client_cfg     clients[ILT_CLI_MAX];
209
210         /* Task type sizes */
211         u32                             task_type_size[NUM_TASK_TYPES];
212
213         /* total number of VFs for this hwfn -
214          * ALL VFs are symmetric in terms of HW resources
215          */
216         u32                             vf_count;
217
218         /* Acquired CIDs */
219         struct ecore_cid_acquired_map acquired[MAX_CONN_TYPES];
220         /* TBD - do we want this allocated to reserve space? */
221         struct ecore_cid_acquired_map acquired_vf[MAX_CONN_TYPES][COMMON_MAX_NUM_VFS];
222
223         /* ILT shadow table */
224         struct ecore_dma_mem            *ilt_shadow;
225         u32                             pf_start_line;
226
227         /* Mutex for a dynamic ILT allocation */
228         osal_mutex_t                    mutex;
229
230         /* SRC T2 */
231         struct ecore_dma_mem            *t2;
232         u32                             t2_num_pages;
233         u64                             first_free;
234         u64                             last_free;
235
236         /* The infrastructure originally was very generic and context/task
237          * oriented - per connection-type we would set how many of those
238          * are needed, and later when determining how much memory we're
239          * needing for a given block we'd iterate over all the relevant
240          * connection-types.
241          * But since then we've had some additional resources, some of which
242          * require memory which is indepent of the general context/task
243          * scheme. We add those here explicitly per-feature.
244          */
245
246         /* total number of SRQ's for this hwfn */
247         u32                             srq_count;
248         u32                             xrc_srq_count;
249
250         /* Maximal number of L2 steering filters */
251         u32                             arfs_count;
252
253         /* TODO - VF arfs filters ? */
254 };
255
256 /* check if resources/configuration is required according to protocol type */
257 static bool src_proto(enum protocol_type type)
258 {
259         return  type == PROTOCOLID_ISCSI        ||
260                 type == PROTOCOLID_FCOE         ||
261                 type == PROTOCOLID_IWARP;
262 }
263
264 static bool tm_cid_proto(enum protocol_type type)
265 {
266         return type == PROTOCOLID_ISCSI ||
267                type == PROTOCOLID_FCOE  ||
268                type == PROTOCOLID_ROCE  ||
269                type == PROTOCOLID_IWARP;
270 }
271
272 static bool tm_tid_proto(enum protocol_type type)
273 {
274         return type == PROTOCOLID_FCOE;
275 }
276
277 /* counts the iids for the CDU/CDUC ILT client configuration */
278 struct ecore_cdu_iids {
279         u32 pf_cids;
280         u32 per_vf_cids;
281 };
282
283 static void ecore_cxt_cdu_iids(struct ecore_cxt_mngr   *p_mngr,
284                                struct ecore_cdu_iids    *iids)
285 {
286         u32 type;
287
288         for (type = 0; type < MAX_CONN_TYPES; type++) {
289                 iids->pf_cids += p_mngr->conn_cfg[type].cid_count;
290                 iids->per_vf_cids += p_mngr->conn_cfg[type].cids_per_vf;
291         }
292 }
293
294 /* counts the iids for the Searcher block configuration */
295 struct ecore_src_iids {
296         u32                     pf_cids;
297         u32                     per_vf_cids;
298 };
299
300 static void ecore_cxt_src_iids(struct ecore_cxt_mngr *p_mngr,
301                                struct ecore_src_iids *iids)
302 {
303         u32 i;
304
305         for (i = 0; i < MAX_CONN_TYPES; i++) {
306                 if (!src_proto(i))
307                         continue;
308
309                 iids->pf_cids += p_mngr->conn_cfg[i].cid_count;
310                 iids->per_vf_cids += p_mngr->conn_cfg[i].cids_per_vf;
311         }
312
313         /* Add L2 filtering filters in addition */
314         iids->pf_cids += p_mngr->arfs_count;
315 }
316
317 /* counts the iids for the Timers block configuration */
318 struct ecore_tm_iids {
319         u32 pf_cids;
320         u32 pf_tids[NUM_TASK_PF_SEGMENTS]; /* per segment */
321         u32 pf_tids_total;
322         u32 per_vf_cids;
323         u32 per_vf_tids;
324 };
325
326 static void ecore_cxt_tm_iids(struct ecore_cxt_mngr *p_mngr,
327                               struct ecore_tm_iids *iids)
328 {
329         bool tm_vf_required = false;
330         bool tm_required = false;
331         int i, j;
332
333         /* Timers is a special case -> we don't count how many cids require
334          * timers but what's the max cid that will be used by the timer block.
335          * therefore we traverse in reverse order, and once we hit a protocol
336          * that requires the timers memory, we'll sum all the protocols up
337          * to that one.
338          */
339         for (i = MAX_CONN_TYPES - 1; i >= 0; i--) {
340                 struct ecore_conn_type_cfg *p_cfg = &p_mngr->conn_cfg[i];
341
342                 if (tm_cid_proto(i) || tm_required) {
343                         if (p_cfg->cid_count)
344                                 tm_required = true;
345
346                         iids->pf_cids += p_cfg->cid_count;
347                 }
348
349                 if (tm_cid_proto(i) || tm_vf_required) {
350                         if (p_cfg->cids_per_vf)
351                                 tm_vf_required = true;
352
353                         iids->per_vf_cids += p_cfg->cids_per_vf;
354                 }
355
356                 if (tm_tid_proto(i)) {
357                         struct ecore_tid_seg *segs = p_cfg->tid_seg;
358
359                         /* for each segment there is at most one
360                          * protocol for which count is not 0.
361                          */
362                         for (j = 0; j < NUM_TASK_PF_SEGMENTS; j++)
363                                 iids->pf_tids[j] += segs[j].count;
364
365                         /* The last array elelment is for the VFs. As for PF
366                          * segments there can be only one protocol for
367                          * which this value is not 0.
368                          */
369                         iids->per_vf_tids += segs[NUM_TASK_PF_SEGMENTS].count;
370                 }
371         }
372
373         iids->pf_cids = ROUNDUP(iids->pf_cids, TM_ALIGN);
374         iids->per_vf_cids = ROUNDUP(iids->per_vf_cids, TM_ALIGN);
375         iids->per_vf_tids = ROUNDUP(iids->per_vf_tids, TM_ALIGN);
376
377         for (iids->pf_tids_total = 0, j = 0; j < NUM_TASK_PF_SEGMENTS; j++) {
378                 iids->pf_tids[j] = ROUNDUP(iids->pf_tids[j], TM_ALIGN);
379                 iids->pf_tids_total += iids->pf_tids[j];
380         }
381 }
382
383 static void ecore_cxt_qm_iids(struct ecore_hwfn *p_hwfn,
384                               struct ecore_qm_iids *iids)
385 {
386         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
387         struct ecore_tid_seg *segs;
388         u32 vf_cids = 0, type, j;
389         u32 vf_tids = 0;
390
391         for (type = 0; type < MAX_CONN_TYPES; type++) {
392                 iids->cids += p_mngr->conn_cfg[type].cid_count;
393                 vf_cids += p_mngr->conn_cfg[type].cids_per_vf;
394
395                 segs = p_mngr->conn_cfg[type].tid_seg;
396                 /* for each segment there is at most one
397                  * protocol for which count is not 0.
398                  */
399                 for (j = 0; j < NUM_TASK_PF_SEGMENTS; j++)
400                         iids->tids += segs[j].count;
401
402                 /* The last array elelment is for the VFs. As for PF
403                  * segments there can be only one protocol for
404                  * which this value is not 0.
405                  */
406                 vf_tids += segs[NUM_TASK_PF_SEGMENTS].count;
407         }
408
409         iids->vf_cids += vf_cids * p_mngr->vf_count;
410         iids->tids += vf_tids * p_mngr->vf_count;
411
412         DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
413                    "iids: CIDS %08x vf_cids %08x tids %08x vf_tids %08x\n",
414                    iids->cids, iids->vf_cids, iids->tids, vf_tids);
415 }
416
417 static struct ecore_tid_seg *ecore_cxt_tid_seg_info(struct ecore_hwfn   *p_hwfn,
418                                                     u32                 seg)
419 {
420         struct ecore_cxt_mngr *p_cfg = p_hwfn->p_cxt_mngr;
421         u32 i;
422
423         /* Find the protocol with tid count > 0 for this segment.
424            Note: there can only be one and this is already validated.
425          */
426         for (i = 0; i < MAX_CONN_TYPES; i++) {
427                 if (p_cfg->conn_cfg[i].tid_seg[seg].count)
428                         return &p_cfg->conn_cfg[i].tid_seg[seg];
429         }
430         return OSAL_NULL;
431 }
432
433 static void ecore_cxt_set_srq_count(struct ecore_hwfn *p_hwfn,
434                                     u32 num_srqs, u32 num_xrc_srqs)
435 {
436         struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr;
437
438         p_mgr->srq_count = num_srqs;
439         p_mgr->xrc_srq_count = num_xrc_srqs;
440 }
441
442 u32 ecore_cxt_get_srq_count(struct ecore_hwfn *p_hwfn)
443 {
444         return p_hwfn->p_cxt_mngr->srq_count;
445 }
446
447 u32 ecore_cxt_get_xrc_srq_count(struct ecore_hwfn *p_hwfn)
448 {
449         return p_hwfn->p_cxt_mngr->xrc_srq_count;
450 }
451
452 u32 ecore_cxt_get_ilt_page_size(struct ecore_hwfn *p_hwfn,
453                                 enum ilt_clients ilt_client)
454 {
455         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
456         struct ecore_ilt_client_cfg *p_cli = &p_mngr->clients[ilt_client];
457
458         return ILT_PAGE_IN_BYTES(p_cli->p_size.val);
459 }
460
461 static u32 ecore_cxt_srqs_per_page(struct ecore_hwfn *p_hwfn)
462 {
463         u32 page_size;
464
465         page_size = ecore_cxt_get_ilt_page_size(p_hwfn, ILT_CLI_TSDM);
466         return page_size / SRQ_CXT_SIZE;
467 }
468
469 u32 ecore_cxt_get_total_srq_count(struct ecore_hwfn *p_hwfn)
470 {
471         struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr;
472         u32 total_srqs;
473
474         total_srqs = p_mgr->srq_count;
475
476         /* XRC SRQs use the first and only the first SRQ ILT page. So if XRC
477          * SRQs are requested we need to allocate an extra SRQ ILT page for
478          * them. For that We increase the number of regular SRQs to cause the
479          * allocation of that extra page.
480          */
481         if (p_mgr->xrc_srq_count)
482                 total_srqs += ecore_cxt_srqs_per_page(p_hwfn);
483
484         return total_srqs;
485 }
486
487 /* set the iids (cid/tid) count per protocol */
488 static void ecore_cxt_set_proto_cid_count(struct ecore_hwfn *p_hwfn,
489                                           enum protocol_type type,
490                                           u32 cid_count, u32 vf_cid_cnt)
491 {
492         struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr;
493         struct ecore_conn_type_cfg *p_conn = &p_mgr->conn_cfg[type];
494
495         p_conn->cid_count = ROUNDUP(cid_count, DQ_RANGE_ALIGN);
496         p_conn->cids_per_vf = ROUNDUP(vf_cid_cnt, DQ_RANGE_ALIGN);
497
498         if (type == PROTOCOLID_ROCE) {
499                 u32 page_sz = p_mgr->clients[ILT_CLI_CDUC].p_size.val;
500                 u32 cxt_size = CONN_CXT_SIZE(p_hwfn);
501                 u32 elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
502                 u32 align = elems_per_page * DQ_RANGE_ALIGN;
503
504                 p_conn->cid_count = ROUNDUP(p_conn->cid_count, align);
505         }
506 }
507
508 u32 ecore_cxt_get_proto_cid_count(struct ecore_hwfn     *p_hwfn,
509                                   enum protocol_type    type,
510                                   u32                   *vf_cid)
511 {
512         if (vf_cid)
513                 *vf_cid = p_hwfn->p_cxt_mngr->conn_cfg[type].cids_per_vf;
514
515         return p_hwfn->p_cxt_mngr->conn_cfg[type].cid_count;
516 }
517
518 u32 ecore_cxt_get_proto_cid_start(struct ecore_hwfn     *p_hwfn,
519                                   enum protocol_type    type)
520 {
521         return p_hwfn->p_cxt_mngr->acquired[type].start_cid;
522 }
523
524 u32 ecore_cxt_get_proto_tid_count(struct ecore_hwfn *p_hwfn,
525                                   enum protocol_type type)
526 {
527         u32 cnt = 0;
528         int i;
529
530         for (i = 0; i < TASK_SEGMENTS; i++)
531                 cnt += p_hwfn->p_cxt_mngr->conn_cfg[type].tid_seg[i].count;
532
533         return cnt;
534 }
535
536 static void ecore_cxt_set_proto_tid_count(struct ecore_hwfn *p_hwfn,
537                                           enum protocol_type proto,
538                                           u8 seg,
539                                           u8 seg_type,
540                                           u32 count,
541                                           bool has_fl)
542 {
543         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
544         struct ecore_tid_seg *p_seg = &p_mngr->conn_cfg[proto].tid_seg[seg];
545
546         p_seg->count = count;
547         p_seg->has_fl_mem = has_fl;
548         p_seg->type = seg_type;
549 }
550
551 /* the *p_line parameter must be either 0 for the first invocation or the
552    value returned in the previous invocation.
