]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/safe/safe.c
Fix memory disclosure vulnerability in libalias.
[FreeBSD/FreeBSD.git] / sys / dev / safe / safe.c
1 /*-
2  * Copyright (c) 2003 Sam Leffler, Errno Consulting
3  * Copyright (c) 2003 Global Technology Associates, Inc.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 /*
32  * SafeNet SafeXcel-1141 hardware crypto accelerator
33  */
34 #include "opt_safe.h"
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/errno.h>
40 #include <sys/malloc.h>
41 #include <sys/kernel.h>
42 #include <sys/mbuf.h>
43 #include <sys/module.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/sysctl.h>
47 #include <sys/endian.h>
48
49 #include <vm/vm.h>
50 #include <vm/pmap.h>
51
52 #include <machine/bus.h>
53 #include <machine/resource.h>
54 #include <sys/bus.h>
55 #include <sys/rman.h>
56
57 #include <crypto/sha1.h>
58 #include <opencrypto/cryptodev.h>
59 #include <opencrypto/cryptosoft.h>
60 #include <sys/md5.h>
61 #include <sys/random.h>
62 #include <sys/kobj.h>
63
64 #include "cryptodev_if.h"
65
66 #include <dev/pci/pcivar.h>
67 #include <dev/pci/pcireg.h>
68
69 #ifdef SAFE_RNDTEST
70 #include <dev/rndtest/rndtest.h>
71 #endif
72 #include <dev/safe/safereg.h>
73 #include <dev/safe/safevar.h>
74
75 #ifndef bswap32
76 #define bswap32 NTOHL
77 #endif
78
79 /*
80  * Prototypes and count for the pci_device structure
81  */
82 static  int safe_probe(device_t);
83 static  int safe_attach(device_t);
84 static  int safe_detach(device_t);
85 static  int safe_suspend(device_t);
86 static  int safe_resume(device_t);
87 static  int safe_shutdown(device_t);
88
89 static  int safe_newsession(device_t, u_int32_t *, struct cryptoini *);
90 static  int safe_freesession(device_t, u_int64_t);
91 static  int safe_process(device_t, struct cryptop *, int);
92
93 static device_method_t safe_methods[] = {
94         /* Device interface */
95         DEVMETHOD(device_probe,         safe_probe),
96         DEVMETHOD(device_attach,        safe_attach),
97         DEVMETHOD(device_detach,        safe_detach),
98         DEVMETHOD(device_suspend,       safe_suspend),
99         DEVMETHOD(device_resume,        safe_resume),
100         DEVMETHOD(device_shutdown,      safe_shutdown),
101
102         /* crypto device methods */
103         DEVMETHOD(cryptodev_newsession, safe_newsession),
104         DEVMETHOD(cryptodev_freesession,safe_freesession),
105         DEVMETHOD(cryptodev_process,    safe_process),
106
107         DEVMETHOD_END
108 };
109 static driver_t safe_driver = {
110         "safe",
111         safe_methods,
112         sizeof (struct safe_softc)
113 };
114 static devclass_t safe_devclass;
115
116 DRIVER_MODULE(safe, pci, safe_driver, safe_devclass, 0, 0);
117 MODULE_DEPEND(safe, crypto, 1, 1, 1);
118 #ifdef SAFE_RNDTEST
119 MODULE_DEPEND(safe, rndtest, 1, 1, 1);
120 #endif
121
122 static  void safe_intr(void *);
123 static  void safe_callback(struct safe_softc *, struct safe_ringentry *);
124 static  void safe_feed(struct safe_softc *, struct safe_ringentry *);
125 static  void safe_mcopy(struct mbuf *, struct mbuf *, u_int);
126 #ifndef SAFE_NO_RNG
127 static  void safe_rng_init(struct safe_softc *);
128 static  void safe_rng(void *);
129 #endif /* SAFE_NO_RNG */
130 static  int safe_dma_malloc(struct safe_softc *, bus_size_t,
131                 struct safe_dma_alloc *, int);
132 #define safe_dma_sync(_dma, _flags) \
133         bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
134 static  void safe_dma_free(struct safe_softc *, struct safe_dma_alloc *);
135 static  int safe_dmamap_aligned(const struct safe_operand *);
136 static  int safe_dmamap_uniform(const struct safe_operand *);
137
138 static  void safe_reset_board(struct safe_softc *);
139 static  void safe_init_board(struct safe_softc *);
140 static  void safe_init_pciregs(device_t dev);
141 static  void safe_cleanchip(struct safe_softc *);
142 static  void safe_totalreset(struct safe_softc *);
143
144 static  int safe_free_entry(struct safe_softc *, struct safe_ringentry *);
145
146 static SYSCTL_NODE(_hw, OID_AUTO, safe, CTLFLAG_RD, 0,
147     "SafeNet driver parameters");
148
149 #ifdef SAFE_DEBUG
150 static  void safe_dump_dmastatus(struct safe_softc *, const char *);
151 static  void safe_dump_ringstate(struct safe_softc *, const char *);
152 static  void safe_dump_intrstate(struct safe_softc *, const char *);
153 static  void safe_dump_request(struct safe_softc *, const char *,
154                 struct safe_ringentry *);
155
156 static  struct safe_softc *safec;               /* for use by hw.safe.dump */
157
158 static  int safe_debug = 0;
159 SYSCTL_INT(_hw_safe, OID_AUTO, debug, CTLFLAG_RW, &safe_debug,
160             0, "control debugging msgs");
161 #define DPRINTF(_x)     if (safe_debug) printf _x
162 #else
163 #define DPRINTF(_x)
164 #endif
165
166 #define READ_REG(sc,r) \
167         bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
168
169 #define WRITE_REG(sc,reg,val) \
170         bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
171
172 struct safe_stats safestats;
173 SYSCTL_STRUCT(_hw_safe, OID_AUTO, stats, CTLFLAG_RD, &safestats,
174             safe_stats, "driver statistics");
175 #ifndef SAFE_NO_RNG
176 static  int safe_rnginterval = 1;               /* poll once a second */
177 SYSCTL_INT(_hw_safe, OID_AUTO, rnginterval, CTLFLAG_RW, &safe_rnginterval,
178             0, "RNG polling interval (secs)");
179 static  int safe_rngbufsize = 16;               /* 64 bytes each poll  */
180 SYSCTL_INT(_hw_safe, OID_AUTO, rngbufsize, CTLFLAG_RW, &safe_rngbufsize,
181             0, "RNG polling buffer size (32-bit words)");
182 static  int safe_rngmaxalarm = 8;               /* max alarms before reset */
183 SYSCTL_INT(_hw_safe, OID_AUTO, rngmaxalarm, CTLFLAG_RW, &safe_rngmaxalarm,
184             0, "RNG max alarms before reset");
185 #endif /* SAFE_NO_RNG */
186
187 static int
188 safe_probe(device_t dev)
189 {
190         if (pci_get_vendor(dev) == PCI_VENDOR_SAFENET &&
191             pci_get_device(dev) == PCI_PRODUCT_SAFEXCEL)
192                 return (BUS_PROBE_DEFAULT);
193         return (ENXIO);
194 }
195
196 static const char*
197 safe_partname(struct safe_softc *sc)
198 {
199         /* XXX sprintf numbers when not decoded */
200         switch (pci_get_vendor(sc->sc_dev)) {
201         case PCI_VENDOR_SAFENET:
202                 switch (pci_get_device(sc->sc_dev)) {
203                 case PCI_PRODUCT_SAFEXCEL: return "SafeNet SafeXcel-1141";
204                 }
205                 return "SafeNet unknown-part";
206         }
207         return "Unknown-vendor unknown-part";
208 }
209
210 #ifndef SAFE_NO_RNG
211 static void
212 default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
213 {
214         /* MarkM: FIX!! Check that this does not swamp the harvester! */
215         random_harvest_queue(buf, count, count*NBBY/2, RANDOM_PURE_SAFE);
216 }
217 #endif /* SAFE_NO_RNG */
218
219 static int
220 safe_attach(device_t dev)
221 {
222         struct safe_softc *sc = device_get_softc(dev);
223         u_int32_t raddr;
224         u_int32_t i, devinfo;
225         int rid;
226
227         bzero(sc, sizeof (*sc));
228         sc->sc_dev = dev;
229
230         /* XXX handle power management */
231
232         pci_enable_busmaster(dev);
233
234         /* 
235          * Setup memory-mapping of PCI registers.
236          */
237         rid = BS_BAR;
238         sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
239                                            RF_ACTIVE);
240         if (sc->sc_sr == NULL) {
241                 device_printf(dev, "cannot map register space\n");
242                 goto bad;
243         }
244         sc->sc_st = rman_get_bustag(sc->sc_sr);
245         sc->sc_sh = rman_get_bushandle(sc->sc_sr);
246
247         /*
248          * Arrange interrupt line.
249          */
250         rid = 0;
251         sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
252                                             RF_SHAREABLE|RF_ACTIVE);
253         if (sc->sc_irq == NULL) {
254                 device_printf(dev, "could not map interrupt\n");
255                 goto bad1;
256         }
257         /*
258          * NB: Network code assumes we are blocked with splimp()
259          *     so make sure the IRQ is mapped appropriately.
260          */
261         if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
262                            NULL, safe_intr, sc, &sc->sc_ih)) {
263                 device_printf(dev, "could not establish interrupt\n");
264                 goto bad2;
265         }
266
267         sc->sc_cid = crypto_get_driverid(dev, CRYPTOCAP_F_HARDWARE);
268         if (sc->sc_cid < 0) {
269                 device_printf(dev, "could not get crypto driver id\n");
270                 goto bad3;
271         }
272
273         sc->sc_chiprev = READ_REG(sc, SAFE_DEVINFO) &
274                 (SAFE_DEVINFO_REV_MAJ | SAFE_DEVINFO_REV_MIN);
275
276         /*
277          * Setup DMA descriptor area.
278          */
279         if (bus_dma_tag_create(bus_get_dma_tag(dev),    /* parent */
280                                1,                       /* alignment */
281                                SAFE_DMA_BOUNDARY,       /* boundary */
282                                BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
283                                BUS_SPACE_MAXADDR,       /* highaddr */
284                                NULL, NULL,              /* filter, filterarg */
285                                SAFE_MAX_DMA,            /* maxsize */
286                                SAFE_MAX_PART,           /* nsegments */
287                                SAFE_MAX_SSIZE,          /* maxsegsize */
288                                BUS_DMA_ALLOCNOW,        /* flags */
289                                NULL, NULL,              /* locking */
290                                &sc->sc_srcdmat)) {
291                 device_printf(dev, "cannot allocate DMA tag\n");
292                 goto bad4;
293         }
294         if (bus_dma_tag_create(bus_get_dma_tag(dev),    /* parent */
295                                1,                       /* alignment */
296                                SAFE_MAX_DSIZE,          /* boundary */
297                                BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
298                                BUS_SPACE_MAXADDR,       /* highaddr */
299                                NULL, NULL,              /* filter, filterarg */
300                                SAFE_MAX_DMA,            /* maxsize */
301                                SAFE_MAX_PART,           /* nsegments */
302                                SAFE_MAX_DSIZE,          /* maxsegsize */
303                                BUS_DMA_ALLOCNOW,        /* flags */
304                                NULL, NULL,              /* locking */
305                                &sc->sc_dstdmat)) {
306                 device_printf(dev, "cannot allocate DMA tag\n");
307                 goto bad4;
308         }
309
310         /*
311          * Allocate packet engine descriptors.
