]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/qlnx/qlnxe/ecore_int.c
MFV r358511,r358532:
[FreeBSD/FreeBSD.git] / sys / dev / qlnx / qlnxe / ecore_int.c
1 /*
2  * Copyright (c) 2017-2018 Cavium, Inc. 
3  * All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions
7  *  are met:
8  *
9  *  1. Redistributions of source code must retain the above copyright
10  *     notice, this list of conditions and the following disclaimer.
11  *  2. Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  *
15  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  *  POSSIBILITY OF SUCH DAMAGE.
26  */
27 /*
28  * File : ecore_int.c
29  */
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32
33 #include "bcm_osal.h"
34 #include "ecore.h"
35 #include "ecore_spq.h"
36 #include "reg_addr.h"
37 #include "ecore_gtt_reg_addr.h"
38 #include "ecore_init_ops.h"
39 #include "ecore_rt_defs.h"
40 #include "ecore_int.h"
41 #include "reg_addr.h"
42 #include "ecore_hw.h"
43 #include "ecore_sriov.h"
44 #include "ecore_vf.h"
45 #include "ecore_hw_defs.h"
46 #include "ecore_hsi_common.h"
47 #include "ecore_mcp.h"
48 #include "ecore_dbg_fw_funcs.h"
49
50 #ifdef DIAG
51 /* This is nasty, but diag is using the drv_dbg_fw_funcs.c [non-ecore flavor],
52  * and so the functions are lacking ecore prefix.
53  * If there would be other clients needing this [or if the content that isn't
54  * really optional there would increase], we'll need to re-think this.
55  */
56 enum dbg_status dbg_read_attn(struct ecore_hwfn *dev,
57                                                           struct ecore_ptt *ptt,
58                                                           enum block_id block,
59                                                           enum dbg_attn_type attn_type,
60                                                           bool clear_status,
61                                                           struct dbg_attn_block_result *results);
62
63 enum dbg_status dbg_parse_attn(struct ecore_hwfn *dev,
64                                                            struct dbg_attn_block_result *results);
65
66 const char* dbg_get_status_str(enum dbg_status status);
67
68 #define ecore_dbg_read_attn(hwfn, ptt, id, type, clear, results) \
69         dbg_read_attn(hwfn, ptt, id, type, clear, results)
70 #define ecore_dbg_parse_attn(hwfn, results) \
71         dbg_parse_attn(hwfn, results)
72 #define ecore_dbg_get_status_str(status) \
73         dbg_get_status_str(status)
74 #endif
75
76 struct ecore_pi_info {
77         ecore_int_comp_cb_t comp_cb;
78         void *cookie; /* Will be sent to the completion callback function */
79 };
80
81 struct ecore_sb_sp_info {
82         struct ecore_sb_info sb_info;
83         /* per protocol index data */
84         struct ecore_pi_info pi_info_arr[PIS_PER_SB_E4];
85 };
86
87 enum ecore_attention_type {
88         ECORE_ATTN_TYPE_ATTN,
89         ECORE_ATTN_TYPE_PARITY,
90 };
91
92 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
93         ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
94
95 struct aeu_invert_reg_bit {
96         char bit_name[30];
97
98 #define ATTENTION_PARITY                (1 << 0)
99
100 #define ATTENTION_LENGTH_MASK           (0x00000ff0)
101 #define ATTENTION_LENGTH_SHIFT          (4)
102 #define ATTENTION_LENGTH(flags)         (((flags) & ATTENTION_LENGTH_MASK) >> \
103                                          ATTENTION_LENGTH_SHIFT)
104 #define ATTENTION_SINGLE                (1 << ATTENTION_LENGTH_SHIFT)
105 #define ATTENTION_PAR                   (ATTENTION_SINGLE | ATTENTION_PARITY)
106 #define ATTENTION_PAR_INT               ((2 << ATTENTION_LENGTH_SHIFT) | \
107                                          ATTENTION_PARITY)
108
109 /* Multiple bits start with this offset */
110 #define ATTENTION_OFFSET_MASK           (0x000ff000)
111 #define ATTENTION_OFFSET_SHIFT          (12)
112
113 #define ATTENTION_BB_MASK               (0x00700000)
114 #define ATTENTION_BB_SHIFT              (20)
115 #define ATTENTION_BB(value)             (value << ATTENTION_BB_SHIFT)
116 #define ATTENTION_BB_DIFFERENT          (1 << 23)
117
118 #define ATTENTION_CLEAR_ENABLE          (1 << 28)
119         unsigned int flags;
120
121         /* Callback to call if attention will be triggered */
122         enum _ecore_status_t (*cb)(struct ecore_hwfn *p_hwfn);
123
124         enum block_id block_index;
125 };
126
127 struct aeu_invert_reg {
128         struct aeu_invert_reg_bit bits[32];
129 };
130
131 #define MAX_ATTN_GRPS           (8)
132 #define NUM_ATTN_REGS           (9)
133
134 static enum _ecore_status_t ecore_mcp_attn_cb(struct ecore_hwfn *p_hwfn)
135 {
136         u32 tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
137
138         DP_INFO(p_hwfn->p_dev, "MCP_REG_CPU_STATE: %08x - Masking...\n",
139                 tmp);
140         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK,
141                  0xffffffff);
142
143         return ECORE_SUCCESS;
144 }
145
146 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK         (0x3c000)
147 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT        (14)
148 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK         (0x03fc0)
149 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT        (6)
150 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK      (0x00020)
151 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT     (5)
152 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK     (0x0001e)
153 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT    (1)
154 #define ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK      (0x1)
155 #define ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT     (0)
156 #define ECORE_PSWHST_ATTENTION_VF_DISABLED              (0x1)
157 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS         (0x1)
158 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK         (0x1)
159 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT        (0)
160 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK     (0x1e)
161 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT    (1)
162 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK   (0x20)
163 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT  (5)
164 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK      (0x3fc0)
165 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT     (6)
166 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK      (0x3c000)
167 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT     (14)
168 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK    (0x3fc0000)
169 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT   (18)
170 static enum _ecore_status_t ecore_pswhst_attn_cb(struct ecore_hwfn *p_hwfn)
171 {
172         u32 tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, PSWHST_REG_VF_DISABLED_ERROR_VALID);
173
174         /* Disabled VF access */
175         if (tmp & ECORE_PSWHST_ATTENTION_VF_DISABLED) {
176                 u32 addr, data;
177
178                 addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
179                                 PSWHST_REG_VF_DISABLED_ERROR_ADDRESS);
180                 data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
181                                 PSWHST_REG_VF_DISABLED_ERROR_DATA);
182                 DP_INFO(p_hwfn->p_dev, "PF[0x%02x] VF [0x%02x] [Valid 0x%02x] Client [0x%02x] Write [0x%02x] Addr [0x%08x]\n",
183                         (u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK) >>
184                              ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT),
185                         (u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK) >>
186                              ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT),
187                         (u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK) >>
188                              ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT),
189                         (u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK) >>
190                              ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT),
191                         (u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK) >>
192                              ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT),
193                         addr);
194         }
195
196         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
197                        PSWHST_REG_INCORRECT_ACCESS_VALID);
198         if (tmp & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS) {
199                 u32 addr, data, length;
200
201                 addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
202                                 PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
203                 data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
204                                 PSWHST_REG_INCORRECT_ACCESS_DATA);
205                 length = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
206                                   PSWHST_REG_INCORRECT_ACCESS_LENGTH);
207
208                 DP_INFO(p_hwfn->p_dev, "Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n",
209                         addr, length,
210                         (u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK) >>
211                              ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT),
212                         (u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK) >>
213                              ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT),
214                         (u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK) >>
215                              ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT),
216                         (u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK) >>
217                              ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT),
218                         (u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK) >>
219                              ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT),
220                         (u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK) >>
221                              ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT),
222                         data);
223         }
224
225         /* TODO - We know 'some' of these are legal due to virtualization,
226          * but is it true for all of them?
227          */
228         return ECORE_SUCCESS;
229 }
230
231 #define ECORE_GRC_ATTENTION_VALID_BIT           (1 << 0)
232 #define ECORE_GRC_ATTENTION_ADDRESS_MASK        (0x7fffff << 0)
233 #define ECORE_GRC_ATTENTION_RDWR_BIT            (1 << 23)
234 #define ECORE_GRC_ATTENTION_MASTER_MASK         (0xf << 24)
235 #define ECORE_GRC_ATTENTION_MASTER_SHIFT        (24)
236 #define ECORE_GRC_ATTENTION_PF_MASK             (0xf)
237 #define ECORE_GRC_ATTENTION_VF_MASK             (0xff << 4)
238 #define ECORE_GRC_ATTENTION_VF_SHIFT            (4)
239 #define ECORE_GRC_ATTENTION_PRIV_MASK           (0x3 << 14)
240 #define ECORE_GRC_ATTENTION_PRIV_SHIFT          (14)
241 #define ECORE_GRC_ATTENTION_PRIV_VF             (0)
242 static const char* grc_timeout_attn_master_to_str(u8 master)
243 {
244         switch(master) {
245         case 1: return "PXP";
246         case 2: return "MCP";
247         case 3: return "MSDM";
248         case 4: return "PSDM";
249         case 5: return "YSDM";
250         case 6: return "USDM";
251         case 7: return "TSDM";
252         case 8: return "XSDM";
253         case 9: return "DBU";
254         case 10: return "DMAE";
255         default:
256                 return "Unkown";
257         }
258 }
259
260 static enum _ecore_status_t ecore_grc_attn_cb(struct ecore_hwfn *p_hwfn)
261 {
262         u32 tmp, tmp2;
263
264         /* We've already cleared the timeout interrupt register, so we learn
265          * of interrupts via the validity register
266          */
267         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
268                        GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
269         if (!(tmp & ECORE_GRC_ATTENTION_VALID_BIT))
270                 goto out;
271
272         /* Read the GRC timeout information */
273         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
274                        GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
275         tmp2 = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
276                         GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
277
278         DP_NOTICE(p_hwfn->p_dev, false,
279                   "GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
280                   tmp2, tmp,
281                   (tmp & ECORE_GRC_ATTENTION_RDWR_BIT) ? "Write to"
282                                                        : "Read from",
283                   (tmp & ECORE_GRC_ATTENTION_ADDRESS_MASK) << 2,
284                   grc_timeout_attn_master_to_str((tmp & ECORE_GRC_ATTENTION_MASTER_MASK) >>
285                                                  ECORE_GRC_ATTENTION_MASTER_SHIFT),
286                   (tmp2 & ECORE_GRC_ATTENTION_PF_MASK),
287                   (((tmp2 & ECORE_GRC_ATTENTION_PRIV_MASK) >>
288                   ECORE_GRC_ATTENTION_PRIV_SHIFT) ==
289                   ECORE_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant:)",
290                   (tmp2 & ECORE_GRC_ATTENTION_VF_MASK) >>
291                   ECORE_GRC_ATTENTION_VF_SHIFT);
292
293 out:
294         /* Regardles of anything else, clean the validity bit */
295         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
296                  GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
297         return ECORE_SUCCESS;
298 }
299
300 #define ECORE_PGLUE_ATTENTION_VALID (1 << 29)
301 #define ECORE_PGLUE_ATTENTION_RD_VALID (1 << 26)
302 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK (0xf << 20)
303 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT (20)
304 #define ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID (1 << 19)