553  */
554 static void ecore_ilt_cli_blk_fill(struct ecore_ilt_client_cfg  *p_cli,
555                                    struct ecore_ilt_cli_blk     *p_blk,
556                                    u32                          start_line,
557                                    u32                          total_size,
558                                    u32                          elem_size)
559 {
560         u32 ilt_size = ILT_PAGE_IN_BYTES(p_cli->p_size.val);
561
562         /* verify that it's called once for each block */
563         if (p_blk->total_size)
564                 return;
565
566         p_blk->total_size = total_size;
567         p_blk->real_size_in_page = 0;
568         if (elem_size)
569                 p_blk->real_size_in_page = (ilt_size / elem_size) * elem_size;
570         p_blk->start_line = start_line;
571 }
572
573 static void ecore_ilt_cli_adv_line(struct ecore_hwfn            *p_hwfn,
574                                     struct ecore_ilt_client_cfg *p_cli,
575                                     struct ecore_ilt_cli_blk    *p_blk,
576                                     u32                         *p_line,
577                                     enum ilt_clients            client_id)
578 {
579         if (!p_blk->total_size)
580                 return;
581
582         if (!p_cli->active)
583                 p_cli->first.val = *p_line;
584
585         p_cli->active = true;
586         *p_line += DIV_ROUND_UP(p_blk->total_size, p_blk->real_size_in_page);
587         p_cli->last.val = *p_line-1;
588
589         DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
590                    "ILT[Client %d] - Lines: [%08x - %08x]. Block - Size %08x [Real %08x] Start line %d\n",
591                    client_id, p_cli->first.val, p_cli->last.val,
592                    p_blk->total_size, p_blk->real_size_in_page,
593                    p_blk->start_line);
594 }
595
596 static u32 ecore_ilt_get_dynamic_line_cnt(struct ecore_hwfn *p_hwfn,
597                                           enum ilt_clients ilt_client)
598 {
599         u32 cid_count = p_hwfn->p_cxt_mngr->conn_cfg[PROTOCOLID_ROCE].cid_count;
600         struct ecore_ilt_client_cfg *p_cli;
601         u32 lines_to_skip = 0;
602         u32 cxts_per_p;
603
604         /* TBD MK: ILT code should be simplified once PROTO enum is changed */
605
606         if (ilt_client == ILT_CLI_CDUC) {
607                 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
608
609                 cxts_per_p = ILT_PAGE_IN_BYTES(p_cli->p_size.val) /
610                              (u32)CONN_CXT_SIZE(p_hwfn);
611
612                 lines_to_skip = cid_count / cxts_per_p;
613         }
614
615         return lines_to_skip;
616 }
617
618 static struct ecore_ilt_client_cfg *
619 ecore_cxt_set_cli(struct ecore_ilt_client_cfg *p_cli)
620 {
621         p_cli->active = false;
622         p_cli->first.val = 0;
623         p_cli->last.val = 0;
624         return p_cli;
625 }
626
627 static struct ecore_ilt_cli_blk *
628 ecore_cxt_set_blk(struct ecore_ilt_cli_blk *p_blk)
629 {
630         p_blk->total_size = 0;
631         return p_blk;
632 }
633
634 enum _ecore_status_t ecore_cxt_cfg_ilt_compute(struct ecore_hwfn *p_hwfn,
635                                                u32 *line_count)
636 {
637         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
638         u32 curr_line, total, i, task_size, line;
639         struct ecore_ilt_client_cfg *p_cli;
640         struct ecore_ilt_cli_blk *p_blk;
641         struct ecore_cdu_iids cdu_iids;
642         struct ecore_src_iids src_iids;
643         struct ecore_qm_iids qm_iids;
644         struct ecore_tm_iids tm_iids;
645         struct ecore_tid_seg *p_seg;
646
647         OSAL_MEM_ZERO(&qm_iids, sizeof(qm_iids));
648         OSAL_MEM_ZERO(&cdu_iids, sizeof(cdu_iids));
649         OSAL_MEM_ZERO(&src_iids, sizeof(src_iids));
650         OSAL_MEM_ZERO(&tm_iids, sizeof(tm_iids));
651
652         p_mngr->pf_start_line = RESC_START(p_hwfn, ECORE_ILT);
653
654         DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
655                    "hwfn [%d] - Set context manager starting line to be 0x%08x\n",
656                    p_hwfn->my_id, p_hwfn->p_cxt_mngr->pf_start_line);
657
658         /* CDUC */
659         p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_CDUC]);
660
661         curr_line = p_mngr->pf_start_line;
662
663         /* CDUC PF */
664         p_cli->pf_total_lines = 0;
665
666         /* get the counters for the CDUC,CDUC and QM clients  */
667         ecore_cxt_cdu_iids(p_mngr, &cdu_iids);
668
669         p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[CDUC_BLK]);
670
671         total = cdu_iids.pf_cids * CONN_CXT_SIZE(p_hwfn);
672
673         ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
674                                total, CONN_CXT_SIZE(p_hwfn));
675
676         ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_CDUC);
677         p_cli->pf_total_lines = curr_line - p_blk->start_line;
678
679         p_blk->dynamic_line_cnt = ecore_ilt_get_dynamic_line_cnt(p_hwfn,
680                                                                  ILT_CLI_CDUC);
681
682         /* CDUC VF */
683         p_blk = ecore_cxt_set_blk(&p_cli->vf_blks[CDUC_BLK]);
684         total = cdu_iids.per_vf_cids * CONN_CXT_SIZE(p_hwfn);
685
686         ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
687                                total, CONN_CXT_SIZE(p_hwfn));
688
689         ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_CDUC);
690         p_cli->vf_total_lines = curr_line - p_blk->start_line;
691
692         for (i = 1; i < p_mngr->vf_count; i++)
693                 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
694                                        ILT_CLI_CDUC);
695
696         /* CDUT PF */
697         p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_CDUT]);
698         p_cli->first.val = curr_line;
699
700         /* first the 'working' task memory */
701         for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
702                 p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
703                 if (!p_seg || p_seg->count == 0)
704                         continue;
705
706                 p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[CDUT_SEG_BLK(i)]);
707                 total = p_seg->count * p_mngr->task_type_size[p_seg->type];
708                 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, total,
709                                        p_mngr->task_type_size[p_seg->type]);
710
711                 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
712                                        ILT_CLI_CDUT);
713         }
714
715         /* next the 'init' task memory (forced load memory) */
716         for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
717                 p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
718                 if (!p_seg || p_seg->count == 0)
719                         continue;
720
721                 p_blk = ecore_cxt_set_blk(
722                                 &p_cli->pf_blks[CDUT_FL_SEG_BLK(i, PF)]);
723
724                 if (!p_seg->has_fl_mem) {
725                         /* The segment is active (total size pf 'working'
726                          * memory is > 0) but has no FL (forced-load, Init)
727                          * memory. Thus:
728                          *
729                          * 1.   The total-size in the corrsponding FL block of
730                          *      the ILT client is set to 0 - No ILT line are
731                          *      provisioned and no ILT memory allocated.
732                          *
733                          * 2.   The start-line of said block is set to the
734                          *      start line of the matching working memory
735                          *      block in the ILT client. This is later used to
736                          *      configure the CDU segment offset registers and
737                          *      results in an FL command for TIDs of this
738                          *      segement behaves as regular load commands
739                          *      (loading TIDs from the working memory).
740                          */
741                         line = p_cli->pf_blks[CDUT_SEG_BLK(i)].start_line;
742
743                         ecore_ilt_cli_blk_fill(p_cli, p_blk, line, 0, 0);
744                         continue;
745                 }
746                 total = p_seg->count * p_mngr->task_type_size[p_seg->type];
747
748                 ecore_ilt_cli_blk_fill(p_cli, p_blk,
749                                        curr_line, total,
750                                        p_mngr->task_type_size[p_seg->type]);
751
752                 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
753                                        ILT_CLI_CDUT);
754         }
755         p_cli->pf_total_lines = curr_line - p_cli->pf_blks[0].start_line;
756
757         /* CDUT VF */
758         p_seg = ecore_cxt_tid_seg_info(p_hwfn, TASK_SEGMENT_VF);
759         if (p_seg && p_seg->count) {
760                 /* Stricly speaking we need to iterate over all VF
761                  * task segment types, but a VF has only 1 segment
762                  */
763
764                 /* 'working' memory */
765                 total = p_seg->count * p_mngr->task_type_size[p_seg->type];
766
767                 p_blk = ecore_cxt_set_blk(&p_cli->vf_blks[CDUT_SEG_BLK(0)]);
768                 ecore_ilt_cli_blk_fill(p_cli, p_blk,
769                                        curr_line, total,
770                                        p_mngr->task_type_size[p_seg->type]);
771
772                 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
773                                        ILT_CLI_CDUT);
774
775                 /* 'init' memory */
776                 p_blk = ecore_cxt_set_blk(
777                                 &p_cli->vf_blks[CDUT_FL_SEG_BLK(0, VF)]);
778                 if (!p_seg->has_fl_mem) {
779                         /* see comment above */
780                         line = p_cli->vf_blks[CDUT_SEG_BLK(0)].start_line;
781                         ecore_ilt_cli_blk_fill(p_cli, p_blk, line, 0, 0);
782                 } else {
783                         task_size = p_mngr->task_type_size[p_seg->type];
784                         ecore_ilt_cli_blk_fill(p_cli, p_blk,
785                                                curr_line, total,
786                                                task_size);
787                         ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
788                                                ILT_CLI_CDUT);
789                 }
790                 p_cli->vf_total_lines = curr_line -
791                                         p_cli->vf_blks[0].start_line;
792
793                 /* Now for the rest of the VFs */
794                 for (i = 1; i < p_mngr->vf_count; i++) {
795                         /* don't set p_blk i.e. don't clear total_size */
796                         p_blk = &p_cli->vf_blks[CDUT_SEG_BLK(0)];
797                         ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
798                                                ILT_CLI_CDUT);
799
800                         /* don't set p_blk i.e. don't clear total_size */
801                         p_blk = &p_cli->vf_blks[CDUT_FL_SEG_BLK(0, VF)];
802                         ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
803                                                ILT_CLI_CDUT);
804                 }
805         }
806
807         /* QM */
808         p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_QM]);
809         p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[0]);
810
811         ecore_cxt_qm_iids(p_hwfn, &qm_iids);
812         total = ecore_qm_pf_mem_size(qm_iids.cids,
813                                      qm_iids.vf_cids, qm_iids.tids,
814                                      p_hwfn->qm_info.num_pqs,
815                                      p_hwfn->qm_info.num_vf_pqs);
816
817         DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
818                    "QM ILT Info, (cids=%d, vf_cids=%d, tids=%d, num_pqs=%d, num_vf_pqs=%d, memory_size=%d)\n",
819                    qm_iids.cids, qm_iids.vf_cids, qm_iids.tids,
820                    p_hwfn->qm_info.num_pqs, p_hwfn->qm_info.num_vf_pqs, total);
821
822         ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, total * 0x1000,
823                                QM_PQ_ELEMENT_SIZE);
824
825         ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_QM);
826         p_cli->pf_total_lines = curr_line - p_blk->start_line;
827
828         /* SRC */
829         p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_SRC]);
830         ecore_cxt_src_iids(p_mngr, &src_iids);
831
832         /* Both the PF and VFs searcher connections are stored in the per PF
833          * database. Thus sum the PF searcher cids and all the VFs searcher
834          * cids.
835          */
836         total = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count;
837         if (total) {
838                 u32 local_max = OSAL_MAX_T(u32, total,
839                                            SRC_MIN_NUM_ELEMS);
840
841                 total = OSAL_ROUNDUP_POW_OF_TWO(local_max);
842
843                 p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[0]);
844                 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
845                                        total * sizeof(struct src_ent),
846                                        sizeof(struct src_ent));
847
848                 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
849                                        ILT_CLI_SRC);
850                 p_cli->pf_total_lines = curr_line - p_blk->start_line;
851         }
852
853         /* TM PF */
854         p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_TM]);
855         ecore_cxt_tm_iids(p_mngr, &tm_iids);
856         total = tm_iids.pf_cids + tm_iids.pf_tids_total;
857         if (total) {
858                 p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[0]);
859                 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
860                                        total * TM_ELEM_SIZE,
861                                        TM_ELEM_SIZE);
862
863                 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
864                                        ILT_CLI_TM);
865                 p_cli->pf_total_lines = curr_line - p_blk->start_line;
866         }
867
868         /* TM VF */
869         total = tm_iids.per_vf_cids + tm_iids.per_vf_tids;
870         if (total) {
871                 p_blk = ecore_cxt_set_blk(&p_cli->vf_blks[0]);
872                 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
873                                        total * TM_ELEM_SIZE,
874                                        TM_ELEM_SIZE);
875
876                 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
877                                        ILT_CLI_TM);
878
879                 p_cli->vf_total_lines = curr_line - p_blk->start_line;
880                 for (i = 1; i < p_mngr->vf_count; i++) {
881                         ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
882                                                ILT_CLI_TM);
883                 }
884         }
885
886         /* TSDM (SRQ CONTEXT) */
887         total = ecore_cxt_get_total_srq_count(p_hwfn);
888         if (total) {
889                 p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_TSDM]);
890                 p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[SRQ_BLK]);
891                 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
892                                        total * SRQ_CXT_SIZE, SRQ_CXT_SIZE);
893
894                 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
895                                        ILT_CLI_TSDM);
896                 p_cli->pf_total_lines = curr_line - p_blk->start_line;
897         }
898
899         *line_count = curr_line - p_hwfn->p_cxt_mngr->pf_start_line;
900
901         if (curr_line - p_hwfn->p_cxt_mngr->pf_start_line >
902             RESC_NUM(p_hwfn, ECORE_ILT)) {
903                 return ECORE_INVAL;
904         }
905
906         return ECORE_SUCCESS;
907 }
908
909 u32 ecore_cxt_cfg_ilt_compute_excess(struct ecore_hwfn *p_hwfn, u32 used_lines)
910 {
911         struct ecore_ilt_client_cfg *p_cli;
912         u32 excess_lines, available_lines;
913         struct ecore_cxt_mngr *p_mngr;
914         u32 ilt_page_size, elem_size;
915         struct ecore_tid_seg *p_seg;
916         int i;
917
918         available_lines = RESC_NUM(p_hwfn, ECORE_ILT);
919         excess_lines = used_lines - available_lines;
920
921         if (!excess_lines)
922                 return 0;
923
924         if (!ECORE_IS_RDMA_PERSONALITY(p_hwfn))
925                 return 0;
926
927         p_mngr = p_hwfn->p_cxt_mngr;
928         p_cli = &p_mngr->clients[ILT_CLI_CDUT];
929         ilt_page_size = ILT_PAGE_IN_BYTES(p_cli->p_size.val);
930
931         for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
932                 p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
933                 if (!p_seg || p_seg->count == 0)
934                         continue;
935
936                 elem_size = p_mngr->task_type_size[p_seg->type];
937                 if (!elem_size)
938                         continue;
939
940                 return (ilt_page_size / elem_size) * excess_lines;
941         }
942
943         DP_ERR(p_hwfn, "failed computing excess ILT lines\n");
944         return 0;
945 }
946
947 static void ecore_cxt_src_t2_free(struct ecore_hwfn *p_hwfn)
948 {
949         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
950         u32 i;
951
952         if (!p_mngr->t2)
953                 return;
954
955         for (i = 0; i < p_mngr->t2_num_pages; i++)
956                 if (p_mngr->t2[i].p_virt)
957                         OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
958                                                p_mngr->t2[i].p_virt,
959                                                p_mngr->t2[i].p_phys,
960                                                p_mngr->t2[i].size);
961
962         OSAL_FREE(p_hwfn->p_dev, p_mngr->t2);
963         p_mngr->t2 = OSAL_NULL;
964 }
965
966 static enum _ecore_status_t ecore_cxt_src_t2_alloc(struct ecore_hwfn *p_hwfn)
967 {
968         struct ecore_cxt_mngr *p_mngr  = p_hwfn->p_cxt_mngr;
969         u32 conn_num, total_size, ent_per_page, psz, i;
970         struct ecore_ilt_client_cfg *p_src;
971         struct ecore_src_iids src_iids;
972         struct ecore_dma_mem *p_t2;
973         enum _ecore_status_t rc;
974
975         OSAL_MEM_ZERO(&src_iids, sizeof(src_iids));
976
977         /* if the SRC ILT client is inactive - there are no connection
978          * requiring the searcer, leave.
