]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/sge/if_sge.c
Merge mdocml v1.12.3 into head
[FreeBSD/FreeBSD.git] / sys / dev / sge / if_sge.c
1 /*-
2  * Copyright (c) 2008-2010 Nikolay Denev <ndenev@gmail.com>
3  * Copyright (c) 2007-2008 Alexander Pohoyda <alexander.pohoyda@gmx.net>
4  * Copyright (c) 1997, 1998, 1999
5  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *      This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS''
23  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
25  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL AUTHORS OR
26  * THE VOICES IN THEIR HEADS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
31  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
33  * OF THE POSSIBILITY OF SUCH DAMAGE.
34  */
35
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38
39 /*
40  * SiS 190/191 PCI Ethernet NIC driver.
41  *
42  * Adapted to SiS 190 NIC by Alexander Pohoyda based on the original
43  * SiS 900 driver by Bill Paul, using SiS 190/191 Solaris driver by
44  * Masayuki Murayama and SiS 190/191 GNU/Linux driver by K.M. Liu
45  * <kmliu@sis.com>.  Thanks to Pyun YongHyeon <pyunyh@gmail.com> for
46  * review and very useful comments.
47  *
48  * Adapted to SiS 191 NIC by Nikolay Denev with further ideas from the
49  * Linux and Solaris drivers.
50  */
51
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/bus.h>
55 #include <sys/endian.h>
56 #include <sys/kernel.h>
57 #include <sys/lock.h>
58 #include <sys/malloc.h>
59 #include <sys/mbuf.h>
60 #include <sys/module.h>
61 #include <sys/mutex.h>
62 #include <sys/rman.h>
63 #include <sys/socket.h>
64 #include <sys/sockio.h>
65
66 #include <net/bpf.h>
67 #include <net/if.h>
68 #include <net/if_var.h>
69 #include <net/if_arp.h>
70 #include <net/ethernet.h>
71 #include <net/if_dl.h>
72 #include <net/if_media.h>
73 #include <net/if_types.h>
74 #include <net/if_vlan_var.h>
75
76 #include <netinet/in.h>
77 #include <netinet/in_systm.h>
78 #include <netinet/ip.h>
79 #include <netinet/tcp.h>
80
81 #include <machine/bus.h>
82 #include <machine/in_cksum.h>
83
84 #include <dev/mii/mii.h>
85 #include <dev/mii/miivar.h>
86
87 #include <dev/pci/pcireg.h>
88 #include <dev/pci/pcivar.h>
89
90 #include <dev/sge/if_sgereg.h>
91
92 MODULE_DEPEND(sge, pci, 1, 1, 1);
93 MODULE_DEPEND(sge, ether, 1, 1, 1);
94 MODULE_DEPEND(sge, miibus, 1, 1, 1);
95
96 /* "device miibus0" required.  See GENERIC if you get errors here. */
97 #include "miibus_if.h"
98
99 /*
100  * Various supported device vendors/types and their names.
101  */
102 static struct sge_type sge_devs[] = {
103         { SIS_VENDORID, SIS_DEVICEID_190, "SiS190 Fast Ethernet" },
104         { SIS_VENDORID, SIS_DEVICEID_191, "SiS191 Fast/Gigabit Ethernet" },
105         { 0, 0, NULL }
106 };
107
108 static int      sge_probe(device_t);
109 static int      sge_attach(device_t);
110 static int      sge_detach(device_t);
111 static int      sge_shutdown(device_t);
112 static int      sge_suspend(device_t);
113 static int      sge_resume(device_t);
114
115 static int      sge_miibus_readreg(device_t, int, int);
116 static int      sge_miibus_writereg(device_t, int, int, int);
117 static void     sge_miibus_statchg(device_t);
118
119 static int      sge_newbuf(struct sge_softc *, int);
120 static int      sge_encap(struct sge_softc *, struct mbuf **);
121 static __inline void
122                 sge_discard_rxbuf(struct sge_softc *, int);
123 static void     sge_rxeof(struct sge_softc *);
124 static void     sge_txeof(struct sge_softc *);
125 static void     sge_intr(void *);
126 static void     sge_tick(void *);
127 static void     sge_start(struct ifnet *);
128 static void     sge_start_locked(struct ifnet *);
129 static int      sge_ioctl(struct ifnet *, u_long, caddr_t);
130 static void     sge_init(void *);
131 static void     sge_init_locked(struct sge_softc *);
132 static void     sge_stop(struct sge_softc *);
133 static void     sge_watchdog(struct sge_softc *);
134 static int      sge_ifmedia_upd(struct ifnet *);
135 static void     sge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
136
137 static int      sge_get_mac_addr_apc(struct sge_softc *, uint8_t *);
138 static int      sge_get_mac_addr_eeprom(struct sge_softc *, uint8_t *);
139 static uint16_t sge_read_eeprom(struct sge_softc *, int);
140
141 static void     sge_rxfilter(struct sge_softc *);
142 static void     sge_setvlan(struct sge_softc *);
143 static void     sge_reset(struct sge_softc *);
144 static int      sge_list_rx_init(struct sge_softc *);
145 static int      sge_list_rx_free(struct sge_softc *);
146 static int      sge_list_tx_init(struct sge_softc *);
147 static int      sge_list_tx_free(struct sge_softc *);
148
149 static int      sge_dma_alloc(struct sge_softc *);
150 static void     sge_dma_free(struct sge_softc *);
151 static void     sge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
152
153 static device_method_t sge_methods[] = {
154         /* Device interface */
155         DEVMETHOD(device_probe,         sge_probe),
156         DEVMETHOD(device_attach,        sge_attach),
157         DEVMETHOD(device_detach,        sge_detach),
158         DEVMETHOD(device_suspend,       sge_suspend),
159         DEVMETHOD(device_resume,        sge_resume),
160         DEVMETHOD(device_shutdown,      sge_shutdown),
161
162         /* MII interface */
163         DEVMETHOD(miibus_readreg,       sge_miibus_readreg),
164         DEVMETHOD(miibus_writereg,      sge_miibus_writereg),
165         DEVMETHOD(miibus_statchg,       sge_miibus_statchg),
166
167         DEVMETHOD_END
168 };
169
170 static driver_t sge_driver = {
171         "sge", sge_methods, sizeof(struct sge_softc)
172 };
173
174 static devclass_t sge_devclass;
175
176 DRIVER_MODULE(sge, pci, sge_driver, sge_devclass, 0, 0);
177 DRIVER_MODULE(miibus, sge, miibus_driver, miibus_devclass, 0, 0);
178
179 /*
180  * Register space access macros.
181  */
182 #define CSR_WRITE_4(sc, reg, val)       bus_write_4(sc->sge_res, reg, val)
183 #define CSR_WRITE_2(sc, reg, val)       bus_write_2(sc->sge_res, reg, val)
184 #define CSR_WRITE_1(cs, reg, val)       bus_write_1(sc->sge_res, reg, val)
185
186 #define CSR_READ_4(sc, reg)             bus_read_4(sc->sge_res, reg)
187 #define CSR_READ_2(sc, reg)             bus_read_2(sc->sge_res, reg)
188 #define CSR_READ_1(sc, reg)             bus_read_1(sc->sge_res, reg)
189
190 /* Define to show Tx/Rx error status. */
191 #undef SGE_SHOW_ERRORS
192
193 #define SGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP | CSUM_UDP)
194
195 static void
196 sge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
197 {
198         bus_addr_t *p;
199
200         if (error != 0)
201                 return;
202         KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
203         p  = arg;
204         *p = segs->ds_addr;
205 }
206
207 /*
208  * Read a sequence of words from the EEPROM.
209  */
210 static uint16_t
211 sge_read_eeprom(struct sge_softc *sc, int offset)
212 {
213         uint32_t val;
214         int i;
215
216         KASSERT(offset <= EI_OFFSET, ("EEPROM offset too big"));
217         CSR_WRITE_4(sc, ROMInterface,
218             EI_REQ | EI_OP_RD | (offset << EI_OFFSET_SHIFT));
219         DELAY(500);
220         for (i = 0; i < SGE_TIMEOUT; i++) {
221                 val = CSR_READ_4(sc, ROMInterface);
222                 if ((val & EI_REQ) == 0)
223                         break;
224                 DELAY(100);
225         }
226         if (i == SGE_TIMEOUT) {
227                 device_printf(sc->sge_dev,
228                     "EEPROM read timeout : 0x%08x\n", val);
229                 return (0xffff);
230         }
231
232         return ((val & EI_DATA) >> EI_DATA_SHIFT);
233 }
234
235 static int
236 sge_get_mac_addr_eeprom(struct sge_softc *sc, uint8_t *dest)
237 {
238         uint16_t val;
239         int i;
240
241         val = sge_read_eeprom(sc, EEPROMSignature);
242         if (val == 0xffff || val == 0) {
243                 device_printf(sc->sge_dev,
244                     "invalid EEPROM signature : 0x%04x\n", val);
245                 return (EINVAL);
246         }
247
248         for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
249                 val = sge_read_eeprom(sc, EEPROMMACAddr + i / 2);
250                 dest[i + 0] = (uint8_t)val;
251                 dest[i + 1] = (uint8_t)(val >> 8);
252         }
253
254         if ((sge_read_eeprom(sc, EEPROMInfo) & 0x80) != 0)
255                 sc->sge_flags |= SGE_FLAG_RGMII;
256         return (0);
257 }
258
259 /*
260  * For SiS96x, APC CMOS RAM is used to store ethernet address.