305 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK (0xff << 24)
306 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT (24)
307 #define ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR (1 << 21)
308 #define ECORE_PGLUE_ATTENTION_DETAILS2_BME      (1 << 22)
309 #define ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN (1 << 23)
310 #define ECORE_PGLUE_ATTENTION_ICPL_VALID (1 << 23)
311 #define ECORE_PGLUE_ATTENTION_ZLR_VALID (1 << 25)
312 #define ECORE_PGLUE_ATTENTION_ILT_VALID (1 << 23)
313
314 enum _ecore_status_t ecore_pglueb_rbc_attn_handler(struct ecore_hwfn *p_hwfn,
315                                                    struct ecore_ptt *p_ptt)
316 {
317         u32 tmp;
318
319         tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2);
320         if (tmp & ECORE_PGLUE_ATTENTION_VALID) {
321                 u32 addr_lo, addr_hi, details;
322
323                 addr_lo = ecore_rd(p_hwfn, p_ptt,
324                                    PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
325                 addr_hi = ecore_rd(p_hwfn, p_ptt,
326                                    PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
327                 details = ecore_rd(p_hwfn, p_ptt,
328                                    PGLUE_B_REG_TX_ERR_WR_DETAILS);
329
330                 DP_NOTICE(p_hwfn, false,
331                           "Illegal write by chip to [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
332                           addr_hi, addr_lo, details,
333                           (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >> ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
334                           (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >> ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
335                           (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
336                           tmp,
337                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0),
338                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0),
339                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0));
340         }
341
342         tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2);
343         if (tmp & ECORE_PGLUE_ATTENTION_RD_VALID) {
344                 u32 addr_lo, addr_hi, details;
345
346                 addr_lo = ecore_rd(p_hwfn, p_ptt,
347                                    PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
348                 addr_hi = ecore_rd(p_hwfn, p_ptt,
349                                    PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
350                 details = ecore_rd(p_hwfn, p_ptt,
351                                    PGLUE_B_REG_TX_ERR_RD_DETAILS);
352
353                 DP_NOTICE(p_hwfn, false,
354                           "Illegal read by chip from [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
355                           addr_hi, addr_lo, details,
356                           (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >> ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
357                           (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >> ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
358                           (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
359                           tmp,
360                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0),
361                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0),
362                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0));
363         }
364
365         tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
366         if (tmp & ECORE_PGLUE_ATTENTION_ICPL_VALID)
367                 DP_NOTICE(p_hwfn, false, "ICPL eror - %08x\n", tmp);
368
369         tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
370         if (tmp & ECORE_PGLUE_ATTENTION_ZLR_VALID) {
371                 u32 addr_hi, addr_lo;
372
373                 addr_lo = ecore_rd(p_hwfn, p_ptt,
374                                    PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
375                 addr_hi = ecore_rd(p_hwfn, p_ptt,
376                                    PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
377
378                 DP_NOTICE(p_hwfn, false,
379                           "ICPL eror - %08x [Address %08x:%08x]\n",
380                           tmp, addr_hi, addr_lo);
381         }
382
383         tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
384         if (tmp & ECORE_PGLUE_ATTENTION_ILT_VALID) {
385                 u32 addr_hi, addr_lo, details;
386
387                 addr_lo = ecore_rd(p_hwfn, p_ptt,
388                                    PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
389                 addr_hi = ecore_rd(p_hwfn, p_ptt,
390                                    PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
391                 details = ecore_rd(p_hwfn, p_ptt,
392                                    PGLUE_B_REG_VF_ILT_ERR_DETAILS);
393
394                 DP_NOTICE(p_hwfn, false,
395                           "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
396                           details, tmp, addr_hi, addr_lo);
397         }
398
399         /* Clear the indications */
400         ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, (1 << 2));
401
402         return ECORE_SUCCESS;
403 }
404
405 static enum _ecore_status_t ecore_pglueb_rbc_attn_cb(struct ecore_hwfn *p_hwfn)
406 {
407         return ecore_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt);
408 }
409
410 static enum _ecore_status_t ecore_fw_assertion(struct ecore_hwfn *p_hwfn)
411 {
412         DP_NOTICE(p_hwfn, false, "FW assertion!\n");
413
414         ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_FW_ASSERT);
415
416         return ECORE_INVAL;
417 }
418
419 static enum _ecore_status_t
420 ecore_general_attention_35(struct ecore_hwfn *p_hwfn)
421 {
422         DP_INFO(p_hwfn, "General attention 35!\n");
423
424         return ECORE_SUCCESS;
425 }
426
427 #define ECORE_DORQ_ATTENTION_REASON_MASK        (0xfffff)
428 #define ECORE_DORQ_ATTENTION_OPAQUE_MASK        (0xffff)
429 #define ECORE_DORQ_ATTENTION_OPAQUE_SHIFT       (0x0)
430 #define ECORE_DORQ_ATTENTION_SIZE_MASK          (0x7f)
431 #define ECORE_DORQ_ATTENTION_SIZE_SHIFT         (16)
432
433 #define ECORE_DB_REC_COUNT                      10
434 #define ECORE_DB_REC_INTERVAL                   100
435
436 /* assumes sticky overflow indication was set for this PF */
437 static enum _ecore_status_t ecore_db_rec_attn(struct ecore_hwfn *p_hwfn,
438                                               struct ecore_ptt *p_ptt)
439 {
440         u8 count = ECORE_DB_REC_COUNT;
441         u32 usage = 1;
442
443         /* wait for usage to zero or count to run out. This is necessary since
444          * EDPM doorbell transactions can take multiple 64b cycles, and as such
445          * can "split" over the pci. Possibly, the doorbell drop can happen with
446          * half an EDPM in the queue and other half dropped. Another EDPM
447          * doorbell to the same address (from doorbell recovery mechanism or
448          * from the doorbelling entity) could have first half dropped and second
449          * half interperted as continuation of the first. To prevent such
450          * malformed doorbells from reaching the device, flush the queue before
451          * releaseing the overflow sticky indication.
452          */
453         while (count-- && usage) {
454                 usage = ecore_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT);
455                 OSAL_UDELAY(ECORE_DB_REC_INTERVAL);
456         }
457
458         /* should have been depleted by now */
459         if (usage) {
460                 DP_NOTICE(p_hwfn->p_dev, false,
461                           "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n",
462                           ECORE_DB_REC_INTERVAL * ECORE_DB_REC_COUNT, usage);
463                 return ECORE_TIMEOUT;
464         }
465
466         /* flush any pedning (e)dpm as they may never arrive */
467         ecore_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1);
468
469         /* release overflow sticky indication (stop silently dropping everything) */
470         ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
471
472         /* repeat all last doorbells (doorbell drop recovery) */
473         ecore_db_recovery_execute(p_hwfn, DB_REC_REAL_DEAL);
474
475         return ECORE_SUCCESS;
476 }
477
478 static enum _ecore_status_t ecore_dorq_attn_cb(struct ecore_hwfn *p_hwfn)
479 {
480         u32 int_sts, first_drop_reason, details, address, overflow,
481                 all_drops_reason;
482         struct ecore_ptt *p_ptt = p_hwfn->p_dpc_ptt;
483         enum _ecore_status_t rc;
484
485         int_sts = ecore_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS);
486         DP_NOTICE(p_hwfn->p_dev, false, "DORQ attention. int_sts was %x\n",
487                   int_sts);
488
489         /* int_sts may be zero since all PFs were interrupted for doorbell
490          * overflow but another one already handled it. Can abort here. If
491          * This PF also requires overflow recovery we will be interrupted again.
492          * The masked almost full indication may also be set. Ignoring.
493          */
494         if (!(int_sts & ~DORQ_REG_INT_STS_DORQ_FIFO_AFULL))
495                 return ECORE_SUCCESS;
496
497         /* check if db_drop or overflow happened */
498         if (int_sts & (DORQ_REG_INT_STS_DB_DROP |
499                        DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) {
500         
501                 /* obtain data about db drop/overflow */
502                 first_drop_reason = ecore_rd(p_hwfn, p_ptt,
503                                   DORQ_REG_DB_DROP_REASON) &
504                                   ECORE_DORQ_ATTENTION_REASON_MASK;
505                 details = ecore_rd(p_hwfn, p_ptt,
506                                    DORQ_REG_DB_DROP_DETAILS);
507                 address = ecore_rd(p_hwfn, p_ptt,
508                                    DORQ_REG_DB_DROP_DETAILS_ADDRESS);
509                 overflow = ecore_rd(p_hwfn, p_ptt,
510                                     DORQ_REG_PF_OVFL_STICKY);
511                 all_drops_reason = ecore_rd(p_hwfn, p_ptt,
512                                             DORQ_REG_DB_DROP_DETAILS_REASON);
513
514                 /* log info */
515                 DP_NOTICE(p_hwfn->p_dev, false,
516                           "Doorbell drop occurred\n"
517                           "Address\t\t0x%08x\t(second BAR address)\n"
518                           "FID\t\t0x%04x\t\t(Opaque FID)\n"
519                           "Size\t\t0x%04x\t\t(in bytes)\n"
520                           "1st drop reason\t0x%08x\t(details on first drop since last handling)\n"
521                           "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n"
522                           "Overflow\t0x%x\t\t(a per PF indication)\n",
523                           address, GET_FIELD(details, ECORE_DORQ_ATTENTION_OPAQUE),
524                           GET_FIELD(details, ECORE_DORQ_ATTENTION_SIZE) * 4,
525                           first_drop_reason, all_drops_reason, overflow);
526
527                 /* if this PF caused overflow, initiate recovery */
528                 if (overflow) {
529                         rc = ecore_db_rec_attn(p_hwfn, p_ptt);
530                         if (rc != ECORE_SUCCESS)
531                                 return rc;
532                 }
533
534                 /* clear the doorbell drop details and prepare for next drop */
535                 ecore_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0);
536
537                 /* mark interrupt as handeld (note: even if drop was due to a diffrent
538                  * reason than overflow we mark as handled)
539                  */
540                 ecore_wr(p_hwfn, p_ptt, DORQ_REG_INT_STS_WR,
541                          DORQ_REG_INT_STS_DB_DROP | DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR);
542
543                 /* if there are no indications otherthan drop indications, success */
544                 if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP |
545                                  DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR |
546                                  DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0)
547                         return ECORE_SUCCESS;
548         }
549
550         /* some other indication was present - non recoverable */
551         DP_INFO(p_hwfn, "DORQ fatal attention\n");
552
553         return ECORE_INVAL;
554 }
555
556 static enum _ecore_status_t ecore_tm_attn_cb(struct ecore_hwfn *p_hwfn)
557 {
558 #ifndef ASIC_ONLY
559         if (CHIP_REV_IS_EMUL_B0(p_hwfn->p_dev)) {
560                 u32 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
561                                    TM_REG_INT_STS_1);
562
563                 if (val & ~(TM_REG_INT_STS_1_PEND_TASK_SCAN |
564                             TM_REG_INT_STS_1_PEND_CONN_SCAN))
565                         return ECORE_INVAL;
566
567                 if (val & (TM_REG_INT_STS_1_PEND_TASK_SCAN |
568                            TM_REG_INT_STS_1_PEND_CONN_SCAN))
569                         DP_INFO(p_hwfn, "TM attention on emulation - most likely results of clock-ratios\n");
570                 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1);
571                 val |= TM_REG_INT_MASK_1_PEND_CONN_SCAN |
572                        TM_REG_INT_MASK_1_PEND_TASK_SCAN;
573                 ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1, val);
574
575                 return ECORE_SUCCESS;
576         }
577 #endif
578
579         return ECORE_INVAL;
580 }
581
582 /* Instead of major changes to the data-structure, we have a some 'special'
583  * identifiers for sources that changed meaning between adapters.