979          */
980         p_src = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_SRC];
981         if (!p_src->active)
982                 return ECORE_SUCCESS;
983
984         ecore_cxt_src_iids(p_mngr, &src_iids);
985         conn_num = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count;
986         total_size = conn_num * sizeof(struct src_ent);
987
988         /* use the same page size as the SRC ILT client */
989         psz = ILT_PAGE_IN_BYTES(p_src->p_size.val);
990         p_mngr->t2_num_pages = DIV_ROUND_UP(total_size, psz);
991
992         /* allocate t2 */
993         p_mngr->t2 = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
994                                  p_mngr->t2_num_pages *
995                                  sizeof(struct ecore_dma_mem));
996         if (!p_mngr->t2) {
997                 DP_NOTICE(p_hwfn, false, "Failed to allocate t2 table\n");
998                 rc = ECORE_NOMEM;
999                 goto t2_fail;
1000         }
1001
1002         /* allocate t2 pages */
1003         for (i = 0; i < p_mngr->t2_num_pages; i++) {
1004                 u32 size = OSAL_MIN_T(u32, total_size, psz);
1005                 void **p_virt = &p_mngr->t2[i].p_virt;
1006
1007                 *p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
1008                                                   &p_mngr->t2[i].p_phys,
1009                                                   size);
1010                 if (!p_mngr->t2[i].p_virt) {
1011                         rc = ECORE_NOMEM;
1012                         goto t2_fail;
1013                 }
1014                 OSAL_MEM_ZERO(*p_virt, size);
1015                 p_mngr->t2[i].size = size;
1016                 total_size -= size;
1017         }
1018
1019         /* Set the t2 pointers */
1020
1021         /* entries per page - must be a power of two */
1022         ent_per_page = psz / sizeof(struct src_ent);
1023
1024         p_mngr->first_free = (u64)p_mngr->t2[0].p_phys;
1025
1026         p_t2 = &p_mngr->t2[(conn_num - 1) / ent_per_page];
1027         p_mngr->last_free = (u64)p_t2->p_phys +
1028                                  ((conn_num - 1) & (ent_per_page - 1)) *
1029                                  sizeof(struct src_ent);
1030
1031         for (i = 0; i < p_mngr->t2_num_pages; i++) {
1032                 u32 ent_num = OSAL_MIN_T(u32, ent_per_page, conn_num);
1033                 struct src_ent *entries = p_mngr->t2[i].p_virt;
1034                 u64 p_ent_phys = (u64)p_mngr->t2[i].p_phys, val;
1035                 u32 j;
1036
1037                 for (j = 0; j < ent_num - 1; j++) {
1038                         val = p_ent_phys +
1039                               (j + 1) * sizeof(struct src_ent);
1040                         entries[j].next = OSAL_CPU_TO_BE64(val);
1041                 }
1042
1043                 if (i < p_mngr->t2_num_pages - 1)
1044                         val = (u64)p_mngr->t2[i + 1].p_phys;
1045                 else
1046                         val = 0;
1047                 entries[j].next = OSAL_CPU_TO_BE64(val);
1048
1049                 conn_num -= ent_num;
1050         }
1051
1052         return ECORE_SUCCESS;
1053
1054 t2_fail:
1055         ecore_cxt_src_t2_free(p_hwfn);
1056         return rc;
1057 }
1058
1059 #define for_each_ilt_valid_client(pos, clients) \
1060         for (pos = 0; pos < ILT_CLI_MAX; pos++) \
1061                 if (!clients[pos].active) {     \
1062                         continue;               \
1063                 } else                          \
1064
1065
1066 /* Total number of ILT lines used by this PF */
1067 static u32 ecore_cxt_ilt_shadow_size(struct ecore_ilt_client_cfg *ilt_clients)
1068 {
1069         u32 size = 0;
1070         u32 i;
1071
1072         for_each_ilt_valid_client(i, ilt_clients)
1073                 size += (ilt_clients[i].last.val -
1074                          ilt_clients[i].first.val + 1);
1075
1076         return size;
1077 }
1078
1079 static void ecore_ilt_shadow_free(struct ecore_hwfn *p_hwfn)
1080 {
1081         struct ecore_ilt_client_cfg *p_cli = p_hwfn->p_cxt_mngr->clients;
1082         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1083         u32 ilt_size, i;
1084
1085         if (p_mngr->ilt_shadow == OSAL_NULL)
1086                 return;
1087
1088         ilt_size = ecore_cxt_ilt_shadow_size(p_cli);
1089
1090         for (i = 0; p_mngr->ilt_shadow && i < ilt_size; i++) {
1091                 struct ecore_dma_mem *p_dma = &p_mngr->ilt_shadow[i];
1092
1093                 if (p_dma->p_virt)
1094                         OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
1095                                                p_dma->p_virt,
1096                                                p_dma->p_phys,
1097                                                p_dma->size);
1098                 p_dma->p_virt = OSAL_NULL;
1099         }
1100         OSAL_FREE(p_hwfn->p_dev, p_mngr->ilt_shadow);
1101         p_mngr->ilt_shadow = OSAL_NULL;
1102 }
1103
1104 static enum _ecore_status_t ecore_ilt_blk_alloc(struct ecore_hwfn *p_hwfn,
1105                                                 struct ecore_ilt_cli_blk *p_blk,
1106                                                 enum ilt_clients ilt_client,
1107                                                 u32 start_line_offset)
1108 {
1109         struct ecore_dma_mem *ilt_shadow = p_hwfn->p_cxt_mngr->ilt_shadow;
1110         u32 lines, line, sz_left, lines_to_skip = 0;
1111
1112         /* Special handling for RoCE that supports dynamic allocation */
1113         if (ECORE_IS_RDMA_PERSONALITY(p_hwfn) &&
1114             ((ilt_client == ILT_CLI_CDUT) || ilt_client == ILT_CLI_TSDM))
1115                 return ECORE_SUCCESS;
1116
1117         lines_to_skip = p_blk->dynamic_line_cnt;
1118
1119         if (!p_blk->total_size)
1120                 return ECORE_SUCCESS;
1121
1122         sz_left = p_blk->total_size;
1123         lines = DIV_ROUND_UP(sz_left, p_blk->real_size_in_page) -
1124                 lines_to_skip;
1125         line = p_blk->start_line + start_line_offset -
1126                p_hwfn->p_cxt_mngr->pf_start_line + lines_to_skip;
1127
1128         for (; lines; lines--) {
1129                 dma_addr_t p_phys;
1130                 void *p_virt;
1131                 u32 size;
1132
1133                 size = OSAL_MIN_T(u32, sz_left, p_blk->real_size_in_page);
1134                 p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
1135                                                  &p_phys, size);
1136                 if (!p_virt)
1137                         return ECORE_NOMEM;
1138                 OSAL_MEM_ZERO(p_virt, size);
1139
1140                 ilt_shadow[line].p_phys = p_phys;
1141                 ilt_shadow[line].p_virt = p_virt;
1142                 ilt_shadow[line].size = size;
1143
1144                 DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
1145                            "ILT shadow: Line [%d] Physical 0x%llx Virtual %p Size %d\n",
1146                            line, (unsigned long long)p_phys, p_virt, size);
1147
1148                 sz_left -= size;
1149                 line++;
1150         }
1151
1152         return ECORE_SUCCESS;
1153 }
1154
1155 static enum _ecore_status_t ecore_ilt_shadow_alloc(struct ecore_hwfn *p_hwfn)
1156 {
1157         struct ecore_cxt_mngr *p_mngr  = p_hwfn->p_cxt_mngr;
1158         struct ecore_ilt_client_cfg *clients = p_mngr->clients;
1159         struct ecore_ilt_cli_blk *p_blk;
1160         u32 size, i, j, k;
1161         enum _ecore_status_t rc;
1162
1163         size = ecore_cxt_ilt_shadow_size(clients);
1164         p_mngr->ilt_shadow = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
1165                                          size * sizeof(struct ecore_dma_mem));
1166
1167         if (p_mngr->ilt_shadow == OSAL_NULL) {
1168                 DP_NOTICE(p_hwfn, false, "Failed to allocate ilt shadow table\n");
1169                 rc = ECORE_NOMEM;
1170                 goto ilt_shadow_fail;
1171         }
1172
1173         DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
1174                    "Allocated 0x%x bytes for ilt shadow\n",
1175                    (u32)(size * sizeof(struct ecore_dma_mem)));
1176
1177         for_each_ilt_valid_client(i, clients) {
1178                 for (j = 0; j < ILT_CLI_PF_BLOCKS; j++) {
1179                         p_blk = &clients[i].pf_blks[j];
1180                         rc = ecore_ilt_blk_alloc(p_hwfn, p_blk, i, 0);
1181                         if (rc != ECORE_SUCCESS)
1182                                 goto ilt_shadow_fail;
1183                 }
1184                 for (k = 0; k < p_mngr->vf_count; k++) {
1185                         for (j = 0; j < ILT_CLI_VF_BLOCKS; j++) {
1186                                 u32 lines = clients[i].vf_total_lines * k;
1187
1188                                 p_blk = &clients[i].vf_blks[j];
1189                                 rc = ecore_ilt_blk_alloc(p_hwfn, p_blk,
1190                                                          i, lines);
1191                                 if (rc != ECORE_SUCCESS)
1192                                         goto ilt_shadow_fail;
1193                         }
1194                 }
1195         }
1196
1197         return ECORE_SUCCESS;
1198
1199 ilt_shadow_fail:
1200         ecore_ilt_shadow_free(p_hwfn);
1201         return rc;
1202 }
1203
1204 static void ecore_cid_map_free(struct ecore_hwfn *p_hwfn)
1205 {
1206         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1207         u32 type, vf;
1208
1209         for (type = 0; type < MAX_CONN_TYPES; type++) {
1210                 OSAL_FREE(p_hwfn->p_dev, p_mngr->acquired[type].cid_map);
1211                 p_mngr->acquired[type].cid_map = OSAL_NULL;
1212                 p_mngr->acquired[type].max_count = 0;
1213                 p_mngr->acquired[type].start_cid = 0;
1214
1215                 for (vf = 0; vf < COMMON_MAX_NUM_VFS; vf++) {
1216                         OSAL_FREE(p_hwfn->p_dev,
1217                                   p_mngr->acquired_vf[type][vf].cid_map);
1218                         p_mngr->acquired_vf[type][vf].cid_map = OSAL_NULL;
1219                         p_mngr->acquired_vf[type][vf].max_count = 0;
1220                         p_mngr->acquired_vf[type][vf].start_cid = 0;
1221                 }
1222         }
1223 }
1224
1225 static enum _ecore_status_t
1226 ecore_cid_map_alloc_single(struct ecore_hwfn *p_hwfn, u32 type,
1227                            u32 cid_start, u32 cid_count,
1228                            struct ecore_cid_acquired_map *p_map)
1229 {
1230         u32 size;
1231
1232         if (!cid_count)
1233                 return ECORE_SUCCESS;
1234
1235         size = MAP_WORD_SIZE * DIV_ROUND_UP(cid_count, BITS_PER_MAP_WORD);
1236         p_map->cid_map = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, size);
1237         if (p_map->cid_map == OSAL_NULL)
1238                 return ECORE_NOMEM;
1239
1240         p_map->max_count = cid_count;
1241         p_map->start_cid = cid_start;
1242
1243         DP_VERBOSE(p_hwfn, ECORE_MSG_CXT,
1244                    "Type %08x start: %08x count %08x\n",
1245                    type, p_map->start_cid, p_map->max_count);
1246
1247         return ECORE_SUCCESS;
1248 }
1249
1250 static enum _ecore_status_t ecore_cid_map_alloc(struct ecore_hwfn *p_hwfn)
1251 {
1252         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1253         u32 start_cid = 0, vf_start_cid = 0;
1254         u32 type, vf;
1255
1256         for (type = 0; type < MAX_CONN_TYPES; type++) {
1257                 struct ecore_conn_type_cfg *p_cfg = &p_mngr->conn_cfg[type];
1258                 struct ecore_cid_acquired_map *p_map;
1259
1260                 /* Handle PF maps */
1261                 p_map = &p_mngr->acquired[type];
1262                 if (ecore_cid_map_alloc_single(p_hwfn, type, start_cid,
1263                                                p_cfg->cid_count, p_map))
1264                         goto cid_map_fail;
1265
1266                 /* Handle VF maps */
1267                 for (vf = 0; vf < COMMON_MAX_NUM_VFS; vf++) {
1268                         p_map = &p_mngr->acquired_vf[type][vf];
1269                         if (ecore_cid_map_alloc_single(p_hwfn, type,
1270                                                        vf_start_cid,
1271                                                        p_cfg->cids_per_vf,
1272                                                        p_map))
1273                                 goto cid_map_fail;
1274                 }
1275
1276                 start_cid += p_cfg->cid_count;
1277                 vf_start_cid += p_cfg->cids_per_vf;
1278         }
1279
1280         return ECORE_SUCCESS;
1281
1282 cid_map_fail:
1283         ecore_cid_map_free(p_hwfn);
1284         return ECORE_NOMEM;
