]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/re/if_re.c
Make sure to return the result of meida change request.
[FreeBSD/FreeBSD.git] / sys / dev / re / if_re.c
1 /*-
2  * Copyright (c) 1997, 1998-2003
3  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *      This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35
36 /*
37  * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43
44 /*
45  * This driver is designed to support RealTek's next generation of
46  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47  * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
48  * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
49  *
50  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51  * with the older 8139 family, however it also supports a special
52  * C+ mode of operation that provides several new performance enhancing
53  * features. These include:
54  *
55  *      o Descriptor based DMA mechanism. Each descriptor represents
56  *        a single packet fragment. Data buffers may be aligned on
57  *        any byte boundary.
58  *
59  *      o 64-bit DMA
60  *
61  *      o TCP/IP checksum offload for both RX and TX
62  *
63  *      o High and normal priority transmit DMA rings
64  *
65  *      o VLAN tag insertion and extraction
66  *
67  *      o TCP large send (segmentation offload)
68  *
69  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70  * programming API is fairly straightforward. The RX filtering, EEPROM
71  * access and PHY access is the same as it is on the older 8139 series
72  * chips.
73  *
74  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75  * same programming API and feature set as the 8139C+ with the following
76  * differences and additions:
77  *
78  *      o 1000Mbps mode
79  *
80  *      o Jumbo frames
81  *
82  *      o GMII and TBI ports/registers for interfacing with copper
83  *        or fiber PHYs
84  *
85  *      o RX and TX DMA rings can have up to 1024 descriptors
86  *        (the 8139C+ allows a maximum of 64)
87  *
88  *      o Slight differences in register layout from the 8139C+
89  *
90  * The TX start and timer interrupt registers are at different locations
91  * on the 8169 than they are on the 8139C+. Also, the status word in the
92  * RX descriptor has a slightly different bit layout. The 8169 does not
93  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94  * copper gigE PHY.
95  *
96  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97  * (the 'S' stands for 'single-chip'). These devices have the same
98  * programming API as the older 8169, but also have some vendor-specific
99  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101  *
102  * This driver takes advantage of the RX and TX checksum offload and
103  * VLAN tag insertion/extraction features. It also implements TX
104  * interrupt moderation using the timer interrupt registers, which
105  * significantly reduces TX interrupt load. There is also support
106  * for jumbo frames, however the 8169/8169S/8110S can not transmit
107  * jumbo frames larger than 7440, so the max MTU possible with this
108  * driver is 7422 bytes.
109  */
110
111 #ifdef HAVE_KERNEL_OPTION_HEADERS
112 #include "opt_device_polling.h"
113 #endif
114
115 #include <sys/param.h>
116 #include <sys/endian.h>
117 #include <sys/systm.h>
118 #include <sys/sockio.h>
119 #include <sys/mbuf.h>
120 #include <sys/malloc.h>
121 #include <sys/module.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/lock.h>
125 #include <sys/mutex.h>
126 #include <sys/taskqueue.h>
127
128 #include <net/if.h>
129 #include <net/if_arp.h>
130 #include <net/ethernet.h>
131 #include <net/if_dl.h>
132 #include <net/if_media.h>
133 #include <net/if_types.h>
134 #include <net/if_vlan_var.h>
135
136 #include <net/bpf.h>
137
138 #include <machine/bus.h>
139 #include <machine/resource.h>
140 #include <sys/bus.h>
141 #include <sys/rman.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145
146 #include <dev/pci/pcireg.h>
147 #include <dev/pci/pcivar.h>
148
149 #include <pci/if_rlreg.h>
150
151 MODULE_DEPEND(re, pci, 1, 1, 1);
152 MODULE_DEPEND(re, ether, 1, 1, 1);
153 MODULE_DEPEND(re, miibus, 1, 1, 1);
154
155 /* "device miibus" required.  See GENERIC if you get errors here. */
156 #include "miibus_if.h"
157
158 /* Tunables. */
159 static int msi_disable = 1;
160 TUNABLE_INT("hw.re.msi_disable", &msi_disable);
161
162 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
163
164 /*
165  * Various supported device vendors/types and their names.
166  */
167 static struct rl_type re_devs[] = {
168         { DLINK_VENDORID, DLINK_DEVICEID_528T, 0,
169             "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
170         { RT_VENDORID, RT_DEVICEID_8139, 0,
171             "RealTek 8139C+ 10/100BaseTX" },
172         { RT_VENDORID, RT_DEVICEID_8101E, 0,
173             "RealTek 8101E/8102E/8102EL PCIe 10/100baseTX" },
174         { RT_VENDORID, RT_DEVICEID_8168, 0,
175             "RealTek 8168/8168B/8168C/8168CP/8168D/8111B/8111C/8111CP PCIe "
176             "Gigabit Ethernet" },
177         { RT_VENDORID, RT_DEVICEID_8169, 0,
178             "RealTek 8169/8169S/8169SB(L)/8110S/8110SB(L) Gigabit Ethernet" },
179         { RT_VENDORID, RT_DEVICEID_8169SC, 0,
180             "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
181         { COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, 0,
182             "Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
183         { LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, 0,
184             "Linksys EG1032 (RTL8169S) Gigabit Ethernet" },
185         { USR_VENDORID, USR_DEVICEID_997902, 0,
186             "US Robotics 997902 (RTL8169S) Gigabit Ethernet" }
187 };
188
189 static struct rl_hwrev re_hwrevs[] = {
190         { RL_HWREV_8139, RL_8139,  "" },
191         { RL_HWREV_8139A, RL_8139, "A" },
192         { RL_HWREV_8139AG, RL_8139, "A-G" },
193         { RL_HWREV_8139B, RL_8139, "B" },
194         { RL_HWREV_8130, RL_8139, "8130" },
195         { RL_HWREV_8139C, RL_8139, "C" },
196         { RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" },
197         { RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"},
198         { RL_HWREV_8168_SPIN1, RL_8169, "8168"},
199         { RL_HWREV_8169, RL_8169, "8169"},
200         { RL_HWREV_8169S, RL_8169, "8169S"},
201         { RL_HWREV_8110S, RL_8169, "8110S"},
202         { RL_HWREV_8169_8110SB, RL_8169, "8169SB"},
203         { RL_HWREV_8169_8110SC, RL_8169, "8169SC"},
204         { RL_HWREV_8169_8110SBL, RL_8169, "8169SBL"},
205         { RL_HWREV_8100, RL_8139, "8100"},
206         { RL_HWREV_8101, RL_8139, "8101"},
207         { RL_HWREV_8100E, RL_8169, "8100E"},
208         { RL_HWREV_8101E, RL_8169, "8101E"},
209         { RL_HWREV_8102E, RL_8169, "8102E"},
210         { RL_HWREV_8102EL, RL_8169, "8102EL"},
211         { RL_HWREV_8168_SPIN2, RL_8169, "8168"},
212         { RL_HWREV_8168_SPIN3, RL_8169, "8168"},
213         { RL_HWREV_8168C, RL_8169, "8168C/8111C"},
214         { RL_HWREV_8168C_SPIN2, RL_8169, "8168C/8111C"},
215         { RL_HWREV_8168CP, RL_8169, "8168CP/8111CP"},
216         { RL_HWREV_8168D, RL_8169, "8168D"},
217         { 0, 0, NULL }
218 };
219
220 static int re_probe             (device_t);
221 static int re_attach            (device_t);
222 static int re_detach            (device_t);
223
224 static int re_encap             (struct rl_softc *, struct mbuf **);
225
226 static void re_dma_map_addr     (void *, bus_dma_segment_t *, int, int);
227 static int re_allocmem          (device_t, struct rl_softc *);
228 static __inline void re_discard_rxbuf
229                                 (struct rl_softc *, int);
230 static int re_newbuf            (struct rl_softc *, int);
231 static int re_rx_list_init      (struct rl_softc *);
232 static int re_tx_list_init      (struct rl_softc *);
233 #ifdef RE_FIXUP_RX
234 static __inline void re_fixup_rx
235                                 (struct mbuf *);
236 #endif
237 static int re_rxeof             (struct rl_softc *);
238 static void re_txeof            (struct rl_softc *);
239 #ifdef DEVICE_POLLING
240 static void re_poll             (struct ifnet *, enum poll_cmd, int);
241 static void re_poll_locked      (struct ifnet *, enum poll_cmd, int);
242 #endif
243 static int re_intr              (void *);
244 static void re_tick             (void *);
245 static void re_tx_task          (void *, int);
246 static void re_int_task         (void *, int);
247 static void re_start            (struct ifnet *);
248 static int re_ioctl             (struct ifnet *, u_long, caddr_t);
249 static void re_init             (void *);
250 static void re_init_locked      (struct rl_softc *);
251 static void re_stop             (struct rl_softc *);
252 static void re_watchdog         (struct rl_softc *);
253 static int re_suspend           (device_t);
254 static int re_resume            (device_t);
255 static int re_shutdown          (device_t);
256 static int re_ifmedia_upd       (struct ifnet *);
257 static void re_ifmedia_sts      (struct ifnet *, struct ifmediareq *);
258
259 static void re_eeprom_putbyte   (struct rl_softc *, int);
260 static void re_eeprom_getword   (struct rl_softc *, int, u_int16_t *);
261 static void re_read_eeprom      (struct rl_softc *, caddr_t, int, int);
262 static int re_gmii_readreg      (device_t, int, int);
263 static int re_gmii_writereg     (device_t, int, int, int);
264
265 static int re_miibus_readreg    (device_t, int, int);
266 static int re_miibus_writereg   (device_t, int, int, int);
267 static void re_miibus_statchg   (device_t);
268
269 static void re_setmulti         (struct rl_softc *);
270 static void re_reset            (struct rl_softc *);
271 static void re_setwol           (struct rl_softc *);
272 static void re_clrwol           (struct rl_softc *);
273
274 #ifdef RE_DIAG
275 static int re_diag              (struct rl_softc *);
276 #endif
277
278 static device_method_t re_methods[] = {
279         /* Device interface */
280         DEVMETHOD(device_probe,         re_probe),
281         DEVMETHOD(device_attach,        re_attach),
282         DEVMETHOD(device_detach,        re_detach),
283         DEVMETHOD(device_suspend,       re_suspend),
284         DEVMETHOD(device_resume,        re_resume),
285         DEVMETHOD(device_shutdown,      re_shutdown),
286
287         /* bus interface */
288         DEVMETHOD(bus_print_child,      bus_generic_print_child),
289         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
290
291         /* MII interface */
292         DEVMETHOD(miibus_readreg,       re_miibus_readreg),
293         DEVMETHOD(miibus_writereg,      re_miibus_writereg),
294         DEVMETHOD(miibus_statchg,       re_miibus_statchg),
295
296         { 0, 0 }
297 };
298
299 static driver_t re_driver = {
300         "re",
301         re_methods,
302         sizeof(struct rl_softc)
303 };
304
305 static devclass_t re_devclass;
306
307 DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
308 DRIVER_MODULE(re, cardbus, re_driver, re_devclass, 0, 0);
309 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
310
311 #define EE_SET(x)                                       \
312         CSR_WRITE_1(sc, RL_EECMD,                       \
313                 CSR_READ_1(sc, RL_EECMD) | x)
314
315 #define EE_CLR(x)                                       \
316         CSR_WRITE_1(sc, RL_EECMD,                       \
317                 CSR_READ_1(sc, RL_EECMD) & ~x)
318
319 /*
320  * Send a read command and address to the EEPROM, check for ACK.
321  */
322 static void
323 re_eeprom_putbyte(struct rl_softc *sc, int addr)
324 {
325         int                     d, i;
326
327         d = addr | (RL_9346_READ << sc->rl_eewidth);
328
329         /*
330          * Feed in each bit and strobe the clock.
331          */
332
333         for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) {
334                 if (d & i) {
335                         EE_SET(RL_EE_DATAIN);
336                 } else {
337                         EE_CLR(RL_EE_DATAIN);
338                 }
339                 DELAY(100);
340                 EE_SET(RL_EE_CLK);
341                 DELAY(150);
342                 EE_CLR(RL_EE_CLK);
343                 DELAY(100);
344         }
345 }
346
347 /*
348  * Read a word of data stored in the EEPROM at address 'addr.'
349  */
350 static void
351 re_eeprom_getword(struct rl_softc *sc, int addr, u_int16_t *dest)
352 {
353         int                     i;
354         u_int16_t               word = 0;
355
356         /*
357          * Send address of word we want to read.
358          */
359         re_eeprom_putbyte(sc, addr);
360
361         /*
362          * Start reading bits from EEPROM.
363          */
364         for (i = 0x8000; i; i >>= 1) {
365                 EE_SET(RL_EE_CLK);
366                 DELAY(100);
367                 if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
368                         word |= i;
369                 EE_CLR(RL_EE_CLK);
370                 DELAY(100);
371         }
372
373         *dest = word;
374 }
375
376 /*
377  * Read a sequence of words from the EEPROM.
