]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/sge/if_sge.c
MFV r337014:
[FreeBSD/FreeBSD.git] / sys / dev / sge / if_sge.c
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 2008-2010 Nikolay Denev <ndenev@gmail.com>
5  * Copyright (c) 2007-2008 Alexander Pohoyda <alexander.pohoyda@gmx.net>
6  * Copyright (c) 1997, 1998, 1999
7  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed by Bill Paul.
20  * 4. Neither the name of the author nor the names of any co-contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS''
25  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
27  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL AUTHORS OR
28  * THE VOICES IN THEIR HEADS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
30  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
31  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
33  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
35  * OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40
41 /*
42  * SiS 190/191 PCI Ethernet NIC driver.
43  *
44  * Adapted to SiS 190 NIC by Alexander Pohoyda based on the original
45  * SiS 900 driver by Bill Paul, using SiS 190/191 Solaris driver by
46  * Masayuki Murayama and SiS 190/191 GNU/Linux driver by K.M. Liu
47  * <kmliu@sis.com>.  Thanks to Pyun YongHyeon <pyunyh@gmail.com> for
48  * review and very useful comments.
49  *
50  * Adapted to SiS 191 NIC by Nikolay Denev with further ideas from the
51  * Linux and Solaris drivers.
52  */
53
54 #include <sys/param.h>
55 #include <sys/systm.h>
56 #include <sys/bus.h>
57 #include <sys/endian.h>
58 #include <sys/kernel.h>
59 #include <sys/lock.h>
60 #include <sys/malloc.h>
61 #include <sys/mbuf.h>
62 #include <sys/module.h>
63 #include <sys/mutex.h>
64 #include <sys/rman.h>
65 #include <sys/socket.h>
66 #include <sys/sockio.h>
67
68 #include <net/bpf.h>
69 #include <net/if.h>
70 #include <net/if_var.h>
71 #include <net/if_arp.h>
72 #include <net/ethernet.h>
73 #include <net/if_dl.h>
74 #include <net/if_media.h>
75 #include <net/if_types.h>
76 #include <net/if_vlan_var.h>
77
78 #include <netinet/in.h>
79 #include <netinet/in_systm.h>
80 #include <netinet/ip.h>
81 #include <netinet/tcp.h>
82
83 #include <machine/bus.h>
84 #include <machine/in_cksum.h>
85
86 #include <dev/mii/mii.h>
87 #include <dev/mii/miivar.h>
88
89 #include <dev/pci/pcireg.h>
90 #include <dev/pci/pcivar.h>
91
92 #include <dev/sge/if_sgereg.h>
93
94 MODULE_DEPEND(sge, pci, 1, 1, 1);
95 MODULE_DEPEND(sge, ether, 1, 1, 1);
96 MODULE_DEPEND(sge, miibus, 1, 1, 1);
97
98 /* "device miibus0" required.  See GENERIC if you get errors here. */
99 #include "miibus_if.h"
100
101 /*
102  * Various supported device vendors/types and their names.
103  */
104 static struct sge_type sge_devs[] = {
105         { SIS_VENDORID, SIS_DEVICEID_190, "SiS190 Fast Ethernet" },
106         { SIS_VENDORID, SIS_DEVICEID_191, "SiS191 Fast/Gigabit Ethernet" },
107         { 0, 0, NULL }
108 };
109
110 static int      sge_probe(device_t);
111 static int      sge_attach(device_t);
112 static int      sge_detach(device_t);
113 static int      sge_shutdown(device_t);
114 static int      sge_suspend(device_t);
115 static int      sge_resume(device_t);
116
117 static int      sge_miibus_readreg(device_t, int, int);
118 static int      sge_miibus_writereg(device_t, int, int, int);
119 static void     sge_miibus_statchg(device_t);
120
121 static int      sge_newbuf(struct sge_softc *, int);
122 static int      sge_encap(struct sge_softc *, struct mbuf **);
123 static __inline void
124                 sge_discard_rxbuf(struct sge_softc *, int);
125 static void     sge_rxeof(struct sge_softc *);
126 static void     sge_txeof(struct sge_softc *);
127 static void     sge_intr(void *);
128 static void     sge_tick(void *);
129 static void     sge_start(struct ifnet *);
130 static void     sge_start_locked(struct ifnet *);
131 static int      sge_ioctl(struct ifnet *, u_long, caddr_t);
132 static void     sge_init(void *);
133 static void     sge_init_locked(struct sge_softc *);
134 static void     sge_stop(struct sge_softc *);
135 static void     sge_watchdog(struct sge_softc *);
136 static int      sge_ifmedia_upd(struct ifnet *);
137 static void     sge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
138
139 static int      sge_get_mac_addr_apc(struct sge_softc *, uint8_t *);
140 static int      sge_get_mac_addr_eeprom(struct sge_softc *, uint8_t *);
141 static uint16_t sge_read_eeprom(struct sge_softc *, int);
142
143 static void     sge_rxfilter(struct sge_softc *);
144 static void     sge_setvlan(struct sge_softc *);
145 static void     sge_reset(struct sge_softc *);
146 static int      sge_list_rx_init(struct sge_softc *);
147 static int      sge_list_rx_free(struct sge_softc *);
148 static int      sge_list_tx_init(struct sge_softc *);
149 static int      sge_list_tx_free(struct sge_softc *);
150
151 static int      sge_dma_alloc(struct sge_softc *);
152 static void     sge_dma_free(struct sge_softc *);
153 static void     sge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
154
155 static device_method_t sge_methods[] = {
156         /* Device interface */
157         DEVMETHOD(device_probe,         sge_probe),
158         DEVMETHOD(device_attach,        sge_attach),
159         DEVMETHOD(device_detach,        sge_detach),
160         DEVMETHOD(device_suspend,       sge_suspend),
161         DEVMETHOD(device_resume,        sge_resume),
162         DEVMETHOD(device_shutdown,      sge_shutdown),
163
164         /* MII interface */
165         DEVMETHOD(miibus_readreg,       sge_miibus_readreg),
166         DEVMETHOD(miibus_writereg,      sge_miibus_writereg),
167         DEVMETHOD(miibus_statchg,       sge_miibus_statchg),
168
169         DEVMETHOD_END
170 };
171
172 static driver_t sge_driver = {
173         "sge", sge_methods, sizeof(struct sge_softc)
174 };
175
176 static devclass_t sge_devclass;
177
178 DRIVER_MODULE(sge, pci, sge_driver, sge_devclass, 0, 0);
179 DRIVER_MODULE(miibus, sge, miibus_driver, miibus_devclass, 0, 0);
180
181 /*
182  * Register space access macros.
183  */
184 #define CSR_WRITE_4(sc, reg, val)       bus_write_4(sc->sge_res, reg, val)
185 #define CSR_WRITE_2(sc, reg, val)       bus_write_2(sc->sge_res, reg, val)
186 #define CSR_WRITE_1(cs, reg, val)       bus_write_1(sc->sge_res, reg, val)
187
188 #define CSR_READ_4(sc, reg)             bus_read_4(sc->sge_res, reg)
189 #define CSR_READ_2(sc, reg)             bus_read_2(sc->sge_res, reg)
190 #define CSR_READ_1(sc, reg)             bus_read_1(sc->sge_res, reg)
191
192 /* Define to show Tx/Rx error status. */
193 #undef SGE_SHOW_ERRORS
194
195 #define SGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP | CSUM_UDP)
196
197 static void
198 sge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
199 {
200         bus_addr_t *p;
201
202         if (error != 0)
203                 return;
204         KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
205         p  = arg;
206         *p = segs->ds_addr;
207 }
208
209 /*
210  * Read a sequence of words from the EEPROM.