261  * APC CMOS RAM is accessed through ISA bridge.
262  */
263 static int
264 sge_get_mac_addr_apc(struct sge_softc *sc, uint8_t *dest)
265 {
266 #if defined(__amd64__) || defined(__i386__)
267         devclass_t pci;
268         device_t bus, dev = NULL;
269         device_t *kids;
270         struct apc_tbl {
271                 uint16_t vid;
272                 uint16_t did;
273         } *tp, apc_tbls[] = {
274                 { SIS_VENDORID, 0x0965 },
275                 { SIS_VENDORID, 0x0966 },
276                 { SIS_VENDORID, 0x0968 }
277         };
278         uint8_t reg;
279         int busnum, cnt, i, j, numkids;
280
281         cnt = sizeof(apc_tbls) / sizeof(apc_tbls[0]);
282         pci = devclass_find("pci");
283         for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
284                 bus = devclass_get_device(pci, busnum);
285                 if (!bus)
286                         continue;
287                 if (device_get_children(bus, &kids, &numkids) != 0)
288                         continue;
289                 for (i = 0; i < numkids; i++) {
290                         dev = kids[i];
291                         if (pci_get_class(dev) == PCIC_BRIDGE &&
292                             pci_get_subclass(dev) == PCIS_BRIDGE_ISA) {
293                                 tp = apc_tbls;
294                                 for (j = 0; j < cnt; j++) {
295                                         if (pci_get_vendor(dev) == tp->vid &&
296                                             pci_get_device(dev) == tp->did) {
297                                                 free(kids, M_TEMP);
298                                                 goto apc_found;
299                                         }
300                                         tp++;
301                                 }
302                         }
303                 }
304                 free(kids, M_TEMP);
305         }
306         device_printf(sc->sge_dev, "couldn't find PCI-ISA bridge\n");
307         return (EINVAL);
308 apc_found:
309         /* Enable port 0x78 and 0x79 to access APC registers. */
310         reg = pci_read_config(dev, 0x48, 1);
311         pci_write_config(dev, 0x48, reg & ~0x02, 1);
312         DELAY(50);
313         pci_read_config(dev, 0x48, 1);
314         /* Read stored ethernet address. */
315         for (i = 0; i < ETHER_ADDR_LEN; i++) {
316                 outb(0x78, 0x09 + i);
317                 dest[i] = inb(0x79);
318         }
319         outb(0x78, 0x12);
320         if ((inb(0x79) & 0x80) != 0)
321                 sc->sge_flags |= SGE_FLAG_RGMII;
322         /* Restore access to APC registers. */
323         pci_write_config(dev, 0x48, reg, 1);
324
325         return (0);
326 #else
327         return (EINVAL);
328 #endif
329 }
330
331 static int
332 sge_miibus_readreg(device_t dev, int phy, int reg)
333 {
334         struct sge_softc *sc;
335         uint32_t val;
336         int i;
337
338         sc = device_get_softc(dev);
339         CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) |
340             (reg << GMI_REG_SHIFT) | GMI_OP_RD | GMI_REQ);
341         DELAY(10);
342         for (i = 0; i < SGE_TIMEOUT; i++) {
343                 val = CSR_READ_4(sc, GMIIControl);
344                 if ((val & GMI_REQ) == 0)
345                         break;
346                 DELAY(10);
347         }
348         if (i == SGE_TIMEOUT) {
349                 device_printf(sc->sge_dev, "PHY read timeout : %d\n", reg);
350                 return (0);
351         }
352         return ((val & GMI_DATA) >> GMI_DATA_SHIFT);
353 }
354
355 static int
356 sge_miibus_writereg(device_t dev, int phy, int reg, int data)
357 {
358         struct sge_softc *sc;
359         uint32_t val;
360         int i;
361
362         sc = device_get_softc(dev);
363         CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) |
364             (reg << GMI_REG_SHIFT) | (data << GMI_DATA_SHIFT) |
365             GMI_OP_WR | GMI_REQ);
366         DELAY(10);
367         for (i = 0; i < SGE_TIMEOUT; i++) {
368                 val = CSR_READ_4(sc, GMIIControl);
369                 if ((val & GMI_REQ) == 0)
370                         break;
371                 DELAY(10);
372         }
373         if (i == SGE_TIMEOUT)
374                 device_printf(sc->sge_dev, "PHY write timeout : %d\n", reg);
375         return (0);
376 }
377
378 static void
379 sge_miibus_statchg(device_t dev)
380 {
381         struct sge_softc *sc;
382         struct mii_data *mii;
383         struct ifnet *ifp;
384         uint32_t ctl, speed;
385
386         sc = device_get_softc(dev);
387         mii = device_get_softc(sc->sge_miibus);
388         ifp = sc->sge_ifp;
389         if (mii == NULL || ifp == NULL ||
390             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
391                 return;
392         speed = 0;
393         sc->sge_flags &= ~SGE_FLAG_LINK;
394         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
395             (IFM_ACTIVE | IFM_AVALID)) {
396                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
397                 case IFM_10_T:
398                         sc->sge_flags |= SGE_FLAG_LINK;
399                         speed = SC_SPEED_10;
400                         break;
401                 case IFM_100_TX:
402                         sc->sge_flags |= SGE_FLAG_LINK;
403                         speed = SC_SPEED_100;
404                         break;
405                 case IFM_1000_T:
406                         if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0) {
407                                 sc->sge_flags |= SGE_FLAG_LINK;
408                                 speed = SC_SPEED_1000;
409                         }
410                         break;
411                 default:
412                         break;
413                 }
414         }
415         if ((sc->sge_flags & SGE_FLAG_LINK) == 0)
416                 return;
417         /* Reprogram MAC to resolved speed/duplex/flow-control parameters. */
418         ctl = CSR_READ_4(sc, StationControl);
419         ctl &= ~(0x0f000000 | SC_FDX | SC_SPEED_MASK);
420         if (speed == SC_SPEED_1000) {
421                 ctl |= 0x07000000;
422                 sc->sge_flags |= SGE_FLAG_SPEED_1000;
423         } else {
424                 ctl |= 0x04000000;
425                 sc->sge_flags &= ~SGE_FLAG_SPEED_1000;
426         }
427 #ifdef notyet
428         if ((sc->sge_flags & SGE_FLAG_GMII) != 0)
429                 ctl |= 0x03000000;
430 #endif
431         ctl |= speed;
432         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
433                 ctl |= SC_FDX;
434                 sc->sge_flags |= SGE_FLAG_FDX;
435         } else
436                 sc->sge_flags &= ~SGE_FLAG_FDX;
437         CSR_WRITE_4(sc, StationControl, ctl);
438         if ((sc->sge_flags & SGE_FLAG_RGMII) != 0) {
439                 CSR_WRITE_4(sc, RGMIIDelay, 0x0441);
440                 CSR_WRITE_4(sc, RGMIIDelay, 0x0440);
441         }
442 }
443
444 static void
445 sge_rxfilter(struct sge_softc *sc)
446 {
447         struct ifnet *ifp;
448         struct ifmultiaddr *ifma;
449         uint32_t crc, hashes[2];
450         uint16_t rxfilt;
451
452         SGE_LOCK_ASSERT(sc);
453
454         ifp = sc->sge_ifp;
455         rxfilt = CSR_READ_2(sc, RxMacControl);
456         rxfilt &= ~(AcceptBroadcast | AcceptAllPhys | AcceptMulticast);
457         rxfilt |= AcceptMyPhys;
458         if ((ifp->if_flags & IFF_BROADCAST) != 0)
459                 rxfilt |= AcceptBroadcast;
460         if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
461                 if ((ifp->if_flags & IFF_PROMISC) != 0)
462                         rxfilt |= AcceptAllPhys;
463                 rxfilt |= AcceptMulticast;
464                 hashes[0] = 0xFFFFFFFF;
465                 hashes[1] = 0xFFFFFFFF;
466         } else {
467                 rxfilt |= AcceptMulticast;
468                 hashes[0] = hashes[1] = 0;
469                 /* Now program new ones. */
470                 if_maddr_rlock(ifp);
471                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
472                         if (ifma->ifma_addr->sa_family != AF_LINK)
473                                 continue;
474                         crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
475                             ifma->ifma_addr), ETHER_ADDR_LEN);
476                         hashes[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
477                 }
478                 if_maddr_runlock(ifp);
479         }
480         CSR_WRITE_2(sc, RxMacControl, rxfilt);
481         CSR_WRITE_4(sc, RxHashTable, hashes[0]);
482         CSR_WRITE_4(sc, RxHashTable2, hashes[1]);
483 }
484
485 static void
486 sge_setvlan(struct sge_softc *sc)
487 {
488         struct ifnet *ifp;
489         uint16_t rxfilt;
490
491         SGE_LOCK_ASSERT(sc);
492
493         ifp = sc->sge_ifp;
494         if ((ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) == 0)
495                 return;
496         rxfilt = CSR_READ_2(sc, RxMacControl);
497         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
498                 rxfilt |= RXMAC_STRIP_VLAN;
499         else
500                 rxfilt &= ~RXMAC_STRIP_VLAN;
501         CSR_WRITE_2(sc, RxMacControl, rxfilt);
502 }
503
504 static void
505 sge_reset(struct sge_softc *sc)
506 {
507
508         CSR_WRITE_4(sc, IntrMask, 0);
509         CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
510
511         /* Soft reset. */
512         CSR_WRITE_4(sc, IntrControl, 0x8000);
513         CSR_READ_4(sc, IntrControl);
514         DELAY(100);
515         CSR_WRITE_4(sc, IntrControl, 0);
516         /* Stop MAC. */
517         CSR_WRITE_4(sc, TX_CTL, 0x1a00);
518         CSR_WRITE_4(sc, RX_CTL, 0x1a00);
519
520         CSR_WRITE_4(sc, IntrMask, 0);
521         CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
522
523         CSR_WRITE_4(sc, GMIIControl, 0);
524 }
525
526 /*
527  * Probe for an SiS chip. Check the PCI vendor and device
528  * IDs against our list and return a device name if we find a match.