378  */
379 static void
380 re_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt)
381 {
382         int                     i;
383         u_int16_t               word = 0, *ptr;
384
385         CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
386
387         DELAY(100);
388
389         for (i = 0; i < cnt; i++) {
390                 CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL);
391                 re_eeprom_getword(sc, off + i, &word);
392                 CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL);
393                 ptr = (u_int16_t *)(dest + (i * 2));
394                 *ptr = word;
395         }
396
397         CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
398 }
399
400 static int
401 re_gmii_readreg(device_t dev, int phy, int reg)
402 {
403         struct rl_softc         *sc;
404         u_int32_t               rval;
405         int                     i;
406
407         if (phy != 1)
408                 return (0);
409
410         sc = device_get_softc(dev);
411
412         /* Let the rgephy driver read the GMEDIASTAT register */
413
414         if (reg == RL_GMEDIASTAT) {
415                 rval = CSR_READ_1(sc, RL_GMEDIASTAT);
416                 return (rval);
417         }
418
419         CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
420         DELAY(1000);
421
422         for (i = 0; i < RL_TIMEOUT; i++) {
423                 rval = CSR_READ_4(sc, RL_PHYAR);
424                 if (rval & RL_PHYAR_BUSY)
425                         break;
426                 DELAY(100);
427         }
428
429         if (i == RL_TIMEOUT) {
430                 device_printf(sc->rl_dev, "PHY read failed\n");
431                 return (0);
432         }
433
434         return (rval & RL_PHYAR_PHYDATA);
435 }
436
437 static int
438 re_gmii_writereg(device_t dev, int phy, int reg, int data)
439 {
440         struct rl_softc         *sc;
441         u_int32_t               rval;
442         int                     i;
443
444         sc = device_get_softc(dev);
445
446         CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
447             (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
448         DELAY(1000);
449
450         for (i = 0; i < RL_TIMEOUT; i++) {
451                 rval = CSR_READ_4(sc, RL_PHYAR);
452                 if (!(rval & RL_PHYAR_BUSY))
453                         break;
454                 DELAY(100);
455         }
456
457         if (i == RL_TIMEOUT) {
458                 device_printf(sc->rl_dev, "PHY write failed\n");
459                 return (0);
460         }
461
462         return (0);
463 }
464
465 static int
466 re_miibus_readreg(device_t dev, int phy, int reg)
467 {
468         struct rl_softc         *sc;
469         u_int16_t               rval = 0;
470         u_int16_t               re8139_reg = 0;
471
472         sc = device_get_softc(dev);
473
474         if (sc->rl_type == RL_8169) {
475                 rval = re_gmii_readreg(dev, phy, reg);
476                 return (rval);
477         }
478
479         /* Pretend the internal PHY is only at address 0 */
480         if (phy) {
481                 return (0);
482         }
483         switch (reg) {
484         case MII_BMCR:
485                 re8139_reg = RL_BMCR;
486                 break;
487         case MII_BMSR:
488                 re8139_reg = RL_BMSR;
489                 break;
490         case MII_ANAR:
491                 re8139_reg = RL_ANAR;
492                 break;
493         case MII_ANER:
494                 re8139_reg = RL_ANER;
495                 break;
496         case MII_ANLPAR:
497                 re8139_reg = RL_LPAR;
498                 break;
499         case MII_PHYIDR1:
500         case MII_PHYIDR2:
501                 return (0);
502         /*
503          * Allow the rlphy driver to read the media status
504          * register. If we have a link partner which does not
505          * support NWAY, this is the register which will tell
506          * us the results of parallel detection.
507          */
508         case RL_MEDIASTAT:
509                 rval = CSR_READ_1(sc, RL_MEDIASTAT);
510                 return (rval);
511         default:
512                 device_printf(sc->rl_dev, "bad phy register\n");
513                 return (0);
514         }
515         rval = CSR_READ_2(sc, re8139_reg);
516         if (sc->rl_type == RL_8139CPLUS && re8139_reg == RL_BMCR) {
517                 /* 8139C+ has different bit layout. */
518                 rval &= ~(BMCR_LOOP | BMCR_ISO);
519         }
520         return (rval);
521 }
522
523 static int
524 re_miibus_writereg(device_t dev, int phy, int reg, int data)
525 {
526         struct rl_softc         *sc;
527         u_int16_t               re8139_reg = 0;
528         int                     rval = 0;
529
530         sc = device_get_softc(dev);
531
532         if (sc->rl_type == RL_8169) {
533                 rval = re_gmii_writereg(dev, phy, reg, data);
534                 return (rval);
535         }
536
537         /* Pretend the internal PHY is only at address 0 */
538         if (phy)
539                 return (0);
540
541         switch (reg) {
542         case MII_BMCR:
543                 re8139_reg = RL_BMCR;
544                 if (sc->rl_type == RL_8139CPLUS) {
545                         /* 8139C+ has different bit layout. */
546                         data &= ~(BMCR_LOOP | BMCR_ISO);
547                 }
548                 break;
549         case MII_BMSR:
550                 re8139_reg = RL_BMSR;
551                 break;
552         case MII_ANAR:
553                 re8139_reg = RL_ANAR;
554                 break;
555         case MII_ANER:
556                 re8139_reg = RL_ANER;
557                 break;
558         case MII_ANLPAR:
559                 re8139_reg = RL_LPAR;
560                 break;
561         case MII_PHYIDR1:
562         case MII_PHYIDR2:
563                 return (0);
564                 break;
565         default:
566                 device_printf(sc->rl_dev, "bad phy register\n");
567                 return (0);
568         }
569         CSR_WRITE_2(sc, re8139_reg, data);
570         return (0);
571 }
572
573 static void
574 re_miibus_statchg(device_t dev)
575 {
576
577 }
578
579 /*
580  * Program the 64-bit multicast hash filter.
581  */
582 static void
583 re_setmulti(struct rl_softc *sc)
584 {
585         struct ifnet            *ifp;
586         int                     h = 0;
587         u_int32_t               hashes[2] = { 0, 0 };
588         struct ifmultiaddr      *ifma;
589         u_int32_t               rxfilt;
590         int                     mcnt = 0;
591
592         RL_LOCK_ASSERT(sc);
593
594         ifp = sc->rl_ifp;
595
596
597         rxfilt = CSR_READ_4(sc, RL_RXCFG);
598         rxfilt &= ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_MULTI);
599         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
600                 if (ifp->if_flags & IFF_PROMISC)
601                         rxfilt |= RL_RXCFG_RX_ALLPHYS;
602                 /*
603                  * Unlike other hardwares, we have to explicitly set
604                  * RL_RXCFG_RX_MULTI to receive multicast frames in
605                  * promiscuous mode.
606                  */
607                 rxfilt |= RL_RXCFG_RX_MULTI;
608                 CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
609                 CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
610                 CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
611                 return;
612         }
613
614         /* first, zot all the existing hash bits */
615         CSR_WRITE_4(sc, RL_MAR0, 0);
616         CSR_WRITE_4(sc, RL_MAR4, 0);
617
618         /* now program new ones */
619         IF_ADDR_LOCK(ifp);
620         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
621                 if (ifma->ifma_addr->sa_family != AF_LINK)
622                         continue;
623                 h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
624                     ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
625                 if (h < 32)
626                         hashes[0] |= (1 << h);
627                 else
628                         hashes[1] |= (1 << (h - 32));
629                 mcnt++;
630         }
631         IF_ADDR_UNLOCK(ifp);
632
633         if (mcnt)
634                 rxfilt |= RL_RXCFG_RX_MULTI;
635         else
636                 rxfilt &= ~RL_RXCFG_RX_MULTI;
637
638         CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
639
640         /*
641          * For some unfathomable reason, RealTek decided to reverse
642          * the order of the multicast hash registers in the PCI Express
643          * parts. This means we have to write the hash pattern in reverse
644          * order for those devices.
645          */
646
647         if ((sc->rl_flags & RL_FLAG_INVMAR) != 0) {
648                 CSR_WRITE_4(sc, RL_MAR0, bswap32(hashes[1]));
649                 CSR_WRITE_4(sc, RL_MAR4, bswap32(hashes[0]));
650         } else {
651                 CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
652                 CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
653         }
654 }
655
656 static void
657 re_reset(struct rl_softc *sc)
658 {
659         int                     i;
660
661         RL_LOCK_ASSERT(sc);
662
663         CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
664
665         for (i = 0; i < RL_TIMEOUT; i++) {
666                 DELAY(10);
667                 if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
668                         break;
669         }
670         if (i == RL_TIMEOUT)
671                 device_printf(sc->rl_dev, "reset never completed!\n");
672
673         CSR_WRITE_1(sc, 0x82, 1);
674 }
675
676 #ifdef RE_DIAG
677
678 /*
679  * The following routine is designed to test for a defect on some
680  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
681  * lines connected to the bus, however for a 32-bit only card, they
682  * should be pulled high. The result of this defect is that the
683  * NIC will not work right if you plug it into a 64-bit slot: DMA
684  * operations will be done with 64-bit transfers, which will fail
685  * because the 64-bit data lines aren't connected.
686  *
687  * There's no way to work around this (short of talking a soldering
688  * iron to the board), however we can detect it. The method we use
689  * here is to put the NIC into digital loopback mode, set the receiver
690  * to promiscuous mode, and then try to send a frame. We then compare
691  * the frame data we sent to what was received. If the data matches,
692  * then the NIC is working correctly, otherwise we know the user has
693  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
694  * slot. In the latter case, there's no way the NIC can work correctly,
695  * so we print out a message on the console and abort the device attach.
696  */
697
698 static int
699 re_diag(struct rl_softc *sc)
700 {
701         struct ifnet            *ifp = sc->rl_ifp;
702         struct mbuf             *m0;
703         struct ether_header     *eh;
704         struct rl_desc          *cur_rx;
705         u_int16_t               status;
706         u_int32_t               rxstat;
707         int                     total_len, i, error = 0, phyaddr;
708         u_int8_t                dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
709         u_int8_t                src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
710
711         /* Allocate a single mbuf */
712         MGETHDR(m0, M_DONTWAIT, MT_DATA);
713         if (m0 == NULL)
714                 return (ENOBUFS);
715
716         RL_LOCK(sc);
717
718         /*
719          * Initialize the NIC in test mode. This sets the chip up
720          * so that it can send and receive frames, but performs the
721          * following special functions:
722          * - Puts receiver in promiscuous mode
723          * - Enables digital loopback mode
724          * - Leaves interrupts turned off
725          */
726
727         ifp->if_flags |= IFF_PROMISC;
728         sc->rl_testmode = 1;
729         re_reset(sc);
730         re_init_locked(sc);
731         sc->rl_flags |= RL_FLAG_LINK;
732         if (sc->rl_type == RL_8169)
733                 phyaddr = 1;
734         else
735                 phyaddr = 0;
736
737         re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET);
738         for (i = 0; i < RL_TIMEOUT; i++) {
739                 status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR);
740                 if (!(status & BMCR_RESET))
741                         break;
742         }
743
744         re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP);
745         CSR_WRITE_2(sc, RL_ISR, RL_INTRS);
746
747         DELAY(100000);
748
749         /* Put some data in the mbuf */
750
751         eh = mtod(m0, struct ether_header *);
752         bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
753         bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
754         eh->ether_type = htons(ETHERTYPE_IP);
755         m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
756
757         /*
758          * Queue the packet, start transmission.
759          * Note: IF_HANDOFF() ultimately calls re_start() for us.
760          */
761
762         CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
763         RL_UNLOCK(sc);
764         /* XXX: re_diag must not be called when in ALTQ mode */
765         IF_HANDOFF(&ifp->if_snd, m0, ifp);
766         RL_LOCK(sc);
767         m0 = NULL;
768
769         /* Wait for it to propagate through the chip */
770
771         DELAY(100000);
772         for (i = 0; i < RL_TIMEOUT; i++) {
773                 status = CSR_READ_2(sc, RL_ISR);
774                 CSR_WRITE_2(sc, RL_ISR, status);
775                 if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
776                     (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
777                         break;
778                 DELAY(10);
779         }
780
781         if (i == RL_TIMEOUT) {
782                 device_printf(sc->rl_dev,
783                     "diagnostic failed, failed to receive packet in"
784                     " loopback mode\n");
785                 error = EIO;
786                 goto done;
787         }
788
789         /*
790          * The packet should have been dumped into the first
791          * entry in the RX DMA ring. Grab it from there.
