]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/qlnx/qlnxe/ecore_int.c
Upgrade STORMFW to 8.30.0.0 and ecore version to 8.30.0.0
[FreeBSD/FreeBSD.git] / sys / dev / qlnx / qlnxe / ecore_int.c
1 /*
2  * Copyright (c) 2017-2018 Cavium, Inc. 
3  * All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions
7  *  are met:
8  *
9  *  1. Redistributions of source code must retain the above copyright
10  *     notice, this list of conditions and the following disclaimer.
11  *  2. Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  *
15  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  *  POSSIBILITY OF SUCH DAMAGE.
26  */
27 /*
28  * File : ecore_int.c
29  */
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32
33 #include "bcm_osal.h"
34 #include "ecore.h"
35 #include "ecore_spq.h"
36 #include "reg_addr.h"
37 #include "ecore_gtt_reg_addr.h"
38 #include "ecore_init_ops.h"
39 #include "ecore_rt_defs.h"
40 #include "ecore_int.h"
41 #include "reg_addr.h"
42 #include "ecore_hw.h"
43 #include "ecore_sriov.h"
44 #include "ecore_vf.h"
45 #include "ecore_hw_defs.h"
46 #include "ecore_hsi_common.h"
47 #include "ecore_mcp.h"
48 #include "ecore_dbg_fw_funcs.h"
49
50 #ifdef DIAG
51 /* This is nasty, but diag is using the drv_dbg_fw_funcs.c [non-ecore flavor],
52  * and so the functions are lacking ecore prefix.
53  * If there would be other clients needing this [or if the content that isn't
54  * really optional there would increase], we'll need to re-think this.
55  */
56 enum dbg_status dbg_read_attn(struct ecore_hwfn *dev,
57                                                           struct ecore_ptt *ptt,
58                                                           enum block_id block,
59                                                           enum dbg_attn_type attn_type,
60                                                           bool clear_status,
61                                                           struct dbg_attn_block_result *results);
62
63 enum dbg_status dbg_parse_attn(struct ecore_hwfn *dev,
64                                                            struct dbg_attn_block_result *results);
65
66 const char* dbg_get_status_str(enum dbg_status status);
67
68 #define ecore_dbg_read_attn(hwfn, ptt, id, type, clear, results) \
69         dbg_read_attn(hwfn, ptt, id, type, clear, results)
70 #define ecore_dbg_parse_attn(hwfn, results) \
71         dbg_parse_attn(hwfn, results)
72 #define ecore_dbg_get_status_str(status) \
73         dbg_get_status_str(status)
74 #endif
75
76 struct ecore_pi_info {
77         ecore_int_comp_cb_t comp_cb;
78         void *cookie; /* Will be sent to the completion callback function */
79 };
80
81 struct ecore_sb_sp_info {
82         struct ecore_sb_info sb_info;
83         /* per protocol index data */
84         struct ecore_pi_info pi_info_arr[PIS_PER_SB_E4];
85 };
86
87 enum ecore_attention_type {
88         ECORE_ATTN_TYPE_ATTN,
89         ECORE_ATTN_TYPE_PARITY,
90 };
91
92 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
93         ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
94
95 struct aeu_invert_reg_bit {
96         char bit_name[30];
97
98 #define ATTENTION_PARITY                (1 << 0)
99
100 #define ATTENTION_LENGTH_MASK           (0x00000ff0)
101 #define ATTENTION_LENGTH_SHIFT          (4)
102 #define ATTENTION_LENGTH(flags)         (((flags) & ATTENTION_LENGTH_MASK) >> \
103                                          ATTENTION_LENGTH_SHIFT)
104 #define ATTENTION_SINGLE                (1 << ATTENTION_LENGTH_SHIFT)
105 #define ATTENTION_PAR                   (ATTENTION_SINGLE | ATTENTION_PARITY)
106 #define ATTENTION_PAR_INT               ((2 << ATTENTION_LENGTH_SHIFT) | \
107                                          ATTENTION_PARITY)
108
109 /* Multiple bits start with this offset */
110 #define ATTENTION_OFFSET_MASK           (0x000ff000)
111 #define ATTENTION_OFFSET_SHIFT          (12)
112
113 #define ATTENTION_BB_MASK               (0x00700000)
114 #define ATTENTION_BB_SHIFT              (20)
115 #define ATTENTION_BB(value)             (value << ATTENTION_BB_SHIFT)
116 #define ATTENTION_BB_DIFFERENT          (1 << 23)
117
118 #define ATTENTION_CLEAR_ENABLE          (1 << 28)
119         unsigned int flags;
120
121         /* Callback to call if attention will be triggered */
122         enum _ecore_status_t (*cb)(struct ecore_hwfn *p_hwfn);
123
124         enum block_id block_index;
125 };
126
127 struct aeu_invert_reg {
128         struct aeu_invert_reg_bit bits[32];
129 };
130
131 #define MAX_ATTN_GRPS           (8)
132 #define NUM_ATTN_REGS           (9)
133
134 static enum _ecore_status_t ecore_mcp_attn_cb(struct ecore_hwfn *p_hwfn)
135 {
136         u32 tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
137
138         DP_INFO(p_hwfn->p_dev, "MCP_REG_CPU_STATE: %08x - Masking...\n",
139                 tmp);
140         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK,
141                  0xffffffff);
142
143         return ECORE_SUCCESS;
144 }
145
146 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK         (0x3c000)
147 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT        (14)
148 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK         (0x03fc0)
149 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT        (6)
150 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK      (0x00020)
151 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT     (5)
152 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK     (0x0001e)
153 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT    (1)
154 #define ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK      (0x1)
155 #define ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT     (0)
156 #define ECORE_PSWHST_ATTENTION_VF_DISABLED              (0x1)
157 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS         (0x1)
158 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK         (0x1)
159 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT        (0)
160 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK     (0x1e)
161 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT    (1)
162 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK   (0x20)
163 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT  (5)
164 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK      (0x3fc0)
165 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT     (6)
166 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK      (0x3c000)
167 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT     (14)
168 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK    (0x3fc0000)
169 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT   (18)
170 static enum _ecore_status_t ecore_pswhst_attn_cb(struct ecore_hwfn *p_hwfn)
171 {
172         u32 tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, PSWHST_REG_VF_DISABLED_ERROR_VALID);
173
174         /* Disabled VF access */
175         if (tmp & ECORE_PSWHST_ATTENTION_VF_DISABLED) {
176                 u32 addr, data;
177
178                 addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
179                                 PSWHST_REG_VF_DISABLED_ERROR_ADDRESS);
180                 data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
181                                 PSWHST_REG_VF_DISABLED_ERROR_DATA);
182                 DP_INFO(p_hwfn->p_dev, "PF[0x%02x] VF [0x%02x] [Valid 0x%02x] Client [0x%02x] Write [0x%02x] Addr [0x%08x]\n",
183                         (u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK) >>
184                              ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT),
185                         (u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK) >>
186                              ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT),
187                         (u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK) >>
188                              ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT),
189                         (u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK) >>
190                              ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT),
191                         (u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK) >>
192                              ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT),
193                         addr);
194         }
195
196         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
197                        PSWHST_REG_INCORRECT_ACCESS_VALID);
198         if (tmp & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS) {
199                 u32 addr, data, length;
200
201                 addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
202                                 PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
203                 data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
204                                 PSWHST_REG_INCORRECT_ACCESS_DATA);
205                 length = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
206                                   PSWHST_REG_INCORRECT_ACCESS_LENGTH);
207
208                 DP_INFO(p_hwfn->p_dev, "Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n",
209                         addr, length,
210                         (u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK) >>
211                              ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT),
212                         (u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK) >>
213                              ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT),
214                         (u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK) >>
215                              ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT),
216                         (u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK) >>
217                              ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT),
218                         (u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK) >>
219                              ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT),
220                         (u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK) >>
221                              ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT),
222                         data);
223         }
224
225         /* TODO - We know 'some' of these are legal due to virtualization,
226          * but is it true for all of them?
227          */
228         return ECORE_SUCCESS;
229 }
230
231 #define ECORE_GRC_ATTENTION_VALID_BIT           (1 << 0)
232 #define ECORE_GRC_ATTENTION_ADDRESS_MASK        (0x7fffff << 0)
233 #define ECORE_GRC_ATTENTION_RDWR_BIT            (1 << 23)
234 #define ECORE_GRC_ATTENTION_MASTER_MASK         (0xf << 24)
235 #define ECORE_GRC_ATTENTION_MASTER_SHIFT        (24)
236 #define ECORE_GRC_ATTENTION_PF_MASK             (0xf)
237 #define ECORE_GRC_ATTENTION_VF_MASK             (0xff << 4)
238 #define ECORE_GRC_ATTENTION_VF_SHIFT            (4)
239 #define ECORE_GRC_ATTENTION_PRIV_MASK           (0x3 << 14)
240 #define ECORE_GRC_ATTENTION_PRIV_SHIFT          (14)
241 #define ECORE_GRC_ATTENTION_PRIV_VF             (0)
242 static const char* grc_timeout_attn_master_to_str(u8 master)
243 {
244         switch(master) {
245         case 1: return "PXP";
246         case 2: return "MCP";
247         case 3: return "MSDM";
248         case 4: return "PSDM";
249         case 5: return "YSDM";
250         case 6: return "USDM";
251         case 7: return "TSDM";
252         case 8: return "XSDM";
253         case 9: return "DBU";
254         case 10: return "DMAE";
255         default:
256                 return "Unkown";
257         }
258 }
259
260 static enum _ecore_status_t ecore_grc_attn_cb(struct ecore_hwfn *p_hwfn)
261 {
262         u32 tmp, tmp2;
263
264         /* We've already cleared the timeout interrupt register, so we learn
265          * of interrupts via the validity register
266          */
267         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
268                        GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
269         if (!(tmp & ECORE_GRC_ATTENTION_VALID_BIT))
270                 goto out;
271
272         /* Read the GRC timeout information */
273         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
274                        GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
275         tmp2 = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
276                         GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
277
278         DP_NOTICE(p_hwfn->p_dev, false,
279                   "GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
280                   tmp2, tmp,
281                   (tmp & ECORE_GRC_ATTENTION_RDWR_BIT) ? "Write to"
282                                                        : "Read from",
283                   (tmp & ECORE_GRC_ATTENTION_ADDRESS_MASK) << 2,
284                   grc_timeout_attn_master_to_str((tmp & ECORE_GRC_ATTENTION_MASTER_MASK) >>
285                                                  ECORE_GRC_ATTENTION_MASTER_SHIFT),
286                   (tmp2 & ECORE_GRC_ATTENTION_PF_MASK),
287                   (((tmp2 & ECORE_GRC_ATTENTION_PRIV_MASK) >>
288                   ECORE_GRC_ATTENTION_PRIV_SHIFT) ==
289                   ECORE_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant:)",
290                   (tmp2 & ECORE_GRC_ATTENTION_VF_MASK) >>
291                   ECORE_GRC_ATTENTION_VF_SHIFT);
292
293 out:
294         /* Regardles of anything else, clean the validity bit */
295         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
296                  GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
297         return ECORE_SUCCESS;
298 }
299
300 #define ECORE_PGLUE_ATTENTION_VALID (1 << 29)
301 #define ECORE_PGLUE_ATTENTION_RD_VALID (1 << 26)
302 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK (0xf << 20)
303 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT (20)