529  */
530 static int
531 sge_probe(device_t dev)
532 {
533         struct sge_type *t;
534
535         t = sge_devs;
536         while (t->sge_name != NULL) {
537                 if ((pci_get_vendor(dev) == t->sge_vid) &&
538                     (pci_get_device(dev) == t->sge_did)) {
539                         device_set_desc(dev, t->sge_name);
540                         return (BUS_PROBE_DEFAULT);
541                 }
542                 t++;
543         }
544
545         return (ENXIO);
546 }
547
548 /*
549  * Attach the interface.  Allocate softc structures, do ifmedia
550  * setup and ethernet/BPF attach.
551  */
552 static int
553 sge_attach(device_t dev)
554 {
555         struct sge_softc *sc;
556         struct ifnet *ifp;
557         uint8_t eaddr[ETHER_ADDR_LEN];
558         int error = 0, rid;
559
560         sc = device_get_softc(dev);
561         sc->sge_dev = dev;
562
563         mtx_init(&sc->sge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
564             MTX_DEF);
565         callout_init_mtx(&sc->sge_stat_ch, &sc->sge_mtx, 0);
566
567         /*
568          * Map control/status registers.
569          */
570         pci_enable_busmaster(dev);
571
572         /* Allocate resources. */
573         sc->sge_res_id = PCIR_BAR(0);
574         sc->sge_res_type = SYS_RES_MEMORY;
575         sc->sge_res = bus_alloc_resource_any(dev, sc->sge_res_type,
576             &sc->sge_res_id, RF_ACTIVE);
577         if (sc->sge_res == NULL) {
578                 device_printf(dev, "couldn't allocate resource\n");
579                 error = ENXIO;
580                 goto fail;
581         }
582
583         rid = 0;
584         sc->sge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
585             RF_SHAREABLE | RF_ACTIVE);
586         if (sc->sge_irq == NULL) {
587                 device_printf(dev, "couldn't allocate IRQ resources\n");
588                 error = ENXIO;
589                 goto fail;
590         }
591         sc->sge_rev = pci_get_revid(dev);
592         if (pci_get_device(dev) == SIS_DEVICEID_190)
593                 sc->sge_flags |= SGE_FLAG_FASTETHER | SGE_FLAG_SIS190;
594         /* Reset the adapter. */
595         sge_reset(sc);
596
597         /* Get MAC address from the EEPROM. */
598         if ((pci_read_config(dev, 0x73, 1) & 0x01) != 0)
599                 sge_get_mac_addr_apc(sc, eaddr);
600         else
601                 sge_get_mac_addr_eeprom(sc, eaddr);
602
603         if ((error = sge_dma_alloc(sc)) != 0)
604                 goto fail;
605
606         ifp = sc->sge_ifp = if_alloc(IFT_ETHER);
607         if (ifp == NULL) {
608                 device_printf(dev, "cannot allocate ifnet structure.\n");
609                 error = ENOSPC;
610                 goto fail;
611         }
612         ifp->if_softc = sc;
613         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
614         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
615         ifp->if_ioctl = sge_ioctl;
616         ifp->if_start = sge_start;
617         ifp->if_init = sge_init;
618         ifp->if_snd.ifq_drv_maxlen = SGE_TX_RING_CNT - 1;
619         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
620         IFQ_SET_READY(&ifp->if_snd);
621         ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM | IFCAP_TSO4;
622         ifp->if_hwassist = SGE_CSUM_FEATURES | CSUM_TSO;
623         ifp->if_capenable = ifp->if_capabilities;
624         /*
625          * Do MII setup.
626          */
627         error = mii_attach(dev, &sc->sge_miibus, ifp, sge_ifmedia_upd,
628             sge_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
629         if (error != 0) {
630                 device_printf(dev, "attaching PHYs failed\n");
631                 goto fail;
632         }
633
634         /*
635          * Call MI attach routine.
636          */
637         ether_ifattach(ifp, eaddr);
638
639         /* VLAN setup. */
640         ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM |
641             IFCAP_VLAN_HWTSO | IFCAP_VLAN_MTU;
642         ifp->if_capenable = ifp->if_capabilities;
643         /* Tell the upper layer(s) we support long frames. */
644         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
645
646         /* Hook interrupt last to avoid having to lock softc */
647         error = bus_setup_intr(dev, sc->sge_irq, INTR_TYPE_NET | INTR_MPSAFE,
648             NULL, sge_intr, sc, &sc->sge_intrhand);
649         if (error) {
650                 device_printf(dev, "couldn't set up irq\n");
651                 ether_ifdetach(ifp);
652                 goto fail;
653         }
654
655 fail:
656         if (error)
657                 sge_detach(dev);
658
659         return (error);
660 }
661
662 /*
663  * Shutdown hardware and free up resources.  This can be called any
664  * time after the mutex has been initialized.  It is called in both
665  * the error case in attach and the normal detach case so it needs
666  * to be careful about only freeing resources that have actually been
667  * allocated.
668  */
669 static int
670 sge_detach(device_t dev)
671 {
672         struct sge_softc *sc;
673         struct ifnet *ifp;
674
675         sc = device_get_softc(dev);
676         ifp = sc->sge_ifp;
677         /* These should only be active if attach succeeded. */
678         if (device_is_attached(dev)) {
679                 ether_ifdetach(ifp);
680                 SGE_LOCK(sc);
681                 sge_stop(sc);
682                 SGE_UNLOCK(sc);
683                 callout_drain(&sc->sge_stat_ch);
684         }
685         if (sc->sge_miibus)
686                 device_delete_child(dev, sc->sge_miibus);
687         bus_generic_detach(dev);
688
689         if (sc->sge_intrhand)
690                 bus_teardown_intr(dev, sc->sge_irq, sc->sge_intrhand);
691         if (sc->sge_irq)
692                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sge_irq);
693         if (sc->sge_res)
694                 bus_release_resource(dev, sc->sge_res_type, sc->sge_res_id,
695                     sc->sge_res);
696         if (ifp)
697                 if_free(ifp);
698         sge_dma_free(sc);
699         mtx_destroy(&sc->sge_mtx);
700
701         return (0);
702 }
703
704 /*
705  * Stop all chip I/O so that the kernel's probe routines don't
706  * get confused by errant DMAs when rebooting.