312          */
313         if (safe_dma_malloc(sc,
314             SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
315             &sc->sc_ringalloc, 0)) {
316                 device_printf(dev, "cannot allocate PE descriptor ring\n");
317                 bus_dma_tag_destroy(sc->sc_srcdmat);
318                 goto bad4;
319         }
320         /*
321          * Hookup the static portion of all our data structures.
322          */
323         sc->sc_ring = (struct safe_ringentry *) sc->sc_ringalloc.dma_vaddr;
324         sc->sc_ringtop = sc->sc_ring + SAFE_MAX_NQUEUE;
325         sc->sc_front = sc->sc_ring;
326         sc->sc_back = sc->sc_ring;
327         raddr = sc->sc_ringalloc.dma_paddr;
328         bzero(sc->sc_ring, SAFE_MAX_NQUEUE * sizeof(struct safe_ringentry));
329         for (i = 0; i < SAFE_MAX_NQUEUE; i++) {
330                 struct safe_ringentry *re = &sc->sc_ring[i];
331
332                 re->re_desc.d_sa = raddr +
333                         offsetof(struct safe_ringentry, re_sa);
334                 re->re_sa.sa_staterec = raddr +
335                         offsetof(struct safe_ringentry, re_sastate);
336
337                 raddr += sizeof (struct safe_ringentry);
338         }
339         mtx_init(&sc->sc_ringmtx, device_get_nameunit(dev),
340                 "packet engine ring", MTX_DEF);
341
342         /*
343          * Allocate scatter and gather particle descriptors.
344          */
345         if (safe_dma_malloc(sc, SAFE_TOTAL_SPART * sizeof (struct safe_pdesc),
346             &sc->sc_spalloc, 0)) {
347                 device_printf(dev, "cannot allocate source particle "
348                         "descriptor ring\n");
349                 mtx_destroy(&sc->sc_ringmtx);
350                 safe_dma_free(sc, &sc->sc_ringalloc);
351                 bus_dma_tag_destroy(sc->sc_srcdmat);
352                 goto bad4;
353         }
354         sc->sc_spring = (struct safe_pdesc *) sc->sc_spalloc.dma_vaddr;
355         sc->sc_springtop = sc->sc_spring + SAFE_TOTAL_SPART;
356         sc->sc_spfree = sc->sc_spring;
357         bzero(sc->sc_spring, SAFE_TOTAL_SPART * sizeof(struct safe_pdesc));
358
359         if (safe_dma_malloc(sc, SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
360             &sc->sc_dpalloc, 0)) {
361                 device_printf(dev, "cannot allocate destination particle "
362                         "descriptor ring\n");
363                 mtx_destroy(&sc->sc_ringmtx);
364                 safe_dma_free(sc, &sc->sc_spalloc);
365                 safe_dma_free(sc, &sc->sc_ringalloc);
366                 bus_dma_tag_destroy(sc->sc_dstdmat);
367                 goto bad4;
368         }
369         sc->sc_dpring = (struct safe_pdesc *) sc->sc_dpalloc.dma_vaddr;
370         sc->sc_dpringtop = sc->sc_dpring + SAFE_TOTAL_DPART;
371         sc->sc_dpfree = sc->sc_dpring;
372         bzero(sc->sc_dpring, SAFE_TOTAL_DPART * sizeof(struct safe_pdesc));
373
374         device_printf(sc->sc_dev, "%s", safe_partname(sc));
375
376         devinfo = READ_REG(sc, SAFE_DEVINFO);
377         if (devinfo & SAFE_DEVINFO_RNG) {
378                 sc->sc_flags |= SAFE_FLAGS_RNG;
379                 printf(" rng");
380         }
381         if (devinfo & SAFE_DEVINFO_PKEY) {
382 #if 0
383                 printf(" key");
384                 sc->sc_flags |= SAFE_FLAGS_KEY;
385                 crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0);
386                 crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0);
387 #endif
388         }
389         if (devinfo & SAFE_DEVINFO_DES) {
390                 printf(" des/3des");
391                 crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
392                 crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
393         }
394         if (devinfo & SAFE_DEVINFO_AES) {
395                 printf(" aes");
396                 crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0);
397         }
398         if (devinfo & SAFE_DEVINFO_MD5) {
399                 printf(" md5");
400                 crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
401         }
402         if (devinfo & SAFE_DEVINFO_SHA1) {
403                 printf(" sha1");
404                 crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
405         }
406         printf(" null");
407         crypto_register(sc->sc_cid, CRYPTO_NULL_CBC, 0, 0);
408         crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0);
409         /* XXX other supported algorithms */
410         printf("\n");
411
412         safe_reset_board(sc);           /* reset h/w */
413         safe_init_pciregs(dev);         /* init pci settings */
414         safe_init_board(sc);            /* init h/w */
415
416 #ifndef SAFE_NO_RNG
417         if (sc->sc_flags & SAFE_FLAGS_RNG) {
418 #ifdef SAFE_RNDTEST
419                 sc->sc_rndtest = rndtest_attach(dev);
420                 if (sc->sc_rndtest)
421                         sc->sc_harvest = rndtest_harvest;
422                 else
423                         sc->sc_harvest = default_harvest;
424 #else
425                 sc->sc_harvest = default_harvest;
426 #endif
427                 safe_rng_init(sc);
428
429                 callout_init(&sc->sc_rngto, 1);
430                 callout_reset(&sc->sc_rngto, hz*safe_rnginterval, safe_rng, sc);
431         }
432 #endif /* SAFE_NO_RNG */
433 #ifdef SAFE_DEBUG
434         safec = sc;                     /* for use by hw.safe.dump */
435 #endif
436         return (0);
437 bad4:
438         crypto_unregister_all(sc->sc_cid);
439 bad3:
440         bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
441 bad2:
442         bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
443 bad1:
444         bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
445 bad:
446         return (ENXIO);
447 }
448
449 /*
450  * Detach a device that successfully probed.
451  */
452 static int
453 safe_detach(device_t dev)
454 {
455         struct safe_softc *sc = device_get_softc(dev);
456
457         /* XXX wait/abort active ops */
458
459         WRITE_REG(sc, SAFE_HI_MASK, 0);         /* disable interrupts */
460
461         callout_stop(&sc->sc_rngto);
462
463         crypto_unregister_all(sc->sc_cid);
464
465 #ifdef SAFE_RNDTEST
466         if (sc->sc_rndtest)
467                 rndtest_detach(sc->sc_rndtest);
468 #endif
469
470         safe_cleanchip(sc);
471         safe_dma_free(sc, &sc->sc_dpalloc);
472         safe_dma_free(sc, &sc->sc_spalloc);
473         mtx_destroy(&sc->sc_ringmtx);
474         safe_dma_free(sc, &sc->sc_ringalloc);
475
476         bus_generic_detach(dev);
477         bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
478         bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
479
480         bus_dma_tag_destroy(sc->sc_srcdmat);
481         bus_dma_tag_destroy(sc->sc_dstdmat);
482         bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
483
484         return (0);
485 }
486
487 /*
488  * Stop all chip i/o so that the kernel's probe routines don't
489  * get confused by errant DMAs when rebooting.
490  */
491 static int
492 safe_shutdown(device_t dev)
493 {
494 #ifdef notyet
495         safe_stop(device_get_softc(dev));
496 #endif
497         return (0);
498 }
499
500 /*
501  * Device suspend routine.
502  */
503 static int
504 safe_suspend(device_t dev)
505 {
506         struct safe_softc *sc = device_get_softc(dev);
507
508 #ifdef notyet
509         /* XXX stop the device and save PCI settings */
510 #endif
511         sc->sc_suspended = 1;
512
513         return (0);
514 }
515
516 static int
517 safe_resume(device_t dev)
518 {
519         struct safe_softc *sc = device_get_softc(dev);
520
521 #ifdef notyet
522         /* XXX retore PCI settings and start the device */
523 #endif
524         sc->sc_suspended = 0;
525         return (0);
526 }
527
528 /*
529  * SafeXcel Interrupt routine
530  */
531 static void
532 safe_intr(void *arg)
533 {
534         struct safe_softc *sc = arg;
535         volatile u_int32_t stat;
536
537         stat = READ_REG(sc, SAFE_HM_STAT);
538         if (stat == 0)                  /* shared irq, not for us */
539                 return;
540
541         WRITE_REG(sc, SAFE_HI_CLR, stat);       /* IACK */
542
543         if ((stat & SAFE_INT_PE_DDONE)) {
544                 /*
545                  * Descriptor(s) done; scan the ring and
546                  * process completed operations.
547                  */
548                 mtx_lock(&sc->sc_ringmtx);
549                 while (sc->sc_back != sc->sc_front) {
550                         struct safe_ringentry *re = sc->sc_back;
551 #ifdef SAFE_DEBUG
552                         if (safe_debug) {
553                                 safe_dump_ringstate(sc, __func__);
554                                 safe_dump_request(sc, __func__, re);
555                         }
556 #endif
557                         /*
558                          * safe_process marks ring entries that were allocated
559                          * but not used with a csr of zero.  This insures the
560                          * ring front pointer never needs to be set backwards
561                          * in the event that an entry is allocated but not used
562                          * because of a setup error.