584  */
585 enum aeu_invert_reg_special_type {
586         AEU_INVERT_REG_SPECIAL_CNIG_0,
587         AEU_INVERT_REG_SPECIAL_CNIG_1,
588         AEU_INVERT_REG_SPECIAL_CNIG_2,
589         AEU_INVERT_REG_SPECIAL_CNIG_3,
590         AEU_INVERT_REG_SPECIAL_MAX,
591 };
592
593 static struct aeu_invert_reg_bit
594 aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
595         {"CNIG port 0", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
596         {"CNIG port 1", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
597         {"CNIG port 2", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
598         {"CNIG port 3", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
599 };
600
601 /* Notice aeu_invert_reg must be defined in the same order of bits as HW; */
602 static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] =
603 {
604         {
605                 {       /* After Invert 1 */
606                         {"GPIO0 function%d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID},
607                 }
608         },
609
610         {
611                 {       /* After Invert 2 */
612                         {"PGLUE config_space", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
613                         {"PGLUE misc_flr", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
614                         {"PGLUE B RBC", ATTENTION_PAR_INT, ecore_pglueb_rbc_attn_cb, BLOCK_PGLUE_B},
615                         {"PGLUE misc_mctp", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
616                         {"Flash event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
617                         {"SMB event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
618                         {"Main Power", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
619                         {"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) | (1 << ATTENTION_OFFSET_SHIFT), OSAL_NULL, MAX_BLOCK_ID},
620                         {"PCIE glue/PXP VPD %d", (16 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, BLOCK_PGLCS},
621                 }
622         },
623
624         {
625                 {       /* After Invert 3 */
626                         {"General Attention %d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID},
627                 }
628         },
629
630         {
631                 {       /* After Invert 4 */
632                         {"General Attention 32", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE, ecore_fw_assertion, MAX_BLOCK_ID},
633                         {"General Attention %d", (2 << ATTENTION_LENGTH_SHIFT) | (33 << ATTENTION_OFFSET_SHIFT), OSAL_NULL, MAX_BLOCK_ID},
634                         {"General Attention 35", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE, ecore_general_attention_35, MAX_BLOCK_ID},
635                         {"NWS Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
636                                        ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0) , OSAL_NULL, BLOCK_NWS},
637                         {"NWS Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
638                                           ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1), OSAL_NULL, BLOCK_NWS},
639                         {"NWM Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
640                                        ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2), OSAL_NULL, BLOCK_NWM},
641                         {"NWM Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
642                                           ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3), OSAL_NULL, BLOCK_NWM},
643                         {"MCP CPU", ATTENTION_SINGLE, ecore_mcp_attn_cb, MAX_BLOCK_ID},
644                         {"MCP Watchdog timer", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
645                         {"MCP M2P", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
646                         {"AVS stop status ready", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
647                         {"MSTAT", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
648                         {"MSTAT per-path", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
649                         {"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID },
650                         {"NIG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NIG},
651                         {"BMB/OPTE/MCP", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BMB},
652                         {"BTB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BTB},
653                         {"BRB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BRB},
654                         {"PRS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRS},
655                 }
656         },
657
658         {
659                 {       /* After Invert 5 */
660                         {"SRC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_SRC},
661                         {"PB Client1", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB1},
662                         {"PB Client2", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB2},
663                         {"RPB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RPB},
664                         {"PBF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF},
665                         {"QM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_QM},
666                         {"TM", ATTENTION_PAR_INT, ecore_tm_attn_cb, BLOCK_TM},
667                         {"MCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MCM},
668                         {"MSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSDM},
669                         {"MSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSEM},
670                         {"PCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PCM},
671                         {"PSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSDM},
672                         {"PSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSEM},
673                         {"TCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCM},
674                         {"TSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TSDM},
675                         {"TSEM", ATTENTION_PAR_INT,  OSAL_NULL, BLOCK_TSEM},
676                 }
677         },
678
679         {
680                 {       /* After Invert 6 */
681                         {"UCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_UCM},
682                         {"USDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USDM},
683                         {"USEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USEM},
684                         {"XCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XCM},
685                         {"XSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSDM},
686                         {"XSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSEM},
687                         {"YCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YCM},
688                         {"YSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSDM},
689                         {"YSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSEM},
690                         {"XYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XYLD},
691                         {"TMLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TMLD},
692                         {"MYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MULD},
693                         {"YULD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YULD},
694                         {"DORQ", ATTENTION_PAR_INT, ecore_dorq_attn_cb, BLOCK_DORQ},
695                         {"DBG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DBG},
696                         {"IPC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IPC},
697                 }
698         },
699
700         {
701                 {       /* After Invert 7 */
702                         {"CCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CCFC},
703                         {"CDU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CDU},
704                         {"DMAE", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DMAE},
705                         {"IGU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IGU},
706                         {"ATC", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
707                         {"CAU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CAU},
708                         {"PTU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PTU},
709                         {"PRM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRM},
710                         {"TCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCFC},
711                         {"RDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RDIF},
712                         {"TDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TDIF},
713                         {"RSS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RSS},
714                         {"MISC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISC},
715                         {"MISCS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISCS},
716                         {"PCIE", ATTENTION_PAR, OSAL_NULL, BLOCK_PCIE},
717                         {"Vaux PCI core", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
718                         {"PSWRQ", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ},
719                 }
720         },
721
722         {
723                 {       /* After Invert 8 */
724                         {"PSWRQ (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ2},
725                         {"PSWWR", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR},
726                         {"PSWWR (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR2},
727                         {"PSWRD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD},
728                         {"PSWRD (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD2},
729                         {"PSWHST", ATTENTION_PAR_INT, ecore_pswhst_attn_cb, BLOCK_PSWHST},
730                         {"PSWHST (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWHST2},
731                         {"GRC", ATTENTION_PAR_INT, ecore_grc_attn_cb, BLOCK_GRC},
732                         {"CPMU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CPMU},
733                         {"NCSI", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NCSI},
734                         {"MSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
735                         {"PSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
736                         {"TSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
737                         {"USEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
738                         {"XSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
739                         {"YSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
740                         {"pxp_misc_mps", ATTENTION_PAR, OSAL_NULL, BLOCK_PGLCS},
741                         {"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
742                         {"PERST_B assertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
743                         {"PERST_B deassertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
744                         {"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID },
745                 }
746         },
747
748         {
749                 {       /* After Invert 9 */
750                         {"MCP Latched memory", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
751                         {"MCP Latched scratchpad cache", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
752                         {"MCP Latched ump_tx", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
753                         {"MCP Latched scratchpad", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
754                         {"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID },
755                 }
756         },
757
758 };
759
760 static struct aeu_invert_reg_bit *
761 ecore_int_aeu_translate(struct ecore_hwfn *p_hwfn,
762                         struct aeu_invert_reg_bit *p_bit)
763 {
764         if (!ECORE_IS_BB(p_hwfn->p_dev))
765                 return p_bit;
766
767         if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
768                 return p_bit;
769
770         return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
771                                   ATTENTION_BB_SHIFT];
772 }
773
774 static bool ecore_int_is_parity_flag(struct ecore_hwfn *p_hwfn,
775                                      struct aeu_invert_reg_bit *p_bit)
776 {
777         return !!(ecore_int_aeu_translate(p_hwfn, p_bit)->flags &
778                   ATTENTION_PARITY);
779 }
780
781 #define ATTN_STATE_BITS         (0xfff)
782 #define ATTN_BITS_MASKABLE      (0x3ff)
783 struct ecore_sb_attn_info {
784         /* Virtual & Physical address of the SB */
785         struct atten_status_block       *sb_attn;
786         dma_addr_t                      sb_phys;
787
788         /* Last seen running index */
789         u16                             index;
790
791         /* A mask of the AEU bits resulting in a parity error */
792         u32                             parity_mask[NUM_ATTN_REGS];
793
794         /* A pointer to the attention description structure */
795         struct aeu_invert_reg           *p_aeu_desc;
796
797         /* Previously asserted attentions, which are still unasserted */
798         u16                             known_attn;
799
800         /* Cleanup address for the link's general hw attention */
801         u32                             mfw_attn_addr;
802 };
803
804 static u16 ecore_attn_update_idx(struct ecore_hwfn *p_hwfn,
805                                  struct ecore_sb_attn_info *p_sb_desc)
806 {
807         u16 rc = 0, index;
808
809         OSAL_MMIOWB(p_hwfn->p_dev);
810
811         index = OSAL_LE16_TO_CPU(p_sb_desc->sb_attn->sb_index);
812         if (p_sb_desc->index != index) {
813                 p_sb_desc->index = index;
814                 rc = ECORE_SB_ATT_IDX;
815         }
816
817         OSAL_MMIOWB(p_hwfn->p_dev);
818
819         return rc;
820 }
821
822 /**
823  * @brief ecore_int_assertion - handles asserted attention bits
824  *
825  * @param p_hwfn
826  * @param asserted_bits newly asserted bits
827  * @return enum _ecore_status_t
828  */
829 static enum _ecore_status_t ecore_int_assertion(struct ecore_hwfn *p_hwfn,
830                                                 u16 asserted_bits)
831 {
832         struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
833         u32 igu_mask;
834
835         /* Mask the source of the attention in the IGU */
836         igu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
837                             IGU_REG_ATTENTION_ENABLE);
838         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
839                    igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
840         igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
841         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
842
843         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
844                    "inner known ATTN state: 0x%04x --> 0x%04x\n",
845                    sb_attn_sw->known_attn,
846                    sb_attn_sw->known_attn | asserted_bits);
847         sb_attn_sw->known_attn |= asserted_bits;
848
849         /* Handle MCP events */
850         if (asserted_bits & 0x100) {
851                 ecore_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
852                 /* Clean the MCP attention */
853                 ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
854                          sb_attn_sw->mfw_attn_addr, 0);
855         }
856
857         /* FIXME - this will change once we'll have GOOD gtt definitions */
858         DIRECT_REG_WR(p_hwfn,
859                       (u8 OSAL_IOMEM*)p_hwfn->regview +
860                       GTT_BAR0_MAP_REG_IGU_CMD +
861                       ((IGU_CMD_ATTN_BIT_SET_UPPER -
862                         IGU_CMD_INT_ACK_BASE) << 3), (u32)asserted_bits);
863
864         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "set cmd IGU: 0x%04x\n",
865                    asserted_bits);
866
867         return ECORE_SUCCESS;
868 }
869
870 static void ecore_int_attn_print(struct ecore_hwfn *p_hwfn,
871                                  enum block_id id, enum dbg_attn_type type,
872                                  bool b_clear)
873 {
874         struct dbg_attn_block_result attn_results;
875         enum dbg_status status;
876
877         OSAL_MEMSET(&attn_results, 0, sizeof(attn_results));
878
879         status = ecore_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type,
880                                      b_clear, &attn_results);
881 #ifdef ATTN_DESC
882         if (status != DBG_STATUS_OK)
883                 DP_NOTICE(p_hwfn, true,
884                           "Failed to parse attention information [status: %s]\n",
885                           ecore_dbg_get_status_str(status));
886         else
887                 ecore_dbg_parse_attn(p_hwfn, &attn_results);
888 #else
889         if (status != DBG_STATUS_OK)
890                 DP_NOTICE(p_hwfn, true,
891                           "Failed to parse attention information [status: %d]\n",
892                           status);
893         else
894                 ecore_dbg_print_attn(p_hwfn, &attn_results);
895 #endif
896 }
897
898 /**
899  * @brief ecore_int_deassertion_aeu_bit - handles the effects of a single
900  * cause of the attention
901  *
902  * @param p_hwfn
903  * @param p_aeu - descriptor of an AEU bit which caused the attention
904  * @param aeu_en_reg - register offset of the AEU enable reg. which configured
905  *  this bit to this group.
906  * @param bit_index - index of this bit in the aeu_en_reg
907  *
908  * @return enum _ecore_status_t
909  */
910 static enum _ecore_status_t
911 ecore_int_deassertion_aeu_bit(struct ecore_hwfn *p_hwfn,
912                               struct aeu_invert_reg_bit *p_aeu,
913                               u32 aeu_en_reg,
914                               const char *p_bit_name,
915                               u32 bitmask)
916 {
917         enum _ecore_status_t rc = ECORE_INVAL;
918         bool b_fatal = false;
919
920         DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
921                 p_bit_name, bitmask);
922
923         /* Call callback before clearing the interrupt status */
924         if (p_aeu->cb) {
925                 DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
926                         p_bit_name);
927                 rc = p_aeu->cb(p_hwfn);
928         }
929
930         if (rc != ECORE_SUCCESS)
931                 b_fatal = true;
932
933         /* Print HW block interrupt registers */
934         if (p_aeu->block_index != MAX_BLOCK_ID)
935                 ecore_int_attn_print(p_hwfn, p_aeu->block_index,
936                                      ATTN_TYPE_INTERRUPT, !b_fatal);
937
938         /* Reach assertion if attention is fatal */
939         if (b_fatal) {
940                 DP_NOTICE(p_hwfn, true, "`%s': Fatal attention\n",
941                           p_bit_name);
942
943                 ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_HW_ATTN);
944         }
945
946         /* Prevent this Attention from being asserted in the future */
947         if (p_aeu->flags & ATTENTION_CLEAR_ENABLE ||
948             p_hwfn->p_dev->attn_clr_en) {
949                 u32 val;
950                 u32 mask = ~bitmask;
951                 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
952                 ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & mask));
953                 DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n",
954                         p_bit_name);
955         }
956
957         return rc;
958 }
959
960 /**
961  * @brief ecore_int_deassertion_parity - handle a single parity AEU source
962  *
963  * @param p_hwfn
964  * @param p_aeu - descriptor of an AEU bit which caused the parity
965  * @param aeu_en_reg - address of the AEU enable register
966  * @param bit_index
967  */
968 static void ecore_int_deassertion_parity(struct ecore_hwfn *p_hwfn,
969                                          struct aeu_invert_reg_bit *p_aeu,
970                                          u32 aeu_en_reg, u8 bit_index)
971 {
972         u32 block_id = p_aeu->block_index, mask, val;
973
974         DP_NOTICE(p_hwfn->p_dev, false,
975                   "%s parity attention is set [address 0x%08x, bit %d]\n",
976                   p_aeu->bit_name, aeu_en_reg, bit_index);
977
978         if (block_id != MAX_BLOCK_ID) {
979                 ecore_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
980
981                 /* In A0, there's a single parity bit for several blocks */
982                 if (block_id == BLOCK_BTB) {
983                         ecore_int_attn_print(p_hwfn, BLOCK_OPTE,
984                                              ATTN_TYPE_PARITY, false);
985                         ecore_int_attn_print(p_hwfn, BLOCK_MCP,
986                                              ATTN_TYPE_PARITY, false);
987                 }
988         }
989
990         /* Prevent this parity error from being re-asserted */
991         mask = ~(0x1 << bit_index);
992         val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
993         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
994         DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
995                 p_aeu->bit_name);
996 }
997
998 /**
999  * @brief - handles deassertion of previously asserted attentions.