707  */
708 static int
709 sge_shutdown(device_t dev)
710 {
711         struct sge_softc *sc;
712
713         sc = device_get_softc(dev);
714         SGE_LOCK(sc);
715         sge_stop(sc);
716         SGE_UNLOCK(sc);
717         return (0);
718 }
719
720 static int
721 sge_suspend(device_t dev)
722 {
723         struct sge_softc *sc;
724         struct ifnet *ifp;
725
726         sc = device_get_softc(dev);
727         SGE_LOCK(sc);
728         ifp = sc->sge_ifp;
729         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
730                 sge_stop(sc);
731         SGE_UNLOCK(sc);
732         return (0);
733 }
734
735 static int
736 sge_resume(device_t dev)
737 {
738         struct sge_softc *sc;
739         struct ifnet *ifp;
740
741         sc = device_get_softc(dev);
742         SGE_LOCK(sc);
743         ifp = sc->sge_ifp;
744         if ((ifp->if_flags & IFF_UP) != 0)
745                 sge_init_locked(sc);
746         SGE_UNLOCK(sc);
747         return (0);
748 }
749
750 static int
751 sge_dma_alloc(struct sge_softc *sc)
752 {
753         struct sge_chain_data *cd;
754         struct sge_list_data *ld;
755         struct sge_rxdesc *rxd;
756         struct sge_txdesc *txd;
757         int error, i;
758
759         cd = &sc->sge_cdata;
760         ld = &sc->sge_ldata;
761         error = bus_dma_tag_create(bus_get_dma_tag(sc->sge_dev),
762             1, 0,                       /* alignment, boundary */
763             BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
764             BUS_SPACE_MAXADDR,          /* highaddr */
765             NULL, NULL,                 /* filter, filterarg */
766             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
767             1,                          /* nsegments */
768             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
769             0,                          /* flags */
770             NULL,                       /* lockfunc */
771             NULL,                       /* lockarg */
772             &cd->sge_tag);
773         if (error != 0) {
774                 device_printf(sc->sge_dev,
775                     "could not create parent DMA tag.\n");
776                 goto fail;
777         }
778
779         /* RX descriptor ring */
780         error = bus_dma_tag_create(cd->sge_tag,
781             SGE_DESC_ALIGN, 0,          /* alignment, boundary */
782             BUS_SPACE_MAXADDR,          /* lowaddr */
783             BUS_SPACE_MAXADDR,          /* highaddr */
784             NULL, NULL,                 /* filter, filterarg */
785             SGE_RX_RING_SZ, 1,          /* maxsize,nsegments */
786             SGE_RX_RING_SZ,             /* maxsegsize */
787             0,                          /* flags */
788             NULL,                       /* lockfunc */
789             NULL,                       /* lockarg */
790             &cd->sge_rx_tag);
791         if (error != 0) {
792                 device_printf(sc->sge_dev,
793                     "could not create Rx ring DMA tag.\n");
794                 goto fail;
795         }
796         /* Allocate DMA'able memory and load DMA map for RX ring. */
797         error = bus_dmamem_alloc(cd->sge_rx_tag, (void **)&ld->sge_rx_ring,
798             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
799             &cd->sge_rx_dmamap);
800         if (error != 0) {
801                 device_printf(sc->sge_dev,
802                     "could not allocate DMA'able memory for Rx ring.\n");
803                 goto fail;
804         }
805         error = bus_dmamap_load(cd->sge_rx_tag, cd->sge_rx_dmamap,
806             ld->sge_rx_ring, SGE_RX_RING_SZ, sge_dma_map_addr,
807             &ld->sge_rx_paddr, BUS_DMA_NOWAIT);
808         if (error != 0) {
809                 device_printf(sc->sge_dev,
810                     "could not load DMA'able memory for Rx ring.\n");
811         }
812
813         /* TX descriptor ring */
814         error = bus_dma_tag_create(cd->sge_tag,
815             SGE_DESC_ALIGN, 0,          /* alignment, boundary */
816             BUS_SPACE_MAXADDR,          /* lowaddr */
817             BUS_SPACE_MAXADDR,          /* highaddr */
818             NULL, NULL,                 /* filter, filterarg */
819             SGE_TX_RING_SZ, 1,          /* maxsize,nsegments */
820             SGE_TX_RING_SZ,             /* maxsegsize */
821             0,                          /* flags */
822             NULL,                       /* lockfunc */
823             NULL,                       /* lockarg */
824             &cd->sge_tx_tag);
825         if (error != 0) {
826                 device_printf(sc->sge_dev,
827                     "could not create Rx ring DMA tag.\n");
828                 goto fail;
829         }
830         /* Allocate DMA'able memory and load DMA map for TX ring. */
831         error = bus_dmamem_alloc(cd->sge_tx_tag, (void **)&ld->sge_tx_ring,
832             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
833             &cd->sge_tx_dmamap);
834         if (error != 0) {
835                 device_printf(sc->sge_dev,
836                     "could not allocate DMA'able memory for Tx ring.\n");
837                 goto fail;
838         }
839         error = bus_dmamap_load(cd->sge_tx_tag, cd->sge_tx_dmamap,
840             ld->sge_tx_ring, SGE_TX_RING_SZ, sge_dma_map_addr,
841             &ld->sge_tx_paddr, BUS_DMA_NOWAIT);
842         if (error != 0) {
843                 device_printf(sc->sge_dev,
844                     "could not load DMA'able memory for Rx ring.\n");
845                 goto fail;
846         }
847
848         /* Create DMA tag for Tx buffers. */
849         error = bus_dma_tag_create(cd->sge_tag, 1, 0, BUS_SPACE_MAXADDR,
850             BUS_SPACE_MAXADDR, NULL, NULL, SGE_TSO_MAXSIZE, SGE_MAXTXSEGS,
851             SGE_TSO_MAXSEGSIZE, 0, NULL, NULL, &cd->sge_txmbuf_tag);
852         if (error != 0) {
853                 device_printf(sc->sge_dev,
854                     "could not create Tx mbuf DMA tag.\n");
855                 goto fail;
856         }
857
858         /* Create DMA tag for Rx buffers. */
859         error = bus_dma_tag_create(cd->sge_tag, SGE_RX_BUF_ALIGN, 0,
860             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
861             MCLBYTES, 0, NULL, NULL, &cd->sge_rxmbuf_tag);
862         if (error != 0) {
863                 device_printf(sc->sge_dev,
864                     "could not create Rx mbuf DMA tag.\n");
865                 goto fail;
866         }
867
868         /* Create DMA maps for Tx buffers. */
869         for (i = 0; i < SGE_TX_RING_CNT; i++) {
870                 txd = &cd->sge_txdesc[i];
871                 txd->tx_m = NULL;
872                 txd->tx_dmamap = NULL;
873                 txd->tx_ndesc = 0;
874                 error = bus_dmamap_create(cd->sge_txmbuf_tag, 0,
875                     &txd->tx_dmamap);
876                 if (error != 0) {
877                         device_printf(sc->sge_dev,
878                             "could not create Tx DMA map.\n");
879                         goto fail;
880                 }
881         }
882         /* Create spare DMA map for Rx buffer. */
883         error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0, &cd->sge_rx_spare_map);
884         if (error != 0) {
885                 device_printf(sc->sge_dev,
886                     "could not create spare Rx DMA map.\n");
887                 goto fail;
888         }
889         /* Create DMA maps for Rx buffers. */
890         for (i = 0; i < SGE_RX_RING_CNT; i++) {
891                 rxd = &cd->sge_rxdesc[i];
892                 rxd->rx_m = NULL;
893                 rxd->rx_dmamap = NULL;
894                 error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0,
895                     &rxd->rx_dmamap);
896                 if (error) {
897                         device_printf(sc->sge_dev,
898                             "could not create Rx DMA map.\n");
899                         goto fail;
900                 }
901         }
902 fail:
903         return (error);
904 }
905
906 static void
907 sge_dma_free(struct sge_softc *sc)
908 {
909         struct sge_chain_data *cd;
910         struct sge_list_data *ld;
911         struct sge_rxdesc *rxd;
912         struct sge_txdesc *txd;
913         int i;
914
915         cd = &sc->sge_cdata;
916         ld = &sc->sge_ldata;
917         /* Rx ring. */
918         if (cd->sge_rx_tag != NULL) {
919                 if (cd->sge_rx_dmamap != NULL)
920                         bus_dmamap_unload(cd->sge_rx_tag, cd->sge_rx_dmamap);
921                 if (cd->sge_rx_dmamap != NULL && ld->sge_rx_ring != NULL)
922                         bus_dmamem_free(cd->sge_rx_tag, ld->sge_rx_ring,
923                             cd->sge_rx_dmamap);
924                 ld->sge_rx_ring = NULL;
925                 cd->sge_rx_dmamap = NULL;
926                 bus_dma_tag_destroy(cd->sge_rx_tag);
927                 cd->sge_rx_tag = NULL;
928         }
929         /* Tx ring. */
930         if (cd->sge_tx_tag != NULL) {
931                 if (cd->sge_tx_dmamap != NULL)
932                         bus_dmamap_unload(cd->sge_tx_tag, cd->sge_tx_dmamap);
933                 if (cd->sge_tx_dmamap != NULL && ld->sge_tx_ring != NULL)
934                         bus_dmamem_free(cd->sge_tx_tag, ld->sge_tx_ring,
935                             cd->sge_tx_dmamap);
936                 ld->sge_tx_ring = NULL;
937                 cd->sge_tx_dmamap = NULL;
938                 bus_dma_tag_destroy(cd->sge_tx_tag);
939                 cd->sge_tx_tag = NULL;
940         }
941         /* Rx buffers. */
942         if (cd->sge_rxmbuf_tag != NULL) {
943                 for (i = 0; i < SGE_RX_RING_CNT; i++) {
944                         rxd = &cd->sge_rxdesc[i];
945                         if (rxd->rx_dmamap != NULL) {
946                                 bus_dmamap_destroy(cd->sge_rxmbuf_tag,
947                                     rxd->rx_dmamap);
948                                 rxd->rx_dmamap = NULL;
949                         }
950                 }
951                 if (cd->sge_rx_spare_map != NULL) {
952                         bus_dmamap_destroy(cd->sge_rxmbuf_tag,
953                             cd->sge_rx_spare_map);
954                         cd->sge_rx_spare_map = NULL;
955                 }
956                 bus_dma_tag_destroy(cd->sge_rxmbuf_tag);
957                 cd->sge_rxmbuf_tag = NULL;
958         }
959         /* Tx buffers. */
960         if (cd->sge_txmbuf_tag != NULL) {
961                 for (i = 0; i < SGE_TX_RING_CNT; i++) {
962                         txd = &cd->sge_txdesc[i];
963                         if (txd->tx_dmamap != NULL) {
964                                 bus_dmamap_destroy(cd->sge_txmbuf_tag,
965                                     txd->tx_dmamap);
966                                 txd->tx_dmamap = NULL;
967                         }
968                 }
969                 bus_dma_tag_destroy(cd->sge_txmbuf_tag);
970                 cd->sge_txmbuf_tag = NULL;
971         }
972         if (cd->sge_tag != NULL)
973                 bus_dma_tag_destroy(cd->sge_tag);
974         cd->sge_tag = NULL;
975 }
976
977 /*
978  * Initialize the TX descriptors.