304 #define ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID (1 << 19)
305 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK (0xff << 24)
306 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT (24)
307 #define ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR (1 << 21)
308 #define ECORE_PGLUE_ATTENTION_DETAILS2_BME      (1 << 22)
309 #define ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN (1 << 23)
310 #define ECORE_PGLUE_ATTENTION_ICPL_VALID (1 << 23)
311 #define ECORE_PGLUE_ATTENTION_ZLR_VALID (1 << 25)
312 #define ECORE_PGLUE_ATTENTION_ILT_VALID (1 << 23)
313 static enum _ecore_status_t ecore_pglub_rbc_attn_cb(struct ecore_hwfn *p_hwfn)
314 {
315         u32 tmp;
316
317         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
318                        PGLUE_B_REG_TX_ERR_WR_DETAILS2);
319         if (tmp & ECORE_PGLUE_ATTENTION_VALID) {
320                 u32 addr_lo, addr_hi, details;
321
322                 addr_lo = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
323                                    PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
324                 addr_hi = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
325                                    PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
326                 details = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
327                                    PGLUE_B_REG_TX_ERR_WR_DETAILS);
328
329                 DP_INFO(p_hwfn, "Illegal write by chip to [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
330                         addr_hi, addr_lo, details,
331                         (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >> ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
332                         (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >> ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
333                         (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
334                         tmp,
335                         (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0),
336                         (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0),
337                         (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0));
338         }
339
340         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
341                        PGLUE_B_REG_TX_ERR_RD_DETAILS2);
342         if (tmp & ECORE_PGLUE_ATTENTION_RD_VALID) {
343                 u32 addr_lo, addr_hi, details;
344
345                 addr_lo = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
346                                    PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
347                 addr_hi = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
348                                    PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
349                 details = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
350                                    PGLUE_B_REG_TX_ERR_RD_DETAILS);
351
352                 DP_INFO(p_hwfn, "Illegal read by chip from [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
353                         addr_hi, addr_lo, details,
354                         (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >> ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
355                         (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >> ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
356                         (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
357                         tmp,
358                         (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0),
359                         (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0),
360                         (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0));
361         }
362
363         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
364                        PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
365         if (tmp & ECORE_PGLUE_ATTENTION_ICPL_VALID)
366                 DP_INFO(p_hwfn, "ICPL eror - %08x\n", tmp);
367
368         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
369                        PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
370         if (tmp & ECORE_PGLUE_ATTENTION_ZLR_VALID) {
371                 u32 addr_hi, addr_lo;
372
373                 addr_lo = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
374                                    PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
375                 addr_hi = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
376                                    PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
377
378                 DP_INFO(p_hwfn, "ICPL eror - %08x [Address %08x:%08x]\n",
379                         tmp, addr_hi, addr_lo);
380         }
381
382         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
383                        PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
384         if (tmp & ECORE_PGLUE_ATTENTION_ILT_VALID) {
385                 u32 addr_hi, addr_lo, details;
386
387                 addr_lo = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
388                                    PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
389                 addr_hi = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
390                                    PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
391                 details = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
392                                    PGLUE_B_REG_VF_ILT_ERR_DETAILS);
393
394                 DP_INFO(p_hwfn, "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
395                         details, tmp, addr_hi, addr_lo);
396         }
397
398         /* Clear the indications */
399         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
400                  PGLUE_B_REG_LATCHED_ERRORS_CLR, (1 << 2));
401
402         return ECORE_SUCCESS;
403 }
404
405 static enum _ecore_status_t ecore_fw_assertion(struct ecore_hwfn *p_hwfn)
406 {
407         DP_NOTICE(p_hwfn, false, "FW assertion!\n");
408
409         ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_FW_ASSERT);
410
411         return ECORE_INVAL;
412 }
413
414 static enum _ecore_status_t
415 ecore_general_attention_35(struct ecore_hwfn *p_hwfn)
416 {
417         DP_INFO(p_hwfn, "General attention 35!\n");
418
419         return ECORE_SUCCESS;
420 }
421
422 #define ECORE_DORQ_ATTENTION_REASON_MASK        (0xfffff)
423 #define ECORE_DORQ_ATTENTION_OPAQUE_MASK        (0xffff)
424 #define ECORE_DORQ_ATTENTION_OPAQUE_SHIFT       (0x0)
425 #define ECORE_DORQ_ATTENTION_SIZE_MASK          (0x7f)
426 #define ECORE_DORQ_ATTENTION_SIZE_SHIFT         (16)
427
428 #define ECORE_DB_REC_COUNT                      10
429 #define ECORE_DB_REC_INTERVAL                   100
430
431 /* assumes sticky overflow indication was set for this PF */
432 static enum _ecore_status_t ecore_db_rec_attn(struct ecore_hwfn *p_hwfn,
433                                               struct ecore_ptt *p_ptt)
434 {
435         u8 count = ECORE_DB_REC_COUNT;
436         u32 usage = 1;
437
438         /* wait for usage to zero or count to run out. This is necessary since
439          * EDPM doorbell transactions can take multiple 64b cycles, and as such
440          * can "split" over the pci. Possibly, the doorbell drop can happen with
441          * half an EDPM in the queue and other half dropped. Another EDPM
442          * doorbell to the same address (from doorbell recovery mechanism or
443          * from the doorbelling entity) could have first half dropped and second
444          * half interperted as continuation of the first. To prevent such
445          * malformed doorbells from reaching the device, flush the queue before
446          * releaseing the overflow sticky indication.
447          */
448         while (count-- && usage) {
449                 usage = ecore_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT);
450                 OSAL_UDELAY(ECORE_DB_REC_INTERVAL);
451         }
452
453         /* should have been depleted by now */
454         if (usage) {
455                 DP_NOTICE(p_hwfn->p_dev, false,
456                           "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n",
457                           ECORE_DB_REC_INTERVAL * ECORE_DB_REC_COUNT, usage);
458                 return ECORE_TIMEOUT;
459         }
460
461         /* flush any pedning (e)dpm as they may never arrive */
462         ecore_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1);
463
464         /* release overflow sticky indication (stop silently dropping everything) */
465         ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
466
467         /* repeat all last doorbells (doorbell drop recovery) */
468         ecore_db_recovery_execute(p_hwfn, DB_REC_REAL_DEAL);
469
470         return ECORE_SUCCESS;
471 }
472
473 static enum _ecore_status_t ecore_dorq_attn_cb(struct ecore_hwfn *p_hwfn)
474 {
475         u32 int_sts, first_drop_reason, details, address, overflow,
476                 all_drops_reason;
477         struct ecore_ptt *p_ptt = p_hwfn->p_dpc_ptt;
478         enum _ecore_status_t rc;
479
480         int_sts = ecore_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS);
481         DP_NOTICE(p_hwfn->p_dev, false, "DORQ attention. int_sts was %x\n",
482                   int_sts);
483
484         /* check if db_drop or overflow happened */
485         if (int_sts & (DORQ_REG_INT_STS_DB_DROP |
486                        DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) {
487         
488                 /* obtain data about db drop/overflow */
489                 first_drop_reason = ecore_rd(p_hwfn, p_ptt,
490                                   DORQ_REG_DB_DROP_REASON) &
491                                   ECORE_DORQ_ATTENTION_REASON_MASK;
492                 details = ecore_rd(p_hwfn, p_ptt,
493                                    DORQ_REG_DB_DROP_DETAILS);
494                 address = ecore_rd(p_hwfn, p_ptt,
495                                    DORQ_REG_DB_DROP_DETAILS_ADDRESS);
496                 overflow = ecore_rd(p_hwfn, p_ptt,
497                                     DORQ_REG_PF_OVFL_STICKY);
498                 all_drops_reason = ecore_rd(p_hwfn, p_ptt,
499                                             DORQ_REG_DB_DROP_DETAILS_REASON);
500
501                 /* log info */
502                 DP_NOTICE(p_hwfn->p_dev, false,
503                           "Doorbell drop occurred\n"
504                           "Address\t\t0x%08x\t(second BAR address)\n"
505                           "FID\t\t0x%04x\t\t(Opaque FID)\n"
506                           "Size\t\t0x%04x\t\t(in bytes)\n"
507                           "1st drop reason\t0x%08x\t(details on first drop since last handling)\n"
508                           "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n"
509                           "Overflow\t0x%x\t\t(a per PF indication)\n",
510                           address, GET_FIELD(details, ECORE_DORQ_ATTENTION_OPAQUE),
511                           GET_FIELD(details, ECORE_DORQ_ATTENTION_SIZE) * 4,
512                           first_drop_reason, all_drops_reason, overflow);
513
514                 /* if this PF caused overflow, initiate recovery */
515                 if (overflow) {
516                         rc = ecore_db_rec_attn(p_hwfn, p_ptt);
517                         if (rc != ECORE_SUCCESS)
518                                 return rc;
519                 }
520
521                 /* clear the doorbell drop details and prepare for next drop */
522                 ecore_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0);
523
524                 /* mark interrupt as handeld (note: even if drop was due to a diffrent
525                  * reason than overflow we mark as handled)
526                  */
527                 ecore_wr(p_hwfn, p_ptt, DORQ_REG_INT_STS_WR,
528                          DORQ_REG_INT_STS_DB_DROP | DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR);
529
530                 /* if there are no indications otherthan drop indications, success */
531                 if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP |
532                                  DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR |
533                                  DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0)
534                         return ECORE_SUCCESS;
535         }
536
537         /* some other indication was present - non recoverable */
538         DP_INFO(p_hwfn, "DORQ fatal attention\n");
539
540         return ECORE_INVAL;
541 }
542
543 static enum _ecore_status_t ecore_tm_attn_cb(struct ecore_hwfn *p_hwfn)
544 {
545 #ifndef ASIC_ONLY
546         if (CHIP_REV_IS_EMUL_B0(p_hwfn->p_dev)) {
547                 u32 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
548                                    TM_REG_INT_STS_1);
549
550                 if (val & ~(TM_REG_INT_STS_1_PEND_TASK_SCAN |
551                             TM_REG_INT_STS_1_PEND_CONN_SCAN))
552                         return ECORE_INVAL;
553
554                 if (val & (TM_REG_INT_STS_1_PEND_TASK_SCAN |
555                            TM_REG_INT_STS_1_PEND_CONN_SCAN))
556                         DP_INFO(p_hwfn, "TM attention on emulation - most likely results of clock-ratios\n");
557                 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1);
558                 val |= TM_REG_INT_MASK_1_PEND_CONN_SCAN |
559                        TM_REG_INT_MASK_1_PEND_TASK_SCAN;
560                 ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1, val);
561
562                 return ECORE_SUCCESS;
563         }
564 #endif
565
566         return ECORE_INVAL;
567 }
568
569 /* Instead of major changes to the data-structure, we have a some 'special'
570  * identifiers for sources that changed meaning between adapters.