563                          */
564                         if (re->re_desc.d_csr != 0) {
565                                 if (!SAFE_PE_CSR_IS_DONE(re->re_desc.d_csr))
566                                         break;
567                                 if (!SAFE_PE_LEN_IS_DONE(re->re_desc.d_len))
568                                         break;
569                                 sc->sc_nqchip--;
570                                 safe_callback(sc, re);
571                         }
572                         if (++(sc->sc_back) == sc->sc_ringtop)
573                                 sc->sc_back = sc->sc_ring;
574                 }
575                 mtx_unlock(&sc->sc_ringmtx);
576         }
577
578         /*
579          * Check to see if we got any DMA Error
580          */
581         if (stat & SAFE_INT_PE_ERROR) {
582                 DPRINTF(("dmaerr dmastat %08x\n",
583                         READ_REG(sc, SAFE_PE_DMASTAT)));
584                 safestats.st_dmaerr++;
585                 safe_totalreset(sc);
586 #if 0
587                 safe_feed(sc);
588 #endif
589         }
590
591         if (sc->sc_needwakeup) {                /* XXX check high watermark */
592                 int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
593                 DPRINTF(("%s: wakeup crypto %x\n", __func__,
594                         sc->sc_needwakeup));
595                 sc->sc_needwakeup &= ~wakeup;
596                 crypto_unblock(sc->sc_cid, wakeup);
597         }
598 }
599
600 /*
601  * safe_feed() - post a request to chip
602  */
603 static void
604 safe_feed(struct safe_softc *sc, struct safe_ringentry *re)
605 {
606         bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_PREWRITE);
607         if (re->re_dst_map != NULL)
608                 bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
609                         BUS_DMASYNC_PREREAD);
610         /* XXX have no smaller granularity */
611         safe_dma_sync(&sc->sc_ringalloc,
612                 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
613         safe_dma_sync(&sc->sc_spalloc, BUS_DMASYNC_PREWRITE);
614         safe_dma_sync(&sc->sc_dpalloc, BUS_DMASYNC_PREWRITE);
615
616 #ifdef SAFE_DEBUG
617         if (safe_debug) {
618                 safe_dump_ringstate(sc, __func__);
619                 safe_dump_request(sc, __func__, re);
620         }
621 #endif
622         sc->sc_nqchip++;
623         if (sc->sc_nqchip > safestats.st_maxqchip)
624                 safestats.st_maxqchip = sc->sc_nqchip;
625         /* poke h/w to check descriptor ring, any value can be written */
626         WRITE_REG(sc, SAFE_HI_RD_DESCR, 0);
627 }
628
629 #define N(a)    (sizeof(a) / sizeof (a[0]))
630 static void
631 safe_setup_enckey(struct safe_session *ses, caddr_t key)
632 {
633         int i;
634
635         bcopy(key, ses->ses_key, ses->ses_klen / 8);
636
637         /* PE is little-endian, insure proper byte order */
638         for (i = 0; i < N(ses->ses_key); i++)
639                 ses->ses_key[i] = htole32(ses->ses_key[i]);
640 }
641
642 static void
643 safe_setup_mackey(struct safe_session *ses, int algo, caddr_t key, int klen)
644 {
645         MD5_CTX md5ctx;
646         SHA1_CTX sha1ctx;
647         int i;
648
649
650         for (i = 0; i < klen; i++)
651                 key[i] ^= HMAC_IPAD_VAL;
652
653         if (algo == CRYPTO_MD5_HMAC) {
654                 MD5Init(&md5ctx);
655                 MD5Update(&md5ctx, key, klen);
656                 MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen);
657                 bcopy(md5ctx.state, ses->ses_hminner, sizeof(md5ctx.state));
658         } else {
659                 SHA1Init(&sha1ctx);
660                 SHA1Update(&sha1ctx, key, klen);
661                 SHA1Update(&sha1ctx, hmac_ipad_buffer,
662                     SHA1_HMAC_BLOCK_LEN - klen);
663                 bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
664         }
665
666         for (i = 0; i < klen; i++)
667                 key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
668
669         if (algo == CRYPTO_MD5_HMAC) {
670                 MD5Init(&md5ctx);
671                 MD5Update(&md5ctx, key, klen);
672                 MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen);
673                 bcopy(md5ctx.state, ses->ses_hmouter, sizeof(md5ctx.state));
674         } else {
675                 SHA1Init(&sha1ctx);
676                 SHA1Update(&sha1ctx, key, klen);
677                 SHA1Update(&sha1ctx, hmac_opad_buffer,
678                     SHA1_HMAC_BLOCK_LEN - klen);
679                 bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
680         }
681
682         for (i = 0; i < klen; i++)
683                 key[i] ^= HMAC_OPAD_VAL;
684
685         /* PE is little-endian, insure proper byte order */
686         for (i = 0; i < N(ses->ses_hminner); i++) {
687                 ses->ses_hminner[i] = htole32(ses->ses_hminner[i]);
688                 ses->ses_hmouter[i] = htole32(ses->ses_hmouter[i]);
689         }
690 }
691 #undef N
692
693 /*
694  * Allocate a new 'session' and return an encoded session id.  'sidp'
695  * contains our registration id, and should contain an encoded session
696  * id on successful allocation.
697  */
698 static int
699 safe_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
700 {
701         struct safe_softc *sc = device_get_softc(dev);
702         struct cryptoini *c, *encini = NULL, *macini = NULL;
703         struct safe_session *ses = NULL;
704         int sesn;
705
706         if (sidp == NULL || cri == NULL || sc == NULL)
707                 return (EINVAL);
708
709         for (c = cri; c != NULL; c = c->cri_next) {
710                 if (c->cri_alg == CRYPTO_MD5_HMAC ||
711                     c->cri_alg == CRYPTO_SHA1_HMAC ||
712                     c->cri_alg == CRYPTO_NULL_HMAC) {
713                         if (macini)
714                                 return (EINVAL);
715                         macini = c;
716                 } else if (c->cri_alg == CRYPTO_DES_CBC ||
717                     c->cri_alg == CRYPTO_3DES_CBC ||
718                     c->cri_alg == CRYPTO_AES_CBC ||
719                     c->cri_alg == CRYPTO_NULL_CBC) {
720                         if (encini)
721                                 return (EINVAL);
722                         encini = c;
723                 } else
724                         return (EINVAL);
725         }
726         if (encini == NULL && macini == NULL)
727                 return (EINVAL);
728         if (encini) {                   /* validate key length */
729                 switch (encini->cri_alg) {
730                 case CRYPTO_DES_CBC:
731                         if (encini->cri_klen != 64)
732                                 return (EINVAL);
733                         break;
734                 case CRYPTO_3DES_CBC:
735                         if (encini->cri_klen != 192)
736                                 return (EINVAL);
737                         break;
738                 case CRYPTO_AES_CBC:
739                         if (encini->cri_klen != 128 &&
740                             encini->cri_klen != 192 &&
741                             encini->cri_klen != 256)
742                                 return (EINVAL);
743                         break;
744                 }
745         }
746
747         if (sc->sc_sessions == NULL) {
748                 ses = sc->sc_sessions = (struct safe_session *)malloc(
749                     sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
750                 if (ses == NULL)
751                         return (ENOMEM);
752                 sesn = 0;
753                 sc->sc_nsessions = 1;
754         } else {
755                 for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
756                         if (sc->sc_sessions[sesn].ses_used == 0) {
757                                 ses = &sc->sc_sessions[sesn];
758                                 break;
759                         }
760                 }
761
762                 if (ses == NULL) {
763                         sesn = sc->sc_nsessions;
764                         ses = (struct safe_session *)malloc((sesn + 1) *
765                             sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
766                         if (ses == NULL)
767                                 return (ENOMEM);
768                         bcopy(sc->sc_sessions, ses, sesn *
769                             sizeof(struct safe_session));
770                         bzero(sc->sc_sessions, sesn *
771                             sizeof(struct safe_session));
772                         free(sc->sc_sessions, M_DEVBUF);
773                         sc->sc_sessions = ses;
774                         ses = &sc->sc_sessions[sesn];
775                         sc->sc_nsessions++;
776                 }
777         }
778
779         bzero(ses, sizeof(struct safe_session));
780         ses->ses_used = 1;
781
782         if (encini) {
783                 /* get an IV */
784                 /* XXX may read fewer than requested */
785                 read_random(ses->ses_iv, sizeof(ses->ses_iv));
786
787                 ses->ses_klen = encini->cri_klen;
788                 if (encini->cri_key != NULL)
789                         safe_setup_enckey(ses, encini->cri_key);
790         }
791
792         if (macini) {
793                 ses->ses_mlen = macini->cri_mlen;
794                 if (ses->ses_mlen == 0) {
795                         if (macini->cri_alg == CRYPTO_MD5_HMAC)
796                                 ses->ses_mlen = MD5_HASH_LEN;
797                         else
798                                 ses->ses_mlen = SHA1_HASH_LEN;
799                 }
800
801                 if (macini->cri_key != NULL) {
802                         safe_setup_mackey(ses, macini->cri_alg, macini->cri_key,
803                             macini->cri_klen / 8);
804                 }
805         }
806
807         *sidp = SAFE_SID(device_get_unit(sc->sc_dev), sesn);
808         return (0);
809 }
810
811 /*
812  * Deallocate a session.
813  */
814 static int
815 safe_freesession(device_t dev, u_int64_t tid)
816 {
817         struct safe_softc *sc = device_get_softc(dev);
818         int session, ret;
819         u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
820
821         if (sc == NULL)
822                 return (EINVAL);
823
824         session = SAFE_SESSION(sid);
825         if (session < sc->sc_nsessions) {
826                 bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
827                 ret = 0;
828         } else
829                 ret = EINVAL;
830         return (ret);
831 }
832
833 static void
834 safe_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
835 {
836         struct safe_operand *op = arg;
837
838         DPRINTF(("%s: mapsize %u nsegs %d error %d\n", __func__,
839                 (u_int) mapsize, nsegs, error));
840         if (error != 0)
841                 return;
842         op->mapsize = mapsize;
843         op->nsegs = nsegs;
844         bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
845 }
846
847 static int
848 safe_process(device_t dev, struct cryptop *crp, int hint)
849 {
850         struct safe_softc *sc = device_get_softc(dev);
851         int err = 0, i, nicealign, uniform;
852         struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
853         int bypass, oplen, ivsize;
854         caddr_t iv;
855         int16_t coffset;
856         struct safe_session *ses;
857         struct safe_ringentry *re;
858         struct safe_sarec *sa;
859         struct safe_pdesc *pd;
860         u_int32_t cmd0, cmd1, staterec;
861
862         if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
863                 safestats.st_invalid++;
864                 return (EINVAL);
865         }
866         if (SAFE_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
867                 safestats.st_badsession++;
868                 return (EINVAL);
869         }
870
871         mtx_lock(&sc->sc_ringmtx);
872         if (sc->sc_front == sc->sc_back && sc->sc_nqchip != 0) {
873                 safestats.st_ringfull++;
874                 sc->sc_needwakeup |= CRYPTO_SYMQ;
875                 mtx_unlock(&sc->sc_ringmtx);
876                 return (ERESTART);
877         }
878         re = sc->sc_front;
879
880         staterec = re->re_sa.sa_staterec;       /* save */
881         /* NB: zero everything but the PE descriptor */
882         bzero(&re->re_sa, sizeof(struct safe_ringentry) - sizeof(re->re_desc));