1000  *
1001  * @param p_hwfn
1002  * @param deasserted_bits - newly deasserted bits
1003  * @return enum _ecore_status_t
1004  *
1005  */
1006 static enum _ecore_status_t ecore_int_deassertion(struct ecore_hwfn *p_hwfn,
1007                                                   u16 deasserted_bits)
1008 {
1009         struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
1010         u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
1011         u8 i, j, k, bit_idx;
1012         enum _ecore_status_t rc = ECORE_SUCCESS;
1013
1014         /* Read the attention registers in the AEU */
1015         for (i = 0; i < NUM_ATTN_REGS; i++) {
1016                 aeu_inv_arr[i] = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1017                                           MISC_REG_AEU_AFTER_INVERT_1_IGU +
1018                                           i * 0x4);
1019                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1020                            "Deasserted bits [%d]: %08x\n",
1021                            i, aeu_inv_arr[i]);
1022         }
1023
1024         /* Handle parity attentions first */
1025         for (i = 0; i < NUM_ATTN_REGS; i++)
1026         {
1027                 struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
1028                 u32 parities;
1029
1030                 aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
1031                 en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1032                 parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
1033
1034                 /* Skip register in which no parity bit is currently set */
1035                 if (!parities)
1036                         continue;
1037
1038                 for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1039                         struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
1040
1041                         if (ecore_int_is_parity_flag(p_hwfn, p_bit) &&
1042                             !!(parities & (1 << bit_idx)))
1043                                 ecore_int_deassertion_parity(p_hwfn, p_bit,
1044                                                              aeu_en, bit_idx);
1045
1046                         bit_idx += ATTENTION_LENGTH(p_bit->flags);
1047                 }
1048         }
1049
1050         /* Find non-parity cause for attention and act */
1051         for (k = 0; k < MAX_ATTN_GRPS; k++) {
1052                 struct aeu_invert_reg_bit *p_aeu;
1053
1054                 /* Handle only groups whose attention is currently deasserted */
1055                 if (!(deasserted_bits & (1 << k)))
1056                         continue;
1057
1058                 for (i = 0; i < NUM_ATTN_REGS; i++) {
1059                         u32 bits;
1060
1061                         aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
1062                                  i * sizeof(u32) +
1063                                  k * sizeof(u32) * NUM_ATTN_REGS;
1064                         en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1065                         bits = aeu_inv_arr[i] & en;
1066
1067                         /* Skip if no bit from this group is currently set */
1068                         if (!bits)
1069                                 continue;
1070
1071                         /* Find all set bits from current register which belong
1072                          * to current group, making them responsible for the
1073                          * previous assertion.
1074                          */
1075                         for (j = 0, bit_idx = 0; bit_idx < 32; j++)
1076                         {
1077                                 long unsigned int bitmask;
1078                                 u8 bit, bit_len;
1079
1080                                 /* Need to account bits with changed meaning */
1081                                 p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
1082                                 p_aeu = ecore_int_aeu_translate(p_hwfn, p_aeu);
1083
1084                                 bit = bit_idx;
1085                                 bit_len = ATTENTION_LENGTH(p_aeu->flags);
1086                                 if (ecore_int_is_parity_flag(p_hwfn, p_aeu)) {
1087                                         /* Skip Parity */
1088                                         bit++;
1089                                         bit_len--;
1090                                 }
1091
1092                                 /* Find the bits relating to HW-block, then
1093                                  * shift so they'll become LSB.
1094                                  */
1095                                 bitmask = bits & (((1 << bit_len) - 1) << bit);
1096                                 bitmask >>= bit;
1097
1098                                 if (bitmask) {
1099                                         u32 flags = p_aeu->flags;
1100                                         char bit_name[30];
1101                                         u8 num;
1102
1103                                         num = (u8)OSAL_FIND_FIRST_BIT(&bitmask,
1104                                                                 bit_len);
1105
1106                                         /* Some bits represent more than a
1107                                          * a single interrupt. Correctly print
1108                                          * their name.
1109                                          */
1110                                         if (ATTENTION_LENGTH(flags) > 2 ||
1111                                             ((flags & ATTENTION_PAR_INT) &&
1112                                             ATTENTION_LENGTH(flags) > 1))
1113                                                 OSAL_SNPRINTF(bit_name, 30,
1114                                                               p_aeu->bit_name,
1115                                                               num);
1116                                         else
1117                                                 OSAL_STRNCPY(bit_name,
1118                                                              p_aeu->bit_name,
1119                                                              30);
1120
1121                                         /* We now need to pass bitmask in its
1122                                          * correct position.
1123                                          */
1124                                         bitmask <<= bit;
1125
1126                                         /* Handle source of the attention */
1127                                         ecore_int_deassertion_aeu_bit(p_hwfn,
1128                                                                       p_aeu,
1129                                                                       aeu_en,
1130                                                                       bit_name,
1131                                                                       bitmask);
1132                                 }
1133
1134                                 bit_idx += ATTENTION_LENGTH(p_aeu->flags);
1135                         }
1136                 }
1137         }
1138
1139         /* Clear IGU indication for the deasserted bits */
1140         /* FIXME - this will change once we'll have GOOD gtt definitions */
1141         DIRECT_REG_WR(p_hwfn,
1142                       (u8 OSAL_IOMEM*)p_hwfn->regview +
1143                                       GTT_BAR0_MAP_REG_IGU_CMD +
1144                                       ((IGU_CMD_ATTN_BIT_CLR_UPPER -
1145                                         IGU_CMD_INT_ACK_BASE) << 3),
1146                       ~((u32)deasserted_bits));
1147
1148         /* Unmask deasserted attentions in IGU */
1149         aeu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1150                             IGU_REG_ATTENTION_ENABLE);
1151         aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
1152         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
1153
1154         /* Clear deassertion from inner state */
1155         sb_attn_sw->known_attn &= ~deasserted_bits;
1156
1157         return rc;
1158 }
1159
1160 static enum _ecore_status_t ecore_int_attentions(struct ecore_hwfn *p_hwfn)
1161 {
1162         struct ecore_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
1163         struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
1164         u16 index = 0, asserted_bits, deasserted_bits;
1165         u32 attn_bits = 0, attn_acks = 0;
1166         enum _ecore_status_t rc = ECORE_SUCCESS;
1167
1168         /* Read current attention bits/acks - safeguard against attentions
1169          * by guaranting work on a synchronized timeframe
1170          */
1171         do {
1172                 index = OSAL_LE16_TO_CPU(p_sb_attn->sb_index);
1173                 attn_bits = OSAL_LE32_TO_CPU(p_sb_attn->atten_bits);
1174                 attn_acks = OSAL_LE32_TO_CPU(p_sb_attn->atten_ack);
1175         } while (index != OSAL_LE16_TO_CPU(p_sb_attn->sb_index));
1176         p_sb_attn->sb_index = index;
1177
1178         /* Attention / Deassertion are meaningful (and in correct state)
1179          * only when they differ and consistent with known state - deassertion
1180          * when previous attention & current ack, and assertion when current
1181          * attention with no previous attention
1182          */
1183         asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1184                         ~p_sb_attn_sw->known_attn;
1185         deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1186                           p_sb_attn_sw->known_attn;
1187
1188         if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100))
1189                 DP_INFO(p_hwfn,
1190                         "Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1191                         index, attn_bits, attn_acks, asserted_bits,
1192                         deasserted_bits, p_sb_attn_sw->known_attn);
1193         else if (asserted_bits == 0x100)
1194                 DP_INFO(p_hwfn,
1195                         "MFW indication via attention\n");
1196         else
1197                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1198                            "MFW indication [deassertion]\n");
1199
1200         if (asserted_bits) {
1201                 rc = ecore_int_assertion(p_hwfn, asserted_bits);
1202                 if (rc)
1203                         return rc;
1204         }
1205
1206         if (deasserted_bits)
1207                 rc = ecore_int_deassertion(p_hwfn, deasserted_bits);
1208
1209         return rc;
1210 }
1211
1212 static void ecore_sb_ack_attn(struct ecore_hwfn *p_hwfn,
1213                               void OSAL_IOMEM *igu_addr, u32 ack_cons)
1214 {
1215         struct igu_prod_cons_update igu_ack = { 0 };
1216
1217         igu_ack.sb_id_and_flags =
1218                 ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1219                  (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1220                  (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1221                  (IGU_SEG_ACCESS_ATTN <<
1222                   IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1223
1224         DIRECT_REG_WR(p_hwfn, igu_addr, igu_ack.sb_id_and_flags);
1225
1226         /* Both segments (interrupts & acks) are written to same place address;
1227          * Need to guarantee all commands will be received (in-order) by HW.
1228          */
1229         OSAL_MMIOWB(p_hwfn->p_dev);
1230         OSAL_BARRIER(p_hwfn->p_dev);
1231 }
1232
1233 void ecore_int_sp_dpc(osal_int_ptr_t hwfn_cookie)
1234 {
1235         struct ecore_hwfn *p_hwfn = (struct ecore_hwfn *)hwfn_cookie;
1236         struct ecore_pi_info *pi_info = OSAL_NULL;
1237         struct ecore_sb_attn_info *sb_attn;
1238         struct ecore_sb_info *sb_info;
1239         int arr_size;
1240         u16 rc = 0;
1241
1242         if (!p_hwfn)
1243                 return;
1244
1245         if (!p_hwfn->p_sp_sb) {
1246                 DP_ERR(p_hwfn->p_dev, "DPC called - no p_sp_sb\n");
1247                 return;
1248         }
1249
1250         sb_info = &p_hwfn->p_sp_sb->sb_info;
1251         arr_size = OSAL_ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1252         if (!sb_info) {
1253                 DP_ERR(p_hwfn->p_dev, "Status block is NULL - cannot ack interrupts\n");
1254                 return;
1255         }
1256
1257         if (!p_hwfn->p_sb_attn) {
1258                 DP_ERR(p_hwfn->p_dev, "DPC called - no p_sb_attn");
1259                 return;
1260         }
1261         sb_attn =  p_hwfn->p_sb_attn;
1262
1263         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1264                    p_hwfn, p_hwfn->my_id);
1265
1266         /* Disable ack for def status block. Required both for msix +
1267          * inta in non-mask mode, in inta does no harm.
1268          */
1269         ecore_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1270
1271         /* Gather Interrupts/Attentions information */
1272         if (!sb_info->sb_virt) {
1273                 DP_ERR(p_hwfn->p_dev, "Interrupt Status block is NULL - cannot check for new interrupts!\n");
1274         } else {
1275                 u32 tmp_index = sb_info->sb_ack;
1276                 rc = ecore_sb_update_sb_idx(sb_info);
1277                 DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1278                            "Interrupt indices: 0x%08x --> 0x%08x\n",
1279                            tmp_index, sb_info->sb_ack);
1280         }
1281
1282         if (!sb_attn || !sb_attn->sb_attn) {
1283                 DP_ERR(p_hwfn->p_dev, "Attentions Status block is NULL - cannot check for new attentions!\n");
1284         } else {
1285                 u16 tmp_index = sb_attn->index;
1286
1287                 rc |= ecore_attn_update_idx(p_hwfn, sb_attn);
1288                 DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1289                            "Attention indices: 0x%08x --> 0x%08x\n",
1290                            tmp_index, sb_attn->index);
1291         }
1292
1293         /* Check if we expect interrupts at this time. if not just ack them */
1294         if (!(rc & ECORE_SB_EVENT_MASK)) {
1295                 ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1296                 return;
1297         }
1298
1299         /* Check the validity of the DPC ptt. If not ack interrupts and fail */
1300         if (!p_hwfn->p_dpc_ptt) {
1301                 DP_NOTICE(p_hwfn->p_dev, true, "Failed to allocate PTT\n");
1302                 ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1303                 return;
1304         }
1305
1306         if (rc & ECORE_SB_ATT_IDX)
1307                 ecore_int_attentions(p_hwfn);
1308
1309         if (rc & ECORE_SB_IDX) {
1310                 int pi;
1311
1312                 /* Since we only looked at the SB index, it's possible more
1313                  * than a single protocol-index on the SB incremented.
1314                  * Iterate over all configured protocol indices and check
1315                  * whether something happened for each.
1316                  */
1317                 for (pi = 0; pi < arr_size; pi++) {
1318                         pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1319                         if (pi_info->comp_cb != OSAL_NULL)
1320                                 pi_info->comp_cb(p_hwfn, pi_info->cookie);
1321                 }
1322         }
1323
1324         if (sb_attn && (rc & ECORE_SB_ATT_IDX)) {
1325                 /* This should be done before the interrupts are enabled,
1326                  * since otherwise a new attention will be generated.