792          */
793
794         bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
795             sc->rl_ldata.rl_rx_list_map,
796             BUS_DMASYNC_POSTREAD);
797         bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag,
798             sc->rl_ldata.rl_rx_desc[0].rx_dmamap,
799             BUS_DMASYNC_POSTREAD);
800         bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
801             sc->rl_ldata.rl_rx_desc[0].rx_dmamap);
802
803         m0 = sc->rl_ldata.rl_rx_desc[0].rx_m;
804         sc->rl_ldata.rl_rx_desc[0].rx_m = NULL;
805         eh = mtod(m0, struct ether_header *);
806
807         cur_rx = &sc->rl_ldata.rl_rx_list[0];
808         total_len = RL_RXBYTES(cur_rx);
809         rxstat = le32toh(cur_rx->rl_cmdstat);
810
811         if (total_len != ETHER_MIN_LEN) {
812                 device_printf(sc->rl_dev,
813                     "diagnostic failed, received short packet\n");
814                 error = EIO;
815                 goto done;
816         }
817
818         /* Test that the received packet data matches what we sent. */
819
820         if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
821             bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
822             ntohs(eh->ether_type) != ETHERTYPE_IP) {
823                 device_printf(sc->rl_dev, "WARNING, DMA FAILURE!\n");
824                 device_printf(sc->rl_dev, "expected TX data: %6D/%6D/0x%x\n",
825                     dst, ":", src, ":", ETHERTYPE_IP);
826                 device_printf(sc->rl_dev, "received RX data: %6D/%6D/0x%x\n",
827                     eh->ether_dhost, ":",  eh->ether_shost, ":",
828                     ntohs(eh->ether_type));
829                 device_printf(sc->rl_dev, "You may have a defective 32-bit "
830                     "NIC plugged into a 64-bit PCI slot.\n");
831                 device_printf(sc->rl_dev, "Please re-install the NIC in a "
832                     "32-bit slot for proper operation.\n");
833                 device_printf(sc->rl_dev, "Read the re(4) man page for more "
834                     "details.\n");
835                 error = EIO;
836         }
837
838 done:
839         /* Turn interface off, release resources */
840
841         sc->rl_testmode = 0;
842         sc->rl_flags &= ~RL_FLAG_LINK;
843         ifp->if_flags &= ~IFF_PROMISC;
844         re_stop(sc);
845         if (m0 != NULL)
846                 m_freem(m0);
847
848         RL_UNLOCK(sc);
849
850         return (error);
851 }
852
853 #endif
854
855 /*
856  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
857  * IDs against our list and return a device name if we find a match.
858  */
859 static int
860 re_probe(device_t dev)
861 {
862         struct rl_type          *t;
863         uint16_t                devid, vendor;
864         uint16_t                revid, sdevid;
865         int                     i;
866         
867         vendor = pci_get_vendor(dev);
868         devid = pci_get_device(dev);
869         revid = pci_get_revid(dev);
870         sdevid = pci_get_subdevice(dev);
871
872         if (vendor == LINKSYS_VENDORID && devid == LINKSYS_DEVICEID_EG1032) {
873                 if (sdevid != LINKSYS_SUBDEVICE_EG1032_REV3) {
874                         /*
875                          * Only attach to rev. 3 of the Linksys EG1032 adapter.
876                          * Rev. 2 is supported by sk(4).
877                          */
878                         return (ENXIO);
879                 }
880         }
881
882         if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) {
883                 if (revid != 0x20) {
884                         /* 8139, let rl(4) take care of this device. */
885                         return (ENXIO);
886                 }
887         }
888
889         t = re_devs;
890         for (i = 0; i < sizeof(re_devs) / sizeof(re_devs[0]); i++, t++) {
891                 if (vendor == t->rl_vid && devid == t->rl_did) {
892                         device_set_desc(dev, t->rl_name);
893                         return (BUS_PROBE_DEFAULT);
894                 }
895         }
896
897         return (ENXIO);
898 }
899
900 /*
901  * Map a single buffer address.
902  */
903
904 static void
905 re_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
906 {
907         bus_addr_t              *addr;
908
909         if (error)
910                 return;
911
912         KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
913         addr = arg;
914         *addr = segs->ds_addr;
915 }
916
917 static int
918 re_allocmem(device_t dev, struct rl_softc *sc)
919 {
920         bus_size_t              rx_list_size, tx_list_size;
921         int                     error;
922         int                     i;
923
924         rx_list_size = sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc);
925         tx_list_size = sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc);
926
927         /*
928          * Allocate the parent bus DMA tag appropriate for PCI.
929          * In order to use DAC, RL_CPLUSCMD_PCI_DAC bit of RL_CPLUS_CMD
930          * register should be set. However some RealTek chips are known
931          * to be buggy on DAC handling, therefore disable DAC by limiting
932          * DMA address space to 32bit. PCIe variants of RealTek chips
933          * may not have the limitation but I took safer path.
934          */
935         error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
936             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
937             BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
938             NULL, NULL, &sc->rl_parent_tag);
939         if (error) {
940                 device_printf(dev, "could not allocate parent DMA tag\n");
941                 return (error);
942         }
943
944         /*
945          * Allocate map for TX mbufs.
946          */
947         error = bus_dma_tag_create(sc->rl_parent_tag, 1, 0,
948             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
949             NULL, MCLBYTES * RL_NTXSEGS, RL_NTXSEGS, 4096, 0,
950             NULL, NULL, &sc->rl_ldata.rl_tx_mtag);
951         if (error) {
952                 device_printf(dev, "could not allocate TX DMA tag\n");
953                 return (error);
954         }
955
956         /*
957          * Allocate map for RX mbufs.
958          */
959
960         error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t), 0,
961             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
962             MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->rl_ldata.rl_rx_mtag);
963         if (error) {
964                 device_printf(dev, "could not allocate RX DMA tag\n");
965                 return (error);
966         }
967
968         /*
969          * Allocate map for TX descriptor list.
970          */
971         error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
972             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
973             NULL, tx_list_size, 1, tx_list_size, 0,
974             NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
975         if (error) {
976                 device_printf(dev, "could not allocate TX DMA ring tag\n");
977                 return (error);
978         }
979
980         /* Allocate DMA'able memory for the TX ring */
981
982         error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
983             (void **)&sc->rl_ldata.rl_tx_list,
984             BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
985             &sc->rl_ldata.rl_tx_list_map);
986         if (error) {
987                 device_printf(dev, "could not allocate TX DMA ring\n");
988                 return (error);
989         }
990
991         /* Load the map for the TX ring. */
992
993         sc->rl_ldata.rl_tx_list_addr = 0;
994         error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
995              sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
996              tx_list_size, re_dma_map_addr,
997              &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
998         if (error != 0 || sc->rl_ldata.rl_tx_list_addr == 0) {
999                 device_printf(dev, "could not load TX DMA ring\n");
1000                 return (ENOMEM);
1001         }
1002
1003         /* Create DMA maps for TX buffers */
1004
1005         for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
1006                 error = bus_dmamap_create(sc->rl_ldata.rl_tx_mtag, 0,
1007                     &sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1008                 if (error) {
1009                         device_printf(dev, "could not create DMA map for TX\n");
1010                         return (error);
1011                 }
1012         }
1013
1014         /*
1015          * Allocate map for RX descriptor list.
1016          */
1017         error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1018             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1019             NULL, rx_list_size, 1, rx_list_size, 0,
1020             NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1021         if (error) {
1022                 device_printf(dev, "could not create RX DMA ring tag\n");
1023                 return (error);
1024         }
1025
1026         /* Allocate DMA'able memory for the RX ring */
1027
1028         error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1029             (void **)&sc->rl_ldata.rl_rx_list,
1030             BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1031             &sc->rl_ldata.rl_rx_list_map);
1032         if (error) {
1033                 device_printf(dev, "could not allocate RX DMA ring\n");
1034                 return (error);
1035         }
1036
1037         /* Load the map for the RX ring. */
1038
1039         sc->rl_ldata.rl_rx_list_addr = 0;
1040         error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1041              sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1042              rx_list_size, re_dma_map_addr,
1043              &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1044         if (error != 0 || sc->rl_ldata.rl_rx_list_addr == 0) {
1045                 device_printf(dev, "could not load RX DMA ring\n");
1046                 return (ENOMEM);
1047         }
1048
1049         /* Create DMA maps for RX buffers */
1050
1051         error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1052             &sc->rl_ldata.rl_rx_sparemap);
1053         if (error) {
1054                 device_printf(dev, "could not create spare DMA map for RX\n");
1055                 return (error);
1056         }
1057         for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1058                 error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1059                     &sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1060                 if (error) {
1061                         device_printf(dev, "could not create DMA map for RX\n");
1062                         return (error);
1063                 }
1064         }
1065
1066         return (0);
1067 }
1068
1069 /*
1070  * Attach the interface. Allocate softc structures, do ifmedia
1071  * setup and ethernet/BPF attach.
1072  */
1073 static int
1074 re_attach(device_t dev)
1075 {
1076         u_char                  eaddr[ETHER_ADDR_LEN];
1077         u_int16_t               as[ETHER_ADDR_LEN / 2];
1078         struct rl_softc         *sc;
1079         struct ifnet            *ifp;
1080         struct rl_hwrev         *hw_rev;
1081         int                     hwrev;
1082         u_int16_t               devid, re_did = 0;
1083         int                     error = 0, rid, i;
1084         int                     msic, reg;
1085         uint8_t                 cfg;
1086
1087         sc = device_get_softc(dev);
1088         sc->rl_dev = dev;
1089
1090         mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1091             MTX_DEF);
1092         callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
1093
1094         /*
1095          * Map control/status registers.
1096          */
1097         pci_enable_busmaster(dev);
1098
1099         devid = pci_get_device(dev);
1100         /* Prefer memory space register mapping over IO space. */
1101         sc->rl_res_id = PCIR_BAR(1);
1102         sc->rl_res_type = SYS_RES_MEMORY;
1103         /* RTL8168/8101E seems to use different BARs. */
1104         if (devid == RT_DEVICEID_8168 || devid == RT_DEVICEID_8101E)
1105                 sc->rl_res_id = PCIR_BAR(2);
1106         sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1107             &sc->rl_res_id, RF_ACTIVE);
1108
1109         if (sc->rl_res == NULL) {
1110                 sc->rl_res_id = PCIR_BAR(0);
1111                 sc->rl_res_type = SYS_RES_IOPORT;
1112                 sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1113                     &sc->rl_res_id, RF_ACTIVE);
1114                 if (sc->rl_res == NULL) {
1115                         device_printf(dev, "couldn't map ports/memory\n");
1116                         error = ENXIO;
1117                         goto fail;
1118                 }
1119         }
1120
1121         sc->rl_btag = rman_get_bustag(sc->rl_res);
1122         sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1123
1124         msic = 0;
1125         if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
1126                 msic = pci_msi_count(dev);
1127                 if (bootverbose)
1128                         device_printf(dev, "MSI count : %d\n", msic);
1129         }
1130         if (msic == RL_MSI_MESSAGES  && msi_disable == 0) {
1131                 if (pci_alloc_msi(dev, &msic) == 0) {
1132                         if (msic == RL_MSI_MESSAGES) {
1133                                 device_printf(dev, "Using %d MSI messages\n",
1134                                     msic);
1135                                 sc->rl_flags |= RL_FLAG_MSI;
1136                                 /* Explicitly set MSI enable bit. */
1137                                 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1138                                 cfg = CSR_READ_1(sc, RL_CFG2);
1139                                 cfg |= RL_CFG2_MSI;
1140                                 CSR_WRITE_1(sc, RL_CFG2, cfg);
1141                                 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1142                         } else
1143                                 pci_release_msi(dev);
1144                 }
1145         }
1146
1147         /* Allocate interrupt */
1148         if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1149                 rid = 0;
1150                 sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1151                     RF_SHAREABLE | RF_ACTIVE);
1152                 if (sc->rl_irq[0] == NULL) {
1153                         device_printf(dev, "couldn't allocate IRQ resources\n");
1154                         error = ENXIO;
1155                         goto fail;
1156                 }
1157         } else {
1158                 for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
1159                         sc->rl_irq[i] = bus_alloc_resource_any(dev,
1160                             SYS_RES_IRQ, &rid, RF_ACTIVE);
1161                         if (sc->rl_irq[i] == NULL) {
1162                                 device_printf(dev,
1163                                     "couldn't llocate IRQ resources for "
1164                                     "message %d\n", rid);
1165                                 error = ENXIO;
1166                                 goto fail;
1167                         }
1168                 }
1169         }
1170
1171         if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1172                 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1173                 cfg = CSR_READ_1(sc, RL_CFG2);
1174                 if ((cfg & RL_CFG2_MSI) != 0) {
1175                         device_printf(dev, "turning off MSI enable bit.\n");
1176                         cfg &= ~RL_CFG2_MSI;
1177                         CSR_WRITE_1(sc, RL_CFG2, cfg);
1178                 }
1179                 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1180         }
1181
1182         /* Reset the adapter. */
1183         RL_LOCK(sc);
1184         re_reset(sc);
1185         RL_UNLOCK(sc);
1186
1187         hw_rev = re_hwrevs;
1188         hwrev = CSR_READ_4(sc, RL_TXCFG);
1189         device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0x7c800000);
1190         device_printf(dev, "MAC rev. 0x%08x\n", hwrev & 0x00700000);
1191         hwrev &= RL_TXCFG_HWREV;
1192         while (hw_rev->rl_desc != NULL) {
1193                 if (hw_rev->rl_rev == hwrev) {
1194                         sc->rl_type = hw_rev->rl_type;
1195                         break;
1196                 }
1197                 hw_rev++;
1198         }
1199         if (hw_rev->rl_desc == NULL) {
1200                 device_printf(dev, "Unknown H/W revision: 0x%08x\n", hwrev);
1201                 error = ENXIO;
1202                 goto fail;
1203         }
1204
1205         switch (hw_rev->rl_rev) {
1206         case RL_HWREV_8139CPLUS:
1207                 sc->rl_flags |= RL_FLAG_NOJUMBO;
1208                 break;
1209         case RL_HWREV_8100E:
1210         case RL_HWREV_8101E:
1211                 sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_INVMAR |
1212                     RL_FLAG_PHYWAKE;
1213                 break;
1214         case RL_HWREV_8102E:
1215         case RL_HWREV_8102EL:
1216                 sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_INVMAR |
1217                     RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 |
1218                     RL_FLAG_MACSTAT;
1219                 break;
1220         case RL_HWREV_8168_SPIN1:
1221         case RL_HWREV_8168_SPIN2:
1222         case RL_HWREV_8168_SPIN3:
1223                 sc->rl_flags |= RL_FLAG_INVMAR | RL_FLAG_PHYWAKE |
1224                     RL_FLAG_MACSTAT;
1225                 break;
1226         case RL_HWREV_8168C:
1227         case RL_HWREV_8168C_SPIN2:
1228         case RL_HWREV_8168CP:
1229         case RL_HWREV_8168D:
1230                 sc->rl_flags |= RL_FLAG_INVMAR | RL_FLAG_PHYWAKE |
1231                     RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT;
1232                 /*
1233                  * These controllers support jumbo frame but it seems
1234                  * that enabling it requires touching additional magic
1235                  * registers. Depending on MAC revisions some
1236                  * controllers need to disable checksum offload. So
1237                  * disable jumbo frame until I have better idea what
1238                  * it really requires to make it support.