1285 }
1286
1287 enum _ecore_status_t ecore_cxt_mngr_alloc(struct ecore_hwfn *p_hwfn)
1288 {
1289         struct ecore_ilt_client_cfg *clients;
1290         struct ecore_cxt_mngr *p_mngr;
1291         u32 i;
1292
1293         p_mngr = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(*p_mngr));
1294         if (!p_mngr) {
1295                 DP_NOTICE(p_hwfn, false, "Failed to allocate `struct ecore_cxt_mngr'\n");
1296                 return ECORE_NOMEM;
1297         }
1298
1299         /* Initialize ILT client registers */
1300         clients = p_mngr->clients;
1301         clients[ILT_CLI_CDUC].first.reg = ILT_CFG_REG(CDUC, FIRST_ILT);
1302         clients[ILT_CLI_CDUC].last.reg  = ILT_CFG_REG(CDUC, LAST_ILT);
1303         clients[ILT_CLI_CDUC].p_size.reg = ILT_CFG_REG(CDUC, P_SIZE);
1304
1305         clients[ILT_CLI_QM].first.reg   = ILT_CFG_REG(QM, FIRST_ILT);
1306         clients[ILT_CLI_QM].last.reg    = ILT_CFG_REG(QM, LAST_ILT);
1307         clients[ILT_CLI_QM].p_size.reg  = ILT_CFG_REG(QM, P_SIZE);
1308
1309         clients[ILT_CLI_TM].first.reg   = ILT_CFG_REG(TM, FIRST_ILT);
1310         clients[ILT_CLI_TM].last.reg    = ILT_CFG_REG(TM, LAST_ILT);
1311         clients[ILT_CLI_TM].p_size.reg  = ILT_CFG_REG(TM, P_SIZE);
1312
1313         clients[ILT_CLI_SRC].first.reg  = ILT_CFG_REG(SRC, FIRST_ILT);
1314         clients[ILT_CLI_SRC].last.reg   = ILT_CFG_REG(SRC, LAST_ILT);
1315         clients[ILT_CLI_SRC].p_size.reg = ILT_CFG_REG(SRC, P_SIZE);
1316
1317         clients[ILT_CLI_CDUT].first.reg = ILT_CFG_REG(CDUT, FIRST_ILT);
1318         clients[ILT_CLI_CDUT].last.reg  = ILT_CFG_REG(CDUT, LAST_ILT);
1319         clients[ILT_CLI_CDUT].p_size.reg = ILT_CFG_REG(CDUT, P_SIZE);
1320
1321         clients[ILT_CLI_TSDM].first.reg = ILT_CFG_REG(TSDM, FIRST_ILT);
1322         clients[ILT_CLI_TSDM].last.reg  = ILT_CFG_REG(TSDM, LAST_ILT);
1323         clients[ILT_CLI_TSDM].p_size.reg = ILT_CFG_REG(TSDM, P_SIZE);
1324
1325         /* default ILT page size for all clients is 64K */
1326         for (i = 0; i < ILT_CLI_MAX; i++)
1327                 p_mngr->clients[i].p_size.val = p_hwfn->p_dev->ilt_page_size;
1328
1329         /* Initialize task sizes */
1330         p_mngr->task_type_size[0] = TYPE0_TASK_CXT_SIZE(p_hwfn);
1331         p_mngr->task_type_size[1] = TYPE1_TASK_CXT_SIZE(p_hwfn);
1332
1333         if (p_hwfn->p_dev->p_iov_info)
1334                 p_mngr->vf_count = p_hwfn->p_dev->p_iov_info->total_vfs;
1335
1336         /* Initialize the dynamic ILT allocation mutex */
1337 #ifdef CONFIG_ECORE_LOCK_ALLOC
1338         OSAL_MUTEX_ALLOC(p_hwfn, &p_mngr->mutex);
1339 #endif
1340         OSAL_MUTEX_INIT(&p_mngr->mutex);
1341
1342         /* Set the cxt mangr pointer priori to further allocations */
1343         p_hwfn->p_cxt_mngr = p_mngr;
1344
1345         return ECORE_SUCCESS;
1346 }
1347
1348 enum _ecore_status_t ecore_cxt_tables_alloc(struct ecore_hwfn *p_hwfn)
1349 {
1350         enum _ecore_status_t    rc;
1351
1352         /* Allocate the ILT shadow table */
1353         rc = ecore_ilt_shadow_alloc(p_hwfn);
1354         if (rc) {
1355                 DP_NOTICE(p_hwfn, false, "Failed to allocate ilt memory\n");
1356                 goto tables_alloc_fail;
1357         }
1358
1359         /* Allocate the T2  table */
1360         rc = ecore_cxt_src_t2_alloc(p_hwfn);
1361         if (rc) {
1362                 DP_NOTICE(p_hwfn, false, "Failed to allocate T2 memory\n");
1363                 goto tables_alloc_fail;
1364         }
1365
1366         /* Allocate and initialize the acquired cids bitmaps */
1367         rc = ecore_cid_map_alloc(p_hwfn);
1368         if (rc) {
1369                 DP_NOTICE(p_hwfn, false, "Failed to allocate cid maps\n");
1370                 goto tables_alloc_fail;
1371         }
1372
1373         return ECORE_SUCCESS;
1374
1375 tables_alloc_fail:
1376         ecore_cxt_mngr_free(p_hwfn);
1377         return rc;
1378 }
1379 void ecore_cxt_mngr_free(struct ecore_hwfn *p_hwfn)
1380 {
1381         if (!p_hwfn->p_cxt_mngr)
1382                 return;
1383
1384         ecore_cid_map_free(p_hwfn);
1385         ecore_cxt_src_t2_free(p_hwfn);
1386         ecore_ilt_shadow_free(p_hwfn);
1387 #ifdef CONFIG_ECORE_LOCK_ALLOC
1388         OSAL_MUTEX_DEALLOC(&p_hwfn->p_cxt_mngr->mutex);
1389 #endif
1390         OSAL_FREE(p_hwfn->p_dev, p_hwfn->p_cxt_mngr);
1391
1392         p_hwfn->p_cxt_mngr = OSAL_NULL;
1393 }
1394
1395 void ecore_cxt_mngr_setup(struct ecore_hwfn *p_hwfn)
1396 {
1397         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1398         struct ecore_cid_acquired_map *p_map;
1399         struct ecore_conn_type_cfg *p_cfg;
1400         int type;
1401         u32 len;
1402
1403         /* Reset acquired cids */
1404         for (type = 0; type < MAX_CONN_TYPES; type++) {
1405                 u32 vf;
1406
1407                 p_cfg = &p_mngr->conn_cfg[type];
1408                 if (p_cfg->cid_count) {
1409                         p_map = &p_mngr->acquired[type];
1410                         len = DIV_ROUND_UP(p_map->max_count,
1411                                            BITS_PER_MAP_WORD) *
1412                               MAP_WORD_SIZE;
1413                         OSAL_MEM_ZERO(p_map->cid_map, len);
1414                 }
1415
1416                 if (!p_cfg->cids_per_vf)
1417                         continue;
1418
1419                 for (vf = 0; vf < COMMON_MAX_NUM_VFS; vf++) {
1420                         p_map = &p_mngr->acquired_vf[type][vf];
1421                         len = DIV_ROUND_UP(p_map->max_count,
1422                                            BITS_PER_MAP_WORD) *
1423                               MAP_WORD_SIZE;
1424                         OSAL_MEM_ZERO(p_map->cid_map, len);
1425                 }
1426         }
1427 }
1428
1429 /* HW initialization helper (per Block, per phase) */
1430
1431 /* CDU Common */
1432 #define CDUC_CXT_SIZE_SHIFT                                             \
1433         CDU_REG_CID_ADDR_PARAMS_CONTEXT_SIZE_SHIFT
1434
1435 #define CDUC_CXT_SIZE_MASK                                              \
1436         (CDU_REG_CID_ADDR_PARAMS_CONTEXT_SIZE >> CDUC_CXT_SIZE_SHIFT)
1437
1438 #define CDUC_BLOCK_WASTE_SHIFT                                          \
1439         CDU_REG_CID_ADDR_PARAMS_BLOCK_WASTE_SHIFT
1440
1441 #define CDUC_BLOCK_WASTE_MASK                                           \
1442         (CDU_REG_CID_ADDR_PARAMS_BLOCK_WASTE >> CDUC_BLOCK_WASTE_SHIFT)
1443
1444 #define CDUC_NCIB_SHIFT                                                 \
1445         CDU_REG_CID_ADDR_PARAMS_NCIB_SHIFT
1446
1447 #define CDUC_NCIB_MASK                                                  \
1448         (CDU_REG_CID_ADDR_PARAMS_NCIB >> CDUC_NCIB_SHIFT)
1449
1450 #define CDUT_TYPE0_CXT_SIZE_SHIFT                                       \
1451         CDU_REG_SEGMENT0_PARAMS_T0_TID_SIZE_SHIFT
1452
1453 #define CDUT_TYPE0_CXT_SIZE_MASK                                        \
1454         (CDU_REG_SEGMENT0_PARAMS_T0_TID_SIZE >>                         \
1455         CDUT_TYPE0_CXT_SIZE_SHIFT)
1456
1457 #define CDUT_TYPE0_BLOCK_WASTE_SHIFT                                    \
1458         CDU_REG_SEGMENT0_PARAMS_T0_TID_BLOCK_WASTE_SHIFT
1459
1460 #define CDUT_TYPE0_BLOCK_WASTE_MASK                                     \
1461         (CDU_REG_SEGMENT0_PARAMS_T0_TID_BLOCK_WASTE >>                  \
1462         CDUT_TYPE0_BLOCK_WASTE_SHIFT)
1463
1464 #define CDUT_TYPE0_NCIB_SHIFT                                           \
1465         CDU_REG_SEGMENT0_PARAMS_T0_NUM_TIDS_IN_BLOCK_SHIFT
1466
1467 #define CDUT_TYPE0_NCIB_MASK                                            \
1468         (CDU_REG_SEGMENT0_PARAMS_T0_NUM_TIDS_IN_BLOCK >>                \
1469         CDUT_TYPE0_NCIB_SHIFT)
1470
1471 #define CDUT_TYPE1_CXT_SIZE_SHIFT                                       \
1472         CDU_REG_SEGMENT1_PARAMS_T1_TID_SIZE_SHIFT
1473
1474 #define CDUT_TYPE1_CXT_SIZE_MASK                                        \
1475         (CDU_REG_SEGMENT1_PARAMS_T1_TID_SIZE >>                         \
1476         CDUT_TYPE1_CXT_SIZE_SHIFT)
1477
1478 #define CDUT_TYPE1_BLOCK_WASTE_SHIFT                                    \
1479         CDU_REG_SEGMENT1_PARAMS_T1_TID_BLOCK_WASTE_SHIFT
1480
1481 #define CDUT_TYPE1_BLOCK_WASTE_MASK                                     \
1482         (CDU_REG_SEGMENT1_PARAMS_T1_TID_BLOCK_WASTE >>                  \
1483         CDUT_TYPE1_BLOCK_WASTE_SHIFT)
1484
1485 #define CDUT_TYPE1_NCIB_SHIFT                                           \
1486         CDU_REG_SEGMENT1_PARAMS_T1_NUM_TIDS_IN_BLOCK_SHIFT
1487
1488 #define CDUT_TYPE1_NCIB_MASK                                            \
1489         (CDU_REG_SEGMENT1_PARAMS_T1_NUM_TIDS_IN_BLOCK >>                \
1490         CDUT_TYPE1_NCIB_SHIFT)
1491
1492 static void ecore_cdu_init_common(struct ecore_hwfn *p_hwfn)
1493 {
1494         u32 page_sz, elems_per_page, block_waste,  cxt_size, cdu_params = 0;
1495
1496         /* CDUC - connection configuration */
1497         page_sz = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC].p_size.val;
1498         cxt_size = CONN_CXT_SIZE(p_hwfn);
1499         elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
1500         block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size;
1501
1502         SET_FIELD(cdu_params, CDUC_CXT_SIZE, cxt_size);
1503         SET_FIELD(cdu_params, CDUC_BLOCK_WASTE, block_waste);
1504         SET_FIELD(cdu_params, (u32)CDUC_NCIB, elems_per_page);
1505         STORE_RT_REG(p_hwfn, CDU_REG_CID_ADDR_PARAMS_RT_OFFSET, cdu_params);
1506
1507         /* CDUT - type-0 tasks configuration */
1508         page_sz = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT].p_size.val;
1509         cxt_size = p_hwfn->p_cxt_mngr->task_type_size[0];
1510         elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
1511         block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size;
1512
1513         /* cxt size and block-waste are multipes of 8 */
1514         cdu_params = 0;
1515         SET_FIELD(cdu_params, (u32)CDUT_TYPE0_CXT_SIZE, (cxt_size >> 3));
1516         SET_FIELD(cdu_params, CDUT_TYPE0_BLOCK_WASTE, (block_waste >> 3));
1517         SET_FIELD(cdu_params, CDUT_TYPE0_NCIB, elems_per_page);
1518         STORE_RT_REG(p_hwfn, CDU_REG_SEGMENT0_PARAMS_RT_OFFSET, cdu_params);
1519
1520         /* CDUT - type-1 tasks configuration */
1521         cxt_size = p_hwfn->p_cxt_mngr->task_type_size[1];
1522         elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
1523         block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size;
1524
1525         /* cxt size and block-waste are multipes of 8 */
1526         cdu_params = 0;
1527         SET_FIELD(cdu_params, (u32)CDUT_TYPE1_CXT_SIZE, (cxt_size >> 3));
1528         SET_FIELD(cdu_params, CDUT_TYPE1_BLOCK_WASTE, (block_waste >> 3));
1529         SET_FIELD(cdu_params, CDUT_TYPE1_NCIB, elems_per_page);
1530         STORE_RT_REG(p_hwfn, CDU_REG_SEGMENT1_PARAMS_RT_OFFSET, cdu_params);
1531 }
1532
1533 /* CDU PF */
1534 #define CDU_SEG_REG_TYPE_SHIFT          CDU_SEG_TYPE_OFFSET_REG_TYPE_SHIFT
1535 #define CDU_SEG_REG_TYPE_MASK           0x1
1536 #define CDU_SEG_REG_OFFSET_SHIFT        0
1537 #define CDU_SEG_REG_OFFSET_MASK         CDU_SEG_TYPE_OFFSET_REG_OFFSET_MASK
1538
1539 static void ecore_cdu_init_pf(struct ecore_hwfn *p_hwfn)
1540 {
1541         struct ecore_ilt_client_cfg *p_cli;
1542         struct ecore_tid_seg *p_seg;
1543         u32 cdu_seg_params, offset;
1544         int i;
1545
1546         static const u32 rt_type_offset_arr[] = {
1547                 CDU_REG_PF_SEG0_TYPE_OFFSET_RT_OFFSET,
1548                 CDU_REG_PF_SEG1_TYPE_OFFSET_RT_OFFSET,
1549                 CDU_REG_PF_SEG2_TYPE_OFFSET_RT_OFFSET,
1550                 CDU_REG_PF_SEG3_TYPE_OFFSET_RT_OFFSET
1551         };
1552
1553         static const u32 rt_type_offset_fl_arr[] = {
1554                 CDU_REG_PF_FL_SEG0_TYPE_OFFSET_RT_OFFSET,
1555                 CDU_REG_PF_FL_SEG1_TYPE_OFFSET_RT_OFFSET,
1556                 CDU_REG_PF_FL_SEG2_TYPE_OFFSET_RT_OFFSET,
1557                 CDU_REG_PF_FL_SEG3_TYPE_OFFSET_RT_OFFSET
1558         };
1559
1560         p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
1561
1562         /* There are initializations only for CDUT during pf Phase */
1563         for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
1564                 /* Segment 0*/
1565                 p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
1566                 if (!p_seg)
1567                         continue;
1568
1569                 /* Note: start_line is already adjusted for the CDU
1570                  * segment register granularity, so we just need to
1571                  * divide. Adjustment is implicit as we assume ILT
1572                  * Page size is larger than 32K!