571  */
572 enum aeu_invert_reg_special_type {
573         AEU_INVERT_REG_SPECIAL_CNIG_0,
574         AEU_INVERT_REG_SPECIAL_CNIG_1,
575         AEU_INVERT_REG_SPECIAL_CNIG_2,
576         AEU_INVERT_REG_SPECIAL_CNIG_3,
577         AEU_INVERT_REG_SPECIAL_MAX,
578 };
579
580 static struct aeu_invert_reg_bit
581 aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
582         {"CNIG port 0", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
583         {"CNIG port 1", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
584         {"CNIG port 2", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
585         {"CNIG port 3", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
586 };
587
588 /* Notice aeu_invert_reg must be defined in the same order of bits as HW; */
589 static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] =
590 {
591         {
592                 {       /* After Invert 1 */
593                         {"GPIO0 function%d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID},
594                 }
595         },
596
597         {
598                 {       /* After Invert 2 */
599                         {"PGLUE config_space", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
600                         {"PGLUE misc_flr", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
601                         {"PGLUE B RBC", ATTENTION_PAR_INT, ecore_pglub_rbc_attn_cb, BLOCK_PGLUE_B},
602                         {"PGLUE misc_mctp", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
603                         {"Flash event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
604                         {"SMB event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
605                         {"Main Power", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
606                         {"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) | (1 << ATTENTION_OFFSET_SHIFT), OSAL_NULL, MAX_BLOCK_ID},
607                         {"PCIE glue/PXP VPD %d", (16 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, BLOCK_PGLCS},
608                 }
609         },
610
611         {
612                 {       /* After Invert 3 */
613                         {"General Attention %d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID},
614                 }
615         },
616
617         {
618                 {       /* After Invert 4 */
619                         {"General Attention 32", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE, ecore_fw_assertion, MAX_BLOCK_ID},
620                         {"General Attention %d", (2 << ATTENTION_LENGTH_SHIFT) | (33 << ATTENTION_OFFSET_SHIFT), OSAL_NULL, MAX_BLOCK_ID},
621                         {"General Attention 35", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE, ecore_general_attention_35, MAX_BLOCK_ID},
622                         {"NWS Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
623                                        ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0) , OSAL_NULL, BLOCK_NWS},
624                         {"NWS Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
625                                           ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1), OSAL_NULL, BLOCK_NWS},
626                         {"NWM Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
627                                        ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2), OSAL_NULL, BLOCK_NWM},
628                         {"NWM Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
629                                           ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3), OSAL_NULL, BLOCK_NWM},
630                         {"MCP CPU", ATTENTION_SINGLE, ecore_mcp_attn_cb, MAX_BLOCK_ID},
631                         {"MCP Watchdog timer", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
632                         {"MCP M2P", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
633                         {"AVS stop status ready", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
634                         {"MSTAT", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
635                         {"MSTAT per-path", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
636                         {"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID },
637                         {"NIG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NIG},
638                         {"BMB/OPTE/MCP", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BMB},
639                         {"BTB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BTB},
640                         {"BRB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BRB},
641                         {"PRS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRS},
642                 }
643         },
644
645         {
646                 {       /* After Invert 5 */
647                         {"SRC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_SRC},
648                         {"PB Client1", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB1},
649                         {"PB Client2", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB2},
650                         {"RPB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RPB},
651                         {"PBF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF},
652                         {"QM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_QM},
653                         {"TM", ATTENTION_PAR_INT, ecore_tm_attn_cb, BLOCK_TM},
654                         {"MCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MCM},
655                         {"MSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSDM},
656                         {"MSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSEM},
657                         {"PCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PCM},
658                         {"PSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSDM},
659                         {"PSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSEM},
660                         {"TCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCM},
661                         {"TSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TSDM},
662                         {"TSEM", ATTENTION_PAR_INT,  OSAL_NULL, BLOCK_TSEM},
663                 }
664         },
665
666         {
667                 {       /* After Invert 6 */
668                         {"UCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_UCM},
669                         {"USDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USDM},
670                         {"USEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USEM},
671                         {"XCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XCM},
672                         {"XSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSDM},
673                         {"XSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSEM},
674                         {"YCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YCM},
675                         {"YSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSDM},
676                         {"YSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSEM},
677                         {"XYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XYLD},
678                         {"TMLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TMLD},
679                         {"MYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MULD},
680                         {"YULD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YULD},
681                         {"DORQ", ATTENTION_PAR_INT, ecore_dorq_attn_cb, BLOCK_DORQ},
682                         {"DBG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DBG},
683                         {"IPC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IPC},
684                 }
685         },
686
687         {
688                 {       /* After Invert 7 */
689                         {"CCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CCFC},
690                         {"CDU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CDU},
691                         {"DMAE", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DMAE},
692                         {"IGU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IGU},
693                         {"ATC", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
694                         {"CAU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CAU},
695                         {"PTU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PTU},
696                         {"PRM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRM},
697                         {"TCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCFC},
698                         {"RDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RDIF},
699                         {"TDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TDIF},
700                         {"RSS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RSS},
701                         {"MISC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISC},
702                         {"MISCS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISCS},
703                         {"PCIE", ATTENTION_PAR, OSAL_NULL, BLOCK_PCIE},
704                         {"Vaux PCI core", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
705                         {"PSWRQ", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ},
706                 }
707         },
708
709         {
710                 {       /* After Invert 8 */
711                         {"PSWRQ (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ2},
712                         {"PSWWR", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR},
713                         {"PSWWR (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR2},
714                         {"PSWRD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD},
715                         {"PSWRD (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD2},
716                         {"PSWHST", ATTENTION_PAR_INT, ecore_pswhst_attn_cb, BLOCK_PSWHST},
717                         {"PSWHST (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWHST2},
718                         {"GRC", ATTENTION_PAR_INT, ecore_grc_attn_cb, BLOCK_GRC},
719                         {"CPMU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CPMU},
720                         {"NCSI", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NCSI},
721                         {"MSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
722                         {"PSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
723                         {"TSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
724                         {"USEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
725                         {"XSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
726                         {"YSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
727                         {"pxp_misc_mps", ATTENTION_PAR, OSAL_NULL, BLOCK_PGLCS},
728                         {"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
729                         {"PERST_B assertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
730                         {"PERST_B deassertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
731                         {"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID },
732                 }
733         },
734
735         {
736                 {       /* After Invert 9 */
737                         {"MCP Latched memory", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
738                         {"MCP Latched scratchpad cache", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
739                         {"MCP Latched ump_tx", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
740                         {"MCP Latched scratchpad", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
741                         {"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID },
742                 }
743         },
744
745 };
746
747 static struct aeu_invert_reg_bit *
748 ecore_int_aeu_translate(struct ecore_hwfn *p_hwfn,
749                         struct aeu_invert_reg_bit *p_bit)
750 {
751         if (!ECORE_IS_BB(p_hwfn->p_dev))
752                 return p_bit;
753
754         if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
755                 return p_bit;
756
757         return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
758                                   ATTENTION_BB_SHIFT];
759 }
760
761 static bool ecore_int_is_parity_flag(struct ecore_hwfn *p_hwfn,
762                                      struct aeu_invert_reg_bit *p_bit)
763 {
764         return !!(ecore_int_aeu_translate(p_hwfn, p_bit)->flags &
765                   ATTENTION_PARITY);
766 }
767
768 #define ATTN_STATE_BITS         (0xfff)
769 #define ATTN_BITS_MASKABLE      (0x3ff)
770 struct ecore_sb_attn_info {
771         /* Virtual & Physical address of the SB */
772         struct atten_status_block       *sb_attn;
773         dma_addr_t                      sb_phys;
774
775         /* Last seen running index */
776         u16                             index;
777
778         /* A mask of the AEU bits resulting in a parity error */
779         u32                             parity_mask[NUM_ATTN_REGS];
780
781         /* A pointer to the attention description structure */
782         struct aeu_invert_reg           *p_aeu_desc;
783
784         /* Previously asserted attentions, which are still unasserted */
785         u16                             known_attn;
786
787         /* Cleanup address for the link's general hw attention */
788         u32                             mfw_attn_addr;
789 };
790
791 static u16 ecore_attn_update_idx(struct ecore_hwfn *p_hwfn,
792                                  struct ecore_sb_attn_info *p_sb_desc)
793 {
794         u16 rc = 0, index;
795
796         OSAL_MMIOWB(p_hwfn->p_dev);
797
798         index = OSAL_LE16_TO_CPU(p_sb_desc->sb_attn->sb_index);
799         if (p_sb_desc->index != index) {
800                 p_sb_desc->index = index;
801                 rc = ECORE_SB_ATT_IDX;
802         }
803
804         OSAL_MMIOWB(p_hwfn->p_dev);
805
806         return rc;
807 }
808
809 /**
810  * @brief ecore_int_assertion - handles asserted attention bits
811  *
812  * @param p_hwfn
813  * @param asserted_bits newly asserted bits
814  * @return enum _ecore_status_t
815  */
816 static enum _ecore_status_t ecore_int_assertion(struct ecore_hwfn *p_hwfn,
817                                                 u16 asserted_bits)
818 {
819         struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
820         u32 igu_mask;
821
822         /* Mask the source of the attention in the IGU */
823         igu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
824                             IGU_REG_ATTENTION_ENABLE);
825         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
826                    igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
827         igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
828         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
829
830         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
831                    "inner known ATTN state: 0x%04x --> 0x%04x\n",
832                    sb_attn_sw->known_attn,
833                    sb_attn_sw->known_attn | asserted_bits);
834         sb_attn_sw->known_attn |= asserted_bits;
835
836         /* Handle MCP events */
837         if (asserted_bits & 0x100) {
838                 ecore_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
839                 /* Clean the MCP attention */
840                 ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
841                          sb_attn_sw->mfw_attn_addr, 0);
842         }
843
844         /* FIXME - this will change once we'll have GOOD gtt definitions */
845         DIRECT_REG_WR(p_hwfn,
846                       (u8 OSAL_IOMEM*)p_hwfn->regview +
847                       GTT_BAR0_MAP_REG_IGU_CMD +
848                       ((IGU_CMD_ATTN_BIT_SET_UPPER -
849                         IGU_CMD_INT_ACK_BASE) << 3), (u32)asserted_bits);
850
851         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "set cmd IGU: 0x%04x\n",
852                    asserted_bits);
853
854         return ECORE_SUCCESS;
855 }
856
857 static void ecore_int_attn_print(struct ecore_hwfn *p_hwfn,
858                                  enum block_id id, enum dbg_attn_type type,
859                                  bool b_clear)
860 {
861         struct dbg_attn_block_result attn_results;
862         enum dbg_status status;
863
864         OSAL_MEMSET(&attn_results, 0, sizeof(attn_results));
865
866         status = ecore_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type,
867                                      b_clear, &attn_results);
868 #ifdef ATTN_DESC
869         if (status != DBG_STATUS_OK)
870                 DP_NOTICE(p_hwfn, true,
871                           "Failed to parse attention information [status: %s]\n",
872                           ecore_dbg_get_status_str(status));
873         else
874                 ecore_dbg_parse_attn(p_hwfn, &attn_results);
875 #else
876         if (status != DBG_STATUS_OK)
877                 DP_NOTICE(p_hwfn, true,
878                           "Failed to parse attention information [status: %d]\n",
879                           status);
880         else
881                 ecore_dbg_print_attn(p_hwfn, &attn_results);
882 #endif
883 }
884
885 /**
886  * @brief ecore_int_deassertion_aeu_bit - handles the effects of a single
887  * cause of the attention
888  *
889  * @param p_hwfn
890  * @param p_aeu - descriptor of an AEU bit which caused the attention
891  * @param aeu_en_reg - register offset of the AEU enable reg. which configured
892  *  this bit to this group.
893  * @param bit_index - index of this bit in the aeu_en_reg
894  *
895  * @return enum _ecore_status_t
896  */
897 static enum _ecore_status_t
898 ecore_int_deassertion_aeu_bit(struct ecore_hwfn *p_hwfn,
899                               struct aeu_invert_reg_bit *p_aeu,
900                               u32 aeu_en_reg,
901                               const char *p_bit_name,
902                               u32 bitmask)
903 {
904         enum _ecore_status_t rc = ECORE_INVAL;
905         bool b_fatal = false;
906
907         DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
908                 p_bit_name, bitmask);
909
910         /* Call callback before clearing the interrupt status */
911         if (p_aeu->cb) {
912                 DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
913                         p_bit_name);
914                 rc = p_aeu->cb(p_hwfn);
915         }
916
917         if (rc != ECORE_SUCCESS)
918                 b_fatal = true;
919
920         /* Print HW block interrupt registers */
921         if (p_aeu->block_index != MAX_BLOCK_ID)
922                 ecore_int_attn_print(p_hwfn, p_aeu->block_index,
923                                      ATTN_TYPE_INTERRUPT, !b_fatal);
924
925         /* Reach assertion if attention is fatal */
926         if (b_fatal) {
927                 DP_NOTICE(p_hwfn, true, "`%s': Fatal attention\n",
928                           p_bit_name);
929
930                 ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_HW_ATTN);
931         }
932
933         /* Prevent this Attention from being asserted in the future */
934         if (p_aeu->flags & ATTENTION_CLEAR_ENABLE ||
935             p_hwfn->p_dev->attn_clr_en) {
936                 u32 val;
937                 u32 mask = ~bitmask;
938                 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
939                 ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & mask));
940                 DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n",
941                         p_bit_name);
942         }
943
944         return rc;
945 }
946
947 /**
948  * @brief ecore_int_deassertion_parity - handle a single parity AEU source
949  *
950  * @param p_hwfn
951  * @param p_aeu - descriptor of an AEU bit which caused the parity
952  * @param aeu_en_reg - address of the AEU enable register
953  * @param bit_index
954  */
955 static void ecore_int_deassertion_parity(struct ecore_hwfn *p_hwfn,
956                                          struct aeu_invert_reg_bit *p_aeu,
957                                          u32 aeu_en_reg, u8 bit_index)
958 {
959         u32 block_id = p_aeu->block_index, mask, val;
960
961         DP_NOTICE(p_hwfn->p_dev, false,
962                   "%s parity attention is set [address 0x%08x, bit %d]\n",
963                   p_aeu->bit_name, aeu_en_reg, bit_index);
964
965         if (block_id == MAX_BLOCK_ID)
966                 return;
967
968         ecore_int_attn_print(p_hwfn, block_id,
969                              ATTN_TYPE_PARITY, false);
970
971         /* In A0, there's a single parity bit for several blocks */
972         if (block_id == BLOCK_BTB) {
973                 ecore_int_attn_print(p_hwfn, BLOCK_OPTE,
974                                      ATTN_TYPE_PARITY, false);
975                 ecore_int_attn_print(p_hwfn, BLOCK_MCP,
976                                      ATTN_TYPE_PARITY, false);
977         }
978
979         /* Prevent this parity error from being re-asserted */
980         mask = ~(0x1 << bit_index);
981         val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
982         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
983         DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
984                 p_aeu->bit_name);
985 }
986
987 /**
988  * @brief - handles deassertion of previously asserted attentions.