979  */
980 static int
981 sge_list_tx_init(struct sge_softc *sc)
982 {
983         struct sge_list_data *ld;
984         struct sge_chain_data *cd;
985
986         SGE_LOCK_ASSERT(sc);
987         ld = &sc->sge_ldata;
988         cd = &sc->sge_cdata;
989         bzero(ld->sge_tx_ring, SGE_TX_RING_SZ);
990         ld->sge_tx_ring[SGE_TX_RING_CNT - 1].sge_flags = htole32(RING_END);
991         bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap,
992             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
993         cd->sge_tx_prod = 0;
994         cd->sge_tx_cons = 0;
995         cd->sge_tx_cnt = 0;
996         return (0);
997 }
998
999 static int
1000 sge_list_tx_free(struct sge_softc *sc)
1001 {
1002         struct sge_chain_data *cd;
1003         struct sge_txdesc *txd;
1004         int i;
1005
1006         SGE_LOCK_ASSERT(sc);
1007         cd = &sc->sge_cdata;
1008         for (i = 0; i < SGE_TX_RING_CNT; i++) {
1009                 txd = &cd->sge_txdesc[i];
1010                 if (txd->tx_m != NULL) {
1011                         bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap,
1012                             BUS_DMASYNC_POSTWRITE);
1013                         bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap);
1014                         m_freem(txd->tx_m);
1015                         txd->tx_m = NULL;
1016                         txd->tx_ndesc = 0;
1017                 }
1018         }
1019
1020         return (0);
1021 }
1022
1023 /*
1024  * Initialize the RX descriptors and allocate mbufs for them.  Note that
1025  * we arrange the descriptors in a closed ring, so that the last descriptor
1026  * has RING_END flag set.
1027  */
1028 static int
1029 sge_list_rx_init(struct sge_softc *sc)
1030 {
1031         struct sge_chain_data *cd;
1032         int i;
1033
1034         SGE_LOCK_ASSERT(sc);
1035         cd = &sc->sge_cdata;
1036         cd->sge_rx_cons = 0;
1037         bzero(sc->sge_ldata.sge_rx_ring, SGE_RX_RING_SZ);
1038         for (i = 0; i < SGE_RX_RING_CNT; i++) {
1039                 if (sge_newbuf(sc, i) != 0)
1040                         return (ENOBUFS);
1041         }
1042         bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1043             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1044         return (0);
1045 }
1046
1047 static int
1048 sge_list_rx_free(struct sge_softc *sc)
1049 {
1050         struct sge_chain_data *cd;
1051         struct sge_rxdesc *rxd;
1052         int i;
1053
1054         SGE_LOCK_ASSERT(sc);
1055         cd = &sc->sge_cdata;
1056         for (i = 0; i < SGE_RX_RING_CNT; i++) {
1057                 rxd = &cd->sge_rxdesc[i];
1058                 if (rxd->rx_m != NULL) {
1059                         bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1060                             BUS_DMASYNC_POSTREAD);
1061                         bus_dmamap_unload(cd->sge_rxmbuf_tag,
1062                             rxd->rx_dmamap);
1063                         m_freem(rxd->rx_m);
1064                         rxd->rx_m = NULL;
1065                 }
1066         }
1067         return (0);
1068 }
1069
1070 /*
1071  * Initialize an RX descriptor and attach an MBUF cluster.
1072  */
1073 static int
1074 sge_newbuf(struct sge_softc *sc, int prod)
1075 {
1076         struct mbuf *m;
1077         struct sge_desc *desc;
1078         struct sge_chain_data *cd;
1079         struct sge_rxdesc *rxd;
1080         bus_dma_segment_t segs[1];
1081         bus_dmamap_t map;
1082         int error, nsegs;
1083
1084         SGE_LOCK_ASSERT(sc);
1085
1086         cd = &sc->sge_cdata;
1087         m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1088         if (m == NULL)
1089                 return (ENOBUFS);
1090         m->m_len = m->m_pkthdr.len = MCLBYTES;
1091         m_adj(m, SGE_RX_BUF_ALIGN);
1092         error = bus_dmamap_load_mbuf_sg(cd->sge_rxmbuf_tag,
1093             cd->sge_rx_spare_map, m, segs, &nsegs, 0);
1094         if (error != 0) {
1095                 m_freem(m);
1096                 return (error);
1097         }
1098         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1099         rxd = &cd->sge_rxdesc[prod];
1100         if (rxd->rx_m != NULL) {
1101                 bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1102                     BUS_DMASYNC_POSTREAD);
1103                 bus_dmamap_unload(cd->sge_rxmbuf_tag, rxd->rx_dmamap);
1104         }
1105         map = rxd->rx_dmamap;
1106         rxd->rx_dmamap = cd->sge_rx_spare_map;
1107         cd->sge_rx_spare_map = map;
1108         bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1109             BUS_DMASYNC_PREREAD);
1110         rxd->rx_m = m;
1111
1112         desc = &sc->sge_ldata.sge_rx_ring[prod];
1113         desc->sge_sts_size = 0;
1114         desc->sge_ptr = htole32(SGE_ADDR_LO(segs[0].ds_addr));
1115         desc->sge_flags = htole32(segs[0].ds_len);
1116         if (prod == SGE_RX_RING_CNT - 1)
1117                 desc->sge_flags |= htole32(RING_END);
1118         desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR);
1119         return (0);
1120 }
1121
1122 static __inline void
1123 sge_discard_rxbuf(struct sge_softc *sc, int index)
1124 {
1125         struct sge_desc *desc;
1126
1127         desc = &sc->sge_ldata.sge_rx_ring[index];
1128         desc->sge_sts_size = 0;
1129         desc->sge_flags = htole32(MCLBYTES - SGE_RX_BUF_ALIGN);
1130         if (index == SGE_RX_RING_CNT - 1)
1131                 desc->sge_flags |= htole32(RING_END);
1132         desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR);
1133 }
1134
1135 /*
1136  * A frame has been uploaded: pass the resulting mbuf chain up to
1137  * the higher level protocols.
1138  */
1139 static void
1140 sge_rxeof(struct sge_softc *sc)
1141 {
1142         struct ifnet *ifp;
1143         struct mbuf *m;
1144         struct sge_chain_data *cd;
1145         struct sge_desc *cur_rx;
1146         uint32_t rxinfo, rxstat;
1147         int cons, prog;
1148
1149         SGE_LOCK_ASSERT(sc);
1150
1151         ifp = sc->sge_ifp;
1152         cd = &sc->sge_cdata;
1153
1154         bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1155             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1156         cons = cd->sge_rx_cons;
1157         for (prog = 0; prog < SGE_RX_RING_CNT; prog++,
1158             SGE_INC(cons, SGE_RX_RING_CNT)) {
1159                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1160                         break;
1161                 cur_rx = &sc->sge_ldata.sge_rx_ring[cons];
1162                 rxinfo = le32toh(cur_rx->sge_cmdsts);
1163                 if ((rxinfo & RDC_OWN) != 0)
1164                         break;
1165                 rxstat = le32toh(cur_rx->sge_sts_size);
1166                 if ((rxstat & RDS_CRCOK) == 0 || SGE_RX_ERROR(rxstat) != 0 ||
1167                     SGE_RX_NSEGS(rxstat) != 1) {
1168                         /* XXX We don't support multi-segment frames yet. */
1169 #ifdef SGE_SHOW_ERRORS
1170                         device_printf(sc->sge_dev, "Rx error : 0x%b\n", rxstat,
1171                             RX_ERR_BITS);
1172 #endif
1173                         sge_discard_rxbuf(sc, cons);
1174                         ifp->if_ierrors++;
1175                         continue;
1176                 }
1177                 m = cd->sge_rxdesc[cons].rx_m;
1178                 if (sge_newbuf(sc, cons) != 0) {
1179                         sge_discard_rxbuf(sc, cons);
1180                         ifp->if_iqdrops++;
1181                         continue;
1182                 }
1183                 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1184                         if ((rxinfo & RDC_IP_CSUM) != 0 &&
1185                             (rxinfo & RDC_IP_CSUM_OK) != 0)
1186                                 m->m_pkthdr.csum_flags |=
1187                                     CSUM_IP_CHECKED | CSUM_IP_VALID;
1188                         if (((rxinfo & RDC_TCP_CSUM) != 0 &&
1189                             (rxinfo & RDC_TCP_CSUM_OK) != 0) ||
1190                             ((rxinfo & RDC_UDP_CSUM) != 0 &&
1191                             (rxinfo & RDC_UDP_CSUM_OK) != 0)) {
1192                                 m->m_pkthdr.csum_flags |=
1193                                     CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1194                                 m->m_pkthdr.csum_data = 0xffff;
1195                         }
1196                 }
1197                 /* Check for VLAN tagged frame. */
1198                 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
1199                     (rxstat & RDS_VLAN) != 0) {
1200                         m->m_pkthdr.ether_vtag = rxinfo & RDC_VLAN_MASK;
1201                         m->m_flags |= M_VLANTAG;
1202                 }
1203                 /*
1204                  * Account for 10bytes auto padding which is used
1205                  * to align IP header on 32bit boundary.  Also note,
1206                  * CRC bytes is automatically removed by the
1207                  * hardware.