1573                  */
1574                 offset = (ILT_PAGE_IN_BYTES(p_cli->p_size.val) *
1575                          (p_cli->pf_blks[CDUT_SEG_BLK(i)].start_line -
1576                           p_cli->first.val)) / CDUT_SEG_ALIGNMET_IN_BYTES;
1577
1578                 cdu_seg_params = 0;
1579                 SET_FIELD(cdu_seg_params, CDU_SEG_REG_TYPE, p_seg->type);
1580                 SET_FIELD(cdu_seg_params, CDU_SEG_REG_OFFSET, offset);
1581                 STORE_RT_REG(p_hwfn, rt_type_offset_arr[i],
1582                              cdu_seg_params);
1583
1584                 offset = (ILT_PAGE_IN_BYTES(p_cli->p_size.val) *
1585                          (p_cli->pf_blks[CDUT_FL_SEG_BLK(i, PF)].start_line -
1586                           p_cli->first.val)) / CDUT_SEG_ALIGNMET_IN_BYTES;
1587
1588                 cdu_seg_params = 0;
1589                 SET_FIELD(cdu_seg_params, CDU_SEG_REG_TYPE, p_seg->type);
1590                 SET_FIELD(cdu_seg_params, CDU_SEG_REG_OFFSET, offset);
1591                 STORE_RT_REG(p_hwfn, rt_type_offset_fl_arr[i],
1592                              cdu_seg_params);
1593
1594         }
1595 }
1596
1597 void ecore_qm_init_pf(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1598                       bool is_pf_loading)
1599 {
1600         struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1601         struct ecore_mcp_link_state *p_link;
1602         struct ecore_qm_iids iids;
1603
1604         OSAL_MEM_ZERO(&iids, sizeof(iids));
1605         ecore_cxt_qm_iids(p_hwfn, &iids);
1606
1607         p_link = &ECORE_LEADING_HWFN(p_hwfn->p_dev)->mcp_info->link_output;
1608
1609         ecore_qm_pf_rt_init(p_hwfn, p_ptt, p_hwfn->port_id,
1610                             p_hwfn->rel_pf_id, qm_info->max_phys_tcs_per_port,
1611                             is_pf_loading,
1612                             iids.cids, iids.vf_cids, iids.tids,
1613                             qm_info->start_pq,
1614                             qm_info->num_pqs - qm_info->num_vf_pqs,
1615                             qm_info->num_vf_pqs,
1616                             qm_info->start_vport,
1617                             qm_info->num_vports, qm_info->pf_wfq,
1618                             qm_info->pf_rl, p_link->speed,
1619                             p_hwfn->qm_info.qm_pq_params,
1620                             p_hwfn->qm_info.qm_vport_params);
1621 }
1622
1623 /* CM PF */
1624 static void ecore_cm_init_pf(struct ecore_hwfn *p_hwfn)
1625 {
1626         STORE_RT_REG(p_hwfn, XCM_REG_CON_PHY_Q3_RT_OFFSET, ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_LB));
1627 }
1628
1629 /* DQ PF */
1630 static void ecore_dq_init_pf(struct ecore_hwfn *p_hwfn)
1631 {
1632         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1633         u32 dq_pf_max_cid = 0, dq_vf_max_cid = 0;
1634
1635         dq_pf_max_cid += (p_mngr->conn_cfg[0].cid_count >> DQ_RANGE_SHIFT);
1636         STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_0_RT_OFFSET, dq_pf_max_cid);
1637
1638         dq_vf_max_cid += (p_mngr->conn_cfg[0].cids_per_vf >> DQ_RANGE_SHIFT);
1639         STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_0_RT_OFFSET, dq_vf_max_cid);
1640
1641         dq_pf_max_cid += (p_mngr->conn_cfg[1].cid_count >> DQ_RANGE_SHIFT);
1642         STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_1_RT_OFFSET, dq_pf_max_cid);
1643
1644         dq_vf_max_cid += (p_mngr->conn_cfg[1].cids_per_vf >> DQ_RANGE_SHIFT);
1645         STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_1_RT_OFFSET, dq_vf_max_cid);
1646
1647         dq_pf_max_cid += (p_mngr->conn_cfg[2].cid_count >> DQ_RANGE_SHIFT);
1648         STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_2_RT_OFFSET, dq_pf_max_cid);
1649
1650         dq_vf_max_cid += (p_mngr->conn_cfg[2].cids_per_vf >> DQ_RANGE_SHIFT);
1651         STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_2_RT_OFFSET, dq_vf_max_cid);
1652
1653         dq_pf_max_cid += (p_mngr->conn_cfg[3].cid_count >> DQ_RANGE_SHIFT);
1654         STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_3_RT_OFFSET, dq_pf_max_cid);
1655
1656         dq_vf_max_cid += (p_mngr->conn_cfg[3].cids_per_vf >> DQ_RANGE_SHIFT);
1657         STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_3_RT_OFFSET, dq_vf_max_cid);
1658
1659         dq_pf_max_cid += (p_mngr->conn_cfg[4].cid_count >> DQ_RANGE_SHIFT);
1660         STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_4_RT_OFFSET, dq_pf_max_cid);
1661
1662         dq_vf_max_cid += (p_mngr->conn_cfg[4].cids_per_vf >> DQ_RANGE_SHIFT);
1663         STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_4_RT_OFFSET, dq_vf_max_cid);
1664
1665         dq_pf_max_cid += (p_mngr->conn_cfg[5].cid_count >> DQ_RANGE_SHIFT);
1666         STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_5_RT_OFFSET, dq_pf_max_cid);
1667
1668         dq_vf_max_cid += (p_mngr->conn_cfg[5].cids_per_vf >> DQ_RANGE_SHIFT);
1669         STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_5_RT_OFFSET, dq_vf_max_cid);
1670
1671         /* Connection types 6 & 7 are not in use, yet they must be configured
1672          * as the highest possible connection. Not configuring them means the
1673          * defaults will be  used, and with a large number of cids a bug may
1674          * occur, if the defaults will be smaller than dq_pf_max_cid /
1675          * dq_vf_max_cid.
1676          */
1677         STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_6_RT_OFFSET, dq_pf_max_cid);
1678         STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_6_RT_OFFSET, dq_vf_max_cid);
1679
1680         STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_7_RT_OFFSET, dq_pf_max_cid);
1681         STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_7_RT_OFFSET, dq_vf_max_cid);
1682 }
1683
1684 static void ecore_ilt_bounds_init(struct ecore_hwfn *p_hwfn)
1685 {
1686         struct ecore_ilt_client_cfg *ilt_clients;
1687         int i;
1688
1689         ilt_clients = p_hwfn->p_cxt_mngr->clients;
1690         for_each_ilt_valid_client(i, ilt_clients) {
1691                 STORE_RT_REG(p_hwfn,
1692                              ilt_clients[i].first.reg,
1693                              ilt_clients[i].first.val);
1694                 STORE_RT_REG(p_hwfn,
1695                              ilt_clients[i].last.reg,
1696                              ilt_clients[i].last.val);
1697                 STORE_RT_REG(p_hwfn,
1698                              ilt_clients[i].p_size.reg,
1699                              ilt_clients[i].p_size.val);
1700         }
1701 }
1702
1703 static void ecore_ilt_vf_bounds_init(struct ecore_hwfn *p_hwfn)
1704 {
1705         struct ecore_ilt_client_cfg *p_cli;
1706         u32 blk_factor;
1707
1708         /* For simplicty  we set the 'block' to be an ILT page */
1709         if (p_hwfn->p_dev->p_iov_info) {
1710                 struct ecore_hw_sriov_info *p_iov = p_hwfn->p_dev->p_iov_info;
1711
1712                 STORE_RT_REG(p_hwfn,
1713                              PSWRQ2_REG_VF_BASE_RT_OFFSET,
1714                              p_iov->first_vf_in_pf);
1715                 STORE_RT_REG(p_hwfn,
1716                              PSWRQ2_REG_VF_LAST_ILT_RT_OFFSET,
1717                              p_iov->first_vf_in_pf + p_iov->total_vfs);
1718         }
1719
1720         p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
1721         blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10);
1722         if (p_cli->active) {
1723                 STORE_RT_REG(p_hwfn,
1724                              PSWRQ2_REG_CDUC_BLOCKS_FACTOR_RT_OFFSET,
1725                              blk_factor);
1726                 STORE_RT_REG(p_hwfn,
1727                              PSWRQ2_REG_CDUC_NUMBER_OF_PF_BLOCKS_RT_OFFSET,
1728                              p_cli->pf_total_lines);
1729                 STORE_RT_REG(p_hwfn,
1730                              PSWRQ2_REG_CDUC_VF_BLOCKS_RT_OFFSET,
1731                              p_cli->vf_total_lines);
1732         }
1733
1734         p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
1735         blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10);
1736         if (p_cli->active) {
1737                 STORE_RT_REG(p_hwfn,
1738                              PSWRQ2_REG_CDUT_BLOCKS_FACTOR_RT_OFFSET,
1739                              blk_factor);
1740                 STORE_RT_REG(p_hwfn,
1741                              PSWRQ2_REG_CDUT_NUMBER_OF_PF_BLOCKS_RT_OFFSET,
1742                              p_cli->pf_total_lines);
1743                 STORE_RT_REG(p_hwfn,
1744                              PSWRQ2_REG_CDUT_VF_BLOCKS_RT_OFFSET,
1745                              p_cli->vf_total_lines);
1746         }
1747
1748         p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TM];
1749         blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10);
1750         if (p_cli->active) {
1751                 STORE_RT_REG(p_hwfn,
1752                              PSWRQ2_REG_TM_BLOCKS_FACTOR_RT_OFFSET,
1753                              blk_factor);
1754                 STORE_RT_REG(p_hwfn,
1755                              PSWRQ2_REG_TM_NUMBER_OF_PF_BLOCKS_RT_OFFSET,
1756                              p_cli->pf_total_lines);
1757                 STORE_RT_REG(p_hwfn,
1758                              PSWRQ2_REG_TM_VF_BLOCKS_RT_OFFSET,
1759                              p_cli->vf_total_lines);
1760         }
1761 }
1762
1763 /* ILT (PSWRQ2) PF */
1764 static void ecore_ilt_init_pf(struct ecore_hwfn *p_hwfn)
1765 {
1766         struct ecore_ilt_client_cfg *clients;
1767         struct ecore_cxt_mngr *p_mngr;
1768         struct ecore_dma_mem *p_shdw;
1769         u32 line, rt_offst, i;
1770
1771         ecore_ilt_bounds_init(p_hwfn);
1772         ecore_ilt_vf_bounds_init(p_hwfn);
1773
1774         p_mngr  = p_hwfn->p_cxt_mngr;
1775         p_shdw  = p_mngr->ilt_shadow;
1776         clients = p_hwfn->p_cxt_mngr->clients;
1777
1778         for_each_ilt_valid_client(i, clients) {
1779                 /* Client's 1st val and RT array are absolute, ILT shadows'
1780                  * lines are relative.