989  *
990  * @param p_hwfn
991  * @param deasserted_bits - newly deasserted bits
992  * @return enum _ecore_status_t
993  *
994  */
995 static enum _ecore_status_t ecore_int_deassertion(struct ecore_hwfn *p_hwfn,
996                                                   u16 deasserted_bits)
997 {
998         struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
999         u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
1000         u8 i, j, k, bit_idx;
1001         enum _ecore_status_t rc = ECORE_SUCCESS;
1002
1003         /* Read the attention registers in the AEU */
1004         for (i = 0; i < NUM_ATTN_REGS; i++) {
1005                 aeu_inv_arr[i] = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1006                                           MISC_REG_AEU_AFTER_INVERT_1_IGU +
1007                                           i * 0x4);
1008                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1009                            "Deasserted bits [%d]: %08x\n",
1010                            i, aeu_inv_arr[i]);
1011         }
1012
1013         /* Handle parity attentions first */
1014         for (i = 0; i < NUM_ATTN_REGS; i++)
1015         {
1016                 struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
1017                 u32 parities;
1018
1019                 aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
1020                 en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1021                 parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
1022
1023                 /* Skip register in which no parity bit is currently set */
1024                 if (!parities)
1025                         continue;
1026
1027                 for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1028                         struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
1029
1030                         if (ecore_int_is_parity_flag(p_hwfn, p_bit) &&
1031                             !!(parities & (1 << bit_idx)))
1032                                 ecore_int_deassertion_parity(p_hwfn, p_bit,
1033                                                              aeu_en, bit_idx);
1034
1035                         bit_idx += ATTENTION_LENGTH(p_bit->flags);
1036                 }
1037         }
1038
1039         /* Find non-parity cause for attention and act */
1040         for (k = 0; k < MAX_ATTN_GRPS; k++) {
1041                 struct aeu_invert_reg_bit *p_aeu;
1042
1043                 /* Handle only groups whose attention is currently deasserted */
1044                 if (!(deasserted_bits & (1 << k)))
1045                         continue;
1046
1047                 for (i = 0; i < NUM_ATTN_REGS; i++) {
1048                         u32 bits;
1049
1050                         aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
1051                                  i * sizeof(u32) +
1052                                  k * sizeof(u32) * NUM_ATTN_REGS;
1053                         en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1054                         bits = aeu_inv_arr[i] & en;
1055
1056                         /* Skip if no bit from this group is currently set */
1057                         if (!bits)
1058                                 continue;
1059
1060                         /* Find all set bits from current register which belong
1061                          * to current group, making them responsible for the
1062                          * previous assertion.
1063                          */
1064                         for (j = 0, bit_idx = 0; bit_idx < 32; j++)
1065                         {
1066                                 long unsigned int bitmask;
1067                                 u8 bit, bit_len;
1068
1069                                 /* Need to account bits with changed meaning */
1070                                 p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
1071                                 p_aeu = ecore_int_aeu_translate(p_hwfn, p_aeu);
1072
1073                                 bit = bit_idx;
1074                                 bit_len = ATTENTION_LENGTH(p_aeu->flags);
1075                                 if (ecore_int_is_parity_flag(p_hwfn, p_aeu)) {
1076                                         /* Skip Parity */
1077                                         bit++;
1078                                         bit_len--;
1079                                 }
1080
1081                                 /* Find the bits relating to HW-block, then
1082                                  * shift so they'll become LSB.
1083                                  */
1084                                 bitmask = bits & (((1 << bit_len) - 1) << bit);
1085                                 bitmask >>= bit;
1086
1087                                 if (bitmask) {
1088                                         u32 flags = p_aeu->flags;
1089                                         char bit_name[30];
1090                                         u8 num;
1091
1092                                         num = (u8)OSAL_FIND_FIRST_BIT(&bitmask,
1093                                                                 bit_len);
1094
1095                                         /* Some bits represent more than a
1096                                          * a single interrupt. Correctly print
1097                                          * their name.
1098                                          */
1099                                         if (ATTENTION_LENGTH(flags) > 2 ||
1100                                             ((flags & ATTENTION_PAR_INT) &&
1101                                             ATTENTION_LENGTH(flags) > 1))
1102                                                 OSAL_SNPRINTF(bit_name, 30,
1103                                                               p_aeu->bit_name,
1104                                                               num);
1105                                         else
1106                                                 OSAL_STRNCPY(bit_name,
1107                                                              p_aeu->bit_name,
1108                                                              30);
1109
1110                                         /* We now need to pass bitmask in its
1111                                          * correct position.
1112                                          */
1113                                         bitmask <<= bit;
1114
1115                                         /* Handle source of the attention */
1116                                         ecore_int_deassertion_aeu_bit(p_hwfn,
1117                                                                       p_aeu,
1118                                                                       aeu_en,
1119                                                                       bit_name,
1120                                                                       bitmask);
1121                                 }
1122
1123                                 bit_idx += ATTENTION_LENGTH(p_aeu->flags);
1124                         }
1125                 }
1126         }
1127
1128         /* Clear IGU indication for the deasserted bits */
1129         /* FIXME - this will change once we'll have GOOD gtt definitions */
1130         DIRECT_REG_WR(p_hwfn,
1131                       (u8 OSAL_IOMEM*)p_hwfn->regview +
1132                                       GTT_BAR0_MAP_REG_IGU_CMD +
1133                                       ((IGU_CMD_ATTN_BIT_CLR_UPPER -
1134                                         IGU_CMD_INT_ACK_BASE) << 3),
1135                       ~((u32)deasserted_bits));
1136
1137         /* Unmask deasserted attentions in IGU */
1138         aeu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1139                             IGU_REG_ATTENTION_ENABLE);
1140         aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
1141         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
1142
1143         /* Clear deassertion from inner state */
1144         sb_attn_sw->known_attn &= ~deasserted_bits;
1145
1146         return rc;
1147 }
1148
1149 static enum _ecore_status_t ecore_int_attentions(struct ecore_hwfn *p_hwfn)
1150 {
1151         struct ecore_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
1152         struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
1153         u16 index = 0, asserted_bits, deasserted_bits;
1154         u32 attn_bits = 0, attn_acks = 0;
1155         enum _ecore_status_t rc = ECORE_SUCCESS;
1156
1157         /* Read current attention bits/acks - safeguard against attentions
1158          * by guaranting work on a synchronized timeframe
1159          */
1160         do {
1161                 index = OSAL_LE16_TO_CPU(p_sb_attn->sb_index);
1162                 attn_bits = OSAL_LE32_TO_CPU(p_sb_attn->atten_bits);
1163                 attn_acks = OSAL_LE32_TO_CPU(p_sb_attn->atten_ack);
1164         } while (index != OSAL_LE16_TO_CPU(p_sb_attn->sb_index));
1165         p_sb_attn->sb_index = index;
1166
1167         /* Attention / Deassertion are meaningful (and in correct state)
1168          * only when they differ and consistent with known state - deassertion
1169          * when previous attention & current ack, and assertion when current
1170          * attention with no previous attention
1171          */
1172         asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1173                         ~p_sb_attn_sw->known_attn;
1174         deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1175                           p_sb_attn_sw->known_attn;
1176
1177         if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100))
1178                 DP_INFO(p_hwfn,
1179                         "Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1180                         index, attn_bits, attn_acks, asserted_bits,
1181                         deasserted_bits, p_sb_attn_sw->known_attn);
1182         else if (asserted_bits == 0x100)
1183                 DP_INFO(p_hwfn,
1184                         "MFW indication via attention\n");
1185         else
1186                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1187                            "MFW indication [deassertion]\n");
1188
1189         if (asserted_bits) {
1190                 rc = ecore_int_assertion(p_hwfn, asserted_bits);
1191                 if (rc)
1192                         return rc;
1193         }
1194
1195         if (deasserted_bits)
1196                 rc = ecore_int_deassertion(p_hwfn, deasserted_bits);
1197
1198         return rc;
1199 }
1200
1201 static void ecore_sb_ack_attn(struct ecore_hwfn *p_hwfn,
1202                               void OSAL_IOMEM *igu_addr, u32 ack_cons)
1203 {
1204         struct igu_prod_cons_update igu_ack = { 0 };
1205
1206         igu_ack.sb_id_and_flags =
1207                 ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1208                  (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1209                  (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1210                  (IGU_SEG_ACCESS_ATTN <<
1211                   IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1212
1213         DIRECT_REG_WR(p_hwfn, igu_addr, igu_ack.sb_id_and_flags);
1214
1215         /* Both segments (interrupts & acks) are written to same place address;
1216          * Need to guarantee all commands will be received (in-order) by HW.
1217          */
1218         OSAL_MMIOWB(p_hwfn->p_dev);
1219         OSAL_BARRIER(p_hwfn->p_dev);
1220 }
1221
1222 void ecore_int_sp_dpc(osal_int_ptr_t hwfn_cookie)
1223 {
1224         struct ecore_hwfn *p_hwfn = (struct ecore_hwfn *)hwfn_cookie;
1225         struct ecore_pi_info *pi_info = OSAL_NULL;
1226         struct ecore_sb_attn_info *sb_attn;
1227         struct ecore_sb_info *sb_info;
1228         int arr_size;
1229         u16 rc = 0;
1230
1231         if (!p_hwfn)
1232                 return;
1233
1234         if (!p_hwfn->p_sp_sb) {
1235                 DP_ERR(p_hwfn->p_dev, "DPC called - no p_sp_sb\n");
1236                 return;
1237         }
1238
1239         sb_info = &p_hwfn->p_sp_sb->sb_info;
1240         arr_size = OSAL_ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1241         if (!sb_info) {
1242                 DP_ERR(p_hwfn->p_dev, "Status block is NULL - cannot ack interrupts\n");
1243                 return;
1244         }
1245
1246         if (!p_hwfn->p_sb_attn) {
1247                 DP_ERR(p_hwfn->p_dev, "DPC called - no p_sb_attn");
1248                 return;
1249         }
1250         sb_attn =  p_hwfn->p_sb_attn;
1251
1252         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1253                    p_hwfn, p_hwfn->my_id);
1254
1255         /* Disable ack for def status block. Required both for msix +
1256          * inta in non-mask mode, in inta does no harm.
1257          */
1258         ecore_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1259
1260         /* Gather Interrupts/Attentions information */
1261         if (!sb_info->sb_virt) {
1262                 DP_ERR(p_hwfn->p_dev, "Interrupt Status block is NULL - cannot check for new interrupts!\n");
1263         } else {
1264                 u32 tmp_index = sb_info->sb_ack;
1265                 rc = ecore_sb_update_sb_idx(sb_info);
1266                 DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1267                            "Interrupt indices: 0x%08x --> 0x%08x\n",
1268                            tmp_index, sb_info->sb_ack);
1269         }
1270
1271         if (!sb_attn || !sb_attn->sb_attn) {
1272                 DP_ERR(p_hwfn->p_dev, "Attentions Status block is NULL - cannot check for new attentions!\n");
1273         } else {
1274                 u16 tmp_index = sb_attn->index;
1275
1276                 rc |= ecore_attn_update_idx(p_hwfn, sb_attn);
1277                 DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1278                            "Attention indices: 0x%08x --> 0x%08x\n",
1279                            tmp_index, sb_attn->index);
1280         }
1281
1282         /* Check if we expect interrupts at this time. if not just ack them */
1283         if (!(rc & ECORE_SB_EVENT_MASK)) {
1284                 ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1285                 return;
1286         }
1287
1288         /* Check the validity of the DPC ptt. If not ack interrupts and fail */
1289         if (!p_hwfn->p_dpc_ptt) {
1290                 DP_NOTICE(p_hwfn->p_dev, true, "Failed to allocate PTT\n");
1291                 ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1292                 return;
1293         }
1294
1295         if (rc & ECORE_SB_ATT_IDX)
1296                 ecore_int_attentions(p_hwfn);
1297
1298         if (rc & ECORE_SB_IDX) {
1299                 int pi;
1300
1301                 /* Since we only looked at the SB index, it's possible more
1302                  * than a single protocol-index on the SB incremented.
1303                  * Iterate over all configured protocol indices and check
1304                  * whether something happened for each.
1305                  */
1306                 for (pi = 0; pi < arr_size; pi++) {
1307                         pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1308                         if (pi_info->comp_cb != OSAL_NULL)
1309                                 pi_info->comp_cb(p_hwfn, pi_info->cookie);
1310                 }
1311         }
1312
1313         if (sb_attn && (rc & ECORE_SB_ATT_IDX)) {
1314                 /* This should be done before the interrupts are enabled,
1315                  * since otherwise a new attention will be generated.