211  */
212 static uint16_t
213 sge_read_eeprom(struct sge_softc *sc, int offset)
214 {
215         uint32_t val;
216         int i;
217
218         KASSERT(offset <= EI_OFFSET, ("EEPROM offset too big"));
219         CSR_WRITE_4(sc, ROMInterface,
220             EI_REQ | EI_OP_RD | (offset << EI_OFFSET_SHIFT));
221         DELAY(500);
222         for (i = 0; i < SGE_TIMEOUT; i++) {
223                 val = CSR_READ_4(sc, ROMInterface);
224                 if ((val & EI_REQ) == 0)
225                         break;
226                 DELAY(100);
227         }
228         if (i == SGE_TIMEOUT) {
229                 device_printf(sc->sge_dev,
230                     "EEPROM read timeout : 0x%08x\n", val);
231                 return (0xffff);
232         }
233
234         return ((val & EI_DATA) >> EI_DATA_SHIFT);
235 }
236
237 static int
238 sge_get_mac_addr_eeprom(struct sge_softc *sc, uint8_t *dest)
239 {
240         uint16_t val;
241         int i;
242
243         val = sge_read_eeprom(sc, EEPROMSignature);
244         if (val == 0xffff || val == 0) {
245                 device_printf(sc->sge_dev,
246                     "invalid EEPROM signature : 0x%04x\n", val);
247                 return (EINVAL);
248         }
249
250         for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
251                 val = sge_read_eeprom(sc, EEPROMMACAddr + i / 2);
252                 dest[i + 0] = (uint8_t)val;
253                 dest[i + 1] = (uint8_t)(val >> 8);
254         }
255
256         if ((sge_read_eeprom(sc, EEPROMInfo) & 0x80) != 0)
257                 sc->sge_flags |= SGE_FLAG_RGMII;
258         return (0);
259 }
260
261 /*
262  * For SiS96x, APC CMOS RAM is used to store ethernet address.
263  * APC CMOS RAM is accessed through ISA bridge.
264  */
265 static int
266 sge_get_mac_addr_apc(struct sge_softc *sc, uint8_t *dest)
267 {
268 #if defined(__amd64__) || defined(__i386__)
269         devclass_t pci;
270         device_t bus, dev = NULL;
271         device_t *kids;
272         struct apc_tbl {
273                 uint16_t vid;
274                 uint16_t did;
275         } *tp, apc_tbls[] = {
276                 { SIS_VENDORID, 0x0965 },
277                 { SIS_VENDORID, 0x0966 },
278                 { SIS_VENDORID, 0x0968 }
279         };
280         uint8_t reg;
281         int busnum, i, j, numkids;
282
283         pci = devclass_find("pci");
284         for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
285                 bus = devclass_get_device(pci, busnum);
286                 if (!bus)
287                         continue;
288                 if (device_get_children(bus, &kids, &numkids) != 0)
289                         continue;
290                 for (i = 0; i < numkids; i++) {
291                         dev = kids[i];
292                         if (pci_get_class(dev) == PCIC_BRIDGE &&
293                             pci_get_subclass(dev) == PCIS_BRIDGE_ISA) {
294                                 tp = apc_tbls;
295                                 for (j = 0; j < nitems(apc_tbls); j++) {
296                                         if (pci_get_vendor(dev) == tp->vid &&
297                                             pci_get_device(dev) == tp->did) {
298                                                 free(kids, M_TEMP);
299                                                 goto apc_found;
300                                         }
301                                         tp++;
302                                 }
303                         }
304                 }
305                 free(kids, M_TEMP);
306         }
307         device_printf(sc->sge_dev, "couldn't find PCI-ISA bridge\n");
308         return (EINVAL);
309 apc_found:
310         /* Enable port 0x78 and 0x79 to access APC registers. */
311         reg = pci_read_config(dev, 0x48, 1);
312         pci_write_config(dev, 0x48, reg & ~0x02, 1);
313         DELAY(50);
314         pci_read_config(dev, 0x48, 1);
315         /* Read stored ethernet address. */
316         for (i = 0; i < ETHER_ADDR_LEN; i++) {
317                 outb(0x78, 0x09 + i);
318                 dest[i] = inb(0x79);
319         }
320         outb(0x78, 0x12);
321         if ((inb(0x79) & 0x80) != 0)
322                 sc->sge_flags |= SGE_FLAG_RGMII;
323         /* Restore access to APC registers. */
324         pci_write_config(dev, 0x48, reg, 1);
325
326         return (0);
327 #else
328         return (EINVAL);
329 #endif
330 }
331
332 static int
333 sge_miibus_readreg(device_t dev, int phy, int reg)
334 {
335         struct sge_softc *sc;
336         uint32_t val;
337         int i;
338
339         sc = device_get_softc(dev);
340         CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) |
341             (reg << GMI_REG_SHIFT) | GMI_OP_RD | GMI_REQ);
342         DELAY(10);
343         for (i = 0; i < SGE_TIMEOUT; i++) {
344                 val = CSR_READ_4(sc, GMIIControl);
345                 if ((val & GMI_REQ) == 0)
346                         break;
347                 DELAY(10);
348         }
349         if (i == SGE_TIMEOUT) {
350                 device_printf(sc->sge_dev, "PHY read timeout : %d\n", reg);
351                 return (0);
352         }
353         return ((val & GMI_DATA) >> GMI_DATA_SHIFT);
354 }
355
356 static int
357 sge_miibus_writereg(device_t dev, int phy, int reg, int data)
358 {
359         struct sge_softc *sc;
360         uint32_t val;
361         int i;
362
363         sc = device_get_softc(dev);
364         CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) |
365             (reg << GMI_REG_SHIFT) | (data << GMI_DATA_SHIFT) |
366             GMI_OP_WR | GMI_REQ);
367         DELAY(10);
368         for (i = 0; i < SGE_TIMEOUT; i++) {
369                 val = CSR_READ_4(sc, GMIIControl);
370                 if ((val & GMI_REQ) == 0)
371                         break;
372                 DELAY(10);
373         }
374         if (i == SGE_TIMEOUT)
375                 device_printf(sc->sge_dev, "PHY write timeout : %d\n", reg);
376         return (0);
377 }
378
379 static void
380 sge_miibus_statchg(device_t dev)
381 {
382         struct sge_softc *sc;
383         struct mii_data *mii;
384         struct ifnet *ifp;
385         uint32_t ctl, speed;
386
387         sc = device_get_softc(dev);
388         mii = device_get_softc(sc->sge_miibus);
389         ifp = sc->sge_ifp;
390         if (mii == NULL || ifp == NULL ||
391             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
392                 return;
393         speed = 0;
394         sc->sge_flags &= ~SGE_FLAG_LINK;
395         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
396             (IFM_ACTIVE | IFM_AVALID)) {
397                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
398                 case IFM_10_T:
399                         sc->sge_flags |= SGE_FLAG_LINK;
400                         speed = SC_SPEED_10;
401                         break;
402                 case IFM_100_TX:
403                         sc->sge_flags |= SGE_FLAG_LINK;
404                         speed = SC_SPEED_100;
405                         break;
406                 case IFM_1000_T:
407                         if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0) {
408                                 sc->sge_flags |= SGE_FLAG_LINK;
409                                 speed = SC_SPEED_1000;
410                         }
411                         break;
412                 default:
413                         break;
414                 }
415         }
416         if ((sc->sge_flags & SGE_FLAG_LINK) == 0)
417                 return;