883         re->re_sa.sa_staterec = staterec;       /* restore */
884
885         re->re_crp = crp;
886         re->re_sesn = SAFE_SESSION(crp->crp_sid);
887
888         if (crp->crp_flags & CRYPTO_F_IMBUF) {
889                 re->re_src_m = (struct mbuf *)crp->crp_buf;
890                 re->re_dst_m = (struct mbuf *)crp->crp_buf;
891         } else if (crp->crp_flags & CRYPTO_F_IOV) {
892                 re->re_src_io = (struct uio *)crp->crp_buf;
893                 re->re_dst_io = (struct uio *)crp->crp_buf;
894         } else {
895                 safestats.st_badflags++;
896                 err = EINVAL;
897                 goto errout;    /* XXX we don't handle contiguous blocks! */
898         }
899
900         sa = &re->re_sa;
901         ses = &sc->sc_sessions[re->re_sesn];
902
903         crd1 = crp->crp_desc;
904         if (crd1 == NULL) {
905                 safestats.st_nodesc++;
906                 err = EINVAL;
907                 goto errout;
908         }
909         crd2 = crd1->crd_next;
910
911         cmd0 = SAFE_SA_CMD0_BASIC;              /* basic group operation */
912         cmd1 = 0;
913         if (crd2 == NULL) {
914                 if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
915                     crd1->crd_alg == CRYPTO_SHA1_HMAC ||
916                     crd1->crd_alg == CRYPTO_NULL_HMAC) {
917                         maccrd = crd1;
918                         enccrd = NULL;
919                         cmd0 |= SAFE_SA_CMD0_OP_HASH;
920                 } else if (crd1->crd_alg == CRYPTO_DES_CBC ||
921                     crd1->crd_alg == CRYPTO_3DES_CBC ||
922                     crd1->crd_alg == CRYPTO_AES_CBC ||
923                     crd1->crd_alg == CRYPTO_NULL_CBC) {
924                         maccrd = NULL;
925                         enccrd = crd1;
926                         cmd0 |= SAFE_SA_CMD0_OP_CRYPT;
927                 } else {
928                         safestats.st_badalg++;
929                         err = EINVAL;
930                         goto errout;
931                 }
932         } else {
933                 if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
934                     crd1->crd_alg == CRYPTO_SHA1_HMAC ||
935                     crd1->crd_alg == CRYPTO_NULL_HMAC) &&
936                     (crd2->crd_alg == CRYPTO_DES_CBC ||
937                         crd2->crd_alg == CRYPTO_3DES_CBC ||
938                         crd2->crd_alg == CRYPTO_AES_CBC ||
939                         crd2->crd_alg == CRYPTO_NULL_CBC) &&
940                     ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
941                         maccrd = crd1;
942                         enccrd = crd2;
943                 } else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
944                     crd1->crd_alg == CRYPTO_3DES_CBC ||
945                     crd1->crd_alg == CRYPTO_AES_CBC ||
946                     crd1->crd_alg == CRYPTO_NULL_CBC) &&
947                     (crd2->crd_alg == CRYPTO_MD5_HMAC ||
948                         crd2->crd_alg == CRYPTO_SHA1_HMAC ||
949                         crd2->crd_alg == CRYPTO_NULL_HMAC) &&
950                     (crd1->crd_flags & CRD_F_ENCRYPT)) {
951                         enccrd = crd1;
952                         maccrd = crd2;
953                 } else {
954                         safestats.st_badalg++;
955                         err = EINVAL;
956                         goto errout;
957                 }
958                 cmd0 |= SAFE_SA_CMD0_OP_BOTH;
959         }
960
961         if (enccrd) {
962                 if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT)
963                         safe_setup_enckey(ses, enccrd->crd_key);
964
965                 if (enccrd->crd_alg == CRYPTO_DES_CBC) {
966                         cmd0 |= SAFE_SA_CMD0_DES;
967                         cmd1 |= SAFE_SA_CMD1_CBC;
968                         ivsize = 2*sizeof(u_int32_t);
969                 } else if (enccrd->crd_alg == CRYPTO_3DES_CBC) {
970                         cmd0 |= SAFE_SA_CMD0_3DES;
971                         cmd1 |= SAFE_SA_CMD1_CBC;
972                         ivsize = 2*sizeof(u_int32_t);
973                 } else if (enccrd->crd_alg == CRYPTO_AES_CBC) {
974                         cmd0 |= SAFE_SA_CMD0_AES;
975                         cmd1 |= SAFE_SA_CMD1_CBC;
976                         if (ses->ses_klen == 128)
977                              cmd1 |=  SAFE_SA_CMD1_AES128;
978                         else if (ses->ses_klen == 192)
979                              cmd1 |=  SAFE_SA_CMD1_AES192;
980                         else
981                              cmd1 |=  SAFE_SA_CMD1_AES256;
982                         ivsize = 4*sizeof(u_int32_t);
983                 } else {
984                         cmd0 |= SAFE_SA_CMD0_CRYPT_NULL;
985                         ivsize = 0;
986                 }
987
988                 /*
989                  * Setup encrypt/decrypt state.  When using basic ops
990                  * we can't use an inline IV because hash/crypt offset
991                  * must be from the end of the IV to the start of the
992                  * crypt data and this leaves out the preceding header
993                  * from the hash calculation.  Instead we place the IV
994                  * in the state record and set the hash/crypt offset to
995                  * copy both the header+IV.
996                  */
997                 if (enccrd->crd_flags & CRD_F_ENCRYPT) {
998                         cmd0 |= SAFE_SA_CMD0_OUTBOUND;
999
1000                         if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1001                                 iv = enccrd->crd_iv;
1002                         else
1003                                 iv = (caddr_t) ses->ses_iv;
1004                         if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1005                                 crypto_copyback(crp->crp_flags, crp->crp_buf,
1006                                     enccrd->crd_inject, ivsize, iv);
1007                         }
1008                         bcopy(iv, re->re_sastate.sa_saved_iv, ivsize);
1009                         cmd0 |= SAFE_SA_CMD0_IVLD_STATE | SAFE_SA_CMD0_SAVEIV;
1010                         re->re_flags |= SAFE_QFLAGS_COPYOUTIV;
1011                 } else {
1012                         cmd0 |= SAFE_SA_CMD0_INBOUND;
1013
1014                         if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) {
1015                                 bcopy(enccrd->crd_iv,
1016                                         re->re_sastate.sa_saved_iv, ivsize);
1017                         } else {
1018                                 crypto_copydata(crp->crp_flags, crp->crp_buf,
1019                                     enccrd->crd_inject, ivsize,
1020                                     (caddr_t)re->re_sastate.sa_saved_iv);
1021                         }
1022                         cmd0 |= SAFE_SA_CMD0_IVLD_STATE;
1023                 }
1024                 /*
1025                  * For basic encryption use the zero pad algorithm.
1026                  * This pads results to an 8-byte boundary and
1027                  * suppresses padding verification for inbound (i.e.
1028                  * decrypt) operations.
1029                  *
1030                  * NB: Not sure if the 8-byte pad boundary is a problem.
1031                  */
1032                 cmd0 |= SAFE_SA_CMD0_PAD_ZERO;
1033
1034                 /* XXX assert key bufs have the same size */
1035                 bcopy(ses->ses_key, sa->sa_key, sizeof(sa->sa_key));
1036         }
1037
1038         if (maccrd) {
1039                 if (maccrd->crd_flags & CRD_F_KEY_EXPLICIT) {
1040                         safe_setup_mackey(ses, maccrd->crd_alg,
1041                             maccrd->crd_key, maccrd->crd_klen / 8);
1042                 }
1043
1044                 if (maccrd->crd_alg == CRYPTO_MD5_HMAC) {
1045                         cmd0 |= SAFE_SA_CMD0_MD5;
1046                         cmd1 |= SAFE_SA_CMD1_HMAC;      /* NB: enable HMAC */
1047                 } else if (maccrd->crd_alg == CRYPTO_SHA1_HMAC) {
1048                         cmd0 |= SAFE_SA_CMD0_SHA1;
1049                         cmd1 |= SAFE_SA_CMD1_HMAC;      /* NB: enable HMAC */
1050                 } else {
1051                         cmd0 |= SAFE_SA_CMD0_HASH_NULL;
1052                 }
1053                 /*
1054                  * Digest data is loaded from the SA and the hash
1055                  * result is saved to the state block where we
1056                  * retrieve it for return to the caller.
1057                  */
1058                 /* XXX assert digest bufs have the same size */
1059                 bcopy(ses->ses_hminner, sa->sa_indigest,
1060                         sizeof(sa->sa_indigest));
1061                 bcopy(ses->ses_hmouter, sa->sa_outdigest,
1062                         sizeof(sa->sa_outdigest));
1063
1064                 cmd0 |= SAFE_SA_CMD0_HSLD_SA | SAFE_SA_CMD0_SAVEHASH;
1065                 re->re_flags |= SAFE_QFLAGS_COPYOUTICV;
1066         }
1067
1068         if (enccrd && maccrd) {
1069                 /*
1070                  * The offset from hash data to the start of
1071                  * crypt data is the difference in the skips.
1072                  */
1073                 bypass = maccrd->crd_skip;
1074                 coffset = enccrd->crd_skip - maccrd->crd_skip;
1075                 if (coffset < 0) {
1076                         DPRINTF(("%s: hash does not precede crypt; "
1077                                 "mac skip %u enc skip %u\n",
1078                                 __func__, maccrd->crd_skip, enccrd->crd_skip));
1079                         safestats.st_skipmismatch++;
1080                         err = EINVAL;
1081                         goto errout;
1082                 }
1083                 oplen = enccrd->crd_skip + enccrd->crd_len;
1084                 if (maccrd->crd_skip + maccrd->crd_len != oplen) {
1085                         DPRINTF(("%s: hash amount %u != crypt amount %u\n",
1086                                 __func__, maccrd->crd_skip + maccrd->crd_len,
1087                                 oplen));
1088                         safestats.st_lenmismatch++;
1089                         err = EINVAL;
1090                         goto errout;
1091                 }
1092 #ifdef SAFE_DEBUG
1093                 if (safe_debug) {
1094                         printf("mac: skip %d, len %d, inject %d\n",
1095                             maccrd->crd_skip, maccrd->crd_len,
1096                             maccrd->crd_inject);
1097                         printf("enc: skip %d, len %d, inject %d\n",
1098                             enccrd->crd_skip, enccrd->crd_len,
1099                             enccrd->crd_inject);
1100                         printf("bypass %d coffset %d oplen %d\n",
1101                                 bypass, coffset, oplen);
1102                 }
1103 #endif
1104                 if (coffset & 3) {      /* offset must be 32-bit aligned */
1105                         DPRINTF(("%s: coffset %u misaligned\n",
1106                                 __func__, coffset));
1107                         safestats.st_coffmisaligned++;
1108                         err = EINVAL;
1109                         goto errout;
1110                 }
1111                 coffset >>= 2;
1112                 if (coffset > 255) {    /* offset must be <256 dwords */
1113                         DPRINTF(("%s: coffset %u too big\n",
1114                                 __func__, coffset));
1115                         safestats.st_cofftoobig++;
1116                         err = EINVAL;
1117                         goto errout;
1118                 }
1119                 /*
1120                  * Tell the hardware to copy the header to the output.
1121                  * The header is defined as the data from the end of
1122                  * the bypass to the start of data to be encrypted. 
1123                  * Typically this is the inline IV.  Note that you need
1124                  * to do this even if src+dst are the same; it appears
1125                  * that w/o this bit the crypted data is written
1126                  * immediately after the bypass data.
1127                  */
1128                 cmd1 |= SAFE_SA_CMD1_HDRCOPY;
1129                 /*
1130                  * Disable IP header mutable bit handling.  This is
1131                  * needed to get correct HMAC calculations.