1316                  */
1317                 ecore_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1318         }
1319
1320         ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1321 }
1322
1323 static void ecore_int_sb_attn_free(struct ecore_hwfn *p_hwfn)
1324 {
1325         struct ecore_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1326
1327         if (!p_sb)
1328                 return;
1329
1330         if (p_sb->sb_attn) {
1331                 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev, p_sb->sb_attn,
1332                                        p_sb->sb_phys,
1333                                        SB_ATTN_ALIGNED_SIZE(p_hwfn));
1334         }
1335
1336         OSAL_FREE(p_hwfn->p_dev, p_sb);
1337         p_hwfn->p_sb_attn = OSAL_NULL;
1338 }
1339
1340 static void ecore_int_sb_attn_setup(struct ecore_hwfn *p_hwfn,
1341                                     struct ecore_ptt *p_ptt)
1342 {
1343         struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1344
1345         OSAL_MEMSET(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1346
1347         sb_info->index = 0;
1348         sb_info->known_attn = 0;
1349
1350         /* Configure Attention Status Block in IGU */
1351         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1352                  DMA_LO(p_hwfn->p_sb_attn->sb_phys));
1353         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1354                  DMA_HI(p_hwfn->p_sb_attn->sb_phys));
1355 }
1356
1357 static void ecore_int_sb_attn_init(struct ecore_hwfn *p_hwfn,
1358                                    struct ecore_ptt *p_ptt,
1359                                    void *sb_virt_addr,
1360                                    dma_addr_t sb_phy_addr)
1361 {
1362         struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1363         int i, j, k;
1364
1365         sb_info->sb_attn = sb_virt_addr;
1366         sb_info->sb_phys = sb_phy_addr;
1367
1368         /* Set the pointer to the AEU descriptors */
1369         sb_info->p_aeu_desc = aeu_descs;
1370
1371         /* Calculate Parity Masks */
1372         OSAL_MEMSET(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1373         for (i = 0; i < NUM_ATTN_REGS; i++) {
1374                 /* j is array index, k is bit index */
1375                 for (j = 0, k = 0; k < 32; j++) {
1376                         struct aeu_invert_reg_bit *p_aeu;
1377
1378                         p_aeu = &aeu_descs[i].bits[j];
1379                         if (ecore_int_is_parity_flag(p_hwfn, p_aeu))
1380                                 sb_info->parity_mask[i] |= 1 << k;
1381
1382                         k += ATTENTION_LENGTH(p_aeu->flags);
1383                 }
1384                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1385                            "Attn Mask [Reg %d]: 0x%08x\n",
1386                            i, sb_info->parity_mask[i]);
1387         }
1388
1389         /* Set the address of cleanup for the mcp attention */
1390         sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1391                                  MISC_REG_AEU_GENERAL_ATTN_0;
1392
1393         ecore_int_sb_attn_setup(p_hwfn, p_ptt);
1394 }
1395
1396 static enum _ecore_status_t ecore_int_sb_attn_alloc(struct ecore_hwfn *p_hwfn,
1397                                                     struct ecore_ptt *p_ptt)
1398 {
1399         struct ecore_dev *p_dev = p_hwfn->p_dev;
1400         struct ecore_sb_attn_info *p_sb;
1401         dma_addr_t p_phys = 0;
1402         void *p_virt;
1403
1404         /* SB struct */
1405         p_sb = OSAL_ALLOC(p_dev, GFP_KERNEL, sizeof(*p_sb));
1406         if (!p_sb) {
1407                 DP_NOTICE(p_dev, true, "Failed to allocate `struct ecore_sb_attn_info'\n");
1408                 return ECORE_NOMEM;
1409         }
1410
1411         /* SB ring  */
1412         p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
1413                                          SB_ATTN_ALIGNED_SIZE(p_hwfn));
1414         if (!p_virt) {
1415                 DP_NOTICE(p_dev, true, "Failed to allocate status block (attentions)\n");
1416                 OSAL_FREE(p_dev, p_sb);
1417                 return ECORE_NOMEM;
1418         }
1419
1420         /* Attention setup */
1421         p_hwfn->p_sb_attn = p_sb;
1422         ecore_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1423
1424         return ECORE_SUCCESS;
1425 }
1426
1427 /* coalescing timeout = timeset << (timer_res + 1) */
1428 #define ECORE_CAU_DEF_RX_USECS 24
1429 #define ECORE_CAU_DEF_TX_USECS 48
1430
1431 void ecore_init_cau_sb_entry(struct ecore_hwfn *p_hwfn,
1432                              struct cau_sb_entry *p_sb_entry,
1433                              u8 pf_id, u16 vf_number, u8 vf_valid)
1434 {
1435         struct ecore_dev *p_dev = p_hwfn->p_dev;
1436         u32 cau_state;
1437         u8 timer_res;
1438
1439         OSAL_MEMSET(p_sb_entry, 0, sizeof(*p_sb_entry));
1440
1441         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1442         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1443         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1444         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1445         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1446
1447         cau_state = CAU_HC_DISABLE_STATE;
1448
1449         if (p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1450                 cau_state = CAU_HC_ENABLE_STATE;
1451                 if (!p_dev->rx_coalesce_usecs)
1452                         p_dev->rx_coalesce_usecs = ECORE_CAU_DEF_RX_USECS;
1453                 if (!p_dev->tx_coalesce_usecs)
1454                         p_dev->tx_coalesce_usecs = ECORE_CAU_DEF_TX_USECS;
1455         }
1456
1457         /* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1458         if (p_dev->rx_coalesce_usecs <= 0x7F)
1459                 timer_res = 0;
1460         else if (p_dev->rx_coalesce_usecs <= 0xFF)
1461                 timer_res = 1;
1462         else
1463                 timer_res = 2;
1464         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1465
1466         if (p_dev->tx_coalesce_usecs <= 0x7F)
1467                 timer_res = 0;
1468         else if (p_dev->tx_coalesce_usecs <= 0xFF)
1469                 timer_res = 1;
1470         else
1471                 timer_res = 2;
1472         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1473
1474         SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
1475         SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
1476 }
1477
1478 static void _ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1479                                    struct ecore_ptt *p_ptt,
1480                                    u16 igu_sb_id, u32 pi_index,
1481                                    enum ecore_coalescing_fsm coalescing_fsm,
1482                                    u8 timeset)
1483 {
1484         struct cau_pi_entry pi_entry;
1485         u32 sb_offset, pi_offset;
1486
1487         if (IS_VF(p_hwfn->p_dev))
1488                 return;/* @@@TBD MichalK- VF CAU... */
1489
1490         sb_offset = igu_sb_id * PIS_PER_SB_E4;
1491         OSAL_MEMSET(&pi_entry, 0, sizeof(struct cau_pi_entry));
1492
1493         SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1494         if (coalescing_fsm == ECORE_COAL_RX_STATE_MACHINE)
1495                 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
1496         else
1497                 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
1498
1499         pi_offset = sb_offset + pi_index;
1500         if (p_hwfn->hw_init_done) {
1501                 ecore_wr(p_hwfn, p_ptt,
1502                          CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
1503                          *((u32 *)&(pi_entry)));
1504         } else {
1505                 STORE_RT_REG(p_hwfn,
1506                              CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1507                              *((u32 *)&(pi_entry)));
1508         }
1509 }
1510
1511 void ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1512                            struct ecore_ptt *p_ptt,
1513                            struct ecore_sb_info *p_sb, u32 pi_index,
1514                            enum ecore_coalescing_fsm coalescing_fsm,
1515                            u8 timeset)
1516 {
1517         _ecore_int_cau_conf_pi(p_hwfn, p_ptt, p_sb->igu_sb_id,
1518                                pi_index, coalescing_fsm, timeset);
1519 }
1520
1521 void ecore_int_cau_conf_sb(struct ecore_hwfn *p_hwfn,
1522                            struct ecore_ptt *p_ptt,
1523                            dma_addr_t sb_phys, u16 igu_sb_id,
1524                            u16 vf_number, u8 vf_valid)
1525 {
1526         struct cau_sb_entry sb_entry;
1527
1528         ecore_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1529                                 vf_number, vf_valid);
1530
1531         if (p_hwfn->hw_init_done) {
1532                 /* Wide-bus, initialize via DMAE */
1533                 u64 phys_addr = (u64)sb_phys;
1534
1535                 ecore_dmae_host2grc(p_hwfn, p_ptt, (u64)(osal_uintptr_t)&phys_addr,
1536                                     CAU_REG_SB_ADDR_MEMORY +
1537                                     igu_sb_id * sizeof(u64), 2, 0);
1538                 ecore_dmae_host2grc(p_hwfn, p_ptt, (u64)(osal_uintptr_t)&sb_entry,
1539                                     CAU_REG_SB_VAR_MEMORY +
1540                                     igu_sb_id * sizeof(u64), 2, 0);
1541         } else {
1542                 /* Initialize Status Block Address */
1543                 STORE_RT_REG_AGG(p_hwfn,
1544                                  CAU_REG_SB_ADDR_MEMORY_RT_OFFSET+igu_sb_id*2,
1545                                  sb_phys);
1546
1547                 STORE_RT_REG_AGG(p_hwfn,
1548                                  CAU_REG_SB_VAR_MEMORY_RT_OFFSET+igu_sb_id*2,
1549                                  sb_entry);
1550         }
1551
1552         /* Configure pi coalescing if set */
1553         if (p_hwfn->p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1554                 /* eth will open queues for all tcs, so configure all of them
1555                  * properly, rather than just the active ones
1556                  */
1557                 u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1558
1559                 u8 timeset, timer_res;
1560                 u8 i;
1561
1562                 /* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1563                 if (p_hwfn->p_dev->rx_coalesce_usecs <= 0x7F)
1564                         timer_res = 0;
1565                 else if (p_hwfn->p_dev->rx_coalesce_usecs <= 0xFF)
1566                         timer_res = 1;
1567                 else
1568                         timer_res = 2;
1569                 timeset = (u8)(p_hwfn->p_dev->rx_coalesce_usecs >> timer_res);
1570                 _ecore_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1571                                        ECORE_COAL_RX_STATE_MACHINE,
1572                                        timeset);
1573
1574                 if (p_hwfn->p_dev->tx_coalesce_usecs <= 0x7F)
1575                         timer_res = 0;
1576                 else if (p_hwfn->p_dev->tx_coalesce_usecs <= 0xFF)
1577                         timer_res = 1;
1578                 else
1579                         timer_res = 2;
1580                 timeset = (u8)(p_hwfn->p_dev->tx_coalesce_usecs >> timer_res);
1581                 for (i = 0; i < num_tc; i++) {
1582                         _ecore_int_cau_conf_pi(p_hwfn, p_ptt,
1583                                                igu_sb_id, TX_PI(i),
1584                                                ECORE_COAL_TX_STATE_MACHINE,
1585                                                timeset);
1586                 }
1587         }
1588 }
1589
1590 void ecore_int_sb_setup(struct ecore_hwfn *p_hwfn,
1591                                struct ecore_ptt *p_ptt,
1592                                struct ecore_sb_info *sb_info)
1593 {
1594         /* zero status block and ack counter */
1595         sb_info->sb_ack = 0;
1596         OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1597
1598         if (IS_PF(p_hwfn->p_dev))
1599                 ecore_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1600                                       sb_info->igu_sb_id, 0, 0);
1601 }
1602
1603 struct ecore_igu_block *
1604 ecore_get_igu_free_sb(struct ecore_hwfn *p_hwfn, bool b_is_pf)
1605 {
1606         struct ecore_igu_block *p_block;
1607         u16 igu_id;
1608
1609         for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1610              igu_id++) {
1611                 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1612
1613                 if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1614                     !(p_block->status & ECORE_IGU_STATUS_FREE))
1615                         continue;
1616
1617                 if (!!(p_block->status & ECORE_IGU_STATUS_PF) ==
1618                     b_is_pf)
1619                         return p_block;
1620         }
1621
1622         return OSAL_NULL;
1623 }
1624
1625 static u16 ecore_get_pf_igu_sb_id(struct ecore_hwfn *p_hwfn,
1626                                   u16 vector_id)
1627 {
1628         struct ecore_igu_block *p_block;
1629         u16 igu_id;
1630
1631         for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1632              igu_id++) {
1633                 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1634
1635                 if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1636                     !p_block->is_pf ||
1637                     p_block->vector_number != vector_id)
1638                         continue;
1639