1327                  */
1328                 ecore_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1329         }
1330
1331         ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1332 }
1333
1334 static void ecore_int_sb_attn_free(struct ecore_hwfn *p_hwfn)
1335 {
1336         struct ecore_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1337
1338         if (!p_sb)
1339                 return;
1340
1341         if (p_sb->sb_attn) {
1342                 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev, p_sb->sb_attn,
1343                                        p_sb->sb_phys,
1344                                        SB_ATTN_ALIGNED_SIZE(p_hwfn));
1345         }
1346
1347         OSAL_FREE(p_hwfn->p_dev, p_sb);
1348         p_hwfn->p_sb_attn = OSAL_NULL;
1349 }
1350
1351 static void ecore_int_sb_attn_setup(struct ecore_hwfn *p_hwfn,
1352                                     struct ecore_ptt *p_ptt)
1353 {
1354         struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1355
1356         OSAL_MEMSET(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1357
1358         sb_info->index = 0;
1359         sb_info->known_attn = 0;
1360
1361         /* Configure Attention Status Block in IGU */
1362         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1363                  DMA_LO(p_hwfn->p_sb_attn->sb_phys));
1364         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1365                  DMA_HI(p_hwfn->p_sb_attn->sb_phys));
1366 }
1367
1368 static void ecore_int_sb_attn_init(struct ecore_hwfn *p_hwfn,
1369                                    struct ecore_ptt *p_ptt,
1370                                    void *sb_virt_addr,
1371                                    dma_addr_t sb_phy_addr)
1372 {
1373         struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1374         int i, j, k;
1375
1376         sb_info->sb_attn = sb_virt_addr;
1377         sb_info->sb_phys = sb_phy_addr;
1378
1379         /* Set the pointer to the AEU descriptors */
1380         sb_info->p_aeu_desc = aeu_descs;
1381
1382         /* Calculate Parity Masks */
1383         OSAL_MEMSET(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1384         for (i = 0; i < NUM_ATTN_REGS; i++) {
1385                 /* j is array index, k is bit index */
1386                 for (j = 0, k = 0; k < 32; j++) {
1387                         struct aeu_invert_reg_bit *p_aeu;
1388
1389                         p_aeu = &aeu_descs[i].bits[j];
1390                         if (ecore_int_is_parity_flag(p_hwfn, p_aeu))
1391                                 sb_info->parity_mask[i] |= 1 << k;
1392
1393                         k += ATTENTION_LENGTH(p_aeu->flags);
1394                 }
1395                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1396                            "Attn Mask [Reg %d]: 0x%08x\n",
1397                            i, sb_info->parity_mask[i]);
1398         }
1399
1400         /* Set the address of cleanup for the mcp attention */
1401         sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1402                                  MISC_REG_AEU_GENERAL_ATTN_0;
1403
1404         ecore_int_sb_attn_setup(p_hwfn, p_ptt);
1405 }
1406
1407 static enum _ecore_status_t ecore_int_sb_attn_alloc(struct ecore_hwfn *p_hwfn,
1408                                                     struct ecore_ptt *p_ptt)
1409 {
1410         struct ecore_dev *p_dev = p_hwfn->p_dev;
1411         struct ecore_sb_attn_info *p_sb;
1412         dma_addr_t p_phys = 0;
1413         void *p_virt;
1414
1415         /* SB struct */
1416         p_sb = OSAL_ALLOC(p_dev, GFP_KERNEL, sizeof(*p_sb));
1417         if (!p_sb) {
1418                 DP_NOTICE(p_dev, false, "Failed to allocate `struct ecore_sb_attn_info'\n");
1419                 return ECORE_NOMEM;
1420         }
1421
1422         /* SB ring  */
1423         p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
1424                                          SB_ATTN_ALIGNED_SIZE(p_hwfn));
1425         if (!p_virt) {
1426                 DP_NOTICE(p_dev, false, "Failed to allocate status block (attentions)\n");
1427                 OSAL_FREE(p_dev, p_sb);
1428                 return ECORE_NOMEM;
1429         }
1430
1431         /* Attention setup */
1432         p_hwfn->p_sb_attn = p_sb;
1433         ecore_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1434
1435         return ECORE_SUCCESS;
1436 }
1437
1438 /* coalescing timeout = timeset << (timer_res + 1) */
1439 #define ECORE_CAU_DEF_RX_USECS 24
1440 #define ECORE_CAU_DEF_TX_USECS 48
1441
1442 void ecore_init_cau_sb_entry(struct ecore_hwfn *p_hwfn,
1443                              struct cau_sb_entry *p_sb_entry,
1444                              u8 pf_id, u16 vf_number, u8 vf_valid)
1445 {
1446         struct ecore_dev *p_dev = p_hwfn->p_dev;
1447         u32 cau_state;
1448         u8 timer_res;
1449
1450         OSAL_MEMSET(p_sb_entry, 0, sizeof(*p_sb_entry));
1451
1452         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1453         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1454         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1455         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1456         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1457
1458         cau_state = CAU_HC_DISABLE_STATE;
1459
1460         if (p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1461                 cau_state = CAU_HC_ENABLE_STATE;
1462                 if (!p_dev->rx_coalesce_usecs)
1463                         p_dev->rx_coalesce_usecs = ECORE_CAU_DEF_RX_USECS;
1464                 if (!p_dev->tx_coalesce_usecs)
1465                         p_dev->tx_coalesce_usecs = ECORE_CAU_DEF_TX_USECS;
1466         }
1467
1468         /* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1469         if (p_dev->rx_coalesce_usecs <= 0x7F)
1470                 timer_res = 0;
1471         else if (p_dev->rx_coalesce_usecs <= 0xFF)
1472                 timer_res = 1;
1473         else
1474                 timer_res = 2;
1475         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1476
1477         if (p_dev->tx_coalesce_usecs <= 0x7F)
1478                 timer_res = 0;
1479         else if (p_dev->tx_coalesce_usecs <= 0xFF)
1480                 timer_res = 1;
1481         else
1482                 timer_res = 2;
1483         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1484
1485         SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
1486         SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
1487 }
1488
1489 static void _ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1490                                    struct ecore_ptt *p_ptt,
1491                                    u16 igu_sb_id, u32 pi_index,
1492                                    enum ecore_coalescing_fsm coalescing_fsm,
1493                                    u8 timeset)
1494 {
1495         struct cau_pi_entry pi_entry;
1496         u32 sb_offset, pi_offset;
1497
1498         if (IS_VF(p_hwfn->p_dev))
1499                 return;/* @@@TBD MichalK- VF CAU... */
1500
1501         sb_offset = igu_sb_id * PIS_PER_SB_E4;
1502         OSAL_MEMSET(&pi_entry, 0, sizeof(struct cau_pi_entry));
1503
1504         SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1505         if (coalescing_fsm == ECORE_COAL_RX_STATE_MACHINE)
1506                 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
1507         else
1508                 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
1509
1510         pi_offset = sb_offset + pi_index;
1511         if (p_hwfn->hw_init_done) {
1512                 ecore_wr(p_hwfn, p_ptt,
1513                          CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
1514                          *((u32 *)&(pi_entry)));
1515         } else {
1516                 STORE_RT_REG(p_hwfn,
1517                              CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1518                              *((u32 *)&(pi_entry)));
1519         }
1520 }
1521
1522 void ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1523                            struct ecore_ptt *p_ptt,
1524                            struct ecore_sb_info *p_sb, u32 pi_index,
1525                            enum ecore_coalescing_fsm coalescing_fsm,
1526                            u8 timeset)
1527 {
1528         _ecore_int_cau_conf_pi(p_hwfn, p_ptt, p_sb->igu_sb_id,
1529                                pi_index, coalescing_fsm, timeset);
1530 }
1531
1532 void ecore_int_cau_conf_sb(struct ecore_hwfn *p_hwfn,
1533                            struct ecore_ptt *p_ptt,
1534                            dma_addr_t sb_phys, u16 igu_sb_id,
1535                            u16 vf_number, u8 vf_valid)
1536 {
1537         struct cau_sb_entry sb_entry;
1538
1539         ecore_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1540                                 vf_number, vf_valid);
1541
1542         if (p_hwfn->hw_init_done) {
1543                 /* Wide-bus, initialize via DMAE */
1544                 u64 phys_addr = (u64)sb_phys;
1545
1546                 ecore_dmae_host2grc(p_hwfn, p_ptt, (u64)(osal_uintptr_t)&phys_addr,
1547                                     CAU_REG_SB_ADDR_MEMORY +
1548                                     igu_sb_id * sizeof(u64), 2,
1549                                     OSAL_NULL /* default parameters */);
1550                 ecore_dmae_host2grc(p_hwfn, p_ptt, (u64)(osal_uintptr_t)&sb_entry,
1551                                     CAU_REG_SB_VAR_MEMORY +
1552                                     igu_sb_id * sizeof(u64), 2,
1553                                     OSAL_NULL /* default parameters */);
1554         } else {
1555                 /* Initialize Status Block Address */
1556                 STORE_RT_REG_AGG(p_hwfn,
1557                                  CAU_REG_SB_ADDR_MEMORY_RT_OFFSET+igu_sb_id*2,
1558                                  sb_phys);
1559
1560                 STORE_RT_REG_AGG(p_hwfn,
1561                                  CAU_REG_SB_VAR_MEMORY_RT_OFFSET+igu_sb_id*2,
1562                                  sb_entry);
1563         }
1564
1565         /* Configure pi coalescing if set */
1566         if (p_hwfn->p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1567                 /* eth will open queues for all tcs, so configure all of them
1568                  * properly, rather than just the active ones
1569                  */
1570                 u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1571
1572                 u8 timeset, timer_res;
1573                 u8 i;
1574
1575                 /* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1576                 if (p_hwfn->p_dev->rx_coalesce_usecs <= 0x7F)
1577                         timer_res = 0;
1578                 else if (p_hwfn->p_dev->rx_coalesce_usecs <= 0xFF)
1579                         timer_res = 1;
1580                 else
1581                         timer_res = 2;
1582                 timeset = (u8)(p_hwfn->p_dev->rx_coalesce_usecs >> timer_res);
1583                 _ecore_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1584                                        ECORE_COAL_RX_STATE_MACHINE,
1585                                        timeset);
1586
1587                 if (p_hwfn->p_dev->tx_coalesce_usecs <= 0x7F)
1588                         timer_res = 0;
1589                 else if (p_hwfn->p_dev->tx_coalesce_usecs <= 0xFF)
1590                         timer_res = 1;
1591                 else
1592                         timer_res = 2;
1593                 timeset = (u8)(p_hwfn->p_dev->tx_coalesce_usecs >> timer_res);
1594                 for (i = 0; i < num_tc; i++) {
1595                         _ecore_int_cau_conf_pi(p_hwfn, p_ptt,
1596                                                igu_sb_id, TX_PI(i),
1597                                                ECORE_COAL_TX_STATE_MACHINE,
1598                                                timeset);
1599                 }
1600         }
1601 }
1602
1603 void ecore_int_sb_setup(struct ecore_hwfn *p_hwfn,
1604                                struct ecore_ptt *p_ptt,
1605                                struct ecore_sb_info *sb_info)
1606 {
1607         /* zero status block and ack counter */
1608         sb_info->sb_ack = 0;
1609         OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1610
1611         if (IS_PF(p_hwfn->p_dev))
1612                 ecore_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1613                                       sb_info->igu_sb_id, 0, 0);
1614 }
1615
1616 struct ecore_igu_block *
1617 ecore_get_igu_free_sb(struct ecore_hwfn *p_hwfn, bool b_is_pf)
1618 {
1619         struct ecore_igu_block *p_block;
1620         u16 igu_id;
1621
1622         for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1623              igu_id++) {
1624                 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1625
1626                 if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1627                     !(p_block->status & ECORE_IGU_STATUS_FREE))
1628                         continue;
1629
1630                 if (!!(p_block->status & ECORE_IGU_STATUS_PF) ==
1631                     b_is_pf)
1632                         return p_block;
1633         }
1634
1635         return OSAL_NULL;
1636 }
1637
1638 static u16 ecore_get_pf_igu_sb_id(struct ecore_hwfn *p_hwfn,
1639                                   u16 vector_id)
1640 {
1641         struct ecore_igu_block *p_block;
1642         u16 igu_id;
1643
1644         for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1645              igu_id++) {