1132                  */
1133                 cmd1 |= SAFE_SA_CMD1_MUTABLE;
1134         } else {
1135                 if (enccrd) {
1136                         bypass = enccrd->crd_skip;
1137                         oplen = bypass + enccrd->crd_len;
1138                 } else {
1139                         bypass = maccrd->crd_skip;
1140                         oplen = bypass + maccrd->crd_len;
1141                 }
1142                 coffset = 0;
1143         }
1144         /* XXX verify multiple of 4 when using s/g */
1145         if (bypass > 96) {              /* bypass offset must be <= 96 bytes */
1146                 DPRINTF(("%s: bypass %u too big\n", __func__, bypass));
1147                 safestats.st_bypasstoobig++;
1148                 err = EINVAL;
1149                 goto errout;
1150         }
1151
1152         if (bus_dmamap_create(sc->sc_srcdmat, BUS_DMA_NOWAIT, &re->re_src_map)) {
1153                 safestats.st_nomap++;
1154                 err = ENOMEM;
1155                 goto errout;
1156         }
1157         if (crp->crp_flags & CRYPTO_F_IMBUF) {
1158                 if (bus_dmamap_load_mbuf(sc->sc_srcdmat, re->re_src_map,
1159                     re->re_src_m, safe_op_cb,
1160                     &re->re_src, BUS_DMA_NOWAIT) != 0) {
1161                         bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1162                         re->re_src_map = NULL;
1163                         safestats.st_noload++;
1164                         err = ENOMEM;
1165                         goto errout;
1166                 }
1167         } else if (crp->crp_flags & CRYPTO_F_IOV) {
1168                 if (bus_dmamap_load_uio(sc->sc_srcdmat, re->re_src_map,
1169                     re->re_src_io, safe_op_cb,
1170                     &re->re_src, BUS_DMA_NOWAIT) != 0) {
1171                         bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1172                         re->re_src_map = NULL;
1173                         safestats.st_noload++;
1174                         err = ENOMEM;
1175                         goto errout;
1176                 }
1177         }
1178         nicealign = safe_dmamap_aligned(&re->re_src);
1179         uniform = safe_dmamap_uniform(&re->re_src);
1180
1181         DPRINTF(("src nicealign %u uniform %u nsegs %u\n",
1182                 nicealign, uniform, re->re_src.nsegs));
1183         if (re->re_src.nsegs > 1) {
1184                 re->re_desc.d_src = sc->sc_spalloc.dma_paddr +
1185                         ((caddr_t) sc->sc_spfree - (caddr_t) sc->sc_spring);
1186                 for (i = 0; i < re->re_src_nsegs; i++) {
1187                         /* NB: no need to check if there's space */
1188                         pd = sc->sc_spfree;
1189                         if (++(sc->sc_spfree) == sc->sc_springtop)
1190                                 sc->sc_spfree = sc->sc_spring;
1191
1192                         KASSERT((pd->pd_flags&3) == 0 ||
1193                                 (pd->pd_flags&3) == SAFE_PD_DONE,
1194                                 ("bogus source particle descriptor; flags %x",
1195                                 pd->pd_flags));
1196                         pd->pd_addr = re->re_src_segs[i].ds_addr;
1197                         pd->pd_size = re->re_src_segs[i].ds_len;
1198                         pd->pd_flags = SAFE_PD_READY;
1199                 }
1200                 cmd0 |= SAFE_SA_CMD0_IGATHER;
1201         } else {
1202                 /*
1203                  * No need for gather, reference the operand directly.
1204                  */
1205                 re->re_desc.d_src = re->re_src_segs[0].ds_addr;
1206         }
1207
1208         if (enccrd == NULL && maccrd != NULL) {
1209                 /*
1210                  * Hash op; no destination needed.
1211                  */
1212         } else {
1213                 if (crp->crp_flags & CRYPTO_F_IOV) {
1214                         if (!nicealign) {
1215                                 safestats.st_iovmisaligned++;
1216                                 err = EINVAL;
1217                                 goto errout;
1218                         }
1219                         if (uniform != 1) {
1220                                 /*
1221                                  * Source is not suitable for direct use as
1222                                  * the destination.  Create a new scatter/gather
1223                                  * list based on the destination requirements
1224                                  * and check if that's ok.
1225                                  */
1226                                 if (bus_dmamap_create(sc->sc_dstdmat,
1227                                     BUS_DMA_NOWAIT, &re->re_dst_map)) {
1228                                         safestats.st_nomap++;
1229                                         err = ENOMEM;
1230                                         goto errout;
1231                                 }
1232                                 if (bus_dmamap_load_uio(sc->sc_dstdmat,
1233                                     re->re_dst_map, re->re_dst_io,
1234                                     safe_op_cb, &re->re_dst,
1235                                     BUS_DMA_NOWAIT) != 0) {
1236                                         bus_dmamap_destroy(sc->sc_dstdmat,
1237                                                 re->re_dst_map);
1238                                         re->re_dst_map = NULL;
1239                                         safestats.st_noload++;
1240                                         err = ENOMEM;
1241                                         goto errout;
1242                                 }
1243                                 uniform = safe_dmamap_uniform(&re->re_dst);
1244                                 if (!uniform) {
1245                                         /*
1246                                          * There's no way to handle the DMA
1247                                          * requirements with this uio.  We
1248                                          * could create a separate DMA area for
1249                                          * the result and then copy it back,
1250                                          * but for now we just bail and return
1251                                          * an error.  Note that uio requests
1252                                          * > SAFE_MAX_DSIZE are handled because
1253                                          * the DMA map and segment list for the
1254                                          * destination wil result in a
1255                                          * destination particle list that does
1256                                          * the necessary scatter DMA.
1257                                          */ 
1258                                         safestats.st_iovnotuniform++;
1259                                         err = EINVAL;
1260                                         goto errout;
1261                                 }
1262                         } else
1263                                 re->re_dst = re->re_src;
1264                 } else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1265                         if (nicealign && uniform == 1) {
1266                                 /*
1267                                  * Source layout is suitable for direct
1268                                  * sharing of the DMA map and segment list.
1269                                  */
1270                                 re->re_dst = re->re_src;
1271                         } else if (nicealign && uniform == 2) {
1272                                 /*
1273                                  * The source is properly aligned but requires a
1274                                  * different particle list to handle DMA of the
1275                                  * result.  Create a new map and do the load to
1276                                  * create the segment list.  The particle
1277                                  * descriptor setup code below will handle the
1278                                  * rest.
1279                                  */
1280                                 if (bus_dmamap_create(sc->sc_dstdmat,
1281                                     BUS_DMA_NOWAIT, &re->re_dst_map)) {
1282                                         safestats.st_nomap++;
1283                                         err = ENOMEM;
1284                                         goto errout;
1285                                 }
1286                                 if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1287                                     re->re_dst_map, re->re_dst_m,
1288                                     safe_op_cb, &re->re_dst,
1289                                     BUS_DMA_NOWAIT) != 0) {
1290                                         bus_dmamap_destroy(sc->sc_dstdmat,
1291                                                 re->re_dst_map);
1292                                         re->re_dst_map = NULL;
1293                                         safestats.st_noload++;
1294                                         err = ENOMEM;
1295                                         goto errout;
1296                                 }
1297                         } else {                /* !(aligned and/or uniform) */
1298                                 int totlen, len;
1299                                 struct mbuf *m, *top, **mp;
1300
1301                                 /*
1302                                  * DMA constraints require that we allocate a
1303                                  * new mbuf chain for the destination.  We
1304                                  * allocate an entire new set of mbufs of
1305                                  * optimal/required size and then tell the
1306                                  * hardware to copy any bits that are not
1307                                  * created as a byproduct of the operation.
1308                                  */
1309                                 if (!nicealign)
1310                                         safestats.st_unaligned++;
1311                                 if (!uniform)
1312                                         safestats.st_notuniform++;
1313                                 totlen = re->re_src_mapsize;
1314                                 if (re->re_src_m->m_flags & M_PKTHDR) {
1315                                         len = MHLEN;
1316                                         MGETHDR(m, M_NOWAIT, MT_DATA);
1317                                         if (m && !m_dup_pkthdr(m, re->re_src_m,
1318                                             M_NOWAIT)) {
1319                                                 m_free(m);
1320                                                 m = NULL;
1321                                         }
1322                                 } else {
1323                                         len = MLEN;
1324                                         MGET(m, M_NOWAIT, MT_DATA);
1325                                 }
1326                                 if (m == NULL) {
1327                                         safestats.st_nombuf++;
1328                                         err = sc->sc_nqchip ? ERESTART : ENOMEM;
1329                                         goto errout;
1330                                 }
1331                                 if (totlen >= MINCLSIZE) {
1332                                         if (!(MCLGET(m, M_NOWAIT))) {
1333                                                 m_free(m);
1334                                                 safestats.st_nomcl++;
1335                                                 err = sc->sc_nqchip ?
1336                                                         ERESTART : ENOMEM;
1337                                                 goto errout;
1338                                         }
1339                                         len = MCLBYTES;
1340                                 }
1341                                 m->m_len = len;
1342                                 top = NULL;
1343                                 mp = &top;
1344
1345                                 while (totlen > 0) {
1346                                         if (top) {
1347                                                 MGET(m, M_NOWAIT, MT_DATA);
1348                                                 if (m == NULL) {
1349                                                         m_freem(top);
1350                                                         safestats.st_nombuf++;
1351                                                         err = sc->sc_nqchip ?
1352                                                             ERESTART : ENOMEM;
1353                                                         goto errout;
1354                                                 }
1355                                                 len = MLEN;
1356                                         }
1357                                         if (top && totlen >= MINCLSIZE) {
1358                                                 if (!(MCLGET(m, M_NOWAIT))) {
1359                                                         *mp = m;
1360                                                         m_freem(top);
1361                                                         safestats.st_nomcl++;
1362                                                         err = sc->sc_nqchip ?
1363                                                             ERESTART : ENOMEM;
1364                                                         goto errout;
1365                                                 }
1366                                                 len = MCLBYTES;
1367                                         }
1368                                         m->m_len = len = min(totlen, len);
1369                                         totlen -= len;
1370                                         *mp = m;
1371                                         mp = &m->m_next;
1372                                 }
1373                                 re->re_dst_m = top;
1374                                 if (bus_dmamap_create(sc->sc_dstdmat, 
1375                                     BUS_DMA_NOWAIT, &re->re_dst_map) != 0) {
1376                                         safestats.st_nomap++;
1377                                         err = ENOMEM;
1378                                         goto errout;
1379                                 }
1380                                 if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1381                                     re->re_dst_map, re->re_dst_m,
1382                                     safe_op_cb, &re->re_dst,
1383                                     BUS_DMA_NOWAIT) != 0) {
1384                                         bus_dmamap_destroy(sc->sc_dstdmat,
1385                                         re->re_dst_map);
1386                                         re->re_dst_map = NULL;
1387                                         safestats.st_noload++;
1388                                         err = ENOMEM;
1389                                         goto errout;
1390                                 }
1391                                 if (re->re_src.mapsize > oplen) {
1392                                         /*
1393                                          * There's data following what the
1394                                          * hardware will copy for us.  If this
1395                                          * isn't just the ICV (that's going to
1396                                          * be written on completion), copy it
1397                                          * to the new mbufs
1398                                          */
1399                                         if (!(maccrd &&
1400                                             (re->re_src.mapsize-oplen) == 12 &&
1401                                             maccrd->crd_inject == oplen))
1402                                                 safe_mcopy(re->re_src_m,
1403                                                            re->re_dst_m,
1404                                                            oplen);
1405                                         else
1406                                                 safestats.st_noicvcopy++;
1407                                 }
1408                         }
1409                 } else {
1410                         safestats.st_badflags++;
1411                         err = EINVAL;
1412                         goto errout;
1413                 }
1414
1415                 if (re->re_dst.nsegs > 1) {
1416                         re->re_desc.d_dst = sc->sc_dpalloc.dma_paddr +
1417                             ((caddr_t) sc->sc_dpfree - (caddr_t) sc->sc_dpring);
1418                         for (i = 0; i < re->re_dst_nsegs; i++) {
1419                                 pd = sc->sc_dpfree;
1420                                 KASSERT((pd->pd_flags&3) == 0 ||
1421                                         (pd->pd_flags&3) == SAFE_PD_DONE,
1422                                         ("bogus dest particle descriptor; flags %x",
1423                                                 pd->pd_flags));
1424                                 if (++(sc->sc_dpfree) == sc->sc_dpringtop)
1425                                         sc->sc_dpfree = sc->sc_dpring;
1426                                 pd->pd_addr = re->re_dst_segs[i].ds_addr;
1427                                 pd->pd_flags = SAFE_PD_READY;
1428                         }
1429                         cmd0 |= SAFE_SA_CMD0_OSCATTER;
1430                 } else {
1431                         /*
1432                          * No need for scatter, reference the operand directly.