1781                  */
1782                 line = clients[i].first.val - p_mngr->pf_start_line;
1783                 rt_offst = PSWRQ2_REG_ILT_MEMORY_RT_OFFSET +
1784                            clients[i].first.val * ILT_ENTRY_IN_REGS;
1785
1786                 for (; line <= clients[i].last.val - p_mngr->pf_start_line;
1787                      line++, rt_offst += ILT_ENTRY_IN_REGS) {
1788                         u64 ilt_hw_entry = 0;
1789
1790                         /** p_virt could be OSAL_NULL incase of dynamic
1791                          *  allocation
1792                          */
1793                         if (p_shdw[line].p_virt != OSAL_NULL) {
1794                                 SET_FIELD(ilt_hw_entry, ILT_ENTRY_VALID, 1ULL);
1795                                 SET_FIELD(ilt_hw_entry, ILT_ENTRY_PHY_ADDR,
1796                                           (unsigned long long)(p_shdw[line].p_phys >> 12));
1797
1798                                 DP_VERBOSE(
1799                                         p_hwfn, ECORE_MSG_ILT,
1800                                         "Setting RT[0x%08x] from ILT[0x%08x] [Client is %d] to Physical addr: 0x%llx\n",
1801                                         rt_offst, line, i,
1802                                         (unsigned long long)(p_shdw[line].p_phys >> 12));
1803                         }
1804
1805                         STORE_RT_REG_AGG(p_hwfn, rt_offst, ilt_hw_entry);
1806                 }
1807         }
1808 }
1809
1810 /* SRC (Searcher) PF */
1811 static void ecore_src_init_pf(struct ecore_hwfn *p_hwfn)
1812 {
1813         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1814         u32 rounded_conn_num, conn_num, conn_max;
1815         struct ecore_src_iids src_iids;
1816
1817         OSAL_MEM_ZERO(&src_iids, sizeof(src_iids));
1818         ecore_cxt_src_iids(p_mngr, &src_iids);
1819         conn_num = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count;
1820         if (!conn_num)
1821                 return;
1822
1823         conn_max = OSAL_MAX_T(u32, conn_num, SRC_MIN_NUM_ELEMS);
1824         rounded_conn_num = OSAL_ROUNDUP_POW_OF_TWO(conn_max);
1825
1826         STORE_RT_REG(p_hwfn, SRC_REG_COUNTFREE_RT_OFFSET, conn_num);
1827         STORE_RT_REG(p_hwfn, SRC_REG_NUMBER_HASH_BITS_RT_OFFSET,
1828                      OSAL_LOG2(rounded_conn_num));
1829
1830         STORE_RT_REG_AGG(p_hwfn, SRC_REG_FIRSTFREE_RT_OFFSET,
1831                          p_hwfn->p_cxt_mngr->first_free);
1832         STORE_RT_REG_AGG(p_hwfn, SRC_REG_LASTFREE_RT_OFFSET,
1833                          p_hwfn->p_cxt_mngr->last_free);
1834         DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
1835                    "Configured SEARCHER for 0x%08x connections\n",
1836                    conn_num);
1837 }
1838
1839 /* Timers PF */
1840 #define TM_CFG_NUM_IDS_SHIFT            0
1841 #define TM_CFG_NUM_IDS_MASK             0xFFFFULL
1842 #define TM_CFG_PRE_SCAN_OFFSET_SHIFT    16
1843 #define TM_CFG_PRE_SCAN_OFFSET_MASK     0x1FFULL
1844 #define TM_CFG_PARENT_PF_SHIFT          25
1845 #define TM_CFG_PARENT_PF_MASK           0x7ULL
1846
1847 #define TM_CFG_CID_PRE_SCAN_ROWS_SHIFT  30
1848 #define TM_CFG_CID_PRE_SCAN_ROWS_MASK   0x1FFULL
1849
1850 #define TM_CFG_TID_OFFSET_SHIFT         30
1851 #define TM_CFG_TID_OFFSET_MASK          0x7FFFFULL
1852 #define TM_CFG_TID_PRE_SCAN_ROWS_SHIFT  49
1853 #define TM_CFG_TID_PRE_SCAN_ROWS_MASK   0x1FFULL
1854
1855 static void ecore_tm_init_pf(struct ecore_hwfn *p_hwfn)
1856 {
1857         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1858         u32 active_seg_mask = 0, tm_offset, rt_reg;
1859         struct ecore_tm_iids tm_iids;
1860         u64 cfg_word;
1861         u8 i;
1862
1863         OSAL_MEM_ZERO(&tm_iids, sizeof(tm_iids));
1864         ecore_cxt_tm_iids(p_mngr, &tm_iids);
1865
1866         /* @@@TBD No pre-scan for now */
1867
1868         /* Note: We assume consecutive VFs for a PF */
1869         for (i = 0; i < p_mngr->vf_count; i++) {
1870                 cfg_word = 0;
1871                 SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.per_vf_cids);
1872                 SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
1873                 SET_FIELD(cfg_word, TM_CFG_PARENT_PF, p_hwfn->rel_pf_id);
1874                 SET_FIELD(cfg_word, TM_CFG_CID_PRE_SCAN_ROWS, 0); /* scan all */
1875
1876                 rt_reg = TM_REG_CONFIG_CONN_MEM_RT_OFFSET +
1877                          (sizeof(cfg_word) / sizeof(u32)) *
1878                          (p_hwfn->p_dev->p_iov_info->first_vf_in_pf + i);
1879                 STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
1880         }
1881
1882         cfg_word = 0;
1883         SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.pf_cids);
1884         SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
1885         SET_FIELD(cfg_word, TM_CFG_PARENT_PF, 0);         /* n/a for PF */
1886         SET_FIELD(cfg_word, TM_CFG_CID_PRE_SCAN_ROWS, 0); /* scan all   */
1887
1888         rt_reg = TM_REG_CONFIG_CONN_MEM_RT_OFFSET +
1889                  (sizeof(cfg_word) / sizeof(u32)) *
1890                  (NUM_OF_VFS(p_hwfn->p_dev) + p_hwfn->rel_pf_id);
1891         STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
1892
1893         /* enale scan */
1894         STORE_RT_REG(p_hwfn, TM_REG_PF_ENABLE_CONN_RT_OFFSET,
1895                      tm_iids.pf_cids  ? 0x1 : 0x0);
1896
1897         /* @@@TBD how to enable the scan for the VFs */
1898
1899         tm_offset = tm_iids.per_vf_cids;
1900
1901         /* Note: We assume consecutive VFs for a PF */
1902         for (i = 0; i < p_mngr->vf_count; i++) {
1903                 cfg_word = 0;
1904                 SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.per_vf_tids);
1905                 SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
1906                 SET_FIELD(cfg_word, TM_CFG_PARENT_PF, p_hwfn->rel_pf_id);
1907                 SET_FIELD(cfg_word, TM_CFG_TID_OFFSET, tm_offset);
1908                 SET_FIELD(cfg_word, TM_CFG_TID_PRE_SCAN_ROWS, (u64)0);
1909
1910                 rt_reg = TM_REG_CONFIG_TASK_MEM_RT_OFFSET +
1911                          (sizeof(cfg_word) / sizeof(u32)) *
1912                          (p_hwfn->p_dev->p_iov_info->first_vf_in_pf + i);
1913
1914                 STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
1915         }
1916
1917         tm_offset = tm_iids.pf_cids;
1918         for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
1919                 cfg_word = 0;
1920                 SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.pf_tids[i]);
1921                 SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
1922                 SET_FIELD(cfg_word, TM_CFG_PARENT_PF, 0);
1923                 SET_FIELD(cfg_word, TM_CFG_TID_OFFSET, tm_offset);
1924                 SET_FIELD(cfg_word, TM_CFG_TID_PRE_SCAN_ROWS, (u64)0);
1925
1926                 rt_reg = TM_REG_CONFIG_TASK_MEM_RT_OFFSET +
1927                          (sizeof(cfg_word) / sizeof(u32)) *
1928                          (NUM_OF_VFS(p_hwfn->p_dev) +
1929                          p_hwfn->rel_pf_id * NUM_TASK_PF_SEGMENTS + i);
1930
1931                 STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
1932                 active_seg_mask |= (tm_iids.pf_tids[i] ? (1 << i) : 0);
1933
1934                 tm_offset += tm_iids.pf_tids[i];
1935         }
1936
1937         if (ECORE_IS_RDMA_PERSONALITY(p_hwfn))
1938                 active_seg_mask = 0;
1939
1940         STORE_RT_REG(p_hwfn, TM_REG_PF_ENABLE_TASK_RT_OFFSET, active_seg_mask);
1941
1942         /* @@@TBD how to enable the scan for the VFs */
1943 }
1944
1945 static void ecore_prs_init_common(struct ecore_hwfn *p_hwfn)
1946 {
1947         if ((p_hwfn->hw_info.personality == ECORE_PCI_FCOE) &&
1948             p_hwfn->pf_params.fcoe_pf_params.is_target)
1949                 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_RESP_INITIATOR_TYPE_RT_OFFSET, 0);
1950 }
1951
1952 static void ecore_prs_init_pf(struct ecore_hwfn *p_hwfn)
1953 {
1954         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1955         struct ecore_conn_type_cfg *p_fcoe;
1956         struct ecore_tid_seg *p_tid;
1957
1958         p_fcoe = &p_mngr->conn_cfg[PROTOCOLID_FCOE];
1959
1960         /* If FCoE is active set the MAX OX_ID (tid) in the Parser */
1961         if (!p_fcoe->cid_count)
1962                 return;
1963
1964         p_tid = &p_fcoe->tid_seg[ECORE_CXT_FCOE_TID_SEG];
1965         if (p_hwfn->pf_params.fcoe_pf_params.is_target) {
1966                 STORE_RT_REG_AGG(p_hwfn,
1967                                  PRS_REG_TASK_ID_MAX_TARGET_PF_RT_OFFSET,
1968                                  p_tid->count);
1969         } else {
1970                 STORE_RT_REG_AGG(p_hwfn,
1971                                 PRS_REG_TASK_ID_MAX_INITIATOR_PF_RT_OFFSET,
1972                                 p_tid->count);
1973         }
1974 }
1975
1976 void ecore_cxt_hw_init_common(struct ecore_hwfn *p_hwfn)
1977 {
1978         /* CDU configuration */
1979         ecore_cdu_init_common(p_hwfn);
1980         ecore_prs_init_common(p_hwfn);
1981 }
1982
1983 void ecore_cxt_hw_init_pf(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
1984 {
1985         ecore_qm_init_pf(p_hwfn, p_ptt, true);
1986         ecore_cm_init_pf(p_hwfn);
1987         ecore_dq_init_pf(p_hwfn);
1988         ecore_cdu_init_pf(p_hwfn);
1989         ecore_ilt_init_pf(p_hwfn);
1990         ecore_src_init_pf(p_hwfn);
1991         ecore_tm_init_pf(p_hwfn);
1992         ecore_prs_init_pf(p_hwfn);
1993 }
1994
1995 enum _ecore_status_t _ecore_cxt_acquire_cid(struct ecore_hwfn *p_hwfn,
1996                                             enum protocol_type type,
1997                                             u32 *p_cid, u8 vfid)
1998 {
1999         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
2000         struct ecore_cid_acquired_map *p_map;
2001         u32 rel_cid;
2002
2003         if (type >= MAX_CONN_TYPES) {
2004                 DP_NOTICE(p_hwfn, true, "Invalid protocol type %d", type);
2005                 return ECORE_INVAL;
2006         }
2007
2008         if (vfid >= COMMON_MAX_NUM_VFS && vfid != ECORE_CXT_PF_CID) {
2009                 DP_NOTICE(p_hwfn, true, "VF [%02x] is out of range\n", vfid);
2010                 return ECORE_INVAL;
2011         }
2012
2013         /* Determine the right map to take this CID from */
2014         if (vfid == ECORE_CXT_PF_CID)
2015                 p_map = &p_mngr->acquired[type];
2016         else
2017                 p_map = &p_mngr->acquired_vf[type][vfid];
2018
2019         if (p_map->cid_map == OSAL_NULL) {
2020                 DP_NOTICE(p_hwfn, true, "Invalid protocol type %d", type);
2021                 return ECORE_INVAL;
2022         }
2023
2024         rel_cid = OSAL_FIND_FIRST_ZERO_BIT(p_map->cid_map,
2025                                            p_map->max_count);
2026
2027         if (rel_cid >= p_map->max_count) {
2028                 DP_NOTICE(p_hwfn, false, "no CID available for protocol %d\n",
2029                           type);
2030                 return ECORE_NORESOURCES;
2031         }
2032
2033         OSAL_SET_BIT(rel_cid, p_map->cid_map);
2034
2035         *p_cid = rel_cid + p_map->start_cid;
2036
2037         DP_VERBOSE(p_hwfn, ECORE_MSG_CXT,
2038                    "Acquired cid 0x%08x [rel. %08x] vfid %02x type %d\n",
2039                    *p_cid, rel_cid, vfid, type);
2040
2041         return ECORE_SUCCESS;
2042 }
2043
2044 enum _ecore_status_t ecore_cxt_acquire_cid(struct ecore_hwfn *p_hwfn,
2045                                            enum protocol_type type,
2046                                            u32 *p_cid)
2047 {
2048         return _ecore_cxt_acquire_cid(p_hwfn, type, p_cid, ECORE_CXT_PF_CID);
2049 }
2050
2051 static bool ecore_cxt_test_cid_acquired(struct ecore_hwfn *p_hwfn,
2052                                         u32 cid, u8 vfid,
2053                                         enum protocol_type *p_type,
2054                                         struct ecore_cid_acquired_map **pp_map)
2055 {
2056         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
2057         u32 rel_cid;
2058
2059         /* Iterate over protocols and find matching cid range */
2060         for (*p_type = 0; *p_type < MAX_CONN_TYPES; (*p_type)++) {
2061                 if (vfid == ECORE_CXT_PF_CID)
2062                         *pp_map = &p_mngr->acquired[*p_type];
2063                 else
2064                         *pp_map = &p_mngr->acquired_vf[*p_type][vfid];
2065
2066                 if (!((*pp_map)->cid_map))
2067                         continue;
2068                 if (cid >= (*pp_map)->start_cid &&
2069                     cid < (*pp_map)->start_cid + (*pp_map)->max_count) {
2070                         break;
2071                 }
2072         }
2073
2074         if (*p_type == MAX_CONN_TYPES) {
2075                 DP_NOTICE(p_hwfn, true, "Invalid CID %d vfid %02x", cid, vfid);
2076                 goto fail;
2077         }
2078
2079         rel_cid = cid - (*pp_map)->start_cid;
2080         if (!OSAL_TEST_BIT(rel_cid, (*pp_map)->cid_map)) {
2081                 DP_NOTICE(p_hwfn, true,
2082                           "CID %d [vifd %02x] not acquired", cid, vfid);
2083                 goto fail;
2084         }
2085
2086         return true;
2087 fail:
2088         *p_type = MAX_CONN_TYPES;
2089         *pp_map = OSAL_NULL;
2090         return false;
2091 }
2092
2093 void _ecore_cxt_release_cid(struct ecore_hwfn *p_hwfn, u32 cid, u8 vfid)
2094 {
2095         struct ecore_cid_acquired_map *p_map = OSAL_NULL;
2096         enum protocol_type type;
2097         bool b_acquired;
2098         u32 rel_cid;
2099
2100         if (vfid != ECORE_CXT_PF_CID && vfid > COMMON_MAX_NUM_VFS) {
2101                 DP_NOTICE(p_hwfn, true,
2102                           "Trying to return incorrect CID belonging to VF %02x\n",
2103                           vfid);
2104                 return;
2105         }
2106
2107         /* Test acquired and find matching per-protocol map */
2108         b_acquired = ecore_cxt_test_cid_acquired(p_hwfn, cid, vfid,
2109                                                  &type, &p_map);
2110
2111         if (!b_acquired)
2112                 return;
2113
2114         rel_cid = cid - p_map->start_cid;
2115         OSAL_CLEAR_BIT(rel_cid, p_map->cid_map);
2116
2117         DP_VERBOSE(p_hwfn, ECORE_MSG_CXT,
2118                    "Released CID 0x%08x [rel. %08x] vfid %02x type %d\n",
2119                    cid, rel_cid, vfid, type);
2120 }
2121
2122 void ecore_cxt_release_cid(struct ecore_hwfn *p_hwfn, u32 cid)
2123 {
2124         _ecore_cxt_release_cid(p_hwfn, cid, ECORE_CXT_PF_CID);