1239                  * RTL8168C/CP : supports up to 6KB jumbo frame.
1240                  * RTL8111C/CP : supports up to 9KB jumbo frame.
1241                  */
1242                 sc->rl_flags |= RL_FLAG_NOJUMBO;
1243                 break;
1244         case RL_HWREV_8169_8110SB:
1245         case RL_HWREV_8169_8110SC:
1246         case RL_HWREV_8169_8110SBL:
1247                 sc->rl_flags |= RL_FLAG_PHYWAKE;
1248                 break;
1249         default:
1250                 break;
1251         }
1252
1253         /* Enable PME. */
1254         CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1255         cfg = CSR_READ_1(sc, RL_CFG1);
1256         cfg |= RL_CFG1_PME;
1257         CSR_WRITE_1(sc, RL_CFG1, cfg);
1258         cfg = CSR_READ_1(sc, RL_CFG5);
1259         cfg &= RL_CFG5_PME_STS;
1260         CSR_WRITE_1(sc, RL_CFG5, cfg);
1261         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1262
1263         if ((sc->rl_flags & RL_FLAG_PAR) != 0) {
1264                 /*
1265                  * XXX Should have a better way to extract station
1266                  * address from EEPROM.
1267                  */
1268                 for (i = 0; i < ETHER_ADDR_LEN; i++)
1269                         eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
1270         } else {
1271                 sc->rl_eewidth = RL_9356_ADDR_LEN;
1272                 re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
1273                 if (re_did != 0x8129)
1274                         sc->rl_eewidth = RL_9346_ADDR_LEN;
1275
1276                 /*
1277                  * Get station address from the EEPROM.
1278                  */
1279                 re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3);
1280                 for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
1281                         as[i] = le16toh(as[i]);
1282                 bcopy(as, eaddr, sizeof(eaddr));
1283         }
1284
1285         if (sc->rl_type == RL_8169) {
1286                 /* Set RX length mask and number of descriptors. */
1287                 sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1288                 sc->rl_txstart = RL_GTXSTART;
1289                 sc->rl_ldata.rl_tx_desc_cnt = RL_8169_TX_DESC_CNT;
1290                 sc->rl_ldata.rl_rx_desc_cnt = RL_8169_RX_DESC_CNT;
1291         } else {
1292                 /* Set RX length mask and number of descriptors. */
1293                 sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1294                 sc->rl_txstart = RL_TXSTART;
1295                 sc->rl_ldata.rl_tx_desc_cnt = RL_8139_TX_DESC_CNT;
1296                 sc->rl_ldata.rl_rx_desc_cnt = RL_8139_RX_DESC_CNT;
1297         }
1298
1299         error = re_allocmem(dev, sc);
1300         if (error)
1301                 goto fail;
1302
1303         ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
1304         if (ifp == NULL) {
1305                 device_printf(dev, "can not if_alloc()\n");
1306                 error = ENOSPC;
1307                 goto fail;
1308         }
1309
1310         /* Take PHY out of power down mode. */
1311         if ((sc->rl_flags & RL_FLAG_PHYWAKE) != 0) {
1312                 re_gmii_writereg(dev, 1, 0x1f, 0);
1313                 re_gmii_writereg(dev, 1, 0x0e, 0);
1314         }
1315
1316         /* Do MII setup */
1317         if (mii_phy_probe(dev, &sc->rl_miibus,
1318             re_ifmedia_upd, re_ifmedia_sts)) {
1319                 device_printf(dev, "MII without any phy!\n");
1320                 error = ENXIO;
1321                 goto fail;
1322         }
1323
1324         ifp->if_softc = sc;
1325         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1326         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1327         ifp->if_ioctl = re_ioctl;
1328         ifp->if_start = re_start;
1329         ifp->if_hwassist = RE_CSUM_FEATURES;
1330         ifp->if_capabilities = IFCAP_HWCSUM;
1331         ifp->if_capenable = ifp->if_capabilities;
1332         ifp->if_init = re_init;
1333         IFQ_SET_MAXLEN(&ifp->if_snd, RL_IFQ_MAXLEN);
1334         ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN;
1335         IFQ_SET_READY(&ifp->if_snd);
1336
1337         TASK_INIT(&sc->rl_txtask, 1, re_tx_task, ifp);
1338         TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc);
1339
1340         /*
1341          * XXX
1342          * Still have no idea how to make TSO work on 8168C, 8168CP,
1343          * 8111C and 8111CP.
1344          */
1345         if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
1346                 ifp->if_hwassist |= CSUM_TSO;
1347                 ifp->if_capabilities |= IFCAP_TSO4;
1348         }
1349
1350         /*
1351          * Call MI attach routine.
1352          */
1353         ether_ifattach(ifp, eaddr);
1354
1355         /* VLAN capability setup */
1356         ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1357         if (ifp->if_capabilities & IFCAP_HWCSUM)
1358                 ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1359         /* Enable WOL if PM is supported. */
1360         if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &reg) == 0)
1361                 ifp->if_capabilities |= IFCAP_WOL;
1362         ifp->if_capenable = ifp->if_capabilities;
1363         /*
1364          * Don't enable TSO by default. Under certain
1365          * circumtances the controller generated corrupted
1366          * packets in TSO size.
1367          */
1368         ifp->if_hwassist &= ~CSUM_TSO;
1369         ifp->if_capenable &= ~IFCAP_TSO4;
1370 #ifdef DEVICE_POLLING
1371         ifp->if_capabilities |= IFCAP_POLLING;
1372 #endif
1373         /*
1374          * Tell the upper layer(s) we support long frames.
1375          * Must appear after the call to ether_ifattach() because
1376          * ether_ifattach() sets ifi_hdrlen to the default value.
1377          */
1378         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1379
1380 #ifdef RE_DIAG
1381         /*
1382          * Perform hardware diagnostic on the original RTL8169.
1383          * Some 32-bit cards were incorrectly wired and would
1384          * malfunction if plugged into a 64-bit slot.
1385          */
1386
1387         if (hwrev == RL_HWREV_8169) {
1388                 error = re_diag(sc);
1389                 if (error) {
1390                         device_printf(dev,
1391                         "attach aborted due to hardware diag failure\n");
1392                         ether_ifdetach(ifp);
1393                         goto fail;
1394                 }
1395         }
1396 #endif
1397
1398         /* Hook interrupt last to avoid having to lock softc */
1399         if ((sc->rl_flags & RL_FLAG_MSI) == 0)
1400                 error = bus_setup_intr(dev, sc->rl_irq[0],
1401                     INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
1402                     &sc->rl_intrhand[0]);
1403         else {
1404                 for (i = 0; i < RL_MSI_MESSAGES; i++) {
1405                         error = bus_setup_intr(dev, sc->rl_irq[i],
1406                             INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
1407                             &sc->rl_intrhand[i]);
1408                         if (error != 0)
1409                                 break;
1410                 }
1411         }
1412         if (error) {
1413                 device_printf(dev, "couldn't set up irq\n");
1414                 ether_ifdetach(ifp);
1415         }
1416
1417 fail:
1418
1419         if (error)
1420                 re_detach(dev);
1421
1422         return (error);
1423 }
1424
1425 /*
1426  * Shutdown hardware and free up resources. This can be called any
1427  * time after the mutex has been initialized. It is called in both
1428  * the error case in attach and the normal detach case so it needs
1429  * to be careful about only freeing resources that have actually been
1430  * allocated.
1431  */
1432 static int
1433 re_detach(device_t dev)
1434 {
1435         struct rl_softc         *sc;
1436         struct ifnet            *ifp;
1437         int                     i, rid;
1438
1439         sc = device_get_softc(dev);
1440         ifp = sc->rl_ifp;
1441         KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
1442
1443         /* These should only be active if attach succeeded */
1444         if (device_is_attached(dev)) {
1445 #ifdef DEVICE_POLLING
1446                 if (ifp->if_capenable & IFCAP_POLLING)
1447                         ether_poll_deregister(ifp);
1448 #endif
1449                 RL_LOCK(sc);
1450 #if 0
1451                 sc->suspended = 1;
1452 #endif
1453                 re_stop(sc);
1454                 RL_UNLOCK(sc);
1455                 callout_drain(&sc->rl_stat_callout);
1456                 taskqueue_drain(taskqueue_fast, &sc->rl_inttask);
1457                 taskqueue_drain(taskqueue_fast, &sc->rl_txtask);
1458                 /*
1459                  * Force off the IFF_UP flag here, in case someone
1460                  * still had a BPF descriptor attached to this
1461                  * interface. If they do, ether_ifdetach() will cause
1462                  * the BPF code to try and clear the promisc mode
1463                  * flag, which will bubble down to re_ioctl(),
1464                  * which will try to call re_init() again. This will
1465                  * turn the NIC back on and restart the MII ticker,
1466                  * which will panic the system when the kernel tries
1467                  * to invoke the re_tick() function that isn't there
1468                  * anymore.
1469                  */
1470                 ifp->if_flags &= ~IFF_UP;
1471                 ether_ifdetach(ifp);
1472         }
1473         if (sc->rl_miibus)
1474                 device_delete_child(dev, sc->rl_miibus);
1475         bus_generic_detach(dev);
1476
1477         /*
1478          * The rest is resource deallocation, so we should already be
1479          * stopped here.
1480          */
1481
1482         for (i = 0; i < RL_MSI_MESSAGES; i++) {
1483                 if (sc->rl_intrhand[i] != NULL) {
1484                         bus_teardown_intr(dev, sc->rl_irq[i],
1485                             sc->rl_intrhand[i]);
1486                         sc->rl_intrhand[i] = NULL;
1487                 }
1488         }
1489         if (ifp != NULL)
1490                 if_free(ifp);
1491         if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1492                 if (sc->rl_irq[0] != NULL) {
1493                         bus_release_resource(dev, SYS_RES_IRQ, 0,
1494                             sc->rl_irq[0]);
1495                         sc->rl_irq[0] = NULL;
1496                 }
1497         } else {
1498                 for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
1499                         if (sc->rl_irq[i] != NULL) {
1500                                 bus_release_resource(dev, SYS_RES_IRQ, rid,
1501                                     sc->rl_irq[i]);
1502                                 sc->rl_irq[i] = NULL;
1503                         }
1504                 }
1505                 pci_release_msi(dev);
1506         }
1507         if (sc->rl_res)
1508                 bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id,
1509                     sc->rl_res);
1510
1511         /* Unload and free the RX DMA ring memory and map */
1512
1513         if (sc->rl_ldata.rl_rx_list_tag) {
1514                 bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1515                     sc->rl_ldata.rl_rx_list_map);
1516                 bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1517                     sc->rl_ldata.rl_rx_list,
1518                     sc->rl_ldata.rl_rx_list_map);
1519                 bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1520         }
1521
1522         /* Unload and free the TX DMA ring memory and map */
1523
1524         if (sc->rl_ldata.rl_tx_list_tag) {
1525                 bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1526                     sc->rl_ldata.rl_tx_list_map);
1527                 bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1528                     sc->rl_ldata.rl_tx_list,
1529                     sc->rl_ldata.rl_tx_list_map);
1530                 bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1531         }
1532
1533         /* Destroy all the RX and TX buffer maps */
1534
1535         if (sc->rl_ldata.rl_tx_mtag) {
1536                 for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
1537                         bus_dmamap_destroy(sc->rl_ldata.rl_tx_mtag,
1538                             sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1539                 bus_dma_tag_destroy(sc->rl_ldata.rl_tx_mtag);
1540         }
1541         if (sc->rl_ldata.rl_rx_mtag) {
1542                 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++)
1543                         bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1544                             sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1545                 if (sc->rl_ldata.rl_rx_sparemap)
1546                         bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1547                             sc->rl_ldata.rl_rx_sparemap);
1548                 bus_dma_tag_destroy(sc->rl_ldata.rl_rx_mtag);
1549         }
1550
1551         /* Unload and free the stats buffer and map */
1552
1553         if (sc->rl_ldata.rl_stag) {
1554                 bus_dmamap_unload(sc->rl_ldata.rl_stag,
1555                     sc->rl_ldata.rl_rx_list_map);
1556                 bus_dmamem_free(sc->rl_ldata.rl_stag,
1557                     sc->rl_ldata.rl_stats,
1558                     sc->rl_ldata.rl_smap);
1559                 bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1560         }
1561
1562         if (sc->rl_parent_tag)
1563                 bus_dma_tag_destroy(sc->rl_parent_tag);
1564
1565         mtx_destroy(&sc->rl_mtx);
1566
1567         return (0);
1568 }
1569
1570 static __inline void
1571 re_discard_rxbuf(struct rl_softc *sc, int idx)
1572 {
1573         struct rl_desc          *desc;
1574         struct rl_rxdesc        *rxd;
1575         uint32_t                cmdstat;
1576
1577         rxd = &sc->rl_ldata.rl_rx_desc[idx];
1578         desc = &sc->rl_ldata.rl_rx_list[idx];
1579         desc->rl_vlanctl = 0;
1580         cmdstat = rxd->rx_size;
1581         if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1582                 cmdstat |= RL_RDESC_CMD_EOR;
1583         desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1584 }
1585
1586 static int
1587 re_newbuf(struct rl_softc *sc, int idx)
1588 {
1589         struct mbuf             *m;
1590         struct rl_rxdesc        *rxd;
1591         bus_dma_segment_t       segs[1];
1592         bus_dmamap_t            map;
1593         struct rl_desc          *desc;
1594         uint32_t                cmdstat;
1595         int                     error, nsegs;
1596
1597         m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1598         if (m == NULL)
1599                 return (ENOBUFS);
1600
1601         m->m_len = m->m_pkthdr.len = MCLBYTES;
1602 #ifdef RE_FIXUP_RX
1603         /*
1604          * This is part of an evil trick to deal with non-x86 platforms.