1646                 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1647
1648                 if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1649                     !p_block->is_pf ||
1650                     p_block->vector_number != vector_id)
1651                         continue;
1652
1653                 return igu_id;
1654         }
1655
1656         return ECORE_SB_INVALID_IDX;
1657 }
1658
1659 u16 ecore_get_igu_sb_id(struct ecore_hwfn *p_hwfn, u16 sb_id)
1660 {
1661         u16 igu_sb_id;
1662
1663         /* Assuming continuous set of IGU SBs dedicated for given PF */
1664         if (sb_id == ECORE_SP_SB_ID)
1665                 igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1666         else if (IS_PF(p_hwfn->p_dev))
1667                 igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
1668         else
1669                 igu_sb_id = ecore_vf_get_igu_sb_id(p_hwfn, sb_id);
1670
1671         if (igu_sb_id == ECORE_SB_INVALID_IDX)
1672                 DP_NOTICE(p_hwfn, true,
1673                           "Slowpath SB vector %04x doesn't exist\n",
1674                           sb_id);
1675         else if (sb_id == ECORE_SP_SB_ID)
1676                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1677                            "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1678         else
1679                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1680                            "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1681
1682         return igu_sb_id;
1683 }
1684
1685 enum _ecore_status_t ecore_int_sb_init(struct ecore_hwfn *p_hwfn,
1686                                        struct ecore_ptt *p_ptt,
1687                                        struct ecore_sb_info *sb_info,
1688                                        void *sb_virt_addr,
1689                                        dma_addr_t sb_phy_addr,
1690                                        u16 sb_id)
1691 {
1692         sb_info->sb_virt = sb_virt_addr;
1693         sb_info->sb_phys = sb_phy_addr;
1694
1695         sb_info->igu_sb_id = ecore_get_igu_sb_id(p_hwfn, sb_id);
1696
1697         if (sb_info->igu_sb_id == ECORE_SB_INVALID_IDX)
1698                 return ECORE_INVAL;
1699
1700         /* Let the igu info reference the client's SB info */
1701         if (sb_id != ECORE_SP_SB_ID) {
1702                 if (IS_PF(p_hwfn->p_dev)) {
1703                         struct ecore_igu_info *p_info;
1704                         struct ecore_igu_block *p_block;
1705
1706                         p_info = p_hwfn->hw_info.p_igu_info;
1707                         p_block = &p_info->entry[sb_info->igu_sb_id];
1708
1709                         p_block->sb_info = sb_info;
1710                         p_block->status &= ~ECORE_IGU_STATUS_FREE;
1711                         p_info->usage.free_cnt--;
1712                 } else {
1713                         ecore_vf_set_sb_info(p_hwfn, sb_id, sb_info);
1714                 }
1715         }
1716
1717 #ifdef ECORE_CONFIG_DIRECT_HWFN
1718         sb_info->p_hwfn = p_hwfn;
1719 #endif
1720         sb_info->p_dev = p_hwfn->p_dev;
1721
1722         /* The igu address will hold the absolute address that needs to be
1723          * written to for a specific status block
1724          */
1725         if (IS_PF(p_hwfn->p_dev)) {
1726                 sb_info->igu_addr = (u8 OSAL_IOMEM*)p_hwfn->regview +
1727                                     GTT_BAR0_MAP_REG_IGU_CMD +
1728                                     (sb_info->igu_sb_id << 3);
1729
1730         } else {
1731                 sb_info->igu_addr =
1732                         (u8 OSAL_IOMEM*)p_hwfn->regview +
1733                         PXP_VF_BAR0_START_IGU +
1734                         ((IGU_CMD_INT_ACK_BASE + sb_info->igu_sb_id) << 3);
1735         }
1736
1737         sb_info->flags |= ECORE_SB_INFO_INIT;
1738
1739         ecore_int_sb_setup(p_hwfn, p_ptt, sb_info);
1740
1741         return ECORE_SUCCESS;
1742 }
1743
1744 enum _ecore_status_t ecore_int_sb_release(struct ecore_hwfn *p_hwfn,
1745                                           struct ecore_sb_info *sb_info,
1746                                           u16 sb_id)
1747 {
1748         struct ecore_igu_info *p_info;
1749         struct ecore_igu_block *p_block;
1750
1751         if (sb_info == OSAL_NULL)
1752                 return ECORE_SUCCESS;
1753
1754         /* zero status block and ack counter */
1755         sb_info->sb_ack = 0;
1756         OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1757
1758         if (IS_VF(p_hwfn->p_dev)) {
1759                 ecore_vf_set_sb_info(p_hwfn, sb_id, OSAL_NULL);
1760                 return ECORE_SUCCESS;
1761         }
1762
1763         p_info = p_hwfn->hw_info.p_igu_info;
1764         p_block = &p_info->entry[sb_info->igu_sb_id];
1765
1766         /* Vector 0 is reserved to Default SB */
1767         if (p_block->vector_number == 0) {
1768                 DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1769                 return ECORE_INVAL;
1770         }
1771
1772         /* Lose reference to client's SB info, and fix counters */
1773         p_block->sb_info = OSAL_NULL;
1774         p_block->status |= ECORE_IGU_STATUS_FREE;
1775         p_info->usage.free_cnt++;
1776
1777         return ECORE_SUCCESS;
1778 }
1779
1780 static void ecore_int_sp_sb_free(struct ecore_hwfn *p_hwfn)
1781 {
1782         struct ecore_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1783
1784         if (!p_sb)
1785                 return;
1786
1787         if (p_sb->sb_info.sb_virt) {
1788                 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
1789                                        p_sb->sb_info.sb_virt,
1790                                        p_sb->sb_info.sb_phys,
1791                                        SB_ALIGNED_SIZE(p_hwfn));
1792         }
1793
1794         OSAL_FREE(p_hwfn->p_dev, p_sb);
1795         p_hwfn->p_sp_sb = OSAL_NULL;
1796 }
1797
1798 static enum _ecore_status_t ecore_int_sp_sb_alloc(struct ecore_hwfn *p_hwfn,
1799                                                   struct ecore_ptt *p_ptt)
1800 {
1801         struct ecore_sb_sp_info *p_sb;
1802         dma_addr_t p_phys = 0;
1803         void *p_virt;
1804
1805         /* SB struct */
1806         p_sb = OSAL_ALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(*p_sb));
1807         if (!p_sb) {
1808                 DP_NOTICE(p_hwfn, false, "Failed to allocate `struct ecore_sb_info'\n");
1809                 return ECORE_NOMEM;
1810         }
1811
1812         /* SB ring  */
1813         p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
1814                                          &p_phys,
1815                                          SB_ALIGNED_SIZE(p_hwfn));
1816         if (!p_virt) {
1817                 DP_NOTICE(p_hwfn, false, "Failed to allocate status block\n");
1818                 OSAL_FREE(p_hwfn->p_dev, p_sb);
1819                 return ECORE_NOMEM;
1820         }
1821
1822
1823         /* Status Block setup */
1824         p_hwfn->p_sp_sb = p_sb;
1825         ecore_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info,
1826                           p_virt, p_phys, ECORE_SP_SB_ID);
1827
1828         OSAL_MEMSET(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1829
1830         return ECORE_SUCCESS;
1831 }
1832
1833 enum _ecore_status_t ecore_int_register_cb(struct ecore_hwfn *p_hwfn,
1834                                            ecore_int_comp_cb_t comp_cb,
1835                                            void *cookie,
1836                                            u8 *sb_idx,
1837                                            __le16 **p_fw_cons)
1838 {
1839         struct ecore_sb_sp_info *p_sp_sb  = p_hwfn->p_sp_sb;
1840         enum _ecore_status_t rc = ECORE_NOMEM;
1841         u8 pi;
1842
1843         /* Look for a free index */
1844         for (pi = 0; pi < OSAL_ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1845                 if (p_sp_sb->pi_info_arr[pi].comp_cb != OSAL_NULL)
1846                         continue;
1847
1848                 p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1849                 p_sp_sb->pi_info_arr[pi].cookie = cookie;
1850                 *sb_idx = pi;
1851                 *p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1852                 rc = ECORE_SUCCESS;
1853                 break;
1854         }
1855
1856         return rc;
1857 }
1858
1859 enum _ecore_status_t ecore_int_unregister_cb(struct ecore_hwfn *p_hwfn,
1860                                              u8 pi)
1861 {
1862         struct ecore_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1863
1864         if (p_sp_sb->pi_info_arr[pi].comp_cb == OSAL_NULL)
1865                 return ECORE_NOMEM;
1866
1867         p_sp_sb->pi_info_arr[pi].comp_cb = OSAL_NULL;
1868         p_sp_sb->pi_info_arr[pi].cookie = OSAL_NULL;
1869
1870         return ECORE_SUCCESS;
1871 }
1872
1873 u16 ecore_int_get_sp_sb_id(struct ecore_hwfn *p_hwfn)
1874 {
1875         return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1876 }
1877
1878 void ecore_int_igu_enable_int(struct ecore_hwfn *p_hwfn,
1879                               struct ecore_ptt  *p_ptt,
1880                               enum ecore_int_mode int_mode)
1881 {
1882         u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1883
1884 #ifndef ASIC_ONLY
1885         if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1886                 DP_INFO(p_hwfn, "FPGA - don't enable ATTN generation in IGU\n");
1887                 igu_pf_conf &= ~IGU_PF_CONF_ATTN_BIT_EN;
1888         }
1889 #endif
1890
1891         p_hwfn->p_dev->int_mode = int_mode;
1892         switch (p_hwfn->p_dev->int_mode) {
1893         case ECORE_INT_MODE_INTA:
1894                 igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1895                 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1896                 break;
1897
1898         case ECORE_INT_MODE_MSI:
1899                 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1900                 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1901                 break;
1902
1903         case ECORE_INT_MODE_MSIX:
1904                 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1905                 break;
1906         case ECORE_INT_MODE_POLL:
1907                 break;
1908         }
1909
1910         ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1911 }
1912
1913 static void ecore_int_igu_enable_attn(struct ecore_hwfn *p_hwfn,
1914                                       struct ecore_ptt *p_ptt)
1915 {
1916 #ifndef ASIC_ONLY
1917         if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1918                 DP_INFO(p_hwfn, "FPGA - Don't enable Attentions in IGU and MISC\n");
1919                 return;
1920         }
1921 #endif
1922
1923         /* Configure AEU signal change to produce attentions */
1924         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1925         ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1926         ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1927         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1928
1929         /* Flush the writes to IGU */
1930         OSAL_MMIOWB(p_hwfn->p_dev);
1931
1932         /* Unmask AEU signals toward IGU */
1933         ecore_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1934 }
1935
1936 enum _ecore_status_t
1937 ecore_int_igu_enable(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1938                           enum ecore_int_mode int_mode)
1939 {
1940         enum _ecore_status_t rc = ECORE_SUCCESS;
1941
1942         ecore_int_igu_enable_attn(p_hwfn, p_ptt);
1943
1944         if ((int_mode != ECORE_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1945                 rc = OSAL_SLOWPATH_IRQ_REQ(p_hwfn);
1946                 if (rc != ECORE_SUCCESS) {
1947                         DP_NOTICE(p_hwfn, true, "Slowpath IRQ request failed\n");
1948                         return ECORE_NORESOURCES;
1949                 }
1950                 p_hwfn->b_int_requested = true;
1951         }
1952
1953         /* Enable interrupt Generation */
1954         ecore_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1955
1956         p_hwfn->b_int_enabled = 1;
1957
1958         return rc;
1959 }
1960
1961 void ecore_int_igu_disable_int(struct ecore_hwfn        *p_hwfn,
1962                                struct ecore_ptt         *p_ptt)
1963 {
1964         p_hwfn->b_int_enabled = 0;
1965
1966         if (IS_VF(p_hwfn->p_dev))
1967                 return;
1968
1969         ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1970 }
1971
1972 #define IGU_CLEANUP_SLEEP_LENGTH                (1000)
1973 static void ecore_int_igu_cleanup_sb(struct ecore_hwfn *p_hwfn,
1974                                      struct ecore_ptt *p_ptt,
1975                                      u16 igu_sb_id,
1976                                      bool cleanup_set,
1977                                      u16 opaque_fid)
1978 {
1979         u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1980         u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
1981         u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
1982         u8  type = 0; /* FIXME MichalS type??? */
1983
1984         OSAL_BUILD_BUG_ON((IGU_REG_CLEANUP_STATUS_4 -
1985                            IGU_REG_CLEANUP_STATUS_0) != 0x200);
1986
1987         /* USE Control Command Register to perform cleanup. There is an
1988          * option to do this using IGU bar, but then it can't be used for VFs.