1433                          */
1434                         re->re_desc.d_dst = re->re_dst_segs[0].ds_addr;
1435                 }
1436         }
1437
1438         /*
1439          * All done with setup; fillin the SA command words
1440          * and the packet engine descriptor.  The operation
1441          * is now ready for submission to the hardware.
1442          */
1443         sa->sa_cmd0 = cmd0 | SAFE_SA_CMD0_IPCI | SAFE_SA_CMD0_OPCI;
1444         sa->sa_cmd1 = cmd1
1445                     | (coffset << SAFE_SA_CMD1_OFFSET_S)
1446                     | SAFE_SA_CMD1_SAREV1       /* Rev 1 SA data structure */
1447                     | SAFE_SA_CMD1_SRPCI
1448                     ;
1449         /*
1450          * NB: the order of writes is important here.  In case the
1451          * chip is scanning the ring because of an outstanding request
1452          * it might nab this one too.  In that case we need to make
1453          * sure the setup is complete before we write the length
1454          * field of the descriptor as it signals the descriptor is
1455          * ready for processing.
1456          */
1457         re->re_desc.d_csr = SAFE_PE_CSR_READY | SAFE_PE_CSR_SAPCI;
1458         if (maccrd)
1459                 re->re_desc.d_csr |= SAFE_PE_CSR_LOADSA | SAFE_PE_CSR_HASHFINAL;
1460         re->re_desc.d_len = oplen
1461                           | SAFE_PE_LEN_READY
1462                           | (bypass << SAFE_PE_LEN_BYPASS_S)
1463                           ;
1464
1465         safestats.st_ipackets++;
1466         safestats.st_ibytes += oplen;
1467
1468         if (++(sc->sc_front) == sc->sc_ringtop)
1469                 sc->sc_front = sc->sc_ring;
1470
1471         /* XXX honor batching */
1472         safe_feed(sc, re);
1473         mtx_unlock(&sc->sc_ringmtx);
1474         return (0);
1475
1476 errout:
1477         if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
1478                 m_freem(re->re_dst_m);
1479
1480         if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1481                 bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1482                 bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1483         }
1484         if (re->re_src_map != NULL) {
1485                 bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1486                 bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1487         }
1488         mtx_unlock(&sc->sc_ringmtx);
1489         if (err != ERESTART) {
1490                 crp->crp_etype = err;
1491                 crypto_done(crp);
1492         } else {
1493                 sc->sc_needwakeup |= CRYPTO_SYMQ;
1494         }
1495         return (err);
1496 }
1497
1498 static void
1499 safe_callback(struct safe_softc *sc, struct safe_ringentry *re)
1500 {
1501         struct cryptop *crp = (struct cryptop *)re->re_crp;
1502         struct cryptodesc *crd;
1503
1504         safestats.st_opackets++;
1505         safestats.st_obytes += re->re_dst.mapsize;
1506
1507         safe_dma_sync(&sc->sc_ringalloc,
1508                 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1509         if (re->re_desc.d_csr & SAFE_PE_CSR_STATUS) {
1510                 device_printf(sc->sc_dev, "csr 0x%x cmd0 0x%x cmd1 0x%x\n",
1511                         re->re_desc.d_csr,
1512                         re->re_sa.sa_cmd0, re->re_sa.sa_cmd1);
1513                 safestats.st_peoperr++;
1514                 crp->crp_etype = EIO;           /* something more meaningful? */
1515         }
1516         if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1517                 bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
1518                     BUS_DMASYNC_POSTREAD);
1519                 bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1520                 bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1521         }
1522         bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_POSTWRITE);
1523         bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1524         bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1525
1526         /* 
1527          * If result was written to a differet mbuf chain, swap
1528          * it in as the return value and reclaim the original.
1529          */
1530         if ((crp->crp_flags & CRYPTO_F_IMBUF) && re->re_src_m != re->re_dst_m) {
1531                 m_freem(re->re_src_m);
1532                 crp->crp_buf = (caddr_t)re->re_dst_m;
1533         }
1534
1535         if (re->re_flags & SAFE_QFLAGS_COPYOUTIV) {
1536                 /* copy out IV for future use */
1537                 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1538                         int ivsize;
1539
1540                         if (crd->crd_alg == CRYPTO_DES_CBC ||
1541                             crd->crd_alg == CRYPTO_3DES_CBC) {
1542                                 ivsize = 2*sizeof(u_int32_t);
1543                         } else if (crd->crd_alg == CRYPTO_AES_CBC) {
1544                                 ivsize = 4*sizeof(u_int32_t);
1545                         } else
1546                                 continue;
1547                         crypto_copydata(crp->crp_flags, crp->crp_buf,
1548                             crd->crd_skip + crd->crd_len - ivsize, ivsize,
1549                             (caddr_t)sc->sc_sessions[re->re_sesn].ses_iv);
1550                         break;
1551                 }
1552         }
1553
1554         if (re->re_flags & SAFE_QFLAGS_COPYOUTICV) {
1555                 /* copy out ICV result */
1556                 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1557                         if (!(crd->crd_alg == CRYPTO_MD5_HMAC ||
1558                             crd->crd_alg == CRYPTO_SHA1_HMAC ||
1559                             crd->crd_alg == CRYPTO_NULL_HMAC))
1560                                 continue;
1561                         if (crd->crd_alg == CRYPTO_SHA1_HMAC) {
1562                                 /*
1563                                  * SHA-1 ICV's are byte-swapped; fix 'em up
1564                                  * before copy them to their destination.
1565                                  */
1566                                 re->re_sastate.sa_saved_indigest[0] =
1567                                     bswap32(re->re_sastate.sa_saved_indigest[0]);
1568                                 re->re_sastate.sa_saved_indigest[1] =
1569                                     bswap32(re->re_sastate.sa_saved_indigest[1]);
1570                                 re->re_sastate.sa_saved_indigest[2] =
1571                                     bswap32(re->re_sastate.sa_saved_indigest[2]);
1572                         }
1573                         crypto_copyback(crp->crp_flags, crp->crp_buf,
1574                             crd->crd_inject,
1575                             sc->sc_sessions[re->re_sesn].ses_mlen,
1576                             (caddr_t)re->re_sastate.sa_saved_indigest);
1577                         break;
1578                 }
1579         }
1580         crypto_done(crp);
1581 }
1582
1583 /*
1584  * Copy all data past offset from srcm to dstm.
1585  */
1586 static void
1587 safe_mcopy(struct mbuf *srcm, struct mbuf *dstm, u_int offset)
1588 {
1589         u_int j, dlen, slen;
1590         caddr_t dptr, sptr;
1591
1592         /*
1593          * Advance src and dst to offset.
1594          */
1595         j = offset;
1596         while (j >= 0) {
1597                 if (srcm->m_len > j)
1598                         break;
1599                 j -= srcm->m_len;
1600                 srcm = srcm->m_next;
1601                 if (srcm == NULL)
1602                         return;
1603         }
1604         sptr = mtod(srcm, caddr_t) + j;
1605         slen = srcm->m_len - j;
1606
1607         j = offset;
1608         while (j >= 0) {
1609                 if (dstm->m_len > j)
1610                         break;
1611                 j -= dstm->m_len;
1612                 dstm = dstm->m_next;
1613                 if (dstm == NULL)
1614                         return;
1615         }
1616         dptr = mtod(dstm, caddr_t) + j;
1617         dlen = dstm->m_len - j;
1618
1619         /*
1620          * Copy everything that remains.
1621          */
1622         for (;;) {
1623                 j = min(slen, dlen);
1624                 bcopy(sptr, dptr, j);
1625                 if (slen == j) {
1626                         srcm = srcm->m_next;
1627                         if (srcm == NULL)
1628                                 return;
1629                         sptr = srcm->m_data;
1630                         slen = srcm->m_len;
1631                 } else
1632                         sptr += j, slen -= j;
1633                 if (dlen == j) {
1634                         dstm = dstm->m_next;
1635                         if (dstm == NULL)
1636                                 return;
1637                         dptr = dstm->m_data;
1638                         dlen = dstm->m_len;
1639                 } else
1640                         dptr += j, dlen -= j;
1641         }
1642 }
1643
1644 #ifndef SAFE_NO_RNG
1645 #define SAFE_RNG_MAXWAIT        1000
1646
1647 static void
1648 safe_rng_init(struct safe_softc *sc)
1649 {
1650         u_int32_t w, v;
1651         int i;
1652
1653         WRITE_REG(sc, SAFE_RNG_CTRL, 0);
1654         /* use default value according to the manual */
1655         WRITE_REG(sc, SAFE_RNG_CNFG, 0x834);    /* magic from SafeNet */
1656         WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1657
1658         /*
1659          * There is a bug in rev 1.0 of the 1140 that when the RNG
1660          * is brought out of reset the ready status flag does not
1661          * work until the RNG has finished its internal initialization.
1662          *
1663          * So in order to determine the device is through its
1664          * initialization we must read the data register, using the
1665          * status reg in the read in case it is initialized.  Then read
1666          * the data register until it changes from the first read.
1667          * Once it changes read the data register until it changes
1668          * again.  At this time the RNG is considered initialized. 
1669          * This could take between 750ms - 1000ms in time.