1640                 return igu_id;
1641         }
1642
1643         return ECORE_SB_INVALID_IDX;
1644 }
1645
1646 u16 ecore_get_igu_sb_id(struct ecore_hwfn *p_hwfn, u16 sb_id)
1647 {
1648         u16 igu_sb_id;
1649
1650         /* Assuming continuous set of IGU SBs dedicated for given PF */
1651         if (sb_id == ECORE_SP_SB_ID)
1652                 igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1653         else if (IS_PF(p_hwfn->p_dev))
1654                 igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
1655         else
1656                 igu_sb_id = ecore_vf_get_igu_sb_id(p_hwfn, sb_id);
1657
1658         if (igu_sb_id == ECORE_SB_INVALID_IDX)
1659                 DP_NOTICE(p_hwfn, true,
1660                           "Slowpath SB vector %04x doesn't exist\n",
1661                           sb_id);
1662         else if (sb_id == ECORE_SP_SB_ID)
1663                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1664                            "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1665         else
1666                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1667                            "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1668
1669         return igu_sb_id;
1670 }
1671
1672 enum _ecore_status_t ecore_int_sb_init(struct ecore_hwfn *p_hwfn,
1673                                        struct ecore_ptt *p_ptt,
1674                                        struct ecore_sb_info *sb_info,
1675                                        void *sb_virt_addr,
1676                                        dma_addr_t sb_phy_addr,
1677                                        u16 sb_id)
1678 {
1679         sb_info->sb_virt = sb_virt_addr;
1680         sb_info->sb_phys = sb_phy_addr;
1681
1682         sb_info->igu_sb_id = ecore_get_igu_sb_id(p_hwfn, sb_id);
1683
1684         if (sb_info->igu_sb_id == ECORE_SB_INVALID_IDX)
1685                 return ECORE_INVAL;
1686
1687         /* Let the igu info reference the client's SB info */
1688         if (sb_id != ECORE_SP_SB_ID) {
1689                 if (IS_PF(p_hwfn->p_dev)) {
1690                         struct ecore_igu_info *p_info;
1691                         struct ecore_igu_block *p_block;
1692
1693                         p_info = p_hwfn->hw_info.p_igu_info;
1694                         p_block = &p_info->entry[sb_info->igu_sb_id];
1695
1696                         p_block->sb_info = sb_info;
1697                         p_block->status &= ~ECORE_IGU_STATUS_FREE;
1698                         p_info->usage.free_cnt--;
1699                 } else {
1700                         ecore_vf_set_sb_info(p_hwfn, sb_id, sb_info);
1701                 }
1702         }
1703
1704 #ifdef ECORE_CONFIG_DIRECT_HWFN
1705         sb_info->p_hwfn = p_hwfn;
1706 #endif
1707         sb_info->p_dev = p_hwfn->p_dev;
1708
1709         /* The igu address will hold the absolute address that needs to be
1710          * written to for a specific status block
1711          */
1712         if (IS_PF(p_hwfn->p_dev)) {
1713                 sb_info->igu_addr = (u8 OSAL_IOMEM*)p_hwfn->regview +
1714                                     GTT_BAR0_MAP_REG_IGU_CMD +
1715                                     (sb_info->igu_sb_id << 3);
1716
1717         } else {
1718                 sb_info->igu_addr =
1719                         (u8 OSAL_IOMEM*)p_hwfn->regview +
1720                         PXP_VF_BAR0_START_IGU +
1721                         ((IGU_CMD_INT_ACK_BASE + sb_info->igu_sb_id) << 3);
1722         }
1723
1724         sb_info->flags |= ECORE_SB_INFO_INIT;
1725
1726         ecore_int_sb_setup(p_hwfn, p_ptt, sb_info);
1727
1728         return ECORE_SUCCESS;
1729 }
1730
1731 enum _ecore_status_t ecore_int_sb_release(struct ecore_hwfn *p_hwfn,
1732                                           struct ecore_sb_info *sb_info,
1733                                           u16 sb_id)
1734 {
1735         struct ecore_igu_info *p_info;
1736         struct ecore_igu_block *p_block;
1737
1738         if (sb_info == OSAL_NULL)
1739                 return ECORE_SUCCESS;
1740
1741         /* zero status block and ack counter */
1742         sb_info->sb_ack = 0;
1743         OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1744
1745         if (IS_VF(p_hwfn->p_dev)) {
1746                 ecore_vf_set_sb_info(p_hwfn, sb_id, OSAL_NULL);
1747                 return ECORE_SUCCESS;
1748         }
1749
1750         p_info = p_hwfn->hw_info.p_igu_info;
1751         p_block = &p_info->entry[sb_info->igu_sb_id];
1752
1753         /* Vector 0 is reserved to Default SB */
1754         if (p_block->vector_number == 0) {
1755                 DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1756                 return ECORE_INVAL;
1757         }
1758
1759         /* Lose reference to client's SB info, and fix counters */
1760         p_block->sb_info = OSAL_NULL;
1761         p_block->status |= ECORE_IGU_STATUS_FREE;
1762         p_info->usage.free_cnt++;
1763
1764         return ECORE_SUCCESS;
1765 }
1766
1767 static void ecore_int_sp_sb_free(struct ecore_hwfn *p_hwfn)
1768 {
1769         struct ecore_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1770
1771         if (!p_sb)
1772                 return;
1773
1774         if (p_sb->sb_info.sb_virt) {
1775                 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
1776                                        p_sb->sb_info.sb_virt,
1777                                        p_sb->sb_info.sb_phys,
1778                                        SB_ALIGNED_SIZE(p_hwfn));
1779         }
1780
1781         OSAL_FREE(p_hwfn->p_dev, p_sb);
1782         p_hwfn->p_sp_sb = OSAL_NULL;
1783 }
1784
1785 static enum _ecore_status_t ecore_int_sp_sb_alloc(struct ecore_hwfn *p_hwfn,
1786                                                   struct ecore_ptt *p_ptt)
1787 {
1788         struct ecore_sb_sp_info *p_sb;
1789         dma_addr_t p_phys = 0;
1790         void *p_virt;
1791
1792         /* SB struct */
1793         p_sb = OSAL_ALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(*p_sb));
1794         if (!p_sb) {
1795                 DP_NOTICE(p_hwfn, true, "Failed to allocate `struct ecore_sb_info'\n");
1796                 return ECORE_NOMEM;
1797         }
1798
1799         /* SB ring  */
1800         p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
1801                                          &p_phys,
1802                                          SB_ALIGNED_SIZE(p_hwfn));
1803         if (!p_virt) {
1804                 DP_NOTICE(p_hwfn, true, "Failed to allocate status block\n");
1805                 OSAL_FREE(p_hwfn->p_dev, p_sb);
1806                 return ECORE_NOMEM;
1807         }
1808
1809
1810         /* Status Block setup */
1811         p_hwfn->p_sp_sb = p_sb;
1812         ecore_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info,
1813                           p_virt, p_phys, ECORE_SP_SB_ID);
1814
1815         OSAL_MEMSET(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1816
1817         return ECORE_SUCCESS;
1818 }
1819
1820 enum _ecore_status_t ecore_int_register_cb(struct ecore_hwfn *p_hwfn,
1821                                            ecore_int_comp_cb_t comp_cb,
1822                                            void *cookie,
1823                                            u8 *sb_idx,
1824                                            __le16 **p_fw_cons)
1825 {
1826         struct ecore_sb_sp_info *p_sp_sb  = p_hwfn->p_sp_sb;
1827         enum _ecore_status_t rc = ECORE_NOMEM;
1828         u8 pi;
1829
1830         /* Look for a free index */
1831         for (pi = 0; pi < OSAL_ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1832                 if (p_sp_sb->pi_info_arr[pi].comp_cb != OSAL_NULL)
1833                         continue;
1834
1835                 p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1836                 p_sp_sb->pi_info_arr[pi].cookie = cookie;
1837                 *sb_idx = pi;
1838                 *p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1839                 rc = ECORE_SUCCESS;
1840                 break;
1841         }
1842
1843         return rc;
1844 }
1845
1846 enum _ecore_status_t ecore_int_unregister_cb(struct ecore_hwfn *p_hwfn,
1847                                              u8 pi)
1848 {
1849         struct ecore_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1850
1851         if (p_sp_sb->pi_info_arr[pi].comp_cb == OSAL_NULL)
1852                 return ECORE_NOMEM;
1853
1854         p_sp_sb->pi_info_arr[pi].comp_cb = OSAL_NULL;
1855         p_sp_sb->pi_info_arr[pi].cookie = OSAL_NULL;
1856
1857         return ECORE_SUCCESS;
1858 }
1859
1860 u16 ecore_int_get_sp_sb_id(struct ecore_hwfn *p_hwfn)
1861 {
1862         return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1863 }
1864
1865 void ecore_int_igu_enable_int(struct ecore_hwfn *p_hwfn,
1866                               struct ecore_ptt  *p_ptt,
1867                               enum ecore_int_mode int_mode)
1868 {
1869         u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1870
1871 #ifndef ASIC_ONLY
1872         if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1873                 DP_INFO(p_hwfn, "FPGA - don't enable ATTN generation in IGU\n");
1874                 igu_pf_conf &= ~IGU_PF_CONF_ATTN_BIT_EN;
1875         }
1876 #endif
1877
1878         p_hwfn->p_dev->int_mode = int_mode;
1879         switch (p_hwfn->p_dev->int_mode) {
1880         case ECORE_INT_MODE_INTA:
1881                 igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1882                 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1883                 break;
1884
1885         case ECORE_INT_MODE_MSI:
1886                 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1887                 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1888                 break;
1889
1890         case ECORE_INT_MODE_MSIX:
1891                 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1892                 break;
1893         case ECORE_INT_MODE_POLL:
1894                 break;
1895         }
1896
1897         ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1898 }
1899
1900 static void ecore_int_igu_enable_attn(struct ecore_hwfn *p_hwfn,
1901                                       struct ecore_ptt *p_ptt)
1902 {
1903 #ifndef ASIC_ONLY
1904         if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1905                 DP_INFO(p_hwfn, "FPGA - Don't enable Attentions in IGU and MISC\n");
1906                 return;
1907         }
1908 #endif
1909
1910         /* Configure AEU signal change to produce attentions */
1911         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1912         ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1913         ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1914         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1915
1916         /* Flush the writes to IGU */
1917         OSAL_MMIOWB(p_hwfn->p_dev);
1918
1919         /* Unmask AEU signals toward IGU */
1920         ecore_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1921 }
1922
1923 enum _ecore_status_t
1924 ecore_int_igu_enable(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1925                           enum ecore_int_mode int_mode)
1926 {
1927         enum _ecore_status_t rc = ECORE_SUCCESS;
1928         u32 tmp;
1929
1930         /* @@@tmp - Starting with MFW 8.2.1.0 we've started hitting AVS stop
1931          * attentions. Since we're waiting for BRCM answer regarding this
1932          * attention, in the meanwhile we simply mask it.
1933          */
1934         tmp = ecore_rd(p_hwfn, p_ptt, MISC_REG_AEU_ENABLE4_IGU_OUT_0);
1935         tmp &= ~0x800;
1936         ecore_wr(p_hwfn, p_ptt, MISC_REG_AEU_ENABLE4_IGU_OUT_0, tmp);
1937
1938         ecore_int_igu_enable_attn(p_hwfn, p_ptt);
1939
1940         if ((int_mode != ECORE_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1941                 rc = OSAL_SLOWPATH_IRQ_REQ(p_hwfn);
1942                 if (rc != ECORE_SUCCESS) {
1943                         DP_NOTICE(p_hwfn, true, "Slowpath IRQ request failed\n");
1944                         return ECORE_NORESOURCES;
1945                 }
1946                 p_hwfn->b_int_requested = true;
1947         }
1948
1949         /* Enable interrupt Generation */
1950         ecore_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1951
1952         p_hwfn->b_int_enabled = 1;
1953
1954         return rc;
1955 }
1956
1957 void ecore_int_igu_disable_int(struct ecore_hwfn        *p_hwfn,
1958                                struct ecore_ptt         *p_ptt)
1959 {
1960         p_hwfn->b_int_enabled = 0;
1961
1962         if (IS_VF(p_hwfn->p_dev))
1963                 return;
1964
1965         ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1966 }
1967
1968 #define IGU_CLEANUP_SLEEP_LENGTH                (1000)
1969 static void ecore_int_igu_cleanup_sb(struct ecore_hwfn *p_hwfn,
1970                                      struct ecore_ptt *p_ptt,
1971                                      u16 igu_sb_id,
1972                                      bool cleanup_set,
1973                                      u16 opaque_fid)
1974 {
1975         u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1976         u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
1977         u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
1978         u8  type = 0; /* FIXME MichalS type??? */
1979
1980         OSAL_BUILD_BUG_ON((IGU_REG_CLEANUP_STATUS_4 -
1981                            IGU_REG_CLEANUP_STATUS_0) != 0x200);
1982
1983         /* USE Control Command Register to perform cleanup. There is an
1984          * option to do this using IGU bar, but then it can't be used for VFs.