1208                  */
1209                 m->m_data += SGE_RX_PAD_BYTES;
1210                 m->m_pkthdr.len = m->m_len = SGE_RX_BYTES(rxstat) -
1211                     SGE_RX_PAD_BYTES;
1212                 m->m_pkthdr.rcvif = ifp;
1213                 ifp->if_ipackets++;
1214                 SGE_UNLOCK(sc);
1215                 (*ifp->if_input)(ifp, m);
1216                 SGE_LOCK(sc);
1217         }
1218
1219         if (prog > 0) {
1220                 bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1221                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1222                 cd->sge_rx_cons = cons;
1223         }
1224 }
1225
1226 /*
1227  * A frame was downloaded to the chip.  It's safe for us to clean up
1228  * the list buffers.
1229  */
1230 static void
1231 sge_txeof(struct sge_softc *sc)
1232 {
1233         struct ifnet *ifp;
1234         struct sge_list_data *ld;
1235         struct sge_chain_data *cd;
1236         struct sge_txdesc *txd;
1237         uint32_t txstat;
1238         int cons, nsegs, prod;
1239
1240         SGE_LOCK_ASSERT(sc);
1241
1242         ifp = sc->sge_ifp;
1243         ld = &sc->sge_ldata;
1244         cd = &sc->sge_cdata;
1245
1246         if (cd->sge_tx_cnt == 0)
1247                 return;
1248         bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap,
1249             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1250         cons = cd->sge_tx_cons;
1251         prod = cd->sge_tx_prod;
1252         for (; cons != prod;) {
1253                 txstat = le32toh(ld->sge_tx_ring[cons].sge_cmdsts);
1254                 if ((txstat & TDC_OWN) != 0)
1255                         break;
1256                 /*
1257                  * Only the first descriptor of multi-descriptor transmission
1258                  * is updated by controller.  Driver should skip entire
1259                  * chained buffers for the transmitted frame. In other words
1260                  * TDC_OWN bit is valid only at the first descriptor of a
1261                  * multi-descriptor transmission.
1262                  */
1263                 if (SGE_TX_ERROR(txstat) != 0) {
1264 #ifdef SGE_SHOW_ERRORS
1265                         device_printf(sc->sge_dev, "Tx error : 0x%b\n",
1266                             txstat, TX_ERR_BITS);
1267 #endif
1268                         ifp->if_oerrors++;
1269                 } else {
1270 #ifdef notyet
1271                         ifp->if_collisions += (txstat & 0xFFFF) - 1;
1272 #endif
1273                         ifp->if_opackets++;
1274                 }
1275                 txd = &cd->sge_txdesc[cons];
1276                 for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
1277                         ld->sge_tx_ring[cons].sge_cmdsts = 0;
1278                         SGE_INC(cons, SGE_TX_RING_CNT);
1279                 }
1280                 /* Reclaim transmitted mbuf. */
1281                 KASSERT(txd->tx_m != NULL,
1282                     ("%s: freeing NULL mbuf\n", __func__));
1283                 bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap,
1284                     BUS_DMASYNC_POSTWRITE);
1285                 bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap);
1286                 m_freem(txd->tx_m);
1287                 txd->tx_m = NULL;
1288                 cd->sge_tx_cnt -= txd->tx_ndesc;
1289                 KASSERT(cd->sge_tx_cnt >= 0,
1290                     ("%s: Active Tx desc counter was garbled\n", __func__));
1291                 txd->tx_ndesc = 0;
1292                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1293         }
1294         cd->sge_tx_cons = cons;
1295         if (cd->sge_tx_cnt == 0)
1296                 sc->sge_timer = 0;
1297 }
1298
1299 static void
1300 sge_tick(void *arg)
1301 {
1302         struct sge_softc *sc;
1303         struct mii_data *mii;
1304         struct ifnet *ifp;
1305
1306         sc = arg;
1307         SGE_LOCK_ASSERT(sc);
1308
1309         ifp = sc->sge_ifp;
1310         mii = device_get_softc(sc->sge_miibus);
1311         mii_tick(mii);
1312         if ((sc->sge_flags & SGE_FLAG_LINK) == 0) {
1313                 sge_miibus_statchg(sc->sge_dev);
1314                 if ((sc->sge_flags & SGE_FLAG_LINK) != 0 &&
1315                     !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1316                         sge_start_locked(ifp);
1317         }
1318         /*
1319          * Reclaim transmitted frames here as we do not request
1320          * Tx completion interrupt for every queued frames to
1321          * reduce excessive interrupts.
1322          */
1323         sge_txeof(sc);
1324         sge_watchdog(sc);
1325         callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc);
1326 }
1327
1328 static void
1329 sge_intr(void *arg)
1330 {
1331         struct sge_softc *sc;
1332         struct ifnet *ifp;
1333         uint32_t status;
1334
1335         sc = arg;
1336         SGE_LOCK(sc);
1337         ifp = sc->sge_ifp;
1338
1339         status = CSR_READ_4(sc, IntrStatus);
1340         if (status == 0xFFFFFFFF || (status & SGE_INTRS) == 0) {
1341                 /* Not ours. */
1342                 SGE_UNLOCK(sc);
1343                 return;
1344         }
1345         /* Acknowledge interrupts. */
1346         CSR_WRITE_4(sc, IntrStatus, status);
1347         /* Disable further interrupts. */
1348         CSR_WRITE_4(sc, IntrMask, 0);
1349         /*
1350          * It seems the controller supports some kind of interrupt
1351          * moderation mechanism but we still don't know how to
1352          * enable that.  To reduce number of generated interrupts
1353          * under load we check pending interrupts in a loop.  This
1354          * will increase number of register access and is not correct
1355          * way to handle interrupt moderation but there seems to be
1356          * no other way at this time.
1357          */
1358         for (;;) {
1359                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1360                         break;
1361                 if ((status & (INTR_RX_DONE | INTR_RX_IDLE)) != 0) {
1362                         sge_rxeof(sc);
1363                         /* Wakeup Rx MAC. */
1364                         if ((status & INTR_RX_IDLE) != 0)
1365                                 CSR_WRITE_4(sc, RX_CTL,
1366                                     0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
1367                 }
1368                 if ((status & (INTR_TX_DONE | INTR_TX_IDLE)) != 0)
1369                         sge_txeof(sc);
1370                 status = CSR_READ_4(sc, IntrStatus);
1371                 if ((status & SGE_INTRS) == 0)
1372                         break;
1373                 /* Acknowledge interrupts. */
1374                 CSR_WRITE_4(sc, IntrStatus, status);
1375         }
1376         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1377                 /* Re-enable interrupts */
1378                 CSR_WRITE_4(sc, IntrMask, SGE_INTRS);
1379                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1380                         sge_start_locked(ifp);
1381         }
1382         SGE_UNLOCK(sc);
1383 }
1384
1385 /*
1386  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1387  * pointers to the fragment pointers.