1670          */
1671         i = 0;
1672         w = READ_REG(sc, SAFE_RNG_OUT);
1673         do {
1674                 v = READ_REG(sc, SAFE_RNG_OUT);
1675                 if (v != w) {
1676                         w = v;
1677                         break;
1678                 }
1679                 DELAY(10);
1680         } while (++i < SAFE_RNG_MAXWAIT);
1681
1682         /* Wait Until data changes again */
1683         i = 0;
1684         do {
1685                 v = READ_REG(sc, SAFE_RNG_OUT);
1686                 if (v != w)
1687                         break;
1688                 DELAY(10);
1689         } while (++i < SAFE_RNG_MAXWAIT);
1690 }
1691
1692 static __inline void
1693 safe_rng_disable_short_cycle(struct safe_softc *sc)
1694 {
1695         WRITE_REG(sc, SAFE_RNG_CTRL,
1696                 READ_REG(sc, SAFE_RNG_CTRL) &~ SAFE_RNG_CTRL_SHORTEN);
1697 }
1698
1699 static __inline void
1700 safe_rng_enable_short_cycle(struct safe_softc *sc)
1701 {
1702         WRITE_REG(sc, SAFE_RNG_CTRL, 
1703                 READ_REG(sc, SAFE_RNG_CTRL) | SAFE_RNG_CTRL_SHORTEN);
1704 }
1705
1706 static __inline u_int32_t
1707 safe_rng_read(struct safe_softc *sc)
1708 {
1709         int i;
1710
1711         i = 0;
1712         while (READ_REG(sc, SAFE_RNG_STAT) != 0 && ++i < SAFE_RNG_MAXWAIT)
1713                 ;
1714         return READ_REG(sc, SAFE_RNG_OUT);
1715 }
1716
1717 static void
1718 safe_rng(void *arg)
1719 {
1720         struct safe_softc *sc = arg;
1721         u_int32_t buf[SAFE_RNG_MAXBUFSIZ];      /* NB: maybe move to softc */
1722         u_int maxwords;
1723         int i;
1724
1725         safestats.st_rng++;
1726         /*
1727          * Fetch the next block of data.
1728          */
1729         maxwords = safe_rngbufsize;
1730         if (maxwords > SAFE_RNG_MAXBUFSIZ)
1731                 maxwords = SAFE_RNG_MAXBUFSIZ;
1732 retry:
1733         for (i = 0; i < maxwords; i++)
1734                 buf[i] = safe_rng_read(sc);
1735         /*
1736          * Check the comparator alarm count and reset the h/w if
1737          * it exceeds our threshold.  This guards against the
1738          * hardware oscillators resonating with external signals.
1739          */
1740         if (READ_REG(sc, SAFE_RNG_ALM_CNT) > safe_rngmaxalarm) {
1741                 u_int32_t freq_inc, w;
1742
1743                 DPRINTF(("%s: alarm count %u exceeds threshold %u\n", __func__,
1744                         READ_REG(sc, SAFE_RNG_ALM_CNT), safe_rngmaxalarm));
1745                 safestats.st_rngalarm++;
1746                 safe_rng_enable_short_cycle(sc);
1747                 freq_inc = 18;
1748                 for (i = 0; i < 64; i++) {
1749                         w = READ_REG(sc, SAFE_RNG_CNFG);
1750                         freq_inc = ((w + freq_inc) & 0x3fL);
1751                         w = ((w & ~0x3fL) | freq_inc);
1752                         WRITE_REG(sc, SAFE_RNG_CNFG, w);
1753
1754                         WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1755
1756                         (void) safe_rng_read(sc);
1757                         DELAY(25);
1758
1759                         if (READ_REG(sc, SAFE_RNG_ALM_CNT) == 0) {
1760                                 safe_rng_disable_short_cycle(sc);
1761                                 goto retry;
1762                         }
1763                         freq_inc = 1;
1764                 }
1765                 safe_rng_disable_short_cycle(sc);
1766         } else
1767                 WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1768
1769         (*sc->sc_harvest)(sc->sc_rndtest, buf, maxwords*sizeof (u_int32_t));
1770         callout_reset(&sc->sc_rngto,
1771                 hz * (safe_rnginterval ? safe_rnginterval : 1), safe_rng, sc);
1772 }
1773 #endif /* SAFE_NO_RNG */
1774
1775 static void
1776 safe_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1777 {
1778         bus_addr_t *paddr = (bus_addr_t*) arg;
1779         *paddr = segs->ds_addr;
1780 }
1781
1782 static int
1783 safe_dma_malloc(
1784         struct safe_softc *sc,
1785         bus_size_t size,
1786         struct safe_dma_alloc *dma,
1787         int mapflags
1788 )
1789 {
1790         int r;
1791
1792         r = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),     /* parent */
1793                                sizeof(u_int32_t), 0,    /* alignment, bounds */
1794                                BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
1795                                BUS_SPACE_MAXADDR,       /* highaddr */
1796                                NULL, NULL,              /* filter, filterarg */
1797                                size,                    /* maxsize */
1798                                1,                       /* nsegments */
1799                                size,                    /* maxsegsize */
1800                                BUS_DMA_ALLOCNOW,        /* flags */
1801                                NULL, NULL,              /* locking */
1802                                &dma->dma_tag);
1803         if (r != 0) {
1804                 device_printf(sc->sc_dev, "safe_dma_malloc: "
1805                         "bus_dma_tag_create failed; error %u\n", r);
1806                 goto fail_0;
1807         }
1808
1809         r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1810                              BUS_DMA_NOWAIT, &dma->dma_map);
1811         if (r != 0) {
1812                 device_printf(sc->sc_dev, "safe_dma_malloc: "
1813                         "bus_dmammem_alloc failed; size %ju, error %u\n",
1814                         (uintmax_t)size, r);
1815                 goto fail_1;
1816         }
1817
1818         r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1819                             size,
1820                             safe_dmamap_cb,
1821                             &dma->dma_paddr,
1822                             mapflags | BUS_DMA_NOWAIT);
1823         if (r != 0) {
1824                 device_printf(sc->sc_dev, "safe_dma_malloc: "
1825                         "bus_dmamap_load failed; error %u\n", r);
1826                 goto fail_2;
1827         }
1828
1829         dma->dma_size = size;
1830         return (0);
1831
1832         bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1833 fail_2:
1834         bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1835 fail_1:
1836         bus_dma_tag_destroy(dma->dma_tag);
1837 fail_0:
1838         dma->dma_tag = NULL;
1839         return (r);
1840 }
1841
1842 static void
1843 safe_dma_free(struct safe_softc *sc, struct safe_dma_alloc *dma)
1844 {
1845         bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1846         bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1847         bus_dma_tag_destroy(dma->dma_tag);
1848 }
1849
1850 /*
1851  * Resets the board.  Values in the regesters are left as is
1852  * from the reset (i.e. initial values are assigned elsewhere).
1853  */
1854 static void
1855 safe_reset_board(struct safe_softc *sc)
1856 {
1857         u_int32_t v;
1858         /*
1859          * Reset the device.  The manual says no delay
1860          * is needed between marking and clearing reset.
1861          */
1862         v = READ_REG(sc, SAFE_PE_DMACFG) &~
1863                 (SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET |
1864                  SAFE_PE_DMACFG_SGRESET);
1865         WRITE_REG(sc, SAFE_PE_DMACFG, v
1866                                     | SAFE_PE_DMACFG_PERESET
1867                                     | SAFE_PE_DMACFG_PDRRESET
1868                                     | SAFE_PE_DMACFG_SGRESET);
1869         WRITE_REG(sc, SAFE_PE_DMACFG, v);
1870 }
1871
1872 /*
1873  * Initialize registers we need to touch only once.
1874  */
1875 static void
1876 safe_init_board(struct safe_softc *sc)
1877 {
1878         u_int32_t v, dwords;
1879
1880         v = READ_REG(sc, SAFE_PE_DMACFG);
1881         v &=~ SAFE_PE_DMACFG_PEMODE;
1882         v |= SAFE_PE_DMACFG_FSENA               /* failsafe enable */
1883           |  SAFE_PE_DMACFG_GPRPCI              /* gather ring on PCI */
1884           |  SAFE_PE_DMACFG_SPRPCI              /* scatter ring on PCI */
1885           |  SAFE_PE_DMACFG_ESDESC              /* endian-swap descriptors */
1886           |  SAFE_PE_DMACFG_ESSA                /* endian-swap SA's */
1887           |  SAFE_PE_DMACFG_ESPDESC             /* endian-swap part. desc's */
1888           ;
1889         WRITE_REG(sc, SAFE_PE_DMACFG, v);
1890 #if 0
1891         /* XXX select byte swap based on host byte order */
1892         WRITE_REG(sc, SAFE_ENDIAN, 0x1b);
1893 #endif
1894         if (sc->sc_chiprev == SAFE_REV(1,0)) {
1895                 /*
1896                  * Avoid large PCI DMA transfers.  Rev 1.0 has a bug where
1897                  * "target mode transfers" done while the chip is DMA'ing
1898                  * >1020 bytes cause the hardware to lockup.  To avoid this
1899                  * we reduce the max PCI transfer size and use small source
1900                  * particle descriptors (<= 256 bytes).
1901                  */
1902                 WRITE_REG(sc, SAFE_DMA_CFG, 256);
1903                 device_printf(sc->sc_dev,
1904                         "Reduce max DMA size to %u words for rev %u.%u WAR\n",
1905                         (READ_REG(sc, SAFE_DMA_CFG)>>2) & 0xff,
1906                         SAFE_REV_MAJ(sc->sc_chiprev),
1907                         SAFE_REV_MIN(sc->sc_chiprev));
1908         }
1909
1910         /* NB: operands+results are overlaid */
1911         WRITE_REG(sc, SAFE_PE_PDRBASE, sc->sc_ringalloc.dma_paddr);
1912         WRITE_REG(sc, SAFE_PE_RDRBASE, sc->sc_ringalloc.dma_paddr);
1913         /*
1914          * Configure ring entry size and number of items in the ring.
1915          */
1916         KASSERT((sizeof(struct safe_ringentry) % sizeof(u_int32_t)) == 0,
1917                 ("PE ring entry not 32-bit aligned!"));
1918         dwords = sizeof(struct safe_ringentry) / sizeof(u_int32_t);
1919         WRITE_REG(sc, SAFE_PE_RINGCFG,
1920                 (dwords << SAFE_PE_RINGCFG_OFFSET_S) | SAFE_MAX_NQUEUE);
1921         WRITE_REG(sc, SAFE_PE_RINGPOLL, 0);     /* disable polling */
1922
1923         WRITE_REG(sc, SAFE_PE_GRNGBASE, sc->sc_spalloc.dma_paddr);
1924         WRITE_REG(sc, SAFE_PE_SRNGBASE, sc->sc_dpalloc.dma_paddr);
1925         WRITE_REG(sc, SAFE_PE_PARTSIZE,
1926                 (SAFE_TOTAL_DPART<<16) | SAFE_TOTAL_SPART);
1927         /*
1928          * NB: destination particles are fixed size.  We use
1929          *     an mbuf cluster and require all results go to
1930          *     clusters or smaller.
1931          */
1932         WRITE_REG(sc, SAFE_PE_PARTCFG, SAFE_MAX_DSIZE);
1933
1934         /* it's now safe to enable PE mode, do it */
1935         WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PEMODE);
1936
1937         /*
1938          * Configure hardware to use level-triggered interrupts and
1939          * to interrupt after each descriptor is processed.
1940          */
1941         WRITE_REG(sc, SAFE_HI_CFG, SAFE_HI_CFG_LEVEL);
1942         WRITE_REG(sc, SAFE_HI_DESC_CNT, 1);
1943         WRITE_REG(sc, SAFE_HI_MASK, SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR);
1944 }
1945
1946 /*
1947  * Init PCI registers
1948  */
1949 static void
1950 safe_init_pciregs(device_t dev)
1951 {
1952 }
1953
1954 /*
1955  * Clean up after a chip crash.