1989          */
1990
1991         /* Set the data field */
1992         SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
1993         SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, type);
1994         SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
1995
1996         /* Set the control register */
1997         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
1998         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
1999         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
2000
2001         ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
2002
2003         OSAL_BARRIER(p_hwfn->p_dev);
2004
2005         ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
2006
2007         /* Flush the write to IGU */
2008         OSAL_MMIOWB(p_hwfn->p_dev);
2009
2010         /* calculate where to read the status bit from */
2011         sb_bit = 1 << (igu_sb_id % 32);
2012         sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
2013
2014         sb_bit_addr += IGU_REG_CLEANUP_STATUS_0 + (0x80 * type);
2015
2016         /* Now wait for the command to complete */
2017         while (--sleep_cnt) {
2018                 val = ecore_rd(p_hwfn, p_ptt, sb_bit_addr);
2019                 if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
2020                         break;
2021                 OSAL_MSLEEP(5);
2022         }
2023
2024         if (!sleep_cnt)
2025                 DP_NOTICE(p_hwfn, true,
2026                           "Timeout waiting for clear status 0x%08x [for sb %d]\n",
2027                           val, igu_sb_id);
2028 }
2029
2030 void ecore_int_igu_init_pure_rt_single(struct ecore_hwfn *p_hwfn,
2031                                        struct ecore_ptt *p_ptt,
2032                                        u16 igu_sb_id, u16 opaque, bool b_set)
2033 {
2034         struct ecore_igu_block *p_block;
2035         int pi, i;
2036
2037         p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2038         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2039                    "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
2040                    igu_sb_id, p_block->function_id, p_block->is_pf,
2041                    p_block->vector_number);
2042
2043         /* Set */
2044         if (b_set)
2045                 ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
2046
2047         /* Clear */
2048         ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
2049
2050         /* Wait for the IGU SB to cleanup */
2051         for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
2052                 u32 val;
2053
2054                 val = ecore_rd(p_hwfn, p_ptt,
2055                                IGU_REG_WRITE_DONE_PENDING +
2056                                ((igu_sb_id / 32) * 4));
2057                 if (val & (1 << (igu_sb_id % 32)))
2058                         OSAL_UDELAY(10);
2059                 else
2060                         break;
2061         }
2062         if (i == IGU_CLEANUP_SLEEP_LENGTH)
2063                 DP_NOTICE(p_hwfn, true,
2064                           "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
2065                           igu_sb_id);
2066
2067         /* Clear the CAU for the SB */
2068         for (pi = 0; pi < 12; pi++)
2069                 ecore_wr(p_hwfn, p_ptt,
2070                          CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
2071 }
2072
2073 void ecore_int_igu_init_pure_rt(struct ecore_hwfn *p_hwfn,
2074                                  struct ecore_ptt *p_ptt,
2075                                  bool b_set,
2076                                  bool b_slowpath)
2077 {
2078         struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2079         struct ecore_igu_block *p_block;
2080         u16 igu_sb_id = 0;
2081         u32 val = 0;
2082
2083         /* @@@TBD MichalK temporary... should be moved to init-tool... */
2084         val = ecore_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
2085         val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
2086         val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
2087         ecore_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
2088         /* end temporary */
2089
2090         for (igu_sb_id = 0;
2091              igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2092              igu_sb_id++) {
2093                 p_block = &p_info->entry[igu_sb_id];
2094
2095                 if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
2096                     !p_block->is_pf ||
2097                     (p_block->status & ECORE_IGU_STATUS_DSB))
2098                         continue;
2099
2100                 ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
2101                                                   p_hwfn->hw_info.opaque_fid,
2102                                                   b_set);
2103         }
2104
2105         if (b_slowpath)
2106                 ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
2107                                                   p_info->igu_dsb_id,
2108                                                   p_hwfn->hw_info.opaque_fid,
2109                                                   b_set);
2110 }
2111
2112 int ecore_int_igu_reset_cam(struct ecore_hwfn *p_hwfn,
2113                             struct ecore_ptt *p_ptt)
2114 {
2115         struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2116         struct ecore_igu_block *p_block;
2117         int pf_sbs, vf_sbs;
2118         u16 igu_sb_id;
2119         u32 val, rval;
2120
2121         if (!RESC_NUM(p_hwfn, ECORE_SB)) {
2122                 /* We're using an old MFW - have to prevent any switching
2123                  * of SBs between PF and VFs as later driver wouldn't be
2124                  * able to tell which belongs to which.
2125                  */
2126                 p_info->b_allow_pf_vf_change = false;
2127         } else {
2128                 /* Use the numbers the MFW have provided -
2129                  * don't forget MFW accounts for the default SB as well.
2130                  */
2131                 p_info->b_allow_pf_vf_change = true;
2132
2133                 if (p_info->usage.cnt != RESC_NUM(p_hwfn, ECORE_SB) - 1) {
2134                         DP_INFO(p_hwfn,
2135                                 "MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
2136                                 RESC_NUM(p_hwfn, ECORE_SB) - 1,
2137                                 p_info->usage.cnt);
2138                         p_info->usage.cnt = RESC_NUM(p_hwfn, ECORE_SB) - 1;
2139                 }
2140
2141                 /* TODO - how do we learn about VF SBs from MFW? */
2142                 if (IS_PF_SRIOV(p_hwfn)) {
2143                         u16 vfs = p_hwfn->p_dev->p_iov_info->total_vfs;
2144
2145                         if (vfs != p_info->usage.iov_cnt)
2146                                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2147                                            "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
2148                                            p_info->usage.iov_cnt, vfs);
2149
2150                         /* At this point we know how many SBs we have totally
2151                          * in IGU + number of PF SBs. So we can validate that
2152                          * we'd have sufficient for VF.
2153                          */
2154                         if (vfs > p_info->usage.free_cnt +
2155                                   p_info->usage.free_cnt_iov -
2156                                   p_info->usage.cnt) {
2157                                 DP_NOTICE(p_hwfn, true,
2158                                           "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
2159                                           p_info->usage.free_cnt +
2160                                           p_info->usage.free_cnt_iov,
2161                                           p_info->usage.cnt, vfs);
2162                                 return ECORE_INVAL;
2163                         }
2164                 }
2165         }
2166
2167         /* Cap the number of VFs SBs by the number of VFs */
2168         if (IS_PF_SRIOV(p_hwfn))
2169                 p_info->usage.iov_cnt = p_hwfn->p_dev->p_iov_info->total_vfs;
2170
2171         /* Mark all SBs as free, now in the right PF/VFs division */
2172         p_info->usage.free_cnt = p_info->usage.cnt;
2173         p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
2174         p_info->usage.orig = p_info->usage.cnt;
2175         p_info->usage.iov_orig = p_info->usage.iov_cnt;
2176
2177         /* We now proceed to re-configure the IGU cam to reflect the initial
2178          * configuration. We can start with the Default SB.
2179          */
2180         pf_sbs = p_info->usage.cnt;
2181         vf_sbs = p_info->usage.iov_cnt;
2182
2183         for (igu_sb_id = p_info->igu_dsb_id;
2184              igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2185              igu_sb_id++) {
2186                 p_block = &p_info->entry[igu_sb_id];
2187                 val = 0;
2188
2189                 if (!(p_block->status & ECORE_IGU_STATUS_VALID))
2190                         continue;
2191
2192                 if (p_block->status & ECORE_IGU_STATUS_DSB) {
2193                         p_block->function_id = p_hwfn->rel_pf_id;
2194                         p_block->is_pf = 1;
2195                         p_block->vector_number = 0;
2196                         p_block->status = ECORE_IGU_STATUS_VALID |
2197                                           ECORE_IGU_STATUS_PF |
2198                                           ECORE_IGU_STATUS_DSB;
2199                 } else if (pf_sbs) {
2200                         pf_sbs--;
2201                         p_block->function_id = p_hwfn->rel_pf_id;
2202                         p_block->is_pf = 1;
2203                         p_block->vector_number = p_info->usage.cnt - pf_sbs;
2204                         p_block->status = ECORE_IGU_STATUS_VALID |
2205                                           ECORE_IGU_STATUS_PF |
2206                                           ECORE_IGU_STATUS_FREE;
2207                 } else if (vf_sbs) {
2208                         p_block->function_id =
2209                                 p_hwfn->p_dev->p_iov_info->first_vf_in_pf +
2210                                 p_info->usage.iov_cnt - vf_sbs;
2211                         p_block->is_pf = 0;
2212                         p_block->vector_number = 0;
2213                         p_block->status = ECORE_IGU_STATUS_VALID |
2214                                           ECORE_IGU_STATUS_FREE;
2215                         vf_sbs--;
2216                 } else {
2217                         p_block->function_id = 0;
2218                         p_block->is_pf = 0;
2219                         p_block->vector_number = 0;
2220                 }
2221
2222                 SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2223                           p_block->function_id);
2224                 SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2225                 SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2226                           p_block->vector_number);
2227
2228                 /* VF entries would be enabled when VF is initializaed */
2229                 SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2230
2231                 rval = ecore_rd(p_hwfn, p_ptt,
2232                                 IGU_REG_MAPPING_MEMORY +
2233                                 sizeof(u32) * igu_sb_id);
2234
2235                 if (rval != val) {
2236                         ecore_wr(p_hwfn, p_ptt,
2237                                  IGU_REG_MAPPING_MEMORY +
2238                                  sizeof(u32) * igu_sb_id,
2239                                  val);
2240
2241                         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2242                                    "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
2243                                    igu_sb_id, p_block->function_id,
2244                                    p_block->is_pf, p_block->vector_number,
2245                                    rval, val);
2246                 }
2247         }
2248
2249         return 0;
2250 }
2251
2252 int ecore_int_igu_reset_cam_default(struct ecore_hwfn *p_hwfn,
2253                                     struct ecore_ptt *p_ptt)
2254 {
2255         struct ecore_sb_cnt_info *p_cnt = &p_hwfn->hw_info.p_igu_info->usage;
2256
2257         /* Return all the usage indications to default prior to the reset;
2258          * The reset expects the !orig to reflect the initial status of the
2259          * SBs, and would re-calculate the originals based on those.
2260          */
2261         p_cnt->cnt = p_cnt->orig;
2262         p_cnt->free_cnt = p_cnt->orig;
2263         p_cnt->iov_cnt = p_cnt->iov_orig;
2264         p_cnt->free_cnt_iov = p_cnt->iov_orig;
2265         p_cnt->orig = 0;
2266         p_cnt->iov_orig = 0;
2267
2268         /* TODO - we probably need to re-configure the CAU as well... */
2269         return ecore_int_igu_reset_cam(p_hwfn, p_ptt);
2270 }
2271
2272 static void ecore_int_igu_read_cam_block(struct ecore_hwfn *p_hwfn,
2273                                          struct ecore_ptt *p_ptt,
2274                                          u16 igu_sb_id)
2275 {
2276         u32 val = ecore_rd(p_hwfn, p_ptt,
2277                            IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2278         struct ecore_igu_block *p_block;
2279
2280         p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2281
2282         /* Fill the block information */
2283         p_block->function_id = GET_FIELD(val,
2284                                          IGU_MAPPING_LINE_FUNCTION_NUMBER);
2285         p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
2286         p_block->vector_number = GET_FIELD(val,
2287                                            IGU_MAPPING_LINE_VECTOR_NUMBER);
2288         p_block->igu_sb_id = igu_sb_id;
2289 }
2290
2291 enum _ecore_status_t ecore_int_igu_read_cam(struct ecore_hwfn *p_hwfn,
2292                                             struct ecore_ptt *p_ptt)
2293 {
2294         struct ecore_igu_info *p_igu_info;
2295         struct ecore_igu_block *p_block;
2296         u32 min_vf = 0, max_vf = 0;
2297         u16 igu_sb_id;
2298
2299         p_hwfn->hw_info.p_igu_info = OSAL_ZALLOC(p_hwfn->p_dev,
2300                                                  GFP_KERNEL,
2301                                                  sizeof(*p_igu_info));
2302         if (!p_hwfn->hw_info.p_igu_info)
2303                 return ECORE_NOMEM;
2304         p_igu_info = p_hwfn->hw_info.p_igu_info;
2305
2306         /* Distinguish between existent and onn-existent default SB */
2307         p_igu_info->igu_dsb_id = ECORE_SB_INVALID_IDX;
2308
2309         /* Find the range of VF ids whose SB belong to this PF */
2310         if (p_hwfn->p_dev->p_iov_info) {
2311                 struct ecore_hw_sriov_info *p_iov = p_hwfn->p_dev->p_iov_info;
2312
2313                 min_vf = p_iov->first_vf_in_pf;
2314                 max_vf = p_iov->first_vf_in_pf + p_iov->total_vfs;
2315         }
2316
2317         for (igu_sb_id = 0;
2318              igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2319              igu_sb_id++) {
2320                 /* Read current entry; Notice it might not belong to this PF */
2321                 ecore_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
2322                 p_block = &p_igu_info->entry[igu_sb_id];
2323
2324                 if ((p_block->is_pf) &&
2325                     (p_block->function_id == p_hwfn->rel_pf_id)) {
2326                         p_block->status = ECORE_IGU_STATUS_PF |
2327                                           ECORE_IGU_STATUS_VALID |
2328                                           ECORE_IGU_STATUS_FREE;
2329
2330                         if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2331                                 p_igu_info->usage.cnt++;
2332                 } else if (!(p_block->is_pf) &&
2333                            (p_block->function_id >= min_vf) &&
2334                            (p_block->function_id < max_vf)) {
2335                         /* Available for VFs of this PF */
2336                         p_block->status = ECORE_IGU_STATUS_VALID |
2337                                           ECORE_IGU_STATUS_FREE;
2338
2339                         if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2340                                 p_igu_info->usage.iov_cnt++;
2341                 }
2342
2343                 /* Mark the First entry belonging to the PF or its VFs
2344                  * as the default SB [we'll reset IGU prior to first usage].
2345                  */
2346                 if ((p_block->status & ECORE_IGU_STATUS_VALID) &&
2347                     (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX)) {
2348                         p_igu_info->igu_dsb_id = igu_sb_id;
2349                         p_block->status |= ECORE_IGU_STATUS_DSB;
2350                 }
2351
2352                 /* While this isn't suitable for all clients, limit number
2353                  * of prints by having each PF print only its entries with the
2354                  * exception of PF0 which would print everything.