1985          */
1986
1987         /* Set the data field */
1988         SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
1989         SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, type);
1990         SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
1991
1992         /* Set the control register */
1993         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
1994         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
1995         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
1996
1997         ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
1998
1999         OSAL_BARRIER(p_hwfn->p_dev);
2000
2001         ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
2002
2003         /* Flush the write to IGU */
2004         OSAL_MMIOWB(p_hwfn->p_dev);
2005
2006         /* calculate where to read the status bit from */
2007         sb_bit = 1 << (igu_sb_id % 32);
2008         sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
2009
2010         sb_bit_addr += IGU_REG_CLEANUP_STATUS_0 + (0x80 * type);
2011
2012         /* Now wait for the command to complete */
2013         while (--sleep_cnt) {
2014                 val = ecore_rd(p_hwfn, p_ptt, sb_bit_addr);
2015                 if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
2016                         break;
2017                 OSAL_MSLEEP(5);
2018         }
2019
2020         if (!sleep_cnt)
2021                 DP_NOTICE(p_hwfn, true,
2022                           "Timeout waiting for clear status 0x%08x [for sb %d]\n",
2023                           val, igu_sb_id);
2024 }
2025
2026 void ecore_int_igu_init_pure_rt_single(struct ecore_hwfn *p_hwfn,
2027                                        struct ecore_ptt *p_ptt,
2028                                        u16 igu_sb_id, u16 opaque, bool b_set)
2029 {
2030         struct ecore_igu_block *p_block;
2031         int pi, i;
2032
2033         p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2034         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2035                    "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
2036                    igu_sb_id, p_block->function_id, p_block->is_pf,
2037                    p_block->vector_number);
2038
2039         /* Set */
2040         if (b_set)
2041                 ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
2042
2043         /* Clear */
2044         ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
2045
2046         /* Wait for the IGU SB to cleanup */
2047         for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
2048                 u32 val;
2049
2050                 val = ecore_rd(p_hwfn, p_ptt,
2051                                IGU_REG_WRITE_DONE_PENDING +
2052                                ((igu_sb_id / 32) * 4));
2053                 if (val & (1 << (igu_sb_id % 32)))
2054                         OSAL_UDELAY(10);
2055                 else
2056                         break;
2057         }
2058         if (i == IGU_CLEANUP_SLEEP_LENGTH)
2059                 DP_NOTICE(p_hwfn, true,
2060                           "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
2061                           igu_sb_id);
2062
2063         /* Clear the CAU for the SB */
2064         for (pi = 0; pi < 12; pi++)
2065                 ecore_wr(p_hwfn, p_ptt,
2066                          CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
2067 }
2068
2069 void ecore_int_igu_init_pure_rt(struct ecore_hwfn *p_hwfn,
2070                                  struct ecore_ptt *p_ptt,
2071                                  bool b_set,
2072                                  bool b_slowpath)
2073 {
2074         struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2075         struct ecore_igu_block *p_block;
2076         u16 igu_sb_id = 0;
2077         u32 val = 0;
2078
2079         /* @@@TBD MichalK temporary... should be moved to init-tool... */
2080         val = ecore_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
2081         val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
2082         val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
2083         ecore_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
2084         /* end temporary */
2085
2086         for (igu_sb_id = 0;
2087              igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2088              igu_sb_id++) {
2089                 p_block = &p_info->entry[igu_sb_id];
2090
2091                 if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
2092                     !p_block->is_pf ||
2093                     (p_block->status & ECORE_IGU_STATUS_DSB))
2094                         continue;
2095
2096                 ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
2097                                                   p_hwfn->hw_info.opaque_fid,
2098                                                   b_set);
2099         }
2100
2101         if (b_slowpath)
2102                 ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
2103                                                   p_info->igu_dsb_id,
2104                                                   p_hwfn->hw_info.opaque_fid,
2105                                                   b_set);
2106 }
2107
2108 int ecore_int_igu_reset_cam(struct ecore_hwfn *p_hwfn,
2109                             struct ecore_ptt *p_ptt)
2110 {
2111         struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2112         struct ecore_igu_block *p_block;
2113         int pf_sbs, vf_sbs;
2114         u16 igu_sb_id;
2115         u32 val, rval;
2116
2117         if (!RESC_NUM(p_hwfn, ECORE_SB)) {
2118                 /* We're using an old MFW - have to prevent any switching
2119                  * of SBs between PF and VFs as later driver wouldn't be
2120                  * able to tell which belongs to which.
2121                  */
2122                 p_info->b_allow_pf_vf_change = false;
2123         } else {
2124                 /* Use the numbers the MFW have provided -
2125                  * don't forget MFW accounts for the default SB as well.
2126                  */
2127                 p_info->b_allow_pf_vf_change = true;
2128
2129                 if (p_info->usage.cnt != RESC_NUM(p_hwfn, ECORE_SB) - 1) {
2130                         DP_INFO(p_hwfn,
2131                                 "MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
2132                                 RESC_NUM(p_hwfn, ECORE_SB) - 1,
2133                                 p_info->usage.cnt);
2134                         p_info->usage.cnt = RESC_NUM(p_hwfn, ECORE_SB) - 1;
2135                 }
2136
2137                 /* TODO - how do we learn about VF SBs from MFW? */
2138                 if (IS_PF_SRIOV(p_hwfn)) {
2139                         u16 vfs = p_hwfn->p_dev->p_iov_info->total_vfs;
2140
2141                         if (vfs != p_info->usage.iov_cnt)
2142                                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2143                                            "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
2144                                            p_info->usage.iov_cnt, vfs);
2145
2146                         /* At this point we know how many SBs we have totally
2147                          * in IGU + number of PF SBs. So we can validate that
2148                          * we'd have sufficient for VF.
2149                          */
2150                         if (vfs > p_info->usage.free_cnt +
2151                                   p_info->usage.free_cnt_iov -
2152                                   p_info->usage.cnt) {
2153                                 DP_NOTICE(p_hwfn, true,
2154                                           "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
2155                                           p_info->usage.free_cnt +
2156                                           p_info->usage.free_cnt_iov,
2157                                           p_info->usage.cnt, vfs);
2158                                 return ECORE_INVAL;
2159                         }
2160
2161                         /* Currently cap the number of VFs SBs by the
2162                          * number of VFs.
2163                          */
2164                         p_info->usage.iov_cnt = vfs;
2165                 }
2166         }
2167
2168         /* Mark all SBs as free, now in the right PF/VFs division */
2169         p_info->usage.free_cnt = p_info->usage.cnt;
2170         p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
2171         p_info->usage.orig = p_info->usage.cnt;
2172         p_info->usage.iov_orig = p_info->usage.iov_cnt;
2173
2174         /* We now proceed to re-configure the IGU cam to reflect the initial
2175          * configuration. We can start with the Default SB.
2176          */
2177         pf_sbs = p_info->usage.cnt;
2178         vf_sbs = p_info->usage.iov_cnt;
2179
2180         for (igu_sb_id = p_info->igu_dsb_id;
2181              igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2182              igu_sb_id++) {
2183                 p_block = &p_info->entry[igu_sb_id];
2184                 val = 0;
2185
2186                 if (!(p_block->status & ECORE_IGU_STATUS_VALID))
2187                         continue;
2188
2189                 if (p_block->status & ECORE_IGU_STATUS_DSB) {
2190                         p_block->function_id = p_hwfn->rel_pf_id;
2191                         p_block->is_pf = 1;
2192                         p_block->vector_number = 0;
2193                         p_block->status = ECORE_IGU_STATUS_VALID |
2194                                           ECORE_IGU_STATUS_PF |
2195                                           ECORE_IGU_STATUS_DSB;
2196                 } else if (pf_sbs) {
2197                         pf_sbs--;
2198                         p_block->function_id = p_hwfn->rel_pf_id;
2199                         p_block->is_pf = 1;
2200                         p_block->vector_number = p_info->usage.cnt - pf_sbs;
2201                         p_block->status = ECORE_IGU_STATUS_VALID |
2202                                           ECORE_IGU_STATUS_PF |
2203                                           ECORE_IGU_STATUS_FREE;
2204                 } else if (vf_sbs) {
2205                         p_block->function_id =
2206                                 p_hwfn->p_dev->p_iov_info->first_vf_in_pf +
2207                                 p_info->usage.iov_cnt - vf_sbs;
2208                         p_block->is_pf = 0;
2209                         p_block->vector_number = 0;
2210                         p_block->status = ECORE_IGU_STATUS_VALID |
2211                                           ECORE_IGU_STATUS_FREE;
2212                         vf_sbs--;
2213                 } else {
2214                         p_block->function_id = 0;
2215                         p_block->is_pf = 0;
2216                         p_block->vector_number = 0;
2217                 }
2218
2219                 SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2220                           p_block->function_id);
2221                 SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2222                 SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2223                           p_block->vector_number);
2224
2225                 /* VF entries would be enabled when VF is initializaed */
2226                 SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2227
2228                 rval = ecore_rd(p_hwfn, p_ptt,
2229                                 IGU_REG_MAPPING_MEMORY +
2230                                 sizeof(u32) * igu_sb_id);
2231
2232                 if (rval != val) {
2233                         ecore_wr(p_hwfn, p_ptt,
2234                                  IGU_REG_MAPPING_MEMORY +
2235                                  sizeof(u32) * igu_sb_id,
2236                                  val);
2237
2238                         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2239                                    "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
2240                                    igu_sb_id, p_block->function_id,
2241                                    p_block->is_pf, p_block->vector_number,
2242                                    rval, val);
2243                 }
2244         }
2245
2246         return 0;
2247 }
2248
2249 int ecore_int_igu_reset_cam_default(struct ecore_hwfn *p_hwfn,
2250                                     struct ecore_ptt *p_ptt)
2251 {
2252         struct ecore_sb_cnt_info *p_cnt = &p_hwfn->hw_info.p_igu_info->usage;
2253
2254         /* Return all the usage indications to default prior to the reset;
2255          * The reset expects the !orig to reflect the initial status of the
2256          * SBs, and would re-calculate the originals based on those.
2257          */
2258         p_cnt->cnt = p_cnt->orig;
2259         p_cnt->free_cnt = p_cnt->orig;
2260         p_cnt->iov_cnt = p_cnt->iov_orig;
2261         p_cnt->free_cnt_iov = p_cnt->iov_orig;
2262         p_cnt->orig = 0;
2263         p_cnt->iov_orig = 0;
2264
2265         /* TODO - we probably need to re-configure the CAU as well... */
2266         return ecore_int_igu_reset_cam(p_hwfn, p_ptt);
2267 }
2268
2269 static void ecore_int_igu_read_cam_block(struct ecore_hwfn *p_hwfn,
2270                                          struct ecore_ptt *p_ptt,
2271                                          u16 igu_sb_id)
2272 {
2273         u32 val = ecore_rd(p_hwfn, p_ptt,
2274                            IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2275         struct ecore_igu_block *p_block;
2276
2277         p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2278
2279         /* Fill the block information */
2280         p_block->function_id = GET_FIELD(val,
2281                                          IGU_MAPPING_LINE_FUNCTION_NUMBER);
2282         p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
2283         p_block->vector_number = GET_FIELD(val,
2284                                            IGU_MAPPING_LINE_VECTOR_NUMBER);
2285         p_block->igu_sb_id = igu_sb_id;
2286 }
2287
2288 enum _ecore_status_t ecore_int_igu_read_cam(struct ecore_hwfn *p_hwfn,
2289                                             struct ecore_ptt *p_ptt)
2290 {
2291         struct ecore_igu_info *p_igu_info;
2292         struct ecore_igu_block *p_block;
2293         u32 min_vf = 0, max_vf = 0;
2294         u16 igu_sb_id;
2295
2296         p_hwfn->hw_info.p_igu_info = OSAL_ZALLOC(p_hwfn->p_dev,
2297                                                  GFP_KERNEL,
2298                                                  sizeof(*p_igu_info));
2299         if (!p_hwfn->hw_info.p_igu_info)
2300                 return ECORE_NOMEM;
2301         p_igu_info = p_hwfn->hw_info.p_igu_info;
2302
2303         /* Distinguish between existent and onn-existent default SB */
2304         p_igu_info->igu_dsb_id = ECORE_SB_INVALID_IDX;
2305
2306         /* Find the range of VF ids whose SB belong to this PF */
2307         if (p_hwfn->p_dev->p_iov_info) {
2308                 struct ecore_hw_sriov_info *p_iov = p_hwfn->p_dev->p_iov_info;
2309
2310                 min_vf = p_iov->first_vf_in_pf;
2311                 max_vf = p_iov->first_vf_in_pf + p_iov->total_vfs;
2312         }
2313
2314         for (igu_sb_id = 0;
2315              igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2316              igu_sb_id++) {
2317                 /* Read current entry; Notice it might not belong to this PF */
2318                 ecore_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
2319                 p_block = &p_igu_info->entry[igu_sb_id];
2320
2321                 if ((p_block->is_pf) &&
2322                     (p_block->function_id == p_hwfn->rel_pf_id)) {
2323                         p_block->status = ECORE_IGU_STATUS_PF |
2324                                           ECORE_IGU_STATUS_VALID |
2325                                           ECORE_IGU_STATUS_FREE;
2326
2327                         if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2328                                 p_igu_info->usage.cnt++;
2329                 } else if (!(p_block->is_pf) &&
2330                            (p_block->function_id >= min_vf) &&
2331                            (p_block->function_id < max_vf)) {
2332                         /* Available for VFs of this PF */
2333                         p_block->status = ECORE_IGU_STATUS_VALID |
2334                                           ECORE_IGU_STATUS_FREE;
2335
2336                         if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2337                                 p_igu_info->usage.iov_cnt++;
2338                 }
2339
2340                 /* Mark the First entry belonging to the PF or its VFs
2341                  * as the default SB [we'll reset IGU prior to first usage].
2342                  */
2343                 if ((p_block->status & ECORE_IGU_STATUS_VALID) &&
2344                     (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX)) {
2345                         p_igu_info->igu_dsb_id = igu_sb_id;
2346                         p_block->status |= ECORE_IGU_STATUS_DSB;
2347                 }
2348
2349                 /* While this isn't suitable for all clients, limit number
2350                  * of prints by having each PF print only its entries with the
2351                  * exception of PF0 which would print everything.