1956  * It is assumed that the caller in splimp()
1957  */
1958 static void
1959 safe_cleanchip(struct safe_softc *sc)
1960 {
1961
1962         if (sc->sc_nqchip != 0) {
1963                 struct safe_ringentry *re = sc->sc_back;
1964
1965                 while (re != sc->sc_front) {
1966                         if (re->re_desc.d_csr != 0)
1967                                 safe_free_entry(sc, re);
1968                         if (++re == sc->sc_ringtop)
1969                                 re = sc->sc_ring;
1970                 }
1971                 sc->sc_back = re;
1972                 sc->sc_nqchip = 0;
1973         }
1974 }
1975
1976 /*
1977  * free a safe_q
1978  * It is assumed that the caller is within splimp().
1979  */
1980 static int
1981 safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re)
1982 {
1983         struct cryptop *crp;
1984
1985         /*
1986          * Free header MCR
1987          */
1988         if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
1989                 m_freem(re->re_dst_m);
1990
1991         crp = (struct cryptop *)re->re_crp;
1992         
1993         re->re_desc.d_csr = 0;
1994         
1995         crp->crp_etype = EFAULT;
1996         crypto_done(crp);
1997         return(0);
1998 }
1999
2000 /*
2001  * Routine to reset the chip and clean up.
2002  * It is assumed that the caller is in splimp()
2003  */
2004 static void
2005 safe_totalreset(struct safe_softc *sc)
2006 {
2007         safe_reset_board(sc);
2008         safe_init_board(sc);
2009         safe_cleanchip(sc);
2010 }
2011
2012 /*
2013  * Is the operand suitable aligned for direct DMA.  Each
2014  * segment must be aligned on a 32-bit boundary and all
2015  * but the last segment must be a multiple of 4 bytes.
2016  */
2017 static int
2018 safe_dmamap_aligned(const struct safe_operand *op)
2019 {
2020         int i;
2021
2022         for (i = 0; i < op->nsegs; i++) {
2023                 if (op->segs[i].ds_addr & 3)
2024                         return (0);
2025                 if (i != (op->nsegs - 1) && (op->segs[i].ds_len & 3))
2026                         return (0);
2027         }
2028         return (1);
2029 }
2030
2031 /*
2032  * Is the operand suitable for direct DMA as the destination
2033  * of an operation.  The hardware requires that each ``particle''
2034  * but the last in an operation result have the same size.  We
2035  * fix that size at SAFE_MAX_DSIZE bytes.  This routine returns
2036  * 0 if some segment is not a multiple of of this size, 1 if all
2037  * segments are exactly this size, or 2 if segments are at worst
2038  * a multple of this size.
2039  */
2040 static int
2041 safe_dmamap_uniform(const struct safe_operand *op)
2042 {
2043         int result = 1;
2044
2045         if (op->nsegs > 0) {
2046                 int i;
2047
2048                 for (i = 0; i < op->nsegs-1; i++) {
2049                         if (op->segs[i].ds_len % SAFE_MAX_DSIZE)
2050                                 return (0);
2051                         if (op->segs[i].ds_len != SAFE_MAX_DSIZE)
2052                                 result = 2;
2053                 }
2054         }
2055         return (result);
2056 }
2057
2058 #ifdef SAFE_DEBUG
2059 static void
2060 safe_dump_dmastatus(struct safe_softc *sc, const char *tag)
2061 {
2062         printf("%s: ENDIAN 0x%x SRC 0x%x DST 0x%x STAT 0x%x\n"
2063                 , tag
2064                 , READ_REG(sc, SAFE_DMA_ENDIAN)
2065                 , READ_REG(sc, SAFE_DMA_SRCADDR)
2066                 , READ_REG(sc, SAFE_DMA_DSTADDR)
2067                 , READ_REG(sc, SAFE_DMA_STAT)
2068         );
2069 }
2070
2071 static void
2072 safe_dump_intrstate(struct safe_softc *sc, const char *tag)
2073 {
2074         printf("%s: HI_CFG 0x%x HI_MASK 0x%x HI_DESC_CNT 0x%x HU_STAT 0x%x HM_STAT 0x%x\n"
2075                 , tag
2076                 , READ_REG(sc, SAFE_HI_CFG)
2077                 , READ_REG(sc, SAFE_HI_MASK)
2078                 , READ_REG(sc, SAFE_HI_DESC_CNT)
2079                 , READ_REG(sc, SAFE_HU_STAT)
2080                 , READ_REG(sc, SAFE_HM_STAT)
2081         );
2082 }
2083
2084 static void
2085 safe_dump_ringstate(struct safe_softc *sc, const char *tag)
2086 {
2087         u_int32_t estat = READ_REG(sc, SAFE_PE_ERNGSTAT);
2088
2089         /* NB: assume caller has lock on ring */
2090         printf("%s: ERNGSTAT %x (next %u) back %lu front %lu\n",
2091                 tag,
2092                 estat, (estat >> SAFE_PE_ERNGSTAT_NEXT_S),
2093                 (unsigned long)(sc->sc_back - sc->sc_ring),
2094                 (unsigned long)(sc->sc_front - sc->sc_ring));
2095 }
2096
2097 static void
2098 safe_dump_request(struct safe_softc *sc, const char* tag, struct safe_ringentry *re)
2099 {
2100         int ix, nsegs;
2101
2102         ix = re - sc->sc_ring;
2103         printf("%s: %p (%u): csr %x src %x dst %x sa %x len %x\n"
2104                 , tag
2105                 , re, ix
2106                 , re->re_desc.d_csr
2107                 , re->re_desc.d_src
2108                 , re->re_desc.d_dst
2109                 , re->re_desc.d_sa
2110                 , re->re_desc.d_len
2111         );
2112         if (re->re_src.nsegs > 1) {
2113                 ix = (re->re_desc.d_src - sc->sc_spalloc.dma_paddr) /
2114                         sizeof(struct safe_pdesc);
2115                 for (nsegs = re->re_src.nsegs; nsegs; nsegs--) {
2116                         printf(" spd[%u] %p: %p size %u flags %x"
2117                                 , ix, &sc->sc_spring[ix]
2118                                 , (caddr_t)(uintptr_t) sc->sc_spring[ix].pd_addr
2119                                 , sc->sc_spring[ix].pd_size
2120                                 , sc->sc_spring[ix].pd_flags
2121                         );
2122                         if (sc->sc_spring[ix].pd_size == 0)
2123                                 printf(" (zero!)");
2124                         printf("\n");
2125                         if (++ix == SAFE_TOTAL_SPART)
2126                                 ix = 0;
2127                 }
2128         }
2129         if (re->re_dst.nsegs > 1) {
2130                 ix = (re->re_desc.d_dst - sc->sc_dpalloc.dma_paddr) /
2131                         sizeof(struct safe_pdesc);
2132                 for (nsegs = re->re_dst.nsegs; nsegs; nsegs--) {
2133                         printf(" dpd[%u] %p: %p flags %x\n"
2134                                 , ix, &sc->sc_dpring[ix]
2135                                 , (caddr_t)(uintptr_t) sc->sc_dpring[ix].pd_addr
2136                                 , sc->sc_dpring[ix].pd_flags
2137                         );
2138                         if (++ix == SAFE_TOTAL_DPART)
2139                                 ix = 0;
2140                 }
2141         }
2142         printf("sa: cmd0 %08x cmd1 %08x staterec %x\n",
2143                 re->re_sa.sa_cmd0, re->re_sa.sa_cmd1, re->re_sa.sa_staterec);
2144         printf("sa: key %x %x %x %x %x %x %x %x\n"
2145                 , re->re_sa.sa_key[0]
2146                 , re->re_sa.sa_key[1]
2147                 , re->re_sa.sa_key[2]
2148                 , re->re_sa.sa_key[3]
2149                 , re->re_sa.sa_key[4]
2150                 , re->re_sa.sa_key[5]
2151                 , re->re_sa.sa_key[6]
2152                 , re->re_sa.sa_key[7]
2153         );
2154         printf("sa: indigest %x %x %x %x %x\n"
2155                 , re->re_sa.sa_indigest[0]
2156                 , re->re_sa.sa_indigest[1]
2157                 , re->re_sa.sa_indigest[2]
2158                 , re->re_sa.sa_indigest[3]
2159                 , re->re_sa.sa_indigest[4]
2160         );
2161         printf("sa: outdigest %x %x %x %x %x\n"
2162                 , re->re_sa.sa_outdigest[0]
2163                 , re->re_sa.sa_outdigest[1]
2164                 , re->re_sa.sa_outdigest[2]
2165                 , re->re_sa.sa_outdigest[3]
2166                 , re->re_sa.sa_outdigest[4]
2167         );
2168         printf("sr: iv %x %x %x %x\n"
2169                 , re->re_sastate.sa_saved_iv[0]
2170                 , re->re_sastate.sa_saved_iv[1]
2171                 , re->re_sastate.sa_saved_iv[2]
2172                 , re->re_sastate.sa_saved_iv[3]
2173         );
2174         printf("sr: hashbc %u indigest %x %x %x %x %x\n"
2175                 , re->re_sastate.sa_saved_hashbc
2176                 , re->re_sastate.sa_saved_indigest[0]
2177                 , re->re_sastate.sa_saved_indigest[1]
2178                 , re->re_sastate.sa_saved_indigest[2]
2179                 , re->re_sastate.sa_saved_indigest[3]
2180                 , re->re_sastate.sa_saved_indigest[4]
2181         );
2182 }
2183
2184 static void
2185 safe_dump_ring(struct safe_softc *sc, const char *tag)
2186 {
2187         mtx_lock(&sc->sc_ringmtx);
2188         printf("\nSafeNet Ring State:\n");
2189         safe_dump_intrstate(sc, tag);
2190         safe_dump_dmastatus(sc, tag);
2191         safe_dump_ringstate(sc, tag);
2192         if (sc->sc_nqchip) {
2193                 struct safe_ringentry *re = sc->sc_back;
2194                 do {
2195                         safe_dump_request(sc, tag, re);
2196                         if (++re == sc->sc_ringtop)
2197                                 re = sc->sc_ring;
2198                 } while (re != sc->sc_front);
2199         }
2200         mtx_unlock(&sc->sc_ringmtx);
2201 }
2202
2203 static int
2204 sysctl_hw_safe_dump(SYSCTL_HANDLER_ARGS)
2205 {
2206         char dmode[64];
2207         int error;
2208
2209         strncpy(dmode, "", sizeof(dmode) - 1);
2210         dmode[sizeof(dmode) - 1] = '\0';
2211         error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
2212
2213         if (error == 0 && req->newptr != NULL) {
2214                 struct safe_softc *sc = safec;
2215
2216                 if (!sc)
2217                         return EINVAL;
2218                 if (strncmp(dmode, "dma", 3) == 0)
2219                         safe_dump_dmastatus(sc, "safe0");
2220                 else if (strncmp(dmode, "int", 3) == 0)
2221                         safe_dump_intrstate(sc, "safe0");
2222                 else if (strncmp(dmode, "ring", 4) == 0)
2223                         safe_dump_ring(sc, "safe0");
2224                 else
2225                         return EINVAL;
2226         }
2227         return error;
2228 }
2229 SYSCTL_PROC(_hw_safe, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
2230         0, 0, sysctl_hw_safe_dump, "A", "Dump driver state");
2231 #endif /* SAFE_DEBUG */