2355                  */
2356                 if ((p_block->status & ECORE_IGU_STATUS_VALID) ||
2357                     (p_hwfn->abs_pf_id == 0))
2358                         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2359                                    "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2360                                    igu_sb_id, p_block->function_id,
2361                                    p_block->is_pf, p_block->vector_number);
2362         }
2363
2364         if (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX) {
2365                 DP_NOTICE(p_hwfn, true,
2366                           "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
2367                           p_igu_info->igu_dsb_id);
2368                 return ECORE_INVAL;
2369         }
2370
2371         /* All non default SB are considered free at this point */
2372         p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
2373         p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
2374
2375         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2376                    "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
2377                    p_igu_info->igu_dsb_id, p_igu_info->usage.cnt,
2378                    p_igu_info->usage.iov_cnt);
2379
2380         return ECORE_SUCCESS;
2381 }
2382
2383 enum _ecore_status_t
2384 ecore_int_igu_relocate_sb(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
2385                           u16 sb_id, bool b_to_vf)
2386 {
2387         struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2388         struct ecore_igu_block *p_block = OSAL_NULL;
2389         u16 igu_sb_id = 0, vf_num = 0;
2390         u32 val = 0;
2391
2392         if (IS_VF(p_hwfn->p_dev) || !IS_PF_SRIOV(p_hwfn))
2393                 return ECORE_INVAL;
2394
2395         if (sb_id == ECORE_SP_SB_ID)
2396                 return ECORE_INVAL;
2397
2398         if (!p_info->b_allow_pf_vf_change) {
2399                 DP_INFO(p_hwfn, "Can't relocate SBs as MFW is too old.\n");
2400                 return ECORE_INVAL;
2401         }
2402
2403         /* If we're moving a SB from PF to VF, the client had to specify
2404          * which vector it wants to move.
2405          */
2406         if (b_to_vf) {
2407                 igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
2408                 if (igu_sb_id == ECORE_SB_INVALID_IDX)
2409                         return ECORE_INVAL;
2410         }
2411
2412         /* If we're moving a SB from VF to PF, need to validate there isn't
2413          * already a line configured for that vector.
2414          */
2415         if (!b_to_vf) {
2416                 if (ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1) !=
2417                     ECORE_SB_INVALID_IDX)
2418                         return ECORE_INVAL;
2419         }
2420
2421         /* We need to validate that the SB can actually be relocated.
2422          * This would also handle the previous case where we've explicitly
2423          * stated which IGU SB needs to move.
2424          */
2425         for (; igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2426              igu_sb_id++) {
2427                 p_block = &p_info->entry[igu_sb_id];
2428
2429                 if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
2430                     !(p_block->status & ECORE_IGU_STATUS_FREE) ||
2431                     (!!(p_block->status & ECORE_IGU_STATUS_PF) != b_to_vf)) {
2432                         if (b_to_vf)
2433                                 return ECORE_INVAL;
2434                         else
2435                                 continue;
2436                 }
2437
2438                 break;
2439         }
2440
2441         if (igu_sb_id == ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev)) {
2442                 DP_VERBOSE(p_hwfn, (ECORE_MSG_INTR | ECORE_MSG_IOV),
2443                            "Failed to find a free SB to move\n");
2444                 return ECORE_INVAL;
2445         }
2446
2447         if (p_block == OSAL_NULL) {
2448                 DP_VERBOSE(p_hwfn, (ECORE_MSG_INTR | ECORE_MSG_IOV),
2449                            "SB address (p_block) is NULL\n");
2450                 return ECORE_INVAL;
2451         }
2452
2453         /* At this point, p_block points to the SB we want to relocate */
2454         if (b_to_vf) {
2455                 p_block->status &= ~ECORE_IGU_STATUS_PF;
2456
2457                 /* It doesn't matter which VF number we choose, since we're
2458                  * going to disable the line; But let's keep it in range.
2459                  */
2460                 vf_num = (u16)p_hwfn->p_dev->p_iov_info->first_vf_in_pf;
2461
2462                 p_block->function_id = (u8)vf_num;
2463                 p_block->is_pf = 0;
2464                 p_block->vector_number = 0;
2465
2466                 p_info->usage.cnt--;
2467                 p_info->usage.free_cnt--;
2468                 p_info->usage.iov_cnt++;
2469                 p_info->usage.free_cnt_iov++;
2470
2471                 /* TODO - if SBs aren't really the limiting factor,
2472                  * then it might not be accurate [in the since that
2473                  * we might not need decrement the feature].
2474                  */
2475                 p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]--;
2476                 p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]++;
2477         } else {
2478                 p_block->status |= ECORE_IGU_STATUS_PF;
2479                 p_block->function_id = p_hwfn->rel_pf_id;
2480                 p_block->is_pf = 1;
2481                 p_block->vector_number = sb_id + 1;
2482
2483                 p_info->usage.cnt++;
2484                 p_info->usage.free_cnt++;
2485                 p_info->usage.iov_cnt--;
2486                 p_info->usage.free_cnt_iov--;
2487
2488                 p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]++;
2489                 p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]--;
2490         }
2491
2492         /* Update the IGU and CAU with the new configuration */
2493         SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2494                   p_block->function_id);
2495         SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2496         SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2497         SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2498                   p_block->vector_number);
2499
2500         ecore_wr(p_hwfn, p_ptt,
2501                  IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id,
2502                  val);
2503
2504         ecore_int_cau_conf_sb(p_hwfn, p_ptt, 0,
2505                               igu_sb_id, vf_num,
2506                               p_block->is_pf ? 0 : 1);
2507
2508         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2509                    "Relocation: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2510                    igu_sb_id, p_block->function_id,
2511                    p_block->is_pf, p_block->vector_number);
2512
2513         return ECORE_SUCCESS;
2514 }
2515
2516 /**
2517  * @brief Initialize igu runtime registers
2518  *
2519  * @param p_hwfn
2520  */
2521 void ecore_int_igu_init_rt(struct ecore_hwfn *p_hwfn)
2522 {
2523         u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
2524
2525         STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
2526 }
2527
2528 #define LSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_LSB_UPPER - \
2529                           IGU_CMD_INT_ACK_BASE)
2530 #define MSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_MSB_UPPER - \
2531                           IGU_CMD_INT_ACK_BASE)
2532 u64 ecore_int_igu_read_sisr_reg(struct ecore_hwfn *p_hwfn)
2533 {
2534         u32 intr_status_hi = 0, intr_status_lo = 0;
2535         u64 intr_status = 0;
2536
2537         intr_status_lo = REG_RD(p_hwfn,
2538                                 GTT_BAR0_MAP_REG_IGU_CMD +
2539                                 LSB_IGU_CMD_ADDR * 8);
2540         intr_status_hi = REG_RD(p_hwfn,
2541                                 GTT_BAR0_MAP_REG_IGU_CMD +
2542                                 MSB_IGU_CMD_ADDR * 8);
2543         intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
2544
2545         return intr_status;
2546 }
2547
2548 static void ecore_int_sp_dpc_setup(struct ecore_hwfn *p_hwfn)
2549 {
2550         OSAL_DPC_INIT(p_hwfn->sp_dpc, p_hwfn);
2551         p_hwfn->b_sp_dpc_enabled = true;
2552 }
2553
2554 static enum _ecore_status_t ecore_int_sp_dpc_alloc(struct ecore_hwfn *p_hwfn)
2555 {
2556         p_hwfn->sp_dpc = OSAL_DPC_ALLOC(p_hwfn);
2557         if (!p_hwfn->sp_dpc)
2558                 return ECORE_NOMEM;
2559
2560         return ECORE_SUCCESS;
2561 }
2562
2563 static void ecore_int_sp_dpc_free(struct ecore_hwfn *p_hwfn)
2564 {
2565         OSAL_FREE(p_hwfn->p_dev, p_hwfn->sp_dpc);
2566         p_hwfn->sp_dpc = OSAL_NULL;
2567 }
2568
2569 enum _ecore_status_t ecore_int_alloc(struct ecore_hwfn *p_hwfn,
2570                                      struct ecore_ptt *p_ptt)
2571 {
2572         enum _ecore_status_t rc = ECORE_SUCCESS;
2573
2574         rc = ecore_int_sp_dpc_alloc(p_hwfn);
2575         if (rc != ECORE_SUCCESS) {
2576                 DP_ERR(p_hwfn->p_dev, "Failed to allocate sp dpc mem\n");
2577                 return rc;
2578         }
2579
2580         rc = ecore_int_sp_sb_alloc(p_hwfn, p_ptt);
2581         if (rc != ECORE_SUCCESS) {
2582                 DP_ERR(p_hwfn->p_dev, "Failed to allocate sp sb mem\n");
2583                 return rc;
2584         }
2585
2586         rc = ecore_int_sb_attn_alloc(p_hwfn, p_ptt);
2587         if (rc != ECORE_SUCCESS)
2588                 DP_ERR(p_hwfn->p_dev, "Failed to allocate sb attn mem\n");
2589
2590         return rc;
2591 }
2592
2593 void ecore_int_free(struct ecore_hwfn *p_hwfn)
2594 {
2595         ecore_int_sp_sb_free(p_hwfn);
2596         ecore_int_sb_attn_free(p_hwfn);
2597         ecore_int_sp_dpc_free(p_hwfn);
2598 }
2599
2600 void ecore_int_setup(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
2601 {
2602         if (!p_hwfn || !p_hwfn->p_sp_sb || !p_hwfn->p_sb_attn)
2603                 return;
2604
2605         ecore_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2606         ecore_int_sb_attn_setup(p_hwfn, p_ptt);
2607         ecore_int_sp_dpc_setup(p_hwfn);
2608 }
2609
2610 void ecore_int_get_num_sbs(struct ecore_hwfn *p_hwfn,
2611                            struct ecore_sb_cnt_info *p_sb_cnt_info)
2612 {
2613         struct ecore_igu_info *p_igu_info = p_hwfn->hw_info.p_igu_info;
2614
2615         if (!p_igu_info || !p_sb_cnt_info)
2616                 return;
2617
2618         OSAL_MEMCPY(p_sb_cnt_info, &p_igu_info->usage,
2619                     sizeof(*p_sb_cnt_info));
2620 }
2621
2622 void ecore_int_disable_post_isr_release(struct ecore_dev *p_dev)
2623 {
2624         int i;
2625
2626         for_each_hwfn(p_dev, i)
2627                 p_dev->hwfns[i].b_int_requested = false;
2628 }
2629
2630 void ecore_int_attn_clr_enable(struct ecore_dev *p_dev, bool clr_enable)
2631 {
2632         p_dev->attn_clr_en = clr_enable;
2633 }
2634
2635 enum _ecore_status_t ecore_int_set_timer_res(struct ecore_hwfn *p_hwfn,
2636                                              struct ecore_ptt *p_ptt,
2637                                              u8 timer_res, u16 sb_id, bool tx)
2638 {
2639         struct cau_sb_entry sb_entry;
2640         enum _ecore_status_t rc;
2641
2642         if (!p_hwfn->hw_init_done) {
2643                 DP_ERR(p_hwfn, "hardware not initialized yet\n");
2644                 return ECORE_INVAL;
2645         }
2646
2647         rc = ecore_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2648                                  sb_id * sizeof(u64),
2649                                  (u64)(osal_uintptr_t)&sb_entry, 2,
2650                                  OSAL_NULL /* default parameters */);
2651         if (rc != ECORE_SUCCESS) {
2652                 DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2653                 return rc;
2654         }
2655
2656         if (tx)
2657                 SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2658         else
2659                 SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2660
2661         rc = ecore_dmae_host2grc(p_hwfn, p_ptt,
2662                                  (u64)(osal_uintptr_t)&sb_entry,
2663                                  CAU_REG_SB_VAR_MEMORY + sb_id * sizeof(u64), 2,
2664                                  OSAL_NULL /* default parameters */);
2665         if (rc != ECORE_SUCCESS) {
2666                 DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2667                 return rc;
2668         }
2669
2670         return rc;
2671 }
2672
2673 enum _ecore_status_t ecore_int_get_sb_dbg(struct ecore_hwfn *p_hwfn,
2674                                           struct ecore_ptt *p_ptt,
2675                                           struct ecore_sb_info *p_sb,
2676                                           struct ecore_sb_info_dbg *p_info)
2677 {
2678         u16 sbid = p_sb->igu_sb_id;
2679         int i;
2680
2681         if (IS_VF(p_hwfn->p_dev))
2682                 return ECORE_INVAL;
2683
2684         if (sbid > NUM_OF_SBS(p_hwfn->p_dev))
2685                 return ECORE_INVAL;
2686
2687         p_info->igu_prod = ecore_rd(p_hwfn, p_ptt,
2688                                     IGU_REG_PRODUCER_MEMORY + sbid * 4);
2689         p_info->igu_cons = ecore_rd(p_hwfn, p_ptt,
2690                                     IGU_REG_CONSUMER_MEM + sbid * 4);
2691
2692         for (i = 0; i < PIS_PER_SB_E4; i++)
2693                 p_info->pi[i] = (u16)ecore_rd(p_hwfn, p_ptt,
2694                                               CAU_REG_PI_MEMORY +
2695                                               sbid * 4 * PIS_PER_SB_E4 + i * 4);
2696
2697         return ECORE_SUCCESS;
2698 }