418         /* Reprogram MAC to resolved speed/duplex/flow-control parameters. */
419         ctl = CSR_READ_4(sc, StationControl);
420         ctl &= ~(0x0f000000 | SC_FDX | SC_SPEED_MASK);
421         if (speed == SC_SPEED_1000) {
422                 ctl |= 0x07000000;
423                 sc->sge_flags |= SGE_FLAG_SPEED_1000;
424         } else {
425                 ctl |= 0x04000000;
426                 sc->sge_flags &= ~SGE_FLAG_SPEED_1000;
427         }
428 #ifdef notyet
429         if ((sc->sge_flags & SGE_FLAG_GMII) != 0)
430                 ctl |= 0x03000000;
431 #endif
432         ctl |= speed;
433         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
434                 ctl |= SC_FDX;
435                 sc->sge_flags |= SGE_FLAG_FDX;
436         } else
437                 sc->sge_flags &= ~SGE_FLAG_FDX;
438         CSR_WRITE_4(sc, StationControl, ctl);
439         if ((sc->sge_flags & SGE_FLAG_RGMII) != 0) {
440                 CSR_WRITE_4(sc, RGMIIDelay, 0x0441);
441                 CSR_WRITE_4(sc, RGMIIDelay, 0x0440);
442         }
443 }
444
445 static void
446 sge_rxfilter(struct sge_softc *sc)
447 {
448         struct ifnet *ifp;
449         struct ifmultiaddr *ifma;
450         uint32_t crc, hashes[2];
451         uint16_t rxfilt;
452
453         SGE_LOCK_ASSERT(sc);
454
455         ifp = sc->sge_ifp;
456         rxfilt = CSR_READ_2(sc, RxMacControl);
457         rxfilt &= ~(AcceptBroadcast | AcceptAllPhys | AcceptMulticast);
458         rxfilt |= AcceptMyPhys;
459         if ((ifp->if_flags & IFF_BROADCAST) != 0)
460                 rxfilt |= AcceptBroadcast;
461         if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
462                 if ((ifp->if_flags & IFF_PROMISC) != 0)
463                         rxfilt |= AcceptAllPhys;
464                 rxfilt |= AcceptMulticast;
465                 hashes[0] = 0xFFFFFFFF;
466                 hashes[1] = 0xFFFFFFFF;
467         } else {
468                 rxfilt |= AcceptMulticast;
469                 hashes[0] = hashes[1] = 0;
470                 /* Now program new ones. */
471                 if_maddr_rlock(ifp);
472                 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
473                         if (ifma->ifma_addr->sa_family != AF_LINK)
474                                 continue;
475                         crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
476                             ifma->ifma_addr), ETHER_ADDR_LEN);
477                         hashes[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
478                 }
479                 if_maddr_runlock(ifp);
480         }
481         CSR_WRITE_2(sc, RxMacControl, rxfilt);
482         CSR_WRITE_4(sc, RxHashTable, hashes[0]);
483         CSR_WRITE_4(sc, RxHashTable2, hashes[1]);
484 }
485
486 static void
487 sge_setvlan(struct sge_softc *sc)
488 {
489         struct ifnet *ifp;
490         uint16_t rxfilt;
491
492         SGE_LOCK_ASSERT(sc);
493
494         ifp = sc->sge_ifp;
495         if ((ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) == 0)
496                 return;
497         rxfilt = CSR_READ_2(sc, RxMacControl);
498         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
499                 rxfilt |= RXMAC_STRIP_VLAN;
500         else
501                 rxfilt &= ~RXMAC_STRIP_VLAN;
502         CSR_WRITE_2(sc, RxMacControl, rxfilt);
503 }
504
505 static void
506 sge_reset(struct sge_softc *sc)
507 {
508
509         CSR_WRITE_4(sc, IntrMask, 0);
510         CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
511
512         /* Soft reset. */
513         CSR_WRITE_4(sc, IntrControl, 0x8000);
514         CSR_READ_4(sc, IntrControl);
515         DELAY(100);
516         CSR_WRITE_4(sc, IntrControl, 0);
517         /* Stop MAC. */
518         CSR_WRITE_4(sc, TX_CTL, 0x1a00);
519         CSR_WRITE_4(sc, RX_CTL, 0x1a00);
520
521         CSR_WRITE_4(sc, IntrMask, 0);
522         CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
523
524         CSR_WRITE_4(sc, GMIIControl, 0);
525 }
526
527 /*
528  * Probe for an SiS chip. Check the PCI vendor and device
529  * IDs against our list and return a device name if we find a match.
530  */
531 static int
532 sge_probe(device_t dev)
533 {
534         struct sge_type *t;
535
536         t = sge_devs;
537         while (t->sge_name != NULL) {
538                 if ((pci_get_vendor(dev) == t->sge_vid) &&
539                     (pci_get_device(dev) == t->sge_did)) {
540                         device_set_desc(dev, t->sge_name);
541                         return (BUS_PROBE_DEFAULT);
542                 }
543                 t++;
544         }
545
546         return (ENXIO);
547 }
548
549 /*
550  * Attach the interface.  Allocate softc structures, do ifmedia
551  * setup and ethernet/BPF attach.
552  */
553 static int
554 sge_attach(device_t dev)
555 {
556         struct sge_softc *sc;
557         struct ifnet *ifp;
558         uint8_t eaddr[ETHER_ADDR_LEN];
559         int error = 0, rid;
560
561         sc = device_get_softc(dev);
562         sc->sge_dev = dev;
563
564         mtx_init(&sc->sge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
565             MTX_DEF);
566         callout_init_mtx(&sc->sge_stat_ch, &sc->sge_mtx, 0);
567
568         /*
569          * Map control/status registers.
570          */
571         pci_enable_busmaster(dev);
572
573         /* Allocate resources. */
574         sc->sge_res_id = PCIR_BAR(0);
575         sc->sge_res_type = SYS_RES_MEMORY;
576         sc->sge_res = bus_alloc_resource_any(dev, sc->sge_res_type,
577             &sc->sge_res_id, RF_ACTIVE);
578         if (sc->sge_res == NULL) {
579                 device_printf(dev, "couldn't allocate resource\n");
580                 error = ENXIO;
581                 goto fail;
582         }
583
584         rid = 0;
585         sc->sge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
586             RF_SHAREABLE | RF_ACTIVE);
587         if (sc->sge_irq == NULL) {
588                 device_printf(dev, "couldn't allocate IRQ resources\n");
589                 error = ENXIO;
590                 goto fail;
591         }
592         sc->sge_rev = pci_get_revid(dev);
593         if (pci_get_device(dev) == SIS_DEVICEID_190)
594                 sc->sge_flags |= SGE_FLAG_FASTETHER | SGE_FLAG_SIS190;
595         /* Reset the adapter. */
596         sge_reset(sc);
597
598         /* Get MAC address from the EEPROM. */
599         if ((pci_read_config(dev, 0x73, 1) & 0x01) != 0)
600                 sge_get_mac_addr_apc(sc, eaddr);
601         else
602                 sge_get_mac_addr_eeprom(sc, eaddr);
603
604         if ((error = sge_dma_alloc(sc)) != 0)
605                 goto fail;
606
607         ifp = sc->sge_ifp = if_alloc(IFT_ETHER);
608         if (ifp == NULL) {
609                 device_printf(dev, "cannot allocate ifnet structure.\n");
610                 error = ENOSPC;
611                 goto fail;
612         }
613         ifp->if_softc = sc;
614         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
615         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
616         ifp->if_ioctl = sge_ioctl;
617         ifp->if_start = sge_start;
618         ifp->if_init = sge_init;
619         ifp->if_snd.ifq_drv_maxlen = SGE_TX_RING_CNT - 1;
620         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
621         IFQ_SET_READY(&ifp->if_snd);
622         ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM | IFCAP_TSO4;
623         ifp->if_hwassist = SGE_CSUM_FEATURES | CSUM_TSO;
624         ifp->if_capenable = ifp->if_capabilities;
625         /*
626          * Do MII setup.