1605          * The RealTek chip requires RX buffers to be aligned on 64-bit
1606          * boundaries, but that will hose non-x86 machines. To get around
1607          * this, we leave some empty space at the start of each buffer
1608          * and for non-x86 hosts, we copy the buffer back six bytes
1609          * to achieve word alignment. This is slightly more efficient
1610          * than allocating a new buffer, copying the contents, and
1611          * discarding the old buffer.
1612          */
1613         m_adj(m, RE_ETHER_ALIGN);
1614 #endif
1615         error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_rx_mtag,
1616             sc->rl_ldata.rl_rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
1617         if (error != 0) {
1618                 m_freem(m);
1619                 return (ENOBUFS);
1620         }
1621         KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
1622
1623         rxd = &sc->rl_ldata.rl_rx_desc[idx];
1624         if (rxd->rx_m != NULL) {
1625                 bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1626                     BUS_DMASYNC_POSTREAD);
1627                 bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap);
1628         }
1629
1630         rxd->rx_m = m;
1631         map = rxd->rx_dmamap;
1632         rxd->rx_dmamap = sc->rl_ldata.rl_rx_sparemap;
1633         rxd->rx_size = segs[0].ds_len;
1634         sc->rl_ldata.rl_rx_sparemap = map;
1635         bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1636             BUS_DMASYNC_PREREAD);
1637
1638         desc = &sc->rl_ldata.rl_rx_list[idx];
1639         desc->rl_vlanctl = 0;
1640         desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
1641         desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
1642         cmdstat = segs[0].ds_len;
1643         if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1644                 cmdstat |= RL_RDESC_CMD_EOR;
1645         desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1646
1647         return (0);
1648 }
1649
1650 #ifdef RE_FIXUP_RX
1651 static __inline void
1652 re_fixup_rx(struct mbuf *m)
1653 {
1654         int                     i;
1655         uint16_t                *src, *dst;
1656
1657         src = mtod(m, uint16_t *);
1658         dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
1659
1660         for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1661                 *dst++ = *src++;
1662
1663         m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
1664 }
1665 #endif
1666
1667 static int
1668 re_tx_list_init(struct rl_softc *sc)
1669 {
1670         struct rl_desc          *desc;
1671         int                     i;
1672
1673         RL_LOCK_ASSERT(sc);
1674
1675         bzero(sc->rl_ldata.rl_tx_list,
1676             sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc));
1677         for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
1678                 sc->rl_ldata.rl_tx_desc[i].tx_m = NULL;
1679         /* Set EOR. */
1680         desc = &sc->rl_ldata.rl_tx_list[sc->rl_ldata.rl_tx_desc_cnt - 1];
1681         desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOR);
1682
1683         bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1684             sc->rl_ldata.rl_tx_list_map,
1685             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1686
1687         sc->rl_ldata.rl_tx_prodidx = 0;
1688         sc->rl_ldata.rl_tx_considx = 0;
1689         sc->rl_ldata.rl_tx_free = sc->rl_ldata.rl_tx_desc_cnt;
1690
1691         return (0);
1692 }
1693
1694 static int
1695 re_rx_list_init(struct rl_softc *sc)
1696 {
1697         int                     error, i;
1698
1699         bzero(sc->rl_ldata.rl_rx_list,
1700             sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
1701         for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1702                 sc->rl_ldata.rl_rx_desc[i].rx_m = NULL;
1703                 if ((error = re_newbuf(sc, i)) != 0)
1704                         return (error);
1705         }
1706
1707         /* Flush the RX descriptors */
1708
1709         bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1710             sc->rl_ldata.rl_rx_list_map,
1711             BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1712
1713         sc->rl_ldata.rl_rx_prodidx = 0;
1714         sc->rl_head = sc->rl_tail = NULL;
1715
1716         return (0);
1717 }
1718
1719 /*
1720  * RX handler for C+ and 8169. For the gigE chips, we support
1721  * the reception of jumbo frames that have been fragmented
1722  * across multiple 2K mbuf cluster buffers.
1723  */
1724 static int
1725 re_rxeof(struct rl_softc *sc)
1726 {
1727         struct mbuf             *m;
1728         struct ifnet            *ifp;
1729         int                     i, total_len;
1730         struct rl_desc          *cur_rx;
1731         u_int32_t               rxstat, rxvlan;
1732         int                     maxpkt = 16;
1733
1734         RL_LOCK_ASSERT(sc);
1735
1736         ifp = sc->rl_ifp;
1737
1738         /* Invalidate the descriptor memory */
1739
1740         bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1741             sc->rl_ldata.rl_rx_list_map,
1742             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1743
1744         for (i = sc->rl_ldata.rl_rx_prodidx; maxpkt > 0;
1745             i = RL_RX_DESC_NXT(sc, i)) {
1746                 cur_rx = &sc->rl_ldata.rl_rx_list[i];
1747                 rxstat = le32toh(cur_rx->rl_cmdstat);
1748                 if ((rxstat & RL_RDESC_STAT_OWN) != 0)
1749                         break;
1750                 total_len = rxstat & sc->rl_rxlenmask;
1751                 rxvlan = le32toh(cur_rx->rl_vlanctl);
1752                 m = sc->rl_ldata.rl_rx_desc[i].rx_m;
1753
1754                 if (!(rxstat & RL_RDESC_STAT_EOF)) {
1755                         if (re_newbuf(sc, i) != 0) {
1756                                 /*
1757                                  * If this is part of a multi-fragment packet,
1758                                  * discard all the pieces.
1759                                  */
1760                                 if (sc->rl_head != NULL) {
1761                                         m_freem(sc->rl_head);
1762                                         sc->rl_head = sc->rl_tail = NULL;
1763                                 }
1764                                 re_discard_rxbuf(sc, i);
1765                                 continue;
1766                         }
1767                         m->m_len = RE_RX_DESC_BUFLEN;
1768                         if (sc->rl_head == NULL)
1769                                 sc->rl_head = sc->rl_tail = m;
1770                         else {
1771                                 m->m_flags &= ~M_PKTHDR;
1772                                 sc->rl_tail->m_next = m;
1773                                 sc->rl_tail = m;
1774                         }
1775                         continue;
1776                 }
1777
1778                 /*
1779                  * NOTE: for the 8139C+, the frame length field
1780                  * is always 12 bits in size, but for the gigE chips,
1781                  * it is 13 bits (since the max RX frame length is 16K).
1782                  * Unfortunately, all 32 bits in the status word
1783                  * were already used, so to make room for the extra
1784                  * length bit, RealTek took out the 'frame alignment
1785                  * error' bit and shifted the other status bits
1786                  * over one slot. The OWN, EOR, FS and LS bits are
1787                  * still in the same places. We have already extracted
1788                  * the frame length and checked the OWN bit, so rather
1789                  * than using an alternate bit mapping, we shift the
1790                  * status bits one space to the right so we can evaluate
1791                  * them using the 8169 status as though it was in the
1792                  * same format as that of the 8139C+.
1793                  */
1794                 if (sc->rl_type == RL_8169)
1795                         rxstat >>= 1;
1796
1797                 /*
1798                  * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
1799                  * set, but if CRC is clear, it will still be a valid frame.
1800                  */
1801                 if (rxstat & RL_RDESC_STAT_RXERRSUM && !(total_len > 8191 &&
1802                     (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)) {
1803                         ifp->if_ierrors++;
1804                         /*
1805                          * If this is part of a multi-fragment packet,
1806                          * discard all the pieces.
1807                          */
1808                         if (sc->rl_head != NULL) {
1809                                 m_freem(sc->rl_head);
1810                                 sc->rl_head = sc->rl_tail = NULL;
1811                         }
1812                         re_discard_rxbuf(sc, i);
1813                         continue;
1814                 }
1815
1816                 /*
1817                  * If allocating a replacement mbuf fails,
1818                  * reload the current one.
1819                  */
1820
1821                 if (re_newbuf(sc, i) != 0) {
1822                         ifp->if_iqdrops++;
1823                         if (sc->rl_head != NULL) {
1824                                 m_freem(sc->rl_head);
1825                                 sc->rl_head = sc->rl_tail = NULL;
1826                         }
1827                         re_discard_rxbuf(sc, i);
1828                         continue;
1829                 }
1830
1831                 if (sc->rl_head != NULL) {
1832                         m->m_len = total_len % RE_RX_DESC_BUFLEN;
1833                         if (m->m_len == 0)
1834                                 m->m_len = RE_RX_DESC_BUFLEN;
1835                         /*
1836                          * Special case: if there's 4 bytes or less
1837                          * in this buffer, the mbuf can be discarded:
1838                          * the last 4 bytes is the CRC, which we don't
1839                          * care about anyway.