2352                  */
2353                 if ((p_block->status & ECORE_IGU_STATUS_VALID) ||
2354                     (p_hwfn->abs_pf_id == 0))
2355                         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2356                                    "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2357                                    igu_sb_id, p_block->function_id,
2358                                    p_block->is_pf, p_block->vector_number);
2359         }
2360
2361         if (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX) {
2362                 DP_NOTICE(p_hwfn, true,
2363                           "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
2364                           p_igu_info->igu_dsb_id);
2365                 return ECORE_INVAL;
2366         }
2367
2368         /* All non default SB are considered free at this point */
2369         p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
2370         p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
2371
2372         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2373                    "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
2374                    p_igu_info->igu_dsb_id, p_igu_info->usage.cnt,
2375                    p_igu_info->usage.iov_cnt);
2376
2377         return ECORE_SUCCESS;
2378 }
2379
2380 enum _ecore_status_t
2381 ecore_int_igu_relocate_sb(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
2382                           u16 sb_id, bool b_to_vf)
2383 {
2384         struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2385         struct ecore_igu_block *p_block = OSAL_NULL;
2386         u16 igu_sb_id = 0, vf_num = 0;
2387         u32 val = 0;
2388
2389         if (IS_VF(p_hwfn->p_dev) || !IS_PF_SRIOV(p_hwfn))
2390                 return ECORE_INVAL;
2391
2392         if (sb_id == ECORE_SP_SB_ID)
2393                 return ECORE_INVAL;
2394
2395         if (!p_info->b_allow_pf_vf_change) {
2396                 DP_INFO(p_hwfn, "Can't relocate SBs as MFW is too old.\n");
2397                 return ECORE_INVAL;
2398         }
2399
2400         /* If we're moving a SB from PF to VF, the client had to specify
2401          * which vector it wants to move.
2402          */
2403         if (b_to_vf) {
2404                 igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
2405                 if (igu_sb_id == ECORE_SB_INVALID_IDX)
2406                         return ECORE_INVAL;
2407         }
2408
2409         /* If we're moving a SB from VF to PF, need to validate there isn't
2410          * already a line configured for that vector.
2411          */
2412         if (!b_to_vf) {
2413                 if (ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1) !=
2414                     ECORE_SB_INVALID_IDX)
2415                         return ECORE_INVAL;
2416         }
2417
2418         /* We need to validate that the SB can actually be relocated.
2419          * This would also handle the previous case where we've explicitly
2420          * stated which IGU SB needs to move.
2421          */
2422         for (; igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2423              igu_sb_id++) {
2424                 p_block = &p_info->entry[igu_sb_id];
2425
2426                 if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
2427                     !(p_block->status & ECORE_IGU_STATUS_FREE) ||
2428                     (!!(p_block->status & ECORE_IGU_STATUS_PF) != b_to_vf)) {
2429                         if (b_to_vf)
2430                                 return ECORE_INVAL;
2431                         else
2432                                 continue;
2433                 }
2434
2435                 break;
2436         }
2437
2438         if (igu_sb_id == ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev)) {
2439                 DP_VERBOSE(p_hwfn, (ECORE_MSG_INTR | ECORE_MSG_IOV),
2440                            "Failed to find a free SB to move\n");
2441                 return ECORE_INVAL;
2442         }
2443
2444         /* At this point, p_block points to the SB we want to relocate */
2445         if (b_to_vf) {
2446                 p_block->status &= ~ECORE_IGU_STATUS_PF;
2447
2448                 /* It doesn't matter which VF number we choose, since we're
2449                  * going to disable the line; But let's keep it in range.
2450                  */
2451                 vf_num = (u16)p_hwfn->p_dev->p_iov_info->first_vf_in_pf;
2452
2453                 p_block->function_id = (u8)vf_num;
2454                 p_block->is_pf = 0;
2455                 p_block->vector_number = 0;
2456
2457                 p_info->usage.cnt--;
2458                 p_info->usage.free_cnt--;
2459                 p_info->usage.iov_cnt++;
2460                 p_info->usage.free_cnt_iov++;
2461
2462                 /* TODO - if SBs aren't really the limiting factor,
2463                  * then it might not be accurate [in the since that
2464                  * we might not need decrement the feature].
2465                  */
2466                 p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]--;
2467                 p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]++;
2468         } else {
2469                 p_block->status |= ECORE_IGU_STATUS_PF;
2470                 p_block->function_id = p_hwfn->rel_pf_id;
2471                 p_block->is_pf = 1;
2472                 p_block->vector_number = sb_id + 1;
2473
2474                 p_info->usage.cnt++;
2475                 p_info->usage.free_cnt++;
2476                 p_info->usage.iov_cnt--;
2477                 p_info->usage.free_cnt_iov--;
2478
2479                 p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]++;
2480                 p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]--;
2481         }
2482
2483         /* Update the IGU and CAU with the new configuration */
2484         SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2485                   p_block->function_id);
2486         SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2487         SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2488         SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2489                   p_block->vector_number);
2490
2491         ecore_wr(p_hwfn, p_ptt,
2492                  IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id,
2493                  val);
2494
2495         ecore_int_cau_conf_sb(p_hwfn, p_ptt, 0,
2496                               igu_sb_id, vf_num,
2497                               p_block->is_pf ? 0 : 1);
2498
2499         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2500                    "Relocation: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2501                    igu_sb_id, p_block->function_id,
2502                    p_block->is_pf, p_block->vector_number);
2503
2504         return ECORE_SUCCESS;
2505 }
2506
2507 /**
2508  * @brief Initialize igu runtime registers
2509  *
2510  * @param p_hwfn
2511  */
2512 void ecore_int_igu_init_rt(struct ecore_hwfn *p_hwfn)
2513 {
2514         u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
2515
2516         STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
2517 }
2518
2519 #define LSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_LSB_UPPER - \
2520                           IGU_CMD_INT_ACK_BASE)
2521 #define MSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_MSB_UPPER - \
2522                           IGU_CMD_INT_ACK_BASE)
2523 u64 ecore_int_igu_read_sisr_reg(struct ecore_hwfn *p_hwfn)
2524 {
2525         u32 intr_status_hi = 0, intr_status_lo = 0;
2526         u64 intr_status = 0;
2527
2528         intr_status_lo = REG_RD(p_hwfn,
2529                                 GTT_BAR0_MAP_REG_IGU_CMD +
2530                                 LSB_IGU_CMD_ADDR * 8);
2531         intr_status_hi = REG_RD(p_hwfn,
2532                                 GTT_BAR0_MAP_REG_IGU_CMD +
2533                                 MSB_IGU_CMD_ADDR * 8);
2534         intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
2535
2536         return intr_status;
2537 }
2538
2539 static void ecore_int_sp_dpc_setup(struct ecore_hwfn *p_hwfn)
2540 {
2541         OSAL_DPC_INIT(p_hwfn->sp_dpc, p_hwfn);
2542         p_hwfn->b_sp_dpc_enabled = true;
2543 }
2544
2545 static enum _ecore_status_t ecore_int_sp_dpc_alloc(struct ecore_hwfn *p_hwfn)
2546 {
2547         p_hwfn->sp_dpc = OSAL_DPC_ALLOC(p_hwfn);
2548         if (!p_hwfn->sp_dpc)
2549                 return ECORE_NOMEM;
2550
2551         return ECORE_SUCCESS;
2552 }
2553
2554 static void ecore_int_sp_dpc_free(struct ecore_hwfn *p_hwfn)
2555 {
2556         OSAL_FREE(p_hwfn->p_dev, p_hwfn->sp_dpc);
2557         p_hwfn->sp_dpc = OSAL_NULL;
2558 }
2559
2560 enum _ecore_status_t ecore_int_alloc(struct ecore_hwfn *p_hwfn,
2561                                      struct ecore_ptt *p_ptt)
2562 {
2563         enum _ecore_status_t rc = ECORE_SUCCESS;
2564
2565         rc = ecore_int_sp_dpc_alloc(p_hwfn);
2566         if (rc != ECORE_SUCCESS) {
2567                 DP_ERR(p_hwfn->p_dev, "Failed to allocate sp dpc mem\n");
2568                 return rc;
2569         }
2570
2571         rc = ecore_int_sp_sb_alloc(p_hwfn, p_ptt);
2572         if (rc != ECORE_SUCCESS) {
2573                 DP_ERR(p_hwfn->p_dev, "Failed to allocate sp sb mem\n");
2574                 return rc;
2575         }
2576
2577         rc = ecore_int_sb_attn_alloc(p_hwfn, p_ptt);
2578         if (rc != ECORE_SUCCESS)
2579                 DP_ERR(p_hwfn->p_dev, "Failed to allocate sb attn mem\n");
2580
2581         return rc;
2582 }
2583
2584 void ecore_int_free(struct ecore_hwfn *p_hwfn)
2585 {
2586         ecore_int_sp_sb_free(p_hwfn);
2587         ecore_int_sb_attn_free(p_hwfn);
2588         ecore_int_sp_dpc_free(p_hwfn);
2589 }
2590
2591 void ecore_int_setup(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
2592 {
2593         if (!p_hwfn || !p_hwfn->p_sp_sb || !p_hwfn->p_sb_attn)
2594                 return;
2595
2596         ecore_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2597         ecore_int_sb_attn_setup(p_hwfn, p_ptt);
2598         ecore_int_sp_dpc_setup(p_hwfn);
2599 }
2600
2601 void ecore_int_get_num_sbs(struct ecore_hwfn *p_hwfn,
2602                            struct ecore_sb_cnt_info *p_sb_cnt_info)
2603 {
2604         struct ecore_igu_info *p_igu_info = p_hwfn->hw_info.p_igu_info;
2605
2606         if (!p_igu_info || !p_sb_cnt_info)
2607                 return;
2608
2609         OSAL_MEMCPY(p_sb_cnt_info, &p_igu_info->usage,
2610                     sizeof(*p_sb_cnt_info));
2611 }
2612
2613 void ecore_int_disable_post_isr_release(struct ecore_dev *p_dev)
2614 {
2615         int i;
2616
2617         for_each_hwfn(p_dev, i)
2618                 p_dev->hwfns[i].b_int_requested = false;
2619 }
2620
2621 void ecore_int_attn_clr_enable(struct ecore_dev *p_dev, bool clr_enable)
2622 {
2623         p_dev->attn_clr_en = clr_enable;
2624 }
2625
2626 enum _ecore_status_t ecore_int_set_timer_res(struct ecore_hwfn *p_hwfn,
2627                                              struct ecore_ptt *p_ptt,
2628                                              u8 timer_res, u16 sb_id, bool tx)
2629 {
2630         struct cau_sb_entry sb_entry;
2631         enum _ecore_status_t rc;
2632
2633         if (!p_hwfn->hw_init_done) {
2634                 DP_ERR(p_hwfn, "hardware not initialized yet\n");
2635                 return ECORE_INVAL;
2636         }
2637
2638         rc = ecore_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2639                                  sb_id * sizeof(u64),
2640                                  (u64)(osal_uintptr_t)&sb_entry, 2, 0);
2641         if (rc != ECORE_SUCCESS) {
2642                 DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2643                 return rc;
2644         }
2645
2646         if (tx)
2647                 SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2648         else
2649                 SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2650
2651         rc = ecore_dmae_host2grc(p_hwfn, p_ptt,
2652                                  (u64)(osal_uintptr_t)&sb_entry,
2653                                  CAU_REG_SB_VAR_MEMORY +
2654                                  sb_id * sizeof(u64), 2, 0);
2655         if (rc != ECORE_SUCCESS) {
2656                 DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2657                 return rc;
2658         }
2659
2660         return rc;
2661 }
2662
2663 enum _ecore_status_t ecore_int_get_sb_dbg(struct ecore_hwfn *p_hwfn,
2664                                           struct ecore_ptt *p_ptt,
2665                                           struct ecore_sb_info *p_sb,
2666                                           struct ecore_sb_info_dbg *p_info)
2667 {
2668         u16 sbid = p_sb->igu_sb_id;
2669         int i;
2670
2671         if (IS_VF(p_hwfn->p_dev))
2672                 return ECORE_INVAL;
2673
2674         if (sbid > NUM_OF_SBS(p_hwfn->p_dev))
2675                 return ECORE_INVAL;
2676
2677         p_info->igu_prod = ecore_rd(p_hwfn, p_ptt,
2678                                     IGU_REG_PRODUCER_MEMORY + sbid * 4);
2679         p_info->igu_cons = ecore_rd(p_hwfn, p_ptt,
2680                                     IGU_REG_CONSUMER_MEM + sbid * 4);
2681
2682         for (i = 0; i < PIS_PER_SB_E4; i++)
2683                 p_info->pi[i] = (u16)ecore_rd(p_hwfn, p_ptt,
2684                                               CAU_REG_PI_MEMORY +
2685                                               sbid * 4 * PIS_PER_SB_E4 + i * 4);
2686
2687         return ECORE_SUCCESS;
2688 }