627          */
628         error = mii_attach(dev, &sc->sge_miibus, ifp, sge_ifmedia_upd,
629             sge_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
630         if (error != 0) {
631                 device_printf(dev, "attaching PHYs failed\n");
632                 goto fail;
633         }
634
635         /*
636          * Call MI attach routine.
637          */
638         ether_ifattach(ifp, eaddr);
639
640         /* VLAN setup. */
641         ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM |
642             IFCAP_VLAN_HWTSO | IFCAP_VLAN_MTU;
643         ifp->if_capenable = ifp->if_capabilities;
644         /* Tell the upper layer(s) we support long frames. */
645         ifp->if_hdrlen = sizeof(struct ether_vlan_header);
646
647         /* Hook interrupt last to avoid having to lock softc */
648         error = bus_setup_intr(dev, sc->sge_irq, INTR_TYPE_NET | INTR_MPSAFE,
649             NULL, sge_intr, sc, &sc->sge_intrhand);
650         if (error) {
651                 device_printf(dev, "couldn't set up irq\n");
652                 ether_ifdetach(ifp);
653                 goto fail;
654         }
655
656 fail:
657         if (error)
658                 sge_detach(dev);
659
660         return (error);
661 }
662
663 /*
664  * Shutdown hardware and free up resources.  This can be called any
665  * time after the mutex has been initialized.  It is called in both
666  * the error case in attach and the normal detach case so it needs
667  * to be careful about only freeing resources that have actually been
668  * allocated.
669  */
670 static int
671 sge_detach(device_t dev)
672 {
673         struct sge_softc *sc;
674         struct ifnet *ifp;
675
676         sc = device_get_softc(dev);
677         ifp = sc->sge_ifp;
678         /* These should only be active if attach succeeded. */
679         if (device_is_attached(dev)) {
680                 ether_ifdetach(ifp);
681                 SGE_LOCK(sc);
682                 sge_stop(sc);
683                 SGE_UNLOCK(sc);
684                 callout_drain(&sc->sge_stat_ch);
685         }
686         if (sc->sge_miibus)
687                 device_delete_child(dev, sc->sge_miibus);
688         bus_generic_detach(dev);
689
690         if (sc->sge_intrhand)
691                 bus_teardown_intr(dev, sc->sge_irq, sc->sge_intrhand);
692         if (sc->sge_irq)
693                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sge_irq);
694         if (sc->sge_res)
695                 bus_release_resource(dev, sc->sge_res_type, sc->sge_res_id,
696                     sc->sge_res);
697         if (ifp)
698                 if_free(ifp);
699         sge_dma_free(sc);
700         mtx_destroy(&sc->sge_mtx);
701
702         return (0);
703 }
704
705 /*
706  * Stop all chip I/O so that the kernel's probe routines don't
707  * get confused by errant DMAs when rebooting.
708  */
709 static int
710 sge_shutdown(device_t dev)
711 {
712         struct sge_softc *sc;
713
714         sc = device_get_softc(dev);
715         SGE_LOCK(sc);
716         sge_stop(sc);
717         SGE_UNLOCK(sc);
718         return (0);
719 }
720
721 static int
722 sge_suspend(device_t dev)
723 {
724         struct sge_softc *sc;
725         struct ifnet *ifp;
726
727         sc = device_get_softc(dev);
728         SGE_LOCK(sc);
729         ifp = sc->sge_ifp;
730         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
731                 sge_stop(sc);
732         SGE_UNLOCK(sc);
733         return (0);
734 }
735
736 static int
737 sge_resume(device_t dev)
738 {
739         struct sge_softc *sc;
740         struct ifnet *ifp;
741
742         sc = device_get_softc(dev);
743         SGE_LOCK(sc);
744         ifp = sc->sge_ifp;
745         if ((ifp->if_flags & IFF_UP) != 0)
746                 sge_init_locked(sc);
747         SGE_UNLOCK(sc);
748         return (0);
749 }
750
751 static int
752 sge_dma_alloc(struct sge_softc *sc)
753 {
754         struct sge_chain_data *cd;
755         struct sge_list_data *ld;
756         struct sge_rxdesc *rxd;
757         struct sge_txdesc *txd;
758         int error, i;
759
760         cd = &sc->sge_cdata;
761         ld = &sc->sge_ldata;
762         error = bus_dma_tag_create(bus_get_dma_tag(sc->sge_dev),
763             1, 0,                       /* alignment, boundary */
764             BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
765             BUS_SPACE_MAXADDR,          /* highaddr */
766             NULL, NULL,                 /* filter, filterarg */
767             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
768             1,                          /* nsegments */
769             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
770             0,                          /* flags */
771             NULL,                       /* lockfunc */
772             NULL,                       /* lockarg */
773             &cd->sge_tag);
774         if (error != 0) {
775                 device_printf(sc->sge_dev,
776                     "could not create parent DMA tag.\n");
777                 goto fail;
778         }
779
780         /* RX descriptor ring */
781         error = bus_dma_tag_create(cd->sge_tag,
782             SGE_DESC_ALIGN, 0,          /* alignment, boundary */
783             BUS_SPACE_MAXADDR,          /* lowaddr */
784             BUS_SPACE_MAXADDR,          /* highaddr */
785             NULL, NULL,                 /* filter, filterarg */
786             SGE_RX_RING_SZ, 1,          /* maxsize,nsegments */
787             SGE_RX_RING_SZ,             /* maxsegsize */
788             0,                          /* flags */
789             NULL,                       /* lockfunc */
790             NULL,                       /* lockarg */
791             &cd->sge_rx_tag);
792         if (error != 0) {
793                 device_printf(sc->sge_dev,
794                     "could not create Rx ring DMA tag.\n");
795                 goto fail;
796         }
797         /* Allocate DMA'able memory and load DMA map for RX ring. */
798         error = bus_dmamem_alloc(cd->sge_rx_tag, (void **)&ld->sge_rx_ring,
799             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
800             &cd->sge_rx_dmamap);
801         if (error != 0) {
802                 device_printf(sc->sge_dev,
803                     "could not allocate DMA'able memory for Rx ring.\n");
804                 goto fail;
805         }
806         error = bus_dmamap_load(cd->sge_rx_tag, cd->sge_rx_dmamap,
807             ld->sge_rx_ring, SGE_RX_RING_SZ, sge_dma_map_addr,
808             &ld->sge_rx_paddr, BUS_DMA_NOWAIT);
809         if (error != 0) {
810                 device_printf(sc->sge_dev,
811                     "could not load DMA'able memory for Rx ring.\n");
812         }
813
814         /* TX descriptor ring */
815         error = bus_dma_tag_create(cd->sge_tag,
816             SGE_DESC_ALIGN, 0,          /* alignment, boundary */
817             BUS_SPACE_MAXADDR,          /* lowaddr */
818             BUS_SPACE_MAXADDR,          /* highaddr */