1840                          */
1841                         if (m->m_len <= ETHER_CRC_LEN) {
1842                                 sc->rl_tail->m_len -=
1843                                     (ETHER_CRC_LEN - m->m_len);
1844                                 m_freem(m);
1845                         } else {
1846                                 m->m_len -= ETHER_CRC_LEN;
1847                                 m->m_flags &= ~M_PKTHDR;
1848                                 sc->rl_tail->m_next = m;
1849                         }
1850                         m = sc->rl_head;
1851                         sc->rl_head = sc->rl_tail = NULL;
1852                         m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1853                 } else
1854                         m->m_pkthdr.len = m->m_len =
1855                             (total_len - ETHER_CRC_LEN);
1856
1857 #ifdef RE_FIXUP_RX
1858                 re_fixup_rx(m);
1859 #endif
1860                 ifp->if_ipackets++;
1861                 m->m_pkthdr.rcvif = ifp;
1862
1863                 /* Do RX checksumming if enabled */
1864
1865                 if (ifp->if_capenable & IFCAP_RXCSUM) {
1866                         if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
1867                                 /* Check IP header checksum */
1868                                 if (rxstat & RL_RDESC_STAT_PROTOID)
1869                                         m->m_pkthdr.csum_flags |=
1870                                             CSUM_IP_CHECKED;
1871                                 if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
1872                                         m->m_pkthdr.csum_flags |=
1873                                             CSUM_IP_VALID;
1874
1875                                 /* Check TCP/UDP checksum */
1876                                 if ((RL_TCPPKT(rxstat) &&
1877                                     !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1878                                     (RL_UDPPKT(rxstat) &&
1879                                      !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
1880                                         m->m_pkthdr.csum_flags |=
1881                                                 CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1882                                         m->m_pkthdr.csum_data = 0xffff;
1883                                 }
1884                         } else {
1885                                 /*
1886                                  * RTL8168C/RTL816CP/RTL8111C/RTL8111CP
1887                                  */
1888                                 if ((rxstat & RL_RDESC_STAT_PROTOID) &&
1889                                     (rxvlan & RL_RDESC_IPV4))
1890                                         m->m_pkthdr.csum_flags |=
1891                                             CSUM_IP_CHECKED;
1892                                 if (!(rxstat & RL_RDESC_STAT_IPSUMBAD) &&
1893                                     (rxvlan & RL_RDESC_IPV4))
1894                                         m->m_pkthdr.csum_flags |=
1895                                             CSUM_IP_VALID;
1896                                 if (((rxstat & RL_RDESC_STAT_TCP) &&
1897                                     !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1898                                     ((rxstat & RL_RDESC_STAT_UDP) &&
1899                                     !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
1900                                         m->m_pkthdr.csum_flags |=
1901                                                 CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1902                                         m->m_pkthdr.csum_data = 0xffff;
1903                                 }
1904                         }
1905                 }
1906                 maxpkt--;
1907                 if (rxvlan & RL_RDESC_VLANCTL_TAG) {
1908                         m->m_pkthdr.ether_vtag =
1909                             bswap16((rxvlan & RL_RDESC_VLANCTL_DATA));
1910                         m->m_flags |= M_VLANTAG;
1911                 }
1912                 RL_UNLOCK(sc);
1913                 (*ifp->if_input)(ifp, m);
1914                 RL_LOCK(sc);
1915         }
1916
1917         /* Flush the RX DMA ring */
1918
1919         bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1920             sc->rl_ldata.rl_rx_list_map,
1921             BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1922
1923         sc->rl_ldata.rl_rx_prodidx = i;
1924
1925         if (maxpkt)
1926                 return(EAGAIN);
1927
1928         return(0);
1929 }
1930
1931 static void
1932 re_txeof(struct rl_softc *sc)
1933 {
1934         struct ifnet            *ifp;
1935         struct rl_txdesc        *txd;
1936         u_int32_t               txstat;
1937         int                     cons;
1938
1939         cons = sc->rl_ldata.rl_tx_considx;
1940         if (cons == sc->rl_ldata.rl_tx_prodidx)
1941                 return;
1942
1943         ifp = sc->rl_ifp;
1944         /* Invalidate the TX descriptor list */
1945         bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1946             sc->rl_ldata.rl_tx_list_map,
1947             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1948
1949         for (; cons != sc->rl_ldata.rl_tx_prodidx;
1950             cons = RL_TX_DESC_NXT(sc, cons)) {
1951                 txstat = le32toh(sc->rl_ldata.rl_tx_list[cons].rl_cmdstat);
1952                 if (txstat & RL_TDESC_STAT_OWN)
1953                         break;
1954                 /*
1955                  * We only stash mbufs in the last descriptor
1956                  * in a fragment chain, which also happens to
1957                  * be the only place where the TX status bits
1958                  * are valid.
1959                  */
1960                 if (txstat & RL_TDESC_CMD_EOF) {
1961                         txd = &sc->rl_ldata.rl_tx_desc[cons];
1962                         bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
1963                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1964                         bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
1965                             txd->tx_dmamap);
1966                         KASSERT(txd->tx_m != NULL,
1967                             ("%s: freeing NULL mbufs!", __func__));
1968                         m_freem(txd->tx_m);
1969                         txd->tx_m = NULL;
1970                         if (txstat & (RL_TDESC_STAT_EXCESSCOL|
1971                             RL_TDESC_STAT_COLCNT))
1972                                 ifp->if_collisions++;
1973                         if (txstat & RL_TDESC_STAT_TXERRSUM)
1974                                 ifp->if_oerrors++;
1975                         else
1976                                 ifp->if_opackets++;
1977                 }
1978                 sc->rl_ldata.rl_tx_free++;
1979                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1980         }
1981         sc->rl_ldata.rl_tx_considx = cons;
1982
1983         /* No changes made to the TX ring, so no flush needed */
1984
1985         if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) {
1986                 /*
1987                  * Some chips will ignore a second TX request issued
1988                  * while an existing transmission is in progress. If
1989                  * the transmitter goes idle but there are still
1990                  * packets waiting to be sent, we need to restart the
1991                  * channel here to flush them out. This only seems to
1992                  * be required with the PCIe devices.
1993                  */
1994                 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
1995
1996 #ifdef RE_TX_MODERATION
1997                 /*
1998                  * If not all descriptors have been reaped yet, reload
1999                  * the timer so that we will eventually get another
2000                  * interrupt that will cause us to re-enter this routine.
2001                  * This is done in case the transmitter has gone idle.
2002                  */
2003                 CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2004 #endif
2005         } else
2006                 sc->rl_watchdog_timer = 0;
2007 }
2008
2009 static void
2010 re_tick(void *xsc)
2011 {
2012         struct rl_softc         *sc;
2013         struct mii_data         *mii;
2014         struct ifnet            *ifp;
2015
2016         sc = xsc;
2017         ifp = sc->rl_ifp;
2018
2019         RL_LOCK_ASSERT(sc);
2020
2021         re_watchdog(sc);
2022
2023         mii = device_get_softc(sc->rl_miibus);
2024         mii_tick(mii);
2025         if ((sc->rl_flags & RL_FLAG_LINK) != 0) {
2026                 if (!(mii->mii_media_status & IFM_ACTIVE))
2027                         sc->rl_flags &= ~RL_FLAG_LINK;
2028         } else {
2029                 if (mii->mii_media_status & IFM_ACTIVE &&
2030                     IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2031                         sc->rl_flags |= RL_FLAG_LINK;
2032                         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2033                                 taskqueue_enqueue_fast(taskqueue_fast,
2034                                     &sc->rl_txtask);
2035                 }
2036         }
2037
2038         callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2039 }
2040
2041 #ifdef DEVICE_POLLING
2042 static void
2043 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2044 {
2045         struct rl_softc *sc = ifp->if_softc;
2046
2047         RL_LOCK(sc);
2048         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2049                 re_poll_locked(ifp, cmd, count);
2050         RL_UNLOCK(sc);
2051 }
2052
2053 static void
2054 re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
2055 {
2056         struct rl_softc *sc = ifp->if_softc;
2057
2058         RL_LOCK_ASSERT(sc);
2059
2060         sc->rxcycles = count;
2061         re_rxeof(sc);
2062         re_txeof(sc);
2063
2064         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2065                 taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
2066
2067         if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2068                 u_int16_t       status;
2069
2070                 status = CSR_READ_2(sc, RL_ISR);
2071                 if (status == 0xffff)
2072                         return;
2073                 if (status)
2074                         CSR_WRITE_2(sc, RL_ISR, status);
2075
2076                 /*
2077                  * XXX check behaviour on receiver stalls.
2078                  */
2079
2080                 if (status & RL_ISR_SYSTEM_ERR) {
2081                         re_reset(sc);
2082                         re_init_locked(sc);
2083                 }
2084         }
2085 }
2086 #endif /* DEVICE_POLLING */
2087
2088 static int
2089 re_intr(void *arg)
2090 {
2091         struct rl_softc         *sc;
2092         uint16_t                status;
2093
2094         sc = arg;
2095
2096         status = CSR_READ_2(sc, RL_ISR);
2097         if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0)
2098                 return (FILTER_STRAY);
2099         CSR_WRITE_2(sc, RL_IMR, 0);
2100
2101         taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2102
2103         return (FILTER_HANDLED);
2104 }
2105
2106 static void
2107 re_int_task(void *arg, int npending)
2108 {
2109         struct rl_softc         *sc;
2110         struct ifnet            *ifp;
2111         u_int16_t               status;
2112         int                     rval = 0;
2113
2114         sc = arg;
2115         ifp = sc->rl_ifp;
2116
2117         RL_LOCK(sc);
2118
2119         status = CSR_READ_2(sc, RL_ISR);
2120         CSR_WRITE_2(sc, RL_ISR, status);
2121
2122         if (sc->suspended ||
2123             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2124                 RL_UNLOCK(sc);
2125                 return;
2126         }
2127
2128 #ifdef DEVICE_POLLING
2129         if  (ifp->if_capenable & IFCAP_POLLING) {
2130                 RL_UNLOCK(sc);
2131                 return;
2132         }
2133 #endif
2134
2135         if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW))
2136                 rval = re_rxeof(sc);
2137
2138         if (status & (
2139 #ifdef RE_TX_MODERATION
2140             RL_ISR_TIMEOUT_EXPIRED|
2141 #else
2142             RL_ISR_TX_OK|
2143 #endif
2144             RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL))
2145                 re_txeof(sc);
2146
2147         if (status & RL_ISR_SYSTEM_ERR) {
2148                 re_reset(sc);
2149                 re_init_locked(sc);
2150         }
2151
2152         if (status & RL_ISR_LINKCHG) {
2153                 callout_stop(&sc->rl_stat_callout);
2154                 re_tick(sc);
2155         }
2156
2157         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2158                 taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
2159
2160         RL_UNLOCK(sc);
2161
2162         if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) {
2163                 taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2164                 return;
2165         }
2166
2167         CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2168 }
2169
2170 static int
2171 re_encap(struct rl_softc *sc, struct mbuf **m_head)
2172 {
2173         struct rl_txdesc        *txd, *txd_last;
2174         bus_dma_segment_t       segs[RL_NTXSEGS];
2175         bus_dmamap_t            map;
2176         struct mbuf             *m_new;
2177         struct rl_desc          *desc;
2178         int                     nsegs, prod;
2179         int                     i, error, ei, si;
2180         int                     padlen;
2181         uint32_t                cmdstat, csum_flags, vlanctl;
2182
2183         RL_LOCK_ASSERT(sc);
2184         M_ASSERTPKTHDR((*m_head));
2185
2186         /*
2187          * With some of the RealTek chips, using the checksum offload
2188          * support in conjunction with the autopadding feature results
2189          * in the transmission of corrupt frames. For example, if we
2190          * need to send a really small IP fragment that's less than 60
2191          * bytes in size, and IP header checksumming is enabled, the
2192          * resulting ethernet frame that appears on the wire will
2193          * have garbled payload. To work around this, if TX IP checksum
2194          * offload is enabled, we always manually pad short frames out
2195          * to the minimum ethernet frame size.
2196          */
2197         if ((sc->rl_flags & RL_FLAG_DESCV2) == 0 &&
2198             (*m_head)->m_pkthdr.len < RL_IP4CSUMTX_PADLEN &&
2199             ((*m_head)->m_pkthdr.csum_flags & CSUM_IP) != 0) {
2200                 padlen = RL_MIN_FRAMELEN - (*m_head)->m_pkthdr.len;
2201                 if (M_WRITABLE(*m_head) == 0) {
2202                         /* Get a writable copy. */
2203                         m_new = m_dup(*m_head, M_DONTWAIT);
2204                         m_freem(*m_head);
2205                         if (m_new == NULL) {
2206                                 *m_head = NULL;
2207                                 return (ENOBUFS);
2208                         }
2209                         *m_head = m_new;
2210                 }
2211                 if ((*m_head)->m_next != NULL ||
2212                     M_TRAILINGSPACE(*m_head) < padlen) {
2213                         m_new = m_defrag(*m_head, M_DONTWAIT);
2214                         if (m_new == NULL) {
2215                                 m_freem(*m_head);
2216                                 *m_head = NULL;
2217                                 return (ENOBUFS);
2218                         }
2219                 } else
2220                         m_new = *m_head;
2221
2222                 /*
2223                  * Manually pad short frames, and zero the pad space
2224                  * to avoid leaking data.
2225                  */
2226                 bzero(mtod(m_new, char *) + m_new->m_pkthdr.len, padlen);
2227                 m_new->m_pkthdr.len += padlen;
2228                 m_new->m_len = m_new->m_pkthdr.len;
2229                 *m_head = m_new;
2230         }
2231
2232         prod = sc->rl_ldata.rl_tx_prodidx;
2233         txd = &sc->rl_ldata.rl_tx_desc[prod];
2234         error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2235             *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2236         if (error == EFBIG) {
2237                 m_new = m_collapse(*m_head, M_DONTWAIT, RL_NTXSEGS);
2238                 if (m_new == NULL) {
2239                         m_freem(*m_head);
2240                         *m_head = NULL;
2241                         return (ENOBUFS);
2242                 }
2243                 *m_head = m_new;
2244                 error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag,
2245                     txd->tx_dmamap, *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2246                 if (error != 0) {
2247                         m_freem(*m_head);
2248                         *m_head = NULL;
2249                         return (error);
2250                 }
2251         } else if (error != 0)
2252                 return (error);
2253         if (nsegs == 0) {
2254                 m_freem(*m_head);
2255                 *m_head = NULL;
2256                 return (EIO);
2257         }
2258
2259         /* Check for number of available descriptors. */
2260         if (sc->rl_ldata.rl_tx_free - nsegs <= 1) {
2261                 bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap);
2262                 return (ENOBUFS);
2263         }
2264
2265         bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2266             BUS_DMASYNC_PREWRITE);
2267
2268         /*
2269          * Set up checksum offload. Note: checksum offload bits must
2270          * appear in all descriptors of a multi-descriptor transmit
2271          * attempt. This is according to testing done with an 8169
2272          * chip. This is a requirement.