2125 }
2126
2127 enum _ecore_status_t ecore_cxt_get_cid_info(struct ecore_hwfn *p_hwfn,
2128                                             struct ecore_cxt_info *p_info)
2129 {
2130         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
2131         struct ecore_cid_acquired_map *p_map = OSAL_NULL;
2132         u32 conn_cxt_size, hw_p_size, cxts_per_p, line;
2133         enum protocol_type type;
2134         bool b_acquired;
2135
2136         /* Test acquired and find matching per-protocol map */
2137         b_acquired = ecore_cxt_test_cid_acquired(p_hwfn, p_info->iid,
2138                                                  ECORE_CXT_PF_CID,
2139                                                  &type, &p_map);
2140
2141         if (!b_acquired)
2142                 return ECORE_INVAL;
2143
2144         /* set the protocl type */
2145         p_info->type = type;
2146
2147         /* compute context virtual pointer */
2148         hw_p_size = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC].p_size.val;
2149
2150         conn_cxt_size = CONN_CXT_SIZE(p_hwfn);
2151         cxts_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / conn_cxt_size;
2152         line = p_info->iid / cxts_per_p;
2153
2154         /* Make sure context is allocated (dynamic allocation) */
2155         if (!p_mngr->ilt_shadow[line].p_virt)
2156                 return ECORE_INVAL;
2157
2158         p_info->p_cxt = (u8 *)p_mngr->ilt_shadow[line].p_virt +
2159                               p_info->iid % cxts_per_p * conn_cxt_size;
2160
2161         DP_VERBOSE(p_hwfn, (ECORE_MSG_ILT | ECORE_MSG_CXT),
2162                    "Accessing ILT shadow[%d]: CXT pointer is at %p (for iid %d)\n",
2163                    (p_info->iid / cxts_per_p), p_info->p_cxt, p_info->iid);
2164
2165         return ECORE_SUCCESS;
2166 }
2167
2168 static void ecore_rdma_set_pf_params(struct ecore_hwfn *p_hwfn,
2169                                      struct ecore_rdma_pf_params *p_params,
2170                                      u32 num_tasks)
2171 {
2172         u32 num_cons, num_qps;
2173         enum protocol_type proto;
2174
2175         /* The only case RDMA personality can be overriden is if NVRAM is
2176          * configured with ETH_RDMA or if no rdma protocol was requested
2177          */
2178         switch (p_params->rdma_protocol) {
2179         case ECORE_RDMA_PROTOCOL_DEFAULT:
2180                 if (p_hwfn->mcp_info->func_info.protocol ==
2181                     ECORE_PCI_ETH_RDMA) {
2182                         DP_NOTICE(p_hwfn, false,
2183                                   "Current day drivers don't support RoCE & iWARP. Default to RoCE-only\n");
2184                         p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE;
2185                 }
2186                 break;
2187         case ECORE_RDMA_PROTOCOL_NONE:
2188                 p_hwfn->hw_info.personality = ECORE_PCI_ETH;
2189                 return; /* intentional... nothing left to do... */
2190         case ECORE_RDMA_PROTOCOL_ROCE:
2191                 if (p_hwfn->mcp_info->func_info.protocol == ECORE_PCI_ETH_RDMA)
2192                         p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE;
2193                 break;
2194         case ECORE_RDMA_PROTOCOL_IWARP:
2195                 if (p_hwfn->mcp_info->func_info.protocol == ECORE_PCI_ETH_RDMA)
2196                         p_hwfn->hw_info.personality = ECORE_PCI_ETH_IWARP;
2197                 break;
2198         }
2199
2200         switch (p_hwfn->hw_info.personality) {
2201         case ECORE_PCI_ETH_IWARP:
2202                 /* Each QP requires one connection */
2203                 num_cons = OSAL_MIN_T(u32, IWARP_MAX_QPS, p_params->num_qps);
2204 #ifdef CONFIG_ECORE_IWARP /* required for the define */
2205                 /* additional connections required for passive tcp handling */
2206                 num_cons += ECORE_IWARP_PREALLOC_CNT;
2207 #endif
2208                 proto = PROTOCOLID_IWARP;
2209                 break;
2210         case ECORE_PCI_ETH_ROCE:
2211                 num_qps = OSAL_MIN_T(u32, ROCE_MAX_QPS, p_params->num_qps);
2212                 num_cons = num_qps * 2; /* each QP requires two connections */
2213                 proto = PROTOCOLID_ROCE;
2214                 break;
2215         default:
2216                 return;
2217         }
2218
2219         if (num_cons && num_tasks) {
2220                 u32 num_srqs, num_xrc_srqs, max_xrc_srqs, page_size;
2221
2222                 ecore_cxt_set_proto_cid_count(p_hwfn, proto,
2223                                               num_cons, 0);
2224
2225                 /* Deliberatly passing ROCE for tasks id. This is because
2226                  * iWARP / RoCE share the task id.
2227                  */
2228                 ecore_cxt_set_proto_tid_count(p_hwfn, PROTOCOLID_ROCE,
2229                                               ECORE_CXT_ROCE_TID_SEG,
2230                                               1, /* RoCE segment type */
2231                                               num_tasks,
2232                                               false); /* !force load */
2233
2234                 num_srqs = OSAL_MIN_T(u32, ECORE_RDMA_MAX_SRQS,
2235                                       p_params->num_srqs);
2236
2237                 /* XRC SRQs populate a single ILT page */
2238                 page_size = ecore_cxt_get_ilt_page_size(p_hwfn, ILT_CLI_TSDM);
2239                 max_xrc_srqs =  page_size / XRC_SRQ_CXT_SIZE;
2240                 max_xrc_srqs = OSAL_MIN_T(u32, max_xrc_srqs, ECORE_RDMA_MAX_XRC_SRQS);
2241
2242                 num_xrc_srqs = OSAL_MIN_T(u32, p_params->num_xrc_srqs,
2243                                           max_xrc_srqs);
2244                 ecore_cxt_set_srq_count(p_hwfn, num_srqs, num_xrc_srqs);
2245
2246         } else {
2247                 DP_INFO(p_hwfn->p_dev,
2248                         "RDMA personality used without setting params!\n");
2249         }
2250 }
2251
2252 enum _ecore_status_t ecore_cxt_set_pf_params(struct ecore_hwfn *p_hwfn,
2253                                              u32 rdma_tasks)
2254 {
2255         /* Set the number of required CORE connections */
2256         u32 core_cids = 1; /* SPQ */
2257
2258         if (p_hwfn->using_ll2)
2259                 core_cids += 4; /* @@@TBD Use the proper #define */
2260
2261         ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_CORE, core_cids, 0);
2262
2263         switch (p_hwfn->hw_info.personality) {
2264         case ECORE_PCI_ETH_RDMA:
2265         case ECORE_PCI_ETH_IWARP:
2266         case ECORE_PCI_ETH_ROCE:
2267         {
2268                 ecore_rdma_set_pf_params(p_hwfn,
2269                                          &p_hwfn->pf_params.rdma_pf_params,
2270                                          rdma_tasks);
2271
2272                 /* no need for break since RoCE coexist with Ethernet */
2273         }
2274         case ECORE_PCI_ETH:
2275         {
2276                 u32 count = 0;
2277
2278                 struct ecore_eth_pf_params *p_params =
2279                                         &p_hwfn->pf_params.eth_pf_params;
2280
2281                 if (!p_params->num_vf_cons)
2282                         p_params->num_vf_cons = ETH_PF_PARAMS_VF_CONS_DEFAULT;
2283                 ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_ETH,
2284                                               p_params->num_cons,
2285                                               p_params->num_vf_cons);
2286
2287                 count = p_params->num_arfs_filters;
2288
2289                 if (!OSAL_TEST_BIT(ECORE_MF_DISABLE_ARFS,
2290                                    &p_hwfn->p_dev->mf_bits))
2291                         p_hwfn->p_cxt_mngr->arfs_count = count;
2292
2293                 break;
2294         }
2295         case ECORE_PCI_FCOE:
2296         {
2297                 struct ecore_fcoe_pf_params *p_params;
2298
2299                 p_params = &p_hwfn->pf_params.fcoe_pf_params;
2300
2301                 if (p_params->num_cons && p_params->num_tasks) {
2302                         ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_FCOE,
2303                                                       p_params->num_cons, 0);
2304
2305                         ecore_cxt_set_proto_tid_count(p_hwfn, PROTOCOLID_FCOE,
2306                                                       ECORE_CXT_FCOE_TID_SEG,
2307                                                       0, /* segment type */
2308                                                       p_params->num_tasks,
2309                                                       true);
2310                 } else {
2311                         DP_INFO(p_hwfn->p_dev,
2312                                 "Fcoe personality used without setting params!\n");
2313                 }
2314                 break;
2315         }
2316         case ECORE_PCI_ISCSI:
2317         {
2318                 struct ecore_iscsi_pf_params *p_params;
2319
2320                 p_params = &p_hwfn->pf_params.iscsi_pf_params;
2321
2322                 if (p_params->num_cons && p_params->num_tasks) {
2323                         ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_ISCSI,
2324                                                       p_params->num_cons, 0);
2325
2326                         ecore_cxt_set_proto_tid_count(p_hwfn, PROTOCOLID_ISCSI,
2327                                                       ECORE_CXT_ISCSI_TID_SEG,
2328                                                       0, /* segment type */
2329                                                       p_params->num_tasks,
2330                                                       true);
2331                 } else {
2332                         DP_INFO(p_hwfn->p_dev,
2333                                 "Iscsi personality used without setting params!\n");
2334                 }
2335                 break;
2336         }
2337         default:
2338                 return ECORE_INVAL;
2339         }
2340
2341         return ECORE_SUCCESS;
2342 }
2343
2344 enum _ecore_status_t ecore_cxt_get_tid_mem_info(struct ecore_hwfn *p_hwfn,
2345                                                 struct ecore_tid_mem *p_info)
2346 {
2347         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
2348         u32 proto, seg, total_lines, i, shadow_line;
2349         struct ecore_ilt_client_cfg *p_cli;
2350         struct ecore_ilt_cli_blk *p_fl_seg;
2351         struct ecore_tid_seg *p_seg_info;
2352
2353         /* Verify the personality */
2354         switch (p_hwfn->hw_info.personality) {
2355         case ECORE_PCI_FCOE:
2356                 proto = PROTOCOLID_FCOE;
2357                 seg = ECORE_CXT_FCOE_TID_SEG;
2358                 break;
2359         case ECORE_PCI_ISCSI:
2360                 proto = PROTOCOLID_ISCSI;
2361                 seg = ECORE_CXT_ISCSI_TID_SEG;
2362                 break;
2363         default:
2364                 return ECORE_INVAL;
2365         }
2366
2367         p_cli = &p_mngr->clients[ILT_CLI_CDUT];
2368         if (!p_cli->active) {
2369                 return ECORE_INVAL;
2370         }
2371
2372         p_seg_info = &p_mngr->conn_cfg[proto].tid_seg[seg];
2373         if (!p_seg_info->has_fl_mem)
2374                 return ECORE_INVAL;
2375
2376         p_fl_seg = &p_cli->pf_blks[CDUT_FL_SEG_BLK(seg, PF)];
2377         total_lines = DIV_ROUND_UP(p_fl_seg->total_size,
2378                                    p_fl_seg->real_size_in_page);
2379
2380         for (i = 0; i < total_lines; i++) {
2381                 shadow_line = i + p_fl_seg->start_line -
2382                               p_hwfn->p_cxt_mngr->pf_start_line;
2383                 p_info->blocks[i] = p_mngr->ilt_shadow[shadow_line].p_virt;
2384         }
2385         p_info->waste = ILT_PAGE_IN_BYTES(p_cli->p_size.val) -
2386                         p_fl_seg->real_size_in_page;
2387         p_info->tid_size = p_mngr->task_type_size[p_seg_info->type];
2388         p_info->num_tids_per_block = p_fl_seg->real_size_in_page /
2389                                      p_info->tid_size;
2390
2391         return ECORE_SUCCESS;
2392 }
2393
2394 /* This function is very RoCE oriented, if another protocol in the future
2395  * will want this feature we'll need to modify the function to be more generic
2396  */
2397 enum _ecore_status_t
2398 ecore_cxt_dynamic_ilt_alloc(struct ecore_hwfn *p_hwfn,
2399                             enum ecore_cxt_elem_type elem_type,
2400                             u32 iid)
2401 {
2402         u32 reg_offset, shadow_line, elem_size, hw_p_size, elems_per_p, line;
2403         struct ecore_ilt_client_cfg *p_cli;
2404         struct ecore_ilt_cli_blk *p_blk;
2405         struct ecore_ptt *p_ptt;
2406         dma_addr_t p_phys;
2407         u64 ilt_hw_entry;
2408         void *p_virt;
2409         enum _ecore_status_t rc = ECORE_SUCCESS;
2410
2411         switch (elem_type) {
2412         case ECORE_ELEM_CXT:
2413                 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
2414                 elem_size = CONN_CXT_SIZE(p_hwfn);
2415                 p_blk = &p_cli->pf_blks[CDUC_BLK];
2416                 break;
2417         case ECORE_ELEM_SRQ:
2418                 /* The first ILT page is not used for regular SRQs. Skip it. */
2419                 iid += ecore_cxt_srqs_per_page(p_hwfn);
2420                 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TSDM];
2421                 elem_size = SRQ_CXT_SIZE;
2422                 p_blk = &p_cli->pf_blks[SRQ_BLK];
2423                 break;
2424         case ECORE_ELEM_XRC_SRQ:
2425                 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TSDM];
2426                 elem_size = XRC_SRQ_CXT_SIZE;
2427                 p_blk = &p_cli->pf_blks[SRQ_BLK];
2428                 break;
2429         case ECORE_ELEM_TASK:
2430                 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
2431                 elem_size = TYPE1_TASK_CXT_SIZE(p_hwfn);
2432                 p_blk = &p_cli->pf_blks[CDUT_SEG_BLK(ECORE_CXT_ROCE_TID_SEG)];
2433                 break;
2434         default:
2435                 DP_NOTICE(p_hwfn, false,
2436                           "ECORE_INVALID elem type = %d", elem_type);
2437                 return ECORE_INVAL;
2438         }
2439
2440         /* Calculate line in ilt */
2441         hw_p_size = p_cli->p_size.val;
2442         elems_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / elem_size;
2443         line = p_blk->start_line + (iid / elems_per_p);
2444         shadow_line = line - p_hwfn->p_cxt_mngr->pf_start_line;
2445
2446         /* If line is already allocated, do nothing, otherwise allocate it and
2447          * write it to the PSWRQ2 registers.