819             NULL, NULL,                 /* filter, filterarg */
820             SGE_TX_RING_SZ, 1,          /* maxsize,nsegments */
821             SGE_TX_RING_SZ,             /* maxsegsize */
822             0,                          /* flags */
823             NULL,                       /* lockfunc */
824             NULL,                       /* lockarg */
825             &cd->sge_tx_tag);
826         if (error != 0) {
827                 device_printf(sc->sge_dev,
828                     "could not create Rx ring DMA tag.\n");
829                 goto fail;
830         }
831         /* Allocate DMA'able memory and load DMA map for TX ring. */
832         error = bus_dmamem_alloc(cd->sge_tx_tag, (void **)&ld->sge_tx_ring,
833             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
834             &cd->sge_tx_dmamap);
835         if (error != 0) {
836                 device_printf(sc->sge_dev,
837                     "could not allocate DMA'able memory for Tx ring.\n");
838                 goto fail;
839         }
840         error = bus_dmamap_load(cd->sge_tx_tag, cd->sge_tx_dmamap,
841             ld->sge_tx_ring, SGE_TX_RING_SZ, sge_dma_map_addr,
842             &ld->sge_tx_paddr, BUS_DMA_NOWAIT);
843         if (error != 0) {
844                 device_printf(sc->sge_dev,
845                     "could not load DMA'able memory for Rx ring.\n");
846                 goto fail;
847         }
848
849         /* Create DMA tag for Tx buffers. */
850         error = bus_dma_tag_create(cd->sge_tag, 1, 0, BUS_SPACE_MAXADDR,
851             BUS_SPACE_MAXADDR, NULL, NULL, SGE_TSO_MAXSIZE, SGE_MAXTXSEGS,
852             SGE_TSO_MAXSEGSIZE, 0, NULL, NULL, &cd->sge_txmbuf_tag);
853         if (error != 0) {
854                 device_printf(sc->sge_dev,
855                     "could not create Tx mbuf DMA tag.\n");
856                 goto fail;
857         }
858
859         /* Create DMA tag for Rx buffers. */
860         error = bus_dma_tag_create(cd->sge_tag, SGE_RX_BUF_ALIGN, 0,
861             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
862             MCLBYTES, 0, NULL, NULL, &cd->sge_rxmbuf_tag);
863         if (error != 0) {
864                 device_printf(sc->sge_dev,
865                     "could not create Rx mbuf DMA tag.\n");
866                 goto fail;
867         }
868
869         /* Create DMA maps for Tx buffers. */
870         for (i = 0; i < SGE_TX_RING_CNT; i++) {
871                 txd = &cd->sge_txdesc[i];
872                 txd->tx_m = NULL;
873                 txd->tx_dmamap = NULL;
874                 txd->tx_ndesc = 0;
875                 error = bus_dmamap_create(cd->sge_txmbuf_tag, 0,
876                     &txd->tx_dmamap);
877                 if (error != 0) {
878                         device_printf(sc->sge_dev,
879                             "could not create Tx DMA map.\n");
880                         goto fail;
881                 }
882         }
883         /* Create spare DMA map for Rx buffer. */
884         error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0, &cd->sge_rx_spare_map);
885         if (error != 0) {
886                 device_printf(sc->sge_dev,
887                     "could not create spare Rx DMA map.\n");
888                 goto fail;
889         }
890         /* Create DMA maps for Rx buffers. */
891         for (i = 0; i < SGE_RX_RING_CNT; i++) {
892                 rxd = &cd->sge_rxdesc[i];
893                 rxd->rx_m = NULL;
894                 rxd->rx_dmamap = NULL;
895                 error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0,
896                     &rxd->rx_dmamap);
897                 if (error) {
898                         device_printf(sc->sge_dev,
899                             "could not create Rx DMA map.\n");
900                         goto fail;
901                 }
902         }
903 fail:
904         return (error);
905 }
906
907 static void
908 sge_dma_free(struct sge_softc *sc)
909 {
910         struct sge_chain_data *cd;
911         struct sge_list_data *ld;
912         struct sge_rxdesc *rxd;
913         struct sge_txdesc *txd;
914         int i;
915
916         cd = &sc->sge_cdata;
917         ld = &sc->sge_ldata;
918         /* Rx ring. */
919         if (cd->sge_rx_tag != NULL) {
920                 if (ld->sge_rx_paddr != 0)
921                         bus_dmamap_unload(cd->sge_rx_tag, cd->sge_rx_dmamap);
922                 if (ld->sge_rx_ring != NULL)
923                         bus_dmamem_free(cd->sge_rx_tag, ld->sge_rx_ring,
924                             cd->sge_rx_dmamap);
925                 ld->sge_rx_ring = NULL;
926                 ld->sge_rx_paddr = 0;
927                 bus_dma_tag_destroy(cd->sge_rx_tag);
928                 cd->sge_rx_tag = NULL;
929         }
930         /* Tx ring. */
931         if (cd->sge_tx_tag != NULL) {
932                 if (ld->sge_tx_paddr != 0)
933                         bus_dmamap_unload(cd->sge_tx_tag, cd->sge_tx_dmamap);
934                 if (ld->sge_tx_ring != NULL)
935                         bus_dmamem_free(cd->sge_tx_tag, ld->sge_tx_ring,
936                             cd->sge_tx_dmamap);
937                 ld->sge_tx_ring = NULL;
938                 ld->sge_tx_paddr = 0;
939                 bus_dma_tag_destroy(cd->sge_tx_tag);
940                 cd->sge_tx_tag = NULL;
941         }
942         /* Rx buffers. */
943         if (cd->sge_rxmbuf_tag != NULL) {
944                 for (i = 0; i < SGE_RX_RING_CNT; i++) {
945                         rxd = &cd->sge_rxdesc[i];
946                         if (rxd->rx_dmamap != NULL) {
947                                 bus_dmamap_destroy(cd->sge_rxmbuf_tag,
948                                     rxd->rx_dmamap);
949                                 rxd->rx_dmamap = NULL;
950                         }
951                 }
952                 if (cd->sge_rx_spare_map != NULL) {
953                         bus_dmamap_destroy(cd->sge_rxmbuf_tag,
954                             cd->sge_rx_spare_map);
955                         cd->sge_rx_spare_map = NULL;
956                 }
957                 bus_dma_tag_destroy(cd->sge_rxmbuf_tag);
958                 cd->sge_rxmbuf_tag = NULL;
959         }
960         /* Tx buffers. */
961         if (cd->sge_txmbuf_tag != NULL) {
962                 for (i = 0; i < SGE_TX_RING_CNT; i++) {
963                         txd = &cd->sge_txdesc[i];
964                         if (txd->tx_dmamap != NULL) {
965                                 bus_dmamap_destroy(cd->sge_txmbuf_tag,
966                                     txd->tx_dmamap);
967                                 txd->tx_dmamap = NULL;
968                         }
969                 }
970                 bus_dma_tag_destroy(cd->sge_txmbuf_tag);
971                 cd->sge_txmbuf_tag = NULL;
972         }
973         if (cd->sge_tag != NULL)
974                 bus_dma_tag_destroy(cd->sge_tag);
975         cd->sge_tag = NULL;
976 }
977
978 /*
979  * Initialize the TX descriptors.