2273          */
2274         vlanctl = 0;
2275         csum_flags = 0;
2276         if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0)
2277                 csum_flags = RL_TDESC_CMD_LGSEND |
2278                     ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2279                     RL_TDESC_CMD_MSSVAL_SHIFT);
2280         else {
2281                 /*
2282                  * Unconditionally enable IP checksum if TCP or UDP
2283                  * checksum is required. Otherwise, TCP/UDP checksum
2284                  * does't make effects.
2285                  */
2286                 if (((*m_head)->m_pkthdr.csum_flags & RE_CSUM_FEATURES) != 0) {
2287                         if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
2288                                 csum_flags |= RL_TDESC_CMD_IPCSUM;
2289                                 if (((*m_head)->m_pkthdr.csum_flags &
2290                                     CSUM_TCP) != 0)
2291                                         csum_flags |= RL_TDESC_CMD_TCPCSUM;
2292                                 if (((*m_head)->m_pkthdr.csum_flags &
2293                                     CSUM_UDP) != 0)
2294                                         csum_flags |= RL_TDESC_CMD_UDPCSUM;
2295                         } else {
2296                                 vlanctl |= RL_TDESC_CMD_IPCSUMV2;
2297                                 if (((*m_head)->m_pkthdr.csum_flags &
2298                                     CSUM_TCP) != 0)
2299                                         vlanctl |= RL_TDESC_CMD_TCPCSUMV2;
2300                                 if (((*m_head)->m_pkthdr.csum_flags &
2301                                     CSUM_UDP) != 0)
2302                                         vlanctl |= RL_TDESC_CMD_UDPCSUMV2;
2303                         }
2304                 }
2305         }
2306
2307         /*
2308          * Set up hardware VLAN tagging. Note: vlan tag info must
2309          * appear in all descriptors of a multi-descriptor
2310          * transmission attempt.
2311          */
2312         if ((*m_head)->m_flags & M_VLANTAG)
2313                 vlanctl |= bswap16((*m_head)->m_pkthdr.ether_vtag) |
2314                     RL_TDESC_VLANCTL_TAG;
2315
2316         si = prod;
2317         for (i = 0; i < nsegs; i++, prod = RL_TX_DESC_NXT(sc, prod)) {
2318                 desc = &sc->rl_ldata.rl_tx_list[prod];
2319                 desc->rl_vlanctl = htole32(vlanctl);
2320                 desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
2321                 desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
2322                 cmdstat = segs[i].ds_len;
2323                 if (i != 0)
2324                         cmdstat |= RL_TDESC_CMD_OWN;
2325                 if (prod == sc->rl_ldata.rl_tx_desc_cnt - 1)
2326                         cmdstat |= RL_TDESC_CMD_EOR;
2327                 desc->rl_cmdstat = htole32(cmdstat | csum_flags);
2328                 sc->rl_ldata.rl_tx_free--;
2329         }
2330         /* Update producer index. */
2331         sc->rl_ldata.rl_tx_prodidx = prod;
2332
2333         /* Set EOF on the last descriptor. */
2334         ei = RL_TX_DESC_PRV(sc, prod);
2335         desc = &sc->rl_ldata.rl_tx_list[ei];
2336         desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
2337
2338         desc = &sc->rl_ldata.rl_tx_list[si];
2339         /* Set SOF and transfer ownership of packet to the chip. */
2340         desc->rl_cmdstat |= htole32(RL_TDESC_CMD_OWN | RL_TDESC_CMD_SOF);
2341
2342         /*
2343          * Insure that the map for this transmission
2344          * is placed at the array index of the last descriptor
2345          * in this chain.  (Swap last and first dmamaps.)
2346          */
2347         txd_last = &sc->rl_ldata.rl_tx_desc[ei];
2348         map = txd->tx_dmamap;
2349         txd->tx_dmamap = txd_last->tx_dmamap;
2350         txd_last->tx_dmamap = map;
2351         txd_last->tx_m = *m_head;
2352
2353         return (0);
2354 }
2355
2356 static void
2357 re_tx_task(void *arg, int npending)
2358 {
2359         struct ifnet            *ifp;
2360
2361         ifp = arg;
2362         re_start(ifp);
2363 }
2364
2365 /*
2366  * Main transmit routine for C+ and gigE NICs.
2367  */
2368 static void
2369 re_start(struct ifnet *ifp)
2370 {
2371         struct rl_softc         *sc;
2372         struct mbuf             *m_head;
2373         int                     queued;
2374
2375         sc = ifp->if_softc;
2376
2377         RL_LOCK(sc);
2378
2379         if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2380             IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0) {
2381                 RL_UNLOCK(sc);
2382                 return;
2383         }
2384
2385         for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2386             sc->rl_ldata.rl_tx_free > 1;) {
2387                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2388                 if (m_head == NULL)
2389                         break;
2390
2391                 if (re_encap(sc, &m_head) != 0) {
2392                         if (m_head == NULL)
2393                                 break;
2394                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2395                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2396                         break;
2397                 }
2398
2399                 /*
2400                  * If there's a BPF listener, bounce a copy of this frame
2401                  * to him.
2402                  */
2403                 ETHER_BPF_MTAP(ifp, m_head);
2404
2405                 queued++;
2406         }
2407
2408         if (queued == 0) {
2409 #ifdef RE_TX_MODERATION
2410                 if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt)
2411                         CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2412 #endif
2413                 RL_UNLOCK(sc);
2414                 return;
2415         }
2416
2417         /* Flush the TX descriptors */
2418
2419         bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2420             sc->rl_ldata.rl_tx_list_map,
2421             BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2422
2423         CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2424
2425 #ifdef RE_TX_MODERATION
2426         /*
2427          * Use the countdown timer for interrupt moderation.
2428          * 'TX done' interrupts are disabled. Instead, we reset the
2429          * countdown timer, which will begin counting until it hits
2430          * the value in the TIMERINT register, and then trigger an
2431          * interrupt. Each time we write to the TIMERCNT register,
2432          * the timer count is reset to 0.
2433          */
2434         CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2435 #endif
2436
2437         /*
2438          * Set a timeout in case the chip goes out to lunch.
2439          */
2440         sc->rl_watchdog_timer = 5;
2441
2442         RL_UNLOCK(sc);
2443 }
2444
2445 static void
2446 re_init(void *xsc)
2447 {
2448         struct rl_softc         *sc = xsc;
2449
2450         RL_LOCK(sc);
2451         re_init_locked(sc);
2452         RL_UNLOCK(sc);
2453 }
2454
2455 static void
2456 re_init_locked(struct rl_softc *sc)
2457 {
2458         struct ifnet            *ifp = sc->rl_ifp;
2459         struct mii_data         *mii;
2460         u_int32_t               rxcfg = 0;
2461         uint16_t                cfg;
2462         union {
2463                 uint32_t align_dummy;
2464                 u_char eaddr[ETHER_ADDR_LEN];
2465         } eaddr;
2466
2467         RL_LOCK_ASSERT(sc);
2468
2469         mii = device_get_softc(sc->rl_miibus);
2470
2471         /*
2472          * Cancel pending I/O and free all RX/TX buffers.
2473          */
2474         re_stop(sc);
2475
2476         /*
2477          * Enable C+ RX and TX mode, as well as VLAN stripping and
2478          * RX checksum offload. We must configure the C+ register
2479          * before all others.
2480          */
2481         cfg = RL_CPLUSCMD_PCI_MRW;
2482         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2483                 cfg |= RL_CPLUSCMD_RXCSUM_ENB;
2484         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2485                 cfg |= RL_CPLUSCMD_VLANSTRIP;
2486         if ((sc->rl_flags & RL_FLAG_MACSTAT) != 0) {
2487                 cfg |= RL_CPLUSCMD_MACSTAT_DIS;
2488                 /* XXX magic. */
2489                 cfg |= 0x0001;
2490         } else
2491                 cfg |= RL_CPLUSCMD_RXENB | RL_CPLUSCMD_TXENB;
2492         CSR_WRITE_2(sc, RL_CPLUS_CMD, cfg);
2493         /*
2494          * Disable TSO if interface MTU size is greater than MSS
2495          * allowed in controller.
2496          */
2497         if (ifp->if_mtu > RL_TSO_MTU && (ifp->if_capenable & IFCAP_TSO4) != 0) {
2498                 ifp->if_capenable &= ~IFCAP_TSO4;
2499                 ifp->if_hwassist &= ~CSUM_TSO;
2500         }
2501
2502         /*
2503          * Init our MAC address.  Even though the chipset
2504          * documentation doesn't mention it, we need to enter "Config
2505          * register write enable" mode to modify the ID registers.
2506          */
2507         /* Copy MAC address on stack to align. */
2508         bcopy(IF_LLADDR(ifp), eaddr.eaddr, ETHER_ADDR_LEN);
2509         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2510         CSR_WRITE_4(sc, RL_IDR0,
2511             htole32(*(u_int32_t *)(&eaddr.eaddr[0])));
2512         CSR_WRITE_4(sc, RL_IDR4,
2513             htole32(*(u_int32_t *)(&eaddr.eaddr[4])));
2514         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2515
2516         /*
2517          * For C+ mode, initialize the RX descriptors and mbufs.
2518          */
2519         re_rx_list_init(sc);
2520         re_tx_list_init(sc);
2521
2522         /*
2523          * Load the addresses of the RX and TX lists into the chip.
2524          */
2525
2526         CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
2527             RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
2528         CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
2529             RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
2530
2531         CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
2532             RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
2533         CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
2534             RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
2535
2536         /*
2537          * Enable transmit and receive.
2538          */
2539         CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2540
2541         /*
2542          * Set the initial TX and RX configuration.
2543          */
2544         if (sc->rl_testmode) {
2545                 if (sc->rl_type == RL_8169)
2546                         CSR_WRITE_4(sc, RL_TXCFG,
2547                             RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
2548                 else
2549                         CSR_WRITE_4(sc, RL_TXCFG,
2550                             RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
2551         } else
2552                 CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
2553
2554         CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
2555
2556         CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
2557
2558         /* Set the individual bit to receive frames for this host only. */
2559         rxcfg = CSR_READ_4(sc, RL_RXCFG);
2560         rxcfg |= RL_RXCFG_RX_INDIV;
2561
2562         /* If we want promiscuous mode, set the allframes bit. */
2563         if (ifp->if_flags & IFF_PROMISC)
2564                 rxcfg |= RL_RXCFG_RX_ALLPHYS;
2565         else
2566                 rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
2567         CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2568
2569         /*
2570          * Set capture broadcast bit to capture broadcast frames.
2571          */
2572         if (ifp->if_flags & IFF_BROADCAST)
2573                 rxcfg |= RL_RXCFG_RX_BROAD;
2574         else
2575                 rxcfg &= ~RL_RXCFG_RX_BROAD;
2576         CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2577
2578         /*
2579          * Program the multicast filter, if necessary.
2580          */
2581         re_setmulti(sc);
2582
2583 #ifdef DEVICE_POLLING
2584         /*
2585          * Disable interrupts if we are polling.
2586          */
2587         if (ifp->if_capenable & IFCAP_POLLING)
2588                 CSR_WRITE_2(sc, RL_IMR, 0);
2589         else    /* otherwise ... */
2590 #endif
2591
2592         /*
2593          * Enable interrupts.
2594          */
2595         if (sc->rl_testmode)
2596                 CSR_WRITE_2(sc, RL_IMR, 0);
2597         else
2598                 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2599         CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS);
2600
2601         /* Set initial TX threshold */
2602         sc->rl_txthresh = RL_TX_THRESH_INIT;
2603
2604         /* Start RX/TX process. */
2605         CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
2606 #ifdef notdef
2607         /* Enable receiver and transmitter. */
2608         CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2609 #endif
2610
2611 #ifdef RE_TX_MODERATION
2612         /*
2613          * Initialize the timer interrupt register so that
2614          * a timer interrupt will be generated once the timer
2615          * reaches a certain number of ticks. The timer is
2616          * reloaded on each transmit. This gives us TX interrupt
2617          * moderation, which dramatically improves TX frame rate.
2618          */
2619         if (sc->rl_type == RL_8169)
2620                 CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
2621         else
2622                 CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
2623 #endif
2624
2625         /*
2626          * For 8169 gigE NICs, set the max allowed RX packet
2627          * size so we can receive jumbo frames.
2628          */
2629         if (sc->rl_type == RL_8169)
2630                 CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
2631
2632         if (sc->rl_testmode)
2633                 return;
2634
2635         mii_mediachg(mii);
2636
2637         CSR_WRITE_1(sc, RL_CFG1, CSR_READ_1(sc, RL_CFG1) | RL_CFG1_DRVLOAD);
2638
2639         ifp->if_drv_flags |= IFF_DRV_RUNNING;
2640         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2641
2642         sc->rl_flags &= ~RL_FLAG_LINK;
2643         sc->rl_watchdog_timer = 0;
2644         callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2645 }
2646
2647 /*
2648  * Set media options.
2649  */
2650 static int
2651 re_ifmedia_upd(struct ifnet *ifp)
2652 {
2653         struct rl_softc         *sc;
2654         struct mii_data         *mii;
2655         int                     error;
2656
2657         sc = ifp->if_softc;
2658         mii = device_get_softc(sc->rl_miibus);
2659         RL_LOCK(sc);
2660         error = mii_mediachg(mii);
2661         RL_UNLOCK(sc);
2662
2663         return (error);
2664 }
2665
2666 /*
2667  * Report current media status.