2448          * This section can be run in parallel from different contexts and thus
2449          * a mutex protection is needed.
2450          */
2451 #ifdef _NTDDK_
2452 #pragma warning(suppress : 28121)
2453 #endif
2454         OSAL_MUTEX_ACQUIRE(&p_hwfn->p_cxt_mngr->mutex);
2455
2456         if (p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_virt)
2457                 goto out0;
2458
2459         p_ptt = ecore_ptt_acquire(p_hwfn);
2460         if (!p_ptt) {
2461                 DP_NOTICE(p_hwfn, false,
2462                           "ECORE_TIME_OUT on ptt acquire - dynamic allocation");
2463                 rc = ECORE_TIMEOUT;
2464                 goto out0;
2465         }
2466
2467         p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
2468                                          &p_phys,
2469                                          p_blk->real_size_in_page);
2470         if (!p_virt) {
2471                 rc = ECORE_NOMEM;
2472                 goto out1;
2473         }
2474         OSAL_MEM_ZERO(p_virt, p_blk->real_size_in_page);
2475
2476         /* configuration of refTagMask to 0xF is required for RoCE DIF MR only,
2477          * to compensate for a HW bug, but it is configured even if DIF is not
2478          * enabled. This is harmless and allows us to avoid a dedicated API. We
2479          * configure the field for all of the contexts on the newly allocated
2480          * page.
2481          */
2482         if (elem_type == ECORE_ELEM_TASK) {
2483                 u32 elem_i;
2484                 u8 *elem_start = (u8 *)p_virt;
2485                 union type1_task_context *elem;
2486
2487                 for (elem_i = 0; elem_i < elems_per_p; elem_i++) {
2488                         elem = (union type1_task_context *)elem_start;
2489                         SET_FIELD(elem->roce_ctx.tdif_context.flags1,
2490                                   TDIF_TASK_CONTEXT_REF_TAG_MASK , 0xf);
2491                         elem_start += TYPE1_TASK_CXT_SIZE(p_hwfn);
2492                 }
2493         }
2494
2495         p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_virt = p_virt;
2496         p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_phys = p_phys;
2497         p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].size =
2498                 p_blk->real_size_in_page;
2499
2500         /* compute absolute offset */
2501         reg_offset = PSWRQ2_REG_ILT_MEMORY +
2502                      (line * ILT_REG_SIZE_IN_BYTES * ILT_ENTRY_IN_REGS);
2503
2504         ilt_hw_entry = 0;
2505         SET_FIELD(ilt_hw_entry, ILT_ENTRY_VALID, 1ULL);
2506         SET_FIELD(ilt_hw_entry,
2507                   ILT_ENTRY_PHY_ADDR,
2508                   (p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_phys >> 12));
2509
2510         /* Write via DMAE since the PSWRQ2_REG_ILT_MEMORY line is a wide-bus */
2511         ecore_dmae_host2grc(p_hwfn, p_ptt, (u64)(osal_uintptr_t)&ilt_hw_entry,
2512                             reg_offset, sizeof(ilt_hw_entry) / sizeof(u32),
2513                             OSAL_NULL /* default parameters */);
2514
2515         if (elem_type == ECORE_ELEM_CXT) {
2516                 u32 last_cid_allocated = (1 + (iid / elems_per_p)) *
2517                                          elems_per_p;
2518
2519                 /* Update the relevant register in the parser */
2520                 ecore_wr(p_hwfn, p_ptt, PRS_REG_ROCE_DEST_QP_MAX_PF,
2521                          last_cid_allocated - 1);
2522
2523                 /* RoCE w/a -> we don't write to the prs search reg until first
2524                  * cid is allocated. This is because the prs checks
2525                  * last_cid-1 >=0 making 0 a valid value... this will cause
2526                  * the a context load to occur on a RoCE packet received with
2527                  * cid=0 even before context was initialized, can happen with a
2528                  * stray packet from switch or a packet with crc-error
2529                  */
2530
2531                 if (!p_hwfn->b_rdma_enabled_in_prs) {
2532                         /* Enable Rdma search */
2533                         ecore_wr(p_hwfn, p_ptt, p_hwfn->rdma_prs_search_reg, 1);
2534                         p_hwfn->b_rdma_enabled_in_prs = true;
2535                 }
2536         }
2537
2538 out1:
2539         ecore_ptt_release(p_hwfn, p_ptt);
2540 out0:
2541         OSAL_MUTEX_RELEASE(&p_hwfn->p_cxt_mngr->mutex);
2542
2543         return rc;
2544 }
2545
2546 /* This function is very RoCE oriented, if another protocol in the future
2547  * will want this feature we'll need to modify the function to be more generic
2548  */
2549 enum _ecore_status_t
2550 ecore_cxt_free_ilt_range(struct ecore_hwfn *p_hwfn,
2551                          enum ecore_cxt_elem_type elem_type,
2552                          u32 start_iid, u32 count)
2553 {
2554         u32 start_line, end_line, shadow_start_line, shadow_end_line;
2555         u32 reg_offset, elem_size, hw_p_size, elems_per_p;
2556         struct ecore_ilt_client_cfg *p_cli;
2557         struct ecore_ilt_cli_blk *p_blk;
2558         u32 end_iid = start_iid + count;
2559         struct ecore_ptt *p_ptt;
2560         u64 ilt_hw_entry = 0;
2561         u32 i;
2562
2563         switch (elem_type) {
2564         case ECORE_ELEM_CXT:
2565                 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
2566                 elem_size = CONN_CXT_SIZE(p_hwfn);
2567                 p_blk = &p_cli->pf_blks[CDUC_BLK];
2568                 break;
2569         case ECORE_ELEM_SRQ:
2570                 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TSDM];
2571                 elem_size = SRQ_CXT_SIZE;
2572                 p_blk = &p_cli->pf_blks[SRQ_BLK];
2573                 break;
2574         case ECORE_ELEM_TASK:
2575                 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
2576                 elem_size = TYPE1_TASK_CXT_SIZE(p_hwfn);
2577                 p_blk = &p_cli->pf_blks[CDUT_SEG_BLK(ECORE_CXT_ROCE_TID_SEG)];
2578                 break;
2579         default:
2580                 DP_NOTICE(p_hwfn, false,
2581                           "ECORE_INVALID elem type = %d", elem_type);
2582                 return ECORE_INVAL;
2583         }
2584
2585         /* Calculate line in ilt */
2586         hw_p_size = p_cli->p_size.val;
2587         elems_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / elem_size;
2588         start_line = p_blk->start_line + (start_iid / elems_per_p);
2589         end_line = p_blk->start_line + (end_iid / elems_per_p);
2590         if (((end_iid + 1) / elems_per_p) != (end_iid / elems_per_p))
2591                 end_line--;
2592
2593         shadow_start_line = start_line - p_hwfn->p_cxt_mngr->pf_start_line;
2594         shadow_end_line = end_line - p_hwfn->p_cxt_mngr->pf_start_line;
2595
2596         p_ptt = ecore_ptt_acquire(p_hwfn);
2597         if (!p_ptt) {
2598                 DP_NOTICE(p_hwfn, false, "ECORE_TIME_OUT on ptt acquire - dynamic allocation");
2599                 return ECORE_TIMEOUT;
2600         }
2601
2602         for (i = shadow_start_line; i < shadow_end_line; i++) {
2603                 if (!p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt)
2604                         continue;
2605
2606                 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
2607                                        p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt,
2608                                        p_hwfn->p_cxt_mngr->ilt_shadow[i].p_phys,
2609                                        p_hwfn->p_cxt_mngr->ilt_shadow[i].size);
2610
2611                 p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt = OSAL_NULL;
2612                 p_hwfn->p_cxt_mngr->ilt_shadow[i].p_phys = 0;
2613                 p_hwfn->p_cxt_mngr->ilt_shadow[i].size = 0;
2614
2615                 /* compute absolute offset */
2616                 reg_offset = PSWRQ2_REG_ILT_MEMORY +
2617                              ((start_line++) * ILT_REG_SIZE_IN_BYTES *
2618                               ILT_ENTRY_IN_REGS);
2619
2620                 /* Write via DMAE since the PSWRQ2_REG_ILT_MEMORY line is a
2621                  * wide-bus.
2622                  */
2623                 ecore_dmae_host2grc(p_hwfn, p_ptt,
2624                                     (u64)(osal_uintptr_t)&ilt_hw_entry,
2625                                     reg_offset,
2626                                     sizeof(ilt_hw_entry) / sizeof(u32),
2627                                     OSAL_NULL /* default parameters */);
2628         }
2629
2630         ecore_ptt_release(p_hwfn, p_ptt);
2631
2632         return ECORE_SUCCESS;
2633 }
2634
2635 enum _ecore_status_t ecore_cxt_get_task_ctx(struct ecore_hwfn *p_hwfn,
2636                                             u32 tid,
2637                                             u8 ctx_type,
2638                                             void **pp_task_ctx)
2639 {
2640         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
2641         struct ecore_ilt_client_cfg *p_cli;
2642         struct ecore_tid_seg *p_seg_info;
2643         struct ecore_ilt_cli_blk *p_seg;
2644         u32 num_tids_per_block;
2645         u32 tid_size, ilt_idx;
2646         u32 total_lines;
2647         u32 proto, seg;
2648
2649         /* Verify the personality */
2650         switch (p_hwfn->hw_info.personality) {
2651         case ECORE_PCI_FCOE:
2652                 proto = PROTOCOLID_FCOE;
2653                 seg = ECORE_CXT_FCOE_TID_SEG;
2654                 break;
2655         case ECORE_PCI_ISCSI:
2656                 proto = PROTOCOLID_ISCSI;
2657                 seg = ECORE_CXT_ISCSI_TID_SEG;
2658                 break;
2659         default:
2660                 return ECORE_INVAL;
2661         }
2662
2663         p_cli = &p_mngr->clients[ILT_CLI_CDUT];
2664         if (!p_cli->active) {
2665                 return ECORE_INVAL;
2666         }
2667
2668         p_seg_info = &p_mngr->conn_cfg[proto].tid_seg[seg];
2669
2670         if (ctx_type == ECORE_CTX_WORKING_MEM) {
2671                 p_seg = &p_cli->pf_blks[CDUT_SEG_BLK(seg)];
2672         } else if (ctx_type == ECORE_CTX_FL_MEM) {
2673                 if (!p_seg_info->has_fl_mem) {
2674                         return ECORE_INVAL;
2675                 }
2676                 p_seg = &p_cli->pf_blks[CDUT_FL_SEG_BLK(seg, PF)];
2677         } else {
2678                 return ECORE_INVAL;
2679         }
2680         total_lines = DIV_ROUND_UP(p_seg->total_size,
2681                                    p_seg->real_size_in_page);
2682         tid_size = p_mngr->task_type_size[p_seg_info->type];
2683         num_tids_per_block = p_seg->real_size_in_page / tid_size;
2684
2685         if (total_lines < tid/num_tids_per_block)
2686                 return ECORE_INVAL;
2687
2688         ilt_idx = tid / num_tids_per_block + p_seg->start_line -
2689                   p_mngr->pf_start_line;
2690         *pp_task_ctx = (u8 *)p_mngr->ilt_shadow[ilt_idx].p_virt +
2691                              (tid % num_tids_per_block) * tid_size;
2692
2693         return ECORE_SUCCESS;
2694 }