1388  */
1389 static int
1390 sge_encap(struct sge_softc *sc, struct mbuf **m_head)
1391 {
1392         struct mbuf *m;
1393         struct sge_desc *desc;
1394         struct sge_txdesc *txd;
1395         bus_dma_segment_t txsegs[SGE_MAXTXSEGS];
1396         uint32_t cflags, mss;
1397         int error, i, nsegs, prod, si;
1398
1399         SGE_LOCK_ASSERT(sc);
1400
1401         si = prod = sc->sge_cdata.sge_tx_prod;
1402         txd = &sc->sge_cdata.sge_txdesc[prod];
1403         if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1404                 struct ether_header *eh;
1405                 struct ip *ip;
1406                 struct tcphdr *tcp;
1407                 uint32_t ip_off, poff;
1408
1409                 if (M_WRITABLE(*m_head) == 0) {
1410                         /* Get a writable copy. */
1411                         m = m_dup(*m_head, M_NOWAIT);
1412                         m_freem(*m_head);
1413                         if (m == NULL) {
1414                                 *m_head = NULL;
1415                                 return (ENOBUFS);
1416                         }
1417                         *m_head = m;
1418                 }
1419                 ip_off = sizeof(struct ether_header);
1420                 m = m_pullup(*m_head, ip_off);
1421                 if (m == NULL) {
1422                         *m_head = NULL;
1423                         return (ENOBUFS);
1424                 }
1425                 eh = mtod(m, struct ether_header *);
1426                 /* Check the existence of VLAN tag. */
1427                 if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1428                         ip_off = sizeof(struct ether_vlan_header);
1429                         m = m_pullup(m, ip_off);
1430                         if (m == NULL) {
1431                                 *m_head = NULL;
1432                                 return (ENOBUFS);
1433                         }
1434                 }
1435                 m = m_pullup(m, ip_off + sizeof(struct ip));
1436                 if (m == NULL) {
1437                         *m_head = NULL;
1438                         return (ENOBUFS);
1439                 }
1440                 ip = (struct ip *)(mtod(m, char *) + ip_off);
1441                 poff = ip_off + (ip->ip_hl << 2);
1442                 m = m_pullup(m, poff + sizeof(struct tcphdr));
1443                 if (m == NULL) {
1444                         *m_head = NULL;
1445                         return (ENOBUFS);
1446                 }
1447                 tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1448                 m = m_pullup(m, poff + (tcp->th_off << 2));
1449                 if (m == NULL) {
1450                         *m_head = NULL;
1451                         return (ENOBUFS);
1452                 }
1453                 /*
1454                  * Reset IP checksum and recompute TCP pseudo
1455                  * checksum that NDIS specification requires.
1456                  */
1457                 ip = (struct ip *)(mtod(m, char *) + ip_off);
1458                 ip->ip_sum = 0;
1459                 tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1460                 tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1461                     htons(IPPROTO_TCP));
1462                 *m_head = m;
1463         }
1464
1465         error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag,
1466             txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1467         if (error == EFBIG) {
1468                 m = m_collapse(*m_head, M_NOWAIT, SGE_MAXTXSEGS);
1469                 if (m == NULL) {
1470                         m_freem(*m_head);
1471                         *m_head = NULL;
1472                         return (ENOBUFS);
1473                 }
1474                 *m_head = m;
1475                 error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag,
1476                     txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1477                 if (error != 0) {
1478                         m_freem(*m_head);
1479                         *m_head = NULL;
1480                         return (error);
1481                 }
1482         } else if (error != 0)
1483                 return (error);
1484
1485         KASSERT(nsegs != 0, ("zero segment returned"));
1486         /* Check descriptor overrun. */
1487         if (sc->sge_cdata.sge_tx_cnt + nsegs >= SGE_TX_RING_CNT) {
1488                 bus_dmamap_unload(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap);
1489                 return (ENOBUFS);
1490         }
1491         bus_dmamap_sync(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap,
1492             BUS_DMASYNC_PREWRITE);
1493
1494         m = *m_head;
1495         cflags = 0;
1496         mss = 0;
1497         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1498                 cflags |= TDC_LS;
1499                 mss = (uint32_t)m->m_pkthdr.tso_segsz;
1500                 mss <<= 16;
1501         } else {
1502                 if (m->m_pkthdr.csum_flags & CSUM_IP)
1503                         cflags |= TDC_IP_CSUM;
1504                 if (m->m_pkthdr.csum_flags & CSUM_TCP)
1505                         cflags |= TDC_TCP_CSUM;
1506                 if (m->m_pkthdr.csum_flags & CSUM_UDP)
1507                         cflags |= TDC_UDP_CSUM;
1508         }
1509         for (i = 0; i < nsegs; i++) {
1510                 desc = &sc->sge_ldata.sge_tx_ring[prod];
1511                 if (i == 0) {
1512                         desc->sge_sts_size = htole32(m->m_pkthdr.len | mss);
1513                         desc->sge_cmdsts = 0;
1514                 } else {
1515                         desc->sge_sts_size = 0;
1516                         desc->sge_cmdsts = htole32(TDC_OWN);
1517                 }
1518                 desc->sge_ptr = htole32(SGE_ADDR_LO(txsegs[i].ds_addr));
1519                 desc->sge_flags = htole32(txsegs[i].ds_len);
1520                 if (prod == SGE_TX_RING_CNT - 1)
1521                         desc->sge_flags |= htole32(RING_END);
1522                 sc->sge_cdata.sge_tx_cnt++;
1523                 SGE_INC(prod, SGE_TX_RING_CNT);
1524         }
1525         /* Update producer index. */
1526         sc->sge_cdata.sge_tx_prod = prod;
1527
1528         desc = &sc->sge_ldata.sge_tx_ring[si];
1529         /* Configure VLAN. */
1530         if((m->m_flags & M_VLANTAG) != 0) {
1531                 cflags |= m->m_pkthdr.ether_vtag;
1532                 desc->sge_sts_size |= htole32(TDS_INS_VLAN);
1533         }
1534         desc->sge_cmdsts |= htole32(TDC_DEF | TDC_CRC | TDC_PAD | cflags);
1535 #if 1
1536         if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0)
1537                 desc->sge_cmdsts |= htole32(TDC_BST);
1538 #else
1539         if ((sc->sge_flags & SGE_FLAG_FDX) == 0) {
1540                 desc->sge_cmdsts |= htole32(TDC_COL | TDC_CRS | TDC_BKF);
1541                 if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0)
1542                         desc->sge_cmdsts |= htole32(TDC_EXT | TDC_BST);
1543         }
1544 #endif
1545         /* Request interrupt and give ownership to controller. */
1546         desc->sge_cmdsts |= htole32(TDC_OWN | TDC_INTR);
1547         txd->tx_m = m;
1548         txd->tx_ndesc = nsegs;
1549         return (0);
1550 }
1551
1552 static void
1553 sge_start(struct ifnet *ifp)
1554 {
1555         struct sge_softc *sc;
1556
1557         sc = ifp->if_softc;
1558         SGE_LOCK(sc);
1559         sge_start_locked(ifp);
1560         SGE_UNLOCK(sc);
1561 }
1562
1563 static void
1564 sge_start_locked(struct ifnet *ifp)
1565 {
1566         struct sge_softc *sc;
1567         struct mbuf *m_head;
1568         int queued = 0;
1569
1570         sc = ifp->if_softc;
1571         SGE_LOCK_ASSERT(sc);
1572
1573         if ((sc->sge_flags & SGE_FLAG_LINK) == 0 ||
1574             (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1575             IFF_DRV_RUNNING)
1576                 return;
1577
1578         for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1579                 if (sc->sge_cdata.sge_tx_cnt > (SGE_TX_RING_CNT -
1580                     SGE_MAXTXSEGS)) {
1581                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1582                         break;
1583                 }
1584                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1585                 if (m_head == NULL)
1586                         break;
1587                 if (sge_encap(sc, &m_head)) {
1588                         if (m_head == NULL)
1589                                 break;
1590                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1591                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1592                         break;
1593                 }
1594                 queued++;
1595                 /*
1596                  * If there's a BPF listener, bounce a copy of this frame
1597                  * to him.
1598                  */
1599                 BPF_MTAP(ifp, m_head);
1600         }
1601
1602         if (queued > 0) {
1603                 bus_dmamap_sync(sc->sge_cdata.sge_tx_tag,
1604                     sc->sge_cdata.sge_tx_dmamap,
1605                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1606                 CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB | TX_CTL_POLL);
1607                 sc->sge_timer = 5;
1608         }
1609 }
1610
1611 static void
1612 sge_init(void *arg)
1613 {
1614         struct sge_softc *sc;
1615
1616         sc = arg;
1617         SGE_LOCK(sc);
1618         sge_init_locked(sc);
1619         SGE_UNLOCK(sc);
1620 }
1621
1622 static void
1623 sge_init_locked(struct sge_softc *sc)
1624 {
1625         struct ifnet *ifp;
1626         struct mii_data *mii;
1627         uint16_t rxfilt;
1628         int i;
1629
1630         SGE_LOCK_ASSERT(sc);
1631         ifp = sc->sge_ifp;
1632         mii = device_get_softc(sc->sge_miibus);
1633         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1634                 return;
1635         /*
1636          * Cancel pending I/O and free all RX/TX buffers.
1637          */
1638         sge_stop(sc);
1639         sge_reset(sc);
1640
1641         /* Init circular RX list. */
1642         if (sge_list_rx_init(sc) == ENOBUFS) {
1643                 device_printf(sc->sge_dev, "no memory for Rx buffers\n");
1644                 sge_stop(sc);
1645                 return;
1646         }
1647         /* Init TX descriptors. */
1648         sge_list_tx_init(sc);
1649         /*
1650          * Load the address of the RX and TX lists.