2668  */
2669 static void
2670 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2671 {
2672         struct rl_softc         *sc;
2673         struct mii_data         *mii;
2674
2675         sc = ifp->if_softc;
2676         mii = device_get_softc(sc->rl_miibus);
2677
2678         RL_LOCK(sc);
2679         mii_pollstat(mii);
2680         RL_UNLOCK(sc);
2681         ifmr->ifm_active = mii->mii_media_active;
2682         ifmr->ifm_status = mii->mii_media_status;
2683 }
2684
2685 static int
2686 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2687 {
2688         struct rl_softc         *sc = ifp->if_softc;
2689         struct ifreq            *ifr = (struct ifreq *) data;
2690         struct mii_data         *mii;
2691         int                     error = 0;
2692
2693         switch (command) {
2694         case SIOCSIFMTU:
2695                 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > RL_JUMBO_MTU) {
2696                         error = EINVAL;
2697                         break;
2698                 }
2699                 if ((sc->rl_flags & RL_FLAG_NOJUMBO) != 0 &&
2700                     ifr->ifr_mtu > RL_MAX_FRAMELEN) {
2701                         error = EINVAL;
2702                         break;
2703                 }
2704                 RL_LOCK(sc);
2705                 if (ifp->if_mtu != ifr->ifr_mtu)
2706                         ifp->if_mtu = ifr->ifr_mtu;
2707                 if (ifp->if_mtu > RL_TSO_MTU &&
2708                     (ifp->if_capenable & IFCAP_TSO4) != 0) {
2709                         ifp->if_capenable &= ~IFCAP_TSO4;
2710                         ifp->if_hwassist &= ~CSUM_TSO;
2711                 }
2712                 RL_UNLOCK(sc);
2713                 break;
2714         case SIOCSIFFLAGS:
2715                 RL_LOCK(sc);
2716                 if ((ifp->if_flags & IFF_UP) != 0) {
2717                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2718                                 if (((ifp->if_flags ^ sc->rl_if_flags)
2719                                     & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2720                                         re_setmulti(sc);
2721                         } else
2722                                 re_init_locked(sc);
2723                 } else {
2724                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2725                                 re_stop(sc);
2726                 }
2727                 sc->rl_if_flags = ifp->if_flags;
2728                 RL_UNLOCK(sc);
2729                 break;
2730         case SIOCADDMULTI:
2731         case SIOCDELMULTI:
2732                 RL_LOCK(sc);
2733                 re_setmulti(sc);
2734                 RL_UNLOCK(sc);
2735                 break;
2736         case SIOCGIFMEDIA:
2737         case SIOCSIFMEDIA:
2738                 mii = device_get_softc(sc->rl_miibus);
2739                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2740                 break;
2741         case SIOCSIFCAP:
2742             {
2743                 int mask, reinit;
2744
2745                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2746                 reinit = 0;
2747 #ifdef DEVICE_POLLING
2748                 if (mask & IFCAP_POLLING) {
2749                         if (ifr->ifr_reqcap & IFCAP_POLLING) {
2750                                 error = ether_poll_register(re_poll, ifp);
2751                                 if (error)
2752                                         return(error);
2753                                 RL_LOCK(sc);
2754                                 /* Disable interrupts */
2755                                 CSR_WRITE_2(sc, RL_IMR, 0x0000);
2756                                 ifp->if_capenable |= IFCAP_POLLING;
2757                                 RL_UNLOCK(sc);
2758                         } else {
2759                                 error = ether_poll_deregister(ifp);
2760                                 /* Enable interrupts. */
2761                                 RL_LOCK(sc);
2762                                 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2763                                 ifp->if_capenable &= ~IFCAP_POLLING;
2764                                 RL_UNLOCK(sc);
2765                         }
2766                 }
2767 #endif /* DEVICE_POLLING */
2768                 if (mask & IFCAP_HWCSUM) {
2769                         ifp->if_capenable ^= IFCAP_HWCSUM;
2770                         if (ifp->if_capenable & IFCAP_TXCSUM)
2771                                 ifp->if_hwassist |= RE_CSUM_FEATURES;
2772                         else
2773                                 ifp->if_hwassist &= ~RE_CSUM_FEATURES;
2774                         reinit = 1;
2775                 }
2776                 if (mask & IFCAP_VLAN_HWTAGGING) {
2777                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2778                         reinit = 1;
2779                 }
2780                 if (mask & IFCAP_TSO4) {
2781                         ifp->if_capenable ^= IFCAP_TSO4;
2782                         if ((IFCAP_TSO4 & ifp->if_capenable) &&
2783                             (IFCAP_TSO4 & ifp->if_capabilities))
2784                                 ifp->if_hwassist |= CSUM_TSO;
2785                         else
2786                                 ifp->if_hwassist &= ~CSUM_TSO;
2787                         if (ifp->if_mtu > RL_TSO_MTU &&
2788                             (ifp->if_capenable & IFCAP_TSO4) != 0) {
2789                                 ifp->if_capenable &= ~IFCAP_TSO4;
2790                                 ifp->if_hwassist &= ~CSUM_TSO;
2791                         }
2792                 }
2793                 if ((mask & IFCAP_WOL) != 0 &&
2794                     (ifp->if_capabilities & IFCAP_WOL) != 0) {
2795                         if ((mask & IFCAP_WOL_UCAST) != 0)
2796                                 ifp->if_capenable ^= IFCAP_WOL_UCAST;
2797                         if ((mask & IFCAP_WOL_MCAST) != 0)
2798                                 ifp->if_capenable ^= IFCAP_WOL_MCAST;
2799                         if ((mask & IFCAP_WOL_MAGIC) != 0)
2800                                 ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2801                 }
2802                 if (reinit && ifp->if_drv_flags & IFF_DRV_RUNNING)
2803                         re_init(sc);
2804                 VLAN_CAPABILITIES(ifp);
2805             }
2806                 break;
2807         default:
2808                 error = ether_ioctl(ifp, command, data);
2809                 break;
2810         }
2811
2812         return (error);
2813 }
2814
2815 static void
2816 re_watchdog(struct rl_softc *sc)
2817 {
2818
2819         RL_LOCK_ASSERT(sc);
2820
2821         if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer != 0)
2822                 return;
2823
2824         device_printf(sc->rl_dev, "watchdog timeout\n");
2825         sc->rl_ifp->if_oerrors++;
2826
2827         re_txeof(sc);
2828         re_rxeof(sc);
2829         re_init_locked(sc);
2830 }
2831
2832 /*
2833  * Stop the adapter and free any mbufs allocated to the
2834  * RX and TX lists.
2835  */
2836 static void
2837 re_stop(struct rl_softc *sc)
2838 {
2839         int                     i;
2840         struct ifnet            *ifp;
2841         struct rl_txdesc        *txd;
2842         struct rl_rxdesc        *rxd;
2843
2844         RL_LOCK_ASSERT(sc);
2845
2846         ifp = sc->rl_ifp;
2847
2848         sc->rl_watchdog_timer = 0;
2849         callout_stop(&sc->rl_stat_callout);
2850         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2851
2852         CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2853         CSR_WRITE_2(sc, RL_IMR, 0x0000);
2854         CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
2855
2856         if (sc->rl_head != NULL) {
2857                 m_freem(sc->rl_head);
2858                 sc->rl_head = sc->rl_tail = NULL;
2859         }
2860
2861         /* Free the TX list buffers. */
2862
2863         for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
2864                 txd = &sc->rl_ldata.rl_tx_desc[i];
2865                 if (txd->tx_m != NULL) {
2866                         bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
2867                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2868                         bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
2869                             txd->tx_dmamap);
2870                         m_freem(txd->tx_m);
2871                         txd->tx_m = NULL;
2872                 }
2873         }
2874
2875         /* Free the RX list buffers. */
2876
2877         for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
2878                 rxd = &sc->rl_ldata.rl_rx_desc[i];
2879                 if (rxd->rx_m != NULL) {
2880                         bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
2881                             rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2882                         bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
2883                             rxd->rx_dmamap);
2884                         m_freem(rxd->rx_m);
2885                         rxd->rx_m = NULL;
2886                 }
2887         }
2888 }
2889
2890 /*
2891  * Device suspend routine.  Stop the interface and save some PCI
2892  * settings in case the BIOS doesn't restore them properly on
2893  * resume.
2894  */
2895 static int
2896 re_suspend(device_t dev)
2897 {
2898         struct rl_softc         *sc;
2899
2900         sc = device_get_softc(dev);
2901
2902         RL_LOCK(sc);
2903         re_stop(sc);
2904         re_setwol(sc);
2905         sc->suspended = 1;
2906         RL_UNLOCK(sc);
2907
2908         return (0);
2909 }
2910
2911 /*
2912  * Device resume routine.  Restore some PCI settings in case the BIOS
2913  * doesn't, re-enable busmastering, and restart the interface if
2914  * appropriate.
2915  */
2916 static int
2917 re_resume(device_t dev)
2918 {
2919         struct rl_softc         *sc;
2920         struct ifnet            *ifp;
2921
2922         sc = device_get_softc(dev);
2923
2924         RL_LOCK(sc);
2925
2926         ifp = sc->rl_ifp;
2927
2928         /* reinitialize interface if necessary */
2929         if (ifp->if_flags & IFF_UP)
2930                 re_init_locked(sc);
2931
2932         /*
2933          * Clear WOL matching such that normal Rx filtering
2934          * wouldn't interfere with WOL patterns.
2935          */
2936         re_clrwol(sc);
2937         sc->suspended = 0;
2938         RL_UNLOCK(sc);
2939
2940         return (0);
2941 }
2942
2943 /*
2944  * Stop all chip I/O so that the kernel's probe routines don't
2945  * get confused by errant DMAs when rebooting.
2946  */
2947 static int
2948 re_shutdown(device_t dev)
2949 {
2950         struct rl_softc         *sc;
2951
2952         sc = device_get_softc(dev);
2953
2954         RL_LOCK(sc);
2955         re_stop(sc);
2956         /*
2957          * Mark interface as down since otherwise we will panic if
2958          * interrupt comes in later on, which can happen in some
2959          * cases.
2960          */
2961         sc->rl_ifp->if_flags &= ~IFF_UP;
2962         re_setwol(sc);
2963         RL_UNLOCK(sc);
2964
2965         return (0);
2966 }
2967
2968 static void
2969 re_setwol(struct rl_softc *sc)
2970 {
2971         struct ifnet            *ifp;
2972         int                     pmc;
2973         uint16_t                pmstat;
2974         uint8_t                 v;
2975
2976         RL_LOCK_ASSERT(sc);
2977
2978         if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
2979                 return;
2980
2981         ifp = sc->rl_ifp;
2982         /* Enable config register write. */
2983         CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
2984
2985         /* Enable PME. */
2986         v = CSR_READ_1(sc, RL_CFG1);
2987         v &= ~RL_CFG1_PME;
2988         if ((ifp->if_capenable & IFCAP_WOL) != 0)
2989                 v |= RL_CFG1_PME;
2990         CSR_WRITE_1(sc, RL_CFG1, v);
2991
2992         v = CSR_READ_1(sc, RL_CFG3);
2993         v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
2994         if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2995                 v |= RL_CFG3_WOL_MAGIC;
2996         CSR_WRITE_1(sc, RL_CFG3, v);
2997
2998         /* Config register write done. */
2999         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3000
3001         v = CSR_READ_1(sc, RL_CFG5);
3002         v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
3003         v &= ~RL_CFG5_WOL_LANWAKE;
3004         if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
3005                 v |= RL_CFG5_WOL_UCAST;
3006         if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
3007                 v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST;
3008         if ((ifp->if_capenable & IFCAP_WOL) != 0)
3009                 v |= RL_CFG5_WOL_LANWAKE;
3010         CSR_WRITE_1(sc, RL_CFG5, v);
3011
3012         /*
3013          * It seems that hardware resets its link speed to 100Mbps in
3014          * power down mode so switching to 100Mbps in driver is not
3015          * needed.
3016          */
3017
3018         /* Request PME if WOL is requested. */
3019         pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2);
3020         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3021         if ((ifp->if_capenable & IFCAP_WOL) != 0)
3022                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3023         pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
3024 }
3025
3026 static void
3027 re_clrwol(struct rl_softc *sc)
3028 {
3029         int                     pmc;
3030         uint8_t                 v;
3031
3032         RL_LOCK_ASSERT(sc);
3033
3034         if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
3035                 return;
3036
3037         /* Enable config register write. */
3038         CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
3039
3040         v = CSR_READ_1(sc, RL_CFG3);
3041         v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
3042         CSR_WRITE_1(sc, RL_CFG3, v);
3043
3044         /* Config register write done. */
3045         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3046
3047         v = CSR_READ_1(sc, RL_CFG5);
3048         v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
3049         v &= ~RL_CFG5_WOL_LANWAKE;
3050         CSR_WRITE_1(sc, RL_CFG5, v);
3051 }