980  */
981 static int
982 sge_list_tx_init(struct sge_softc *sc)
983 {
984         struct sge_list_data *ld;
985         struct sge_chain_data *cd;
986
987         SGE_LOCK_ASSERT(sc);
988         ld = &sc->sge_ldata;
989         cd = &sc->sge_cdata;
990         bzero(ld->sge_tx_ring, SGE_TX_RING_SZ);
991         ld->sge_tx_ring[SGE_TX_RING_CNT - 1].sge_flags = htole32(RING_END);
992         bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap,
993             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
994         cd->sge_tx_prod = 0;
995         cd->sge_tx_cons = 0;
996         cd->sge_tx_cnt = 0;
997         return (0);
998 }
999
1000 static int
1001 sge_list_tx_free(struct sge_softc *sc)
1002 {
1003         struct sge_chain_data *cd;
1004         struct sge_txdesc *txd;
1005         int i;
1006
1007         SGE_LOCK_ASSERT(sc);
1008         cd = &sc->sge_cdata;
1009         for (i = 0; i < SGE_TX_RING_CNT; i++) {
1010                 txd = &cd->sge_txdesc[i];
1011                 if (txd->tx_m != NULL) {
1012                         bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap,
1013                             BUS_DMASYNC_POSTWRITE);
1014                         bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap);
1015                         m_freem(txd->tx_m);
1016                         txd->tx_m = NULL;
1017                         txd->tx_ndesc = 0;
1018                 }
1019         }
1020
1021         return (0);
1022 }
1023
1024 /*
1025  * Initialize the RX descriptors and allocate mbufs for them.  Note that
1026  * we arrange the descriptors in a closed ring, so that the last descriptor
1027  * has RING_END flag set.
1028  */
1029 static int
1030 sge_list_rx_init(struct sge_softc *sc)
1031 {
1032         struct sge_chain_data *cd;
1033         int i;
1034
1035         SGE_LOCK_ASSERT(sc);
1036         cd = &sc->sge_cdata;
1037         cd->sge_rx_cons = 0;
1038         bzero(sc->sge_ldata.sge_rx_ring, SGE_RX_RING_SZ);
1039         for (i = 0; i < SGE_RX_RING_CNT; i++) {
1040                 if (sge_newbuf(sc, i) != 0)
1041                         return (ENOBUFS);
1042         }
1043         bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1044             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1045         return (0);
1046 }
1047
1048 static int
1049 sge_list_rx_free(struct sge_softc *sc)
1050 {
1051         struct sge_chain_data *cd;
1052         struct sge_rxdesc *rxd;
1053         int i;
1054
1055         SGE_LOCK_ASSERT(sc);
1056         cd = &sc->sge_cdata;
1057         for (i = 0; i < SGE_RX_RING_CNT; i++) {
1058                 rxd = &cd->sge_rxdesc[i];
1059                 if (rxd->rx_m != NULL) {
1060                         bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1061                             BUS_DMASYNC_POSTREAD);
1062                         bus_dmamap_unload(cd->sge_rxmbuf_tag,
1063                             rxd->rx_dmamap);
1064                         m_freem(rxd->rx_m);
1065                         rxd->rx_m = NULL;
1066                 }
1067         }
1068         return (0);
1069 }
1070
1071 /*
1072  * Initialize an RX descriptor and attach an MBUF cluster.
1073  */
1074 static int
1075 sge_newbuf(struct sge_softc *sc, int prod)
1076 {
1077         struct mbuf *m;
1078         struct sge_desc *desc;
1079         struct sge_chain_data *cd;
1080         struct sge_rxdesc *rxd;
1081         bus_dma_segment_t segs[1];
1082         bus_dmamap_t map;
1083         int error, nsegs;
1084
1085         SGE_LOCK_ASSERT(sc);
1086
1087         cd = &sc->sge_cdata;
1088         m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1089         if (m == NULL)
1090                 return (ENOBUFS);
1091         m->m_len = m->m_pkthdr.len = MCLBYTES;
1092         m_adj(m, SGE_RX_BUF_ALIGN);
1093         error = bus_dmamap_load_mbuf_sg(cd->sge_rxmbuf_tag,
1094             cd->sge_rx_spare_map, m, segs, &nsegs, 0);
1095         if (error != 0) {
1096                 m_freem(m);
1097                 return (error);
1098         }
1099         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1100         rxd = &cd->sge_rxdesc[prod];
1101         if (rxd->rx_m != NULL) {
1102                 bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1103                     BUS_DMASYNC_POSTREAD);
1104                 bus_dmamap_unload(cd->sge_rxmbuf_tag, rxd->rx_dmamap);
1105         }
1106         map = rxd->rx_dmamap;
1107         rxd->rx_dmamap = cd->sge_rx_spare_map;
1108         cd->sge_rx_spare_map = map;
1109         bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1110             BUS_DMASYNC_PREREAD);
1111         rxd->rx_m = m;
1112
1113         desc = &sc->sge_ldata.sge_rx_ring[prod];
1114         desc->sge_sts_size = 0;
1115         desc->sge_ptr = htole32(SGE_ADDR_LO(segs[0].ds_addr));
1116         desc->sge_flags = htole32(segs[0].ds_len);
1117         if (prod == SGE_RX_RING_CNT - 1)
1118                 desc->sge_flags |= htole32(RING_END);
1119         desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR);
1120         return (0);
1121 }
1122
1123 static __inline void
1124 sge_discard_rxbuf(struct sge_softc *sc, int index)
1125 {
1126         struct sge_desc *desc;
1127
1128         desc = &sc->sge_ldata.sge_rx_ring[index];
1129         desc->sge_sts_size = 0;
1130         desc->sge_flags = htole32(MCLBYTES - SGE_RX_BUF_ALIGN);
1131         if (index == SGE_RX_RING_CNT - 1)
1132                 desc->sge_flags |= htole32(RING_END);
1133         desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR);
1134 }
1135
1136 /*
1137  * A frame has been uploaded: pass the resulting mbuf chain up to
1138  * the higher level protocols.
1139  */
1140 static void
1141 sge_rxeof(struct sge_softc *sc)
1142 {
1143         struct ifnet *ifp;
1144         struct mbuf *m;
1145         struct sge_chain_data *cd;
1146         struct sge_desc *cur_rx;
1147         uint32_t rxinfo, rxstat;
1148         int cons, prog;
1149
1150         SGE_LOCK_ASSERT(sc);
1151
1152         ifp = sc->sge_ifp;
1153         cd = &sc->sge_cdata;
1154
1155         bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1156             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1157         cons = cd->sge_rx_cons;
1158         for (prog = 0; prog < SGE_RX_RING_CNT; prog++,
1159             SGE_INC(cons, SGE_RX_RING_CNT)) {
1160                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1161                         break;
1162                 cur_rx = &sc->sge_ldata.sge_rx_ring[cons];
1163                 rxinfo = le32toh(cur_rx->sge_cmdsts);
1164                 if ((rxinfo & RDC_OWN) != 0)
1165                         break;
1166                 rxstat = le32toh(cur_rx->sge_sts_size);
1167                 if ((rxstat & RDS_CRCOK) == 0 || SGE_RX_ERROR(rxstat) != 0 ||
1168                     SGE_RX_NSEGS(rxstat) != 1) {
1169                         /* XXX We don't support multi-segment frames yet. */
1170 #ifdef SGE_SHOW_ERRORS
1171                         device_printf(sc->sge_dev, "Rx error : 0x%b\n", rxstat,
1172                             RX_ERR_BITS);
1173 #endif
1174                         sge_discard_rxbuf(sc, cons);
1175                         if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1176                         continue;
1177                 }
1178                 m = cd->sge_rxdesc[cons].rx_m;
1179                 if (sge_newbuf(sc, cons) != 0) {
1180                         sge_discard_rxbuf(sc, cons);
1181                         if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1182                         continue;
1183                 }
1184                 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1185                         if ((rxinfo & RDC_IP_CSUM) != 0 &&
1186                             (rxinfo & RDC_IP_CSUM_OK) != 0)
1187                                 m->m_pkthdr.csum_flags |=
1188                                     CSUM_IP_CHECKED | CSUM_IP_VALID;
1189                         if (((rxinfo & RDC_TCP_CSUM) != 0 &&
1190                             (rxinfo & RDC_TCP_CSUM_OK) != 0) ||
1191                             ((rxinfo & RDC_UDP_CSUM) != 0 &&
1192                             (rxinfo & RDC_UDP_CSUM_OK) != 0)) {
1193                                 m->m_pkthdr.csum_flags |=
1194                                     CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1195                                 m->m_pkthdr.csum_data = 0xffff;
1196                         }
1197                 }
1198                 /* Check for VLAN tagged frame. */
1199                 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
1200                     (rxstat & RDS_VLAN) != 0) {
1201                         m->m_pkthdr.ether_vtag = rxinfo & RDC_VLAN_MASK;
1202                         m->m_flags |= M_VLANTAG;
1203                 }
1204                 /*
1205                  * Account for 10bytes auto padding which is used
1206                  * to align IP header on 32bit boundary.  Also note,
1207                  * CRC bytes is automatically removed by the
1208                  * hardware.
1209                  */
1210                 m->m_data += SGE_RX_PAD_BYTES;
1211                 m->m_pkthdr.len = m->m_len = SGE_RX_BYTES(rxstat) -
1212                     SGE_RX_PAD_BYTES;
1213                 m->m_pkthdr.rcvif = ifp;
1214                 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1215                 SGE_UNLOCK(sc);
1216                 (*ifp->if_input)(ifp, m);
1217                 SGE_LOCK(sc);
1218         }
1219
1220         if (prog > 0) {
1221                 bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1222                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1223                 cd->sge_rx_cons = cons;
1224         }
1225 }
1226
1227 /*
1228  * A frame was downloaded to the chip.  It's safe for us to clean up
1229  * the list buffers.
1230  */
1231 static void
1232 sge_txeof(struct sge_softc *sc)
1233 {
1234         struct ifnet *ifp;
1235         struct sge_list_data *ld;
1236         struct sge_chain_data *cd;
1237         struct sge_txdesc *txd;
1238         uint32_t txstat;
1239         int cons, nsegs, prod;
1240
1241         SGE_LOCK_ASSERT(sc);
1242
1243         ifp = sc->sge_ifp;
1244         ld = &sc->sge_ldata;
1245         cd = &sc->sge_cdata;
1246
1247         if (cd->sge_tx_cnt == 0)
1248                 return;
1249         bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap,
1250             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1251         cons = cd->sge_tx_cons;
1252         prod = cd->sge_tx_prod;
1253         for (; cons != prod;) {
1254                 txstat = le32toh(ld->sge_tx_ring[cons].sge_cmdsts);
1255                 if ((txstat & TDC_OWN) != 0)
1256                         break;
1257                 /*
1258                  * Only the first descriptor of multi-descriptor transmission
1259                  * is updated by controller.  Driver should skip entire
1260                  * chained buffers for the transmitted frame. In other words
1261                  * TDC_OWN bit is valid only at the first descriptor of a
1262                  * multi-descriptor transmission.
1263                  */
1264                 if (SGE_TX_ERROR(txstat) != 0) {
1265 #ifdef SGE_SHOW_ERRORS
1266                         device_printf(sc->sge_dev, "Tx error : 0x%b\n",
1267                             txstat, TX_ERR_BITS);
1268 #endif
1269                         if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1270                 } else {
1271 #ifdef notyet
1272                         if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & 0xFFFF) - 1);
1273 #endif
1274                         if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1275                 }
1276                 txd = &cd->sge_txdesc[cons];
1277                 for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
1278                         ld->sge_tx_ring[cons].sge_cmdsts = 0;
1279                         SGE_INC(cons, SGE_TX_RING_CNT);
1280                 }
1281                 /* Reclaim transmitted mbuf. */
1282                 KASSERT(txd->tx_m != NULL,
1283                     ("%s: freeing NULL mbuf\n", __func__));
1284                 bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap,
1285                     BUS_DMASYNC_POSTWRITE);
1286                 bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap);
1287                 m_freem(txd->tx_m);
1288                 txd->tx_m = NULL;
1289                 cd->sge_tx_cnt -= txd->tx_ndesc;
1290                 KASSERT(cd->sge_tx_cnt >= 0,
1291                     ("%s: Active Tx desc counter was garbled\n", __func__));
1292                 txd->tx_ndesc = 0;
1293                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1294         }
1295         cd->sge_tx_cons = cons;
1296         if (cd->sge_tx_cnt == 0)
1297                 sc->sge_timer = 0;
1298 }
1299
1300 static void
1301 sge_tick(void *arg)
1302 {
1303         struct sge_softc *sc;
1304         struct mii_data *mii;
1305         struct ifnet *ifp;
1306
1307         sc = arg;
1308         SGE_LOCK_ASSERT(sc);
1309
1310         ifp = sc->sge_ifp;
1311         mii = device_get_softc(sc->sge_miibus);
1312         mii_tick(mii);
1313         if ((sc->sge_flags & SGE_FLAG_LINK) == 0) {
1314                 sge_miibus_statchg(sc->sge_dev);
1315                 if ((sc->sge_flags & SGE_FLAG_LINK) != 0 &&
1316                     !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1317                         sge_start_locked(ifp);
1318         }
1319         /*
1320          * Reclaim transmitted frames here as we do not request
1321          * Tx completion interrupt for every queued frames to
1322          * reduce excessive interrupts.
1323          */
1324         sge_txeof(sc);
1325         sge_watchdog(sc);
1326         callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc);
1327 }
1328
1329 static void
1330 sge_intr(void *arg)
1331 {
1332         struct sge_softc *sc;
1333         struct ifnet *ifp;
1334         uint32_t status;
1335
1336         sc = arg;
1337         SGE_LOCK(sc);
1338         ifp = sc->sge_ifp;
1339
1340         status = CSR_READ_4(sc, IntrStatus);
1341         if (status == 0xFFFFFFFF || (status & SGE_INTRS) == 0) {
1342                 /* Not ours. */
1343                 SGE_UNLOCK(sc);
1344                 return;
1345         }
1346         /* Acknowledge interrupts. */
1347         CSR_WRITE_4(sc, IntrStatus, status);
1348         /* Disable further interrupts. */
1349         CSR_WRITE_4(sc, IntrMask, 0);
1350         /*
1351          * It seems the controller supports some kind of interrupt
1352          * moderation mechanism but we still don't know how to
1353          * enable that.  To reduce number of generated interrupts
1354          * under load we check pending interrupts in a loop.  This
1355          * will increase number of register access and is not correct
1356          * way to handle interrupt moderation but there seems to be
1357          * no other way at this time.
1358          */
1359         for (;;) {
1360                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1361                         break;
1362                 if ((status & (INTR_RX_DONE | INTR_RX_IDLE)) != 0) {
1363                         sge_rxeof(sc);
1364                         /* Wakeup Rx MAC. */
1365                         if ((status & INTR_RX_IDLE) != 0)
1366                                 CSR_WRITE_4(sc, RX_CTL,
1367                                     0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
1368                 }
1369                 if ((status & (INTR_TX_DONE | INTR_TX_IDLE)) != 0)
1370                         sge_txeof(sc);
1371                 status = CSR_READ_4(sc, IntrStatus);
1372                 if ((status & SGE_INTRS) == 0)
1373                         break;
1374                 /* Acknowledge interrupts. */
1375                 CSR_WRITE_4(sc, IntrStatus, status);
1376         }
1377         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1378                 /* Re-enable interrupts */
1379                 CSR_WRITE_4(sc, IntrMask, SGE_INTRS);
1380                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1381                         sge_start_locked(ifp);
1382         }
1383         SGE_UNLOCK(sc);
1384 }
1385
1386 /*
1387  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1388  * pointers to the fragment pointers.
1389  */
1390 static int
1391 sge_encap(struct sge_softc *sc, struct mbuf **m_head)
1392 {
1393         struct mbuf *m;
1394         struct sge_desc *desc;
1395         struct sge_txdesc *txd;
1396         bus_dma_segment_t txsegs[SGE_MAXTXSEGS];
1397         uint32_t cflags, mss;
1398         int error, i, nsegs, prod, si;
1399
1400         SGE_LOCK_ASSERT(sc);
1401
1402         si = prod = sc->sge_cdata.sge_tx_prod;
1403         txd = &sc->sge_cdata.sge_txdesc[prod];
1404         if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1405                 struct ether_header *eh;
1406                 struct ip *ip;
1407                 struct tcphdr *tcp;
1408                 uint32_t ip_off, poff;
1409
1410                 if (M_WRITABLE(*m_head) == 0) {
1411                         /* Get a writable copy. */
1412                         m = m_dup(*m_head, M_NOWAIT);
1413                         m_freem(*m_head);
1414                         if (m == NULL) {
1415                                 *m_head = NULL;
1416                                 return (ENOBUFS);
1417                         }
1418                         *m_head = m;
1419                 }
1420                 ip_off = sizeof(struct ether_header);
1421                 m = m_pullup(*m_head, ip_off);
1422                 if (m == NULL) {
1423                         *m_head = NULL;
1424                         return (ENOBUFS);
1425                 }
1426                 eh = mtod(m, struct ether_header *);
1427                 /* Check the existence of VLAN tag. */
1428                 if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1429                         ip_off = sizeof(struct ether_vlan_header);
1430                         m = m_pullup(m, ip_off);
1431                         if (m == NULL) {
1432                                 *m_head = NULL;
1433                                 return (ENOBUFS);
1434                         }
1435                 }
1436                 m = m_pullup(m, ip_off + sizeof(struct ip));
1437                 if (m == NULL) {
1438                         *m_head = NULL;
1439                         return (ENOBUFS);
1440                 }
1441                 ip = (struct ip *)(mtod(m, char *) + ip_off);
1442                 poff = ip_off + (ip->ip_hl << 2);
1443                 m = m_pullup(m, poff + sizeof(struct tcphdr));
1444                 if (m == NULL) {
1445                         *m_head = NULL;
1446                         return (ENOBUFS);
1447                 }
1448                 tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1449                 m = m_pullup(m, poff + (tcp->th_off << 2));
1450                 if (m == NULL) {
1451                         *m_head = NULL;
1452                         return (ENOBUFS);
1453                 }
1454                 /*
1455                  * Reset IP checksum and recompute TCP pseudo
1456                  * checksum that NDIS specification requires.
1457                  */
1458                 ip = (struct ip *)(mtod(m, char *) + ip_off);
1459                 ip->ip_sum = 0;
1460                 tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1461                 tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1462                     htons(IPPROTO_TCP));
1463                 *m_head = m;
1464         }
1465
1466         error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag,
1467             txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1468         if (error == EFBIG) {
1469                 m = m_collapse(*m_head, M_NOWAIT, SGE_MAXTXSEGS);
1470                 if (m == NULL) {
1471                         m_freem(*m_head);
1472                         *m_head = NULL;
1473                         return (ENOBUFS);
1474                 }
1475                 *m_head = m;
1476                 error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag,
1477                     txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1478                 if (error != 0) {
1479                         m_freem(*m_head);
1480                         *m_head = NULL;
1481                         return (error);
1482                 }
1483         } else if (error != 0)
1484                 return (error);
1485
1486         KASSERT(nsegs != 0, ("zero segment returned"));
1487         /* Check descriptor overrun. */
1488         if (sc->sge_cdata.sge_tx_cnt + nsegs >= SGE_TX_RING_CNT) {
1489                 bus_dmamap_unload(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap);
1490                 return (ENOBUFS);
1491         }
1492         bus_dmamap_sync(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap,
1493             BUS_DMASYNC_PREWRITE);
1494
1495         m = *m_head;
1496         cflags = 0;
1497         mss = 0;
1498         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1499                 cflags |= TDC_LS;
1500                 mss = (uint32_t)m->m_pkthdr.tso_segsz;
1501                 mss <<= 16;
1502         } else {
1503                 if (m->m_pkthdr.csum_flags & CSUM_IP)
1504                         cflags |= TDC_IP_CSUM;
1505                 if (m->m_pkthdr.csum_flags & CSUM_TCP)
1506                         cflags |= TDC_TCP_CSUM;
1507                 if (m->m_pkthdr.csum_flags & CSUM_UDP)
1508                         cflags |= TDC_UDP_CSUM;
1509         }
1510         for (i = 0; i < nsegs; i++) {
1511                 desc = &sc->sge_ldata.sge_tx_ring[prod];
1512                 if (i == 0) {
1513                         desc->sge_sts_size = htole32(m->m_pkthdr.len | mss);
1514                         desc->sge_cmdsts = 0;
1515                 } else {
1516                         desc->sge_sts_size = 0;
1517                         desc->sge_cmdsts = htole32(TDC_OWN);
1518                 }
1519                 desc->sge_ptr = htole32(SGE_ADDR_LO(txsegs[i].ds_addr));
1520                 desc->sge_flags = htole32(txsegs[i].ds_len);
1521                 if (prod == SGE_TX_RING_CNT - 1)
1522                         desc->sge_flags |= htole32(RING_END);
1523                 sc->sge_cdata.sge_tx_cnt++;
1524                 SGE_INC(prod, SGE_TX_RING_CNT);
1525         }
1526         /* Update producer index. */
1527         sc->sge_cdata.sge_tx_prod = prod;
1528
1529         desc = &sc->sge_ldata.sge_tx_ring[si];
1530         /* Configure VLAN. */
1531         if((m->m_flags & M_VLANTAG) != 0) {
1532                 cflags |= m->m_pkthdr.ether_vtag;
1533                 desc->sge_sts_size |= htole32(TDS_INS_VLAN);
1534         }
1535         desc->sge_cmdsts |= htole32(TDC_DEF | TDC_CRC | TDC_PAD | cflags);
1536 #if 1
1537         if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0)
1538                 desc->sge_cmdsts |= htole32(TDC_BST);
1539 #else
1540         if ((sc->sge_flags & SGE_FLAG_FDX) == 0) {
1541                 desc->sge_cmdsts |= htole32(TDC_COL | TDC_CRS | TDC_BKF);
1542                 if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0)
1543                         desc->sge_cmdsts |= htole32(TDC_EXT | TDC_BST);
1544         }
1545 #endif
1546         /* Request interrupt and give ownership to controller. */
1547         desc->sge_cmdsts |= htole32(TDC_OWN | TDC_INTR);
1548         txd->tx_m = m;
1549         txd->tx_ndesc = nsegs;
1550         return (0);
1551 }
1552
1553 static void
1554 sge_start(struct ifnet *ifp)
1555 {
1556         struct sge_softc *sc;
1557
1558         sc = ifp->if_softc;
1559         SGE_LOCK(sc);
1560         sge_start_locked(ifp);
1561         SGE_UNLOCK(sc);
1562 }
1563
1564 static void
1565 sge_start_locked(struct ifnet *ifp)
1566 {
1567         struct sge_softc *sc;
1568         struct mbuf *m_head;
1569         int queued = 0;
1570
1571         sc = ifp->if_softc;
1572         SGE_LOCK_ASSERT(sc);
1573
1574         if ((sc->sge_flags & SGE_FLAG_LINK) == 0 ||
1575             (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1576             IFF_DRV_RUNNING)