1651          */
1652         CSR_WRITE_4(sc, TX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_tx_paddr));
1653         CSR_WRITE_4(sc, RX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_rx_paddr));
1654
1655         CSR_WRITE_4(sc, TxMacControl, 0x60);
1656         CSR_WRITE_4(sc, RxWakeOnLan, 0);
1657         CSR_WRITE_4(sc, RxWakeOnLanData, 0);
1658         /* Allow receiving VLAN frames. */
1659         CSR_WRITE_2(sc, RxMPSControl, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN +
1660             SGE_RX_PAD_BYTES);
1661
1662         for (i = 0; i < ETHER_ADDR_LEN; i++)
1663                 CSR_WRITE_1(sc, RxMacAddr + i, IF_LLADDR(ifp)[i]);
1664         /* Configure RX MAC. */
1665         rxfilt = RXMAC_STRIP_FCS | RXMAC_PAD_ENB | RXMAC_CSUM_ENB;
1666         CSR_WRITE_2(sc, RxMacControl, rxfilt);
1667         sge_rxfilter(sc);
1668         sge_setvlan(sc);
1669
1670         /* Initialize default speed/duplex information. */
1671         if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0)
1672                 sc->sge_flags |= SGE_FLAG_SPEED_1000;
1673         sc->sge_flags |= SGE_FLAG_FDX;
1674         if ((sc->sge_flags & SGE_FLAG_RGMII) != 0)
1675                 CSR_WRITE_4(sc, StationControl, 0x04008001);
1676         else
1677                 CSR_WRITE_4(sc, StationControl, 0x04000001);
1678         /*
1679          * XXX Try to mitigate interrupts.
1680          */
1681         CSR_WRITE_4(sc, IntrControl, 0x08880000);
1682 #ifdef notyet
1683         if (sc->sge_intrcontrol != 0)
1684                 CSR_WRITE_4(sc, IntrControl, sc->sge_intrcontrol);
1685         if (sc->sge_intrtimer != 0)
1686                 CSR_WRITE_4(sc, IntrTimer, sc->sge_intrtimer);
1687 #endif
1688
1689         /*
1690          * Clear and enable interrupts.
1691          */
1692         CSR_WRITE_4(sc, IntrStatus, 0xFFFFFFFF);
1693         CSR_WRITE_4(sc, IntrMask, SGE_INTRS);
1694
1695         /* Enable receiver and transmitter. */
1696         CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB);
1697         CSR_WRITE_4(sc, RX_CTL, 0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
1698
1699         ifp->if_drv_flags |= IFF_DRV_RUNNING;
1700         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1701
1702         sc->sge_flags &= ~SGE_FLAG_LINK;
1703         mii_mediachg(mii);
1704         callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc);
1705 }
1706
1707 /*
1708  * Set media options.
1709  */
1710 static int
1711 sge_ifmedia_upd(struct ifnet *ifp)
1712 {
1713         struct sge_softc *sc;
1714         struct mii_data *mii;
1715                 struct mii_softc *miisc;
1716         int error;
1717
1718         sc = ifp->if_softc;
1719         SGE_LOCK(sc);
1720         mii = device_get_softc(sc->sge_miibus);
1721         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1722                 PHY_RESET(miisc);
1723         error = mii_mediachg(mii);
1724         SGE_UNLOCK(sc);
1725
1726         return (error);
1727 }
1728
1729 /*
1730  * Report current media status.
1731  */
1732 static void
1733 sge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1734 {
1735         struct sge_softc *sc;
1736         struct mii_data *mii;
1737
1738         sc = ifp->if_softc;
1739         SGE_LOCK(sc);
1740         mii = device_get_softc(sc->sge_miibus);
1741         if ((ifp->if_flags & IFF_UP) == 0) {
1742                 SGE_UNLOCK(sc);
1743                 return;
1744         }
1745         mii_pollstat(mii);
1746         ifmr->ifm_active = mii->mii_media_active;
1747         ifmr->ifm_status = mii->mii_media_status;
1748         SGE_UNLOCK(sc);
1749 }
1750
1751 static int
1752 sge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1753 {
1754         struct sge_softc *sc;
1755         struct ifreq *ifr;
1756         struct mii_data *mii;
1757         int error = 0, mask, reinit;
1758
1759         sc = ifp->if_softc;
1760         ifr = (struct ifreq *)data;
1761
1762         switch(command) {
1763         case SIOCSIFFLAGS:
1764                 SGE_LOCK(sc);
1765                 if ((ifp->if_flags & IFF_UP) != 0) {
1766                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
1767                             ((ifp->if_flags ^ sc->sge_if_flags) &
1768                             (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1769                                 sge_rxfilter(sc);
1770                         else
1771                                 sge_init_locked(sc);
1772                 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1773                         sge_stop(sc);
1774                 sc->sge_if_flags = ifp->if_flags;
1775                 SGE_UNLOCK(sc);
1776                 break;
1777         case SIOCSIFCAP:
1778                 SGE_LOCK(sc);
1779                 reinit = 0;
1780                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1781                 if ((mask & IFCAP_TXCSUM) != 0 &&
1782                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1783                         ifp->if_capenable ^= IFCAP_TXCSUM;
1784                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1785                                 ifp->if_hwassist |= SGE_CSUM_FEATURES;
1786                         else
1787                                 ifp->if_hwassist &= ~SGE_CSUM_FEATURES;
1788                 }
1789                 if ((mask & IFCAP_RXCSUM) != 0 &&
1790                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
1791                         ifp->if_capenable ^= IFCAP_RXCSUM;
1792                 if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1793                     (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1794                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1795                 if ((mask & IFCAP_TSO4) != 0 &&
1796                     (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1797                         ifp->if_capenable ^= IFCAP_TSO4;
1798                         if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1799                                 ifp->if_hwassist |= CSUM_TSO;
1800                         else
1801                                 ifp->if_hwassist &= ~CSUM_TSO;
1802                 }
1803                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1804                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1805                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1806                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1807                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1808                         /*
1809                          * Due to unknown reason, toggling VLAN hardware
1810                          * tagging require interface reinitialization.
1811                          */
1812                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1813                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1814                                 ifp->if_capenable &=
1815                                     ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
1816                         reinit = 1;
1817                 }
1818                 if (reinit > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1819                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1820                         sge_init_locked(sc);
1821                 }
1822                 SGE_UNLOCK(sc);
1823                 VLAN_CAPABILITIES(ifp);
1824                 break;
1825         case SIOCADDMULTI:
1826         case SIOCDELMULTI:
1827                 SGE_LOCK(sc);
1828                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1829                         sge_rxfilter(sc);
1830                 SGE_UNLOCK(sc);
1831                 break;
1832         case SIOCGIFMEDIA:
1833         case SIOCSIFMEDIA:
1834                 mii = device_get_softc(sc->sge_miibus);
1835                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1836                 break;
1837         default:
1838                 error = ether_ioctl(ifp, command, data);
1839                 break;
1840         }
1841
1842         return (error);
1843 }
1844
1845 static void
1846 sge_watchdog(struct sge_softc *sc)
1847 {
1848         struct ifnet *ifp;
1849
1850         SGE_LOCK_ASSERT(sc);
1851         if (sc->sge_timer == 0 || --sc->sge_timer > 0)
1852                 return;
1853
1854         ifp = sc->sge_ifp;
1855         if ((sc->sge_flags & SGE_FLAG_LINK) == 0) {
1856                 if (1 || bootverbose)
1857                         device_printf(sc->sge_dev,
1858                             "watchdog timeout (lost link)\n");
1859                 ifp->if_oerrors++;
1860                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1861                 sge_init_locked(sc);
1862                 return;
1863         }
1864         device_printf(sc->sge_dev, "watchdog timeout\n");
1865         ifp->if_oerrors++;
1866
1867         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1868         sge_init_locked(sc);
1869         if (!IFQ_DRV_IS_EMPTY(&sc->sge_ifp->if_snd))
1870                 sge_start_locked(ifp);
1871 }
1872
1873 /*
1874  * Stop the adapter and free any mbufs allocated to the
1875  * RX and TX lists.
1876  */
1877 static void
1878 sge_stop(struct sge_softc *sc)
1879 {
1880         struct ifnet *ifp;
1881
1882         ifp = sc->sge_ifp;
1883
1884         SGE_LOCK_ASSERT(sc);
1885
1886         sc->sge_timer = 0;
1887         callout_stop(&sc->sge_stat_ch);
1888         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1889
1890         CSR_WRITE_4(sc, IntrMask, 0);
1891         CSR_READ_4(sc, IntrMask);
1892         CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
1893         /* Stop TX/RX MAC. */
1894         CSR_WRITE_4(sc, TX_CTL, 0x1a00);
1895         CSR_WRITE_4(sc, RX_CTL, 0x1a00);
1896         /* XXX Can we assume active DMA cycles gone? */
1897         DELAY(2000);
1898         CSR_WRITE_4(sc, IntrMask, 0);
1899         CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
1900
1901         sc->sge_flags &= ~SGE_FLAG_LINK;
1902         sge_list_rx_free(sc);
1903         sge_list_tx_free(sc);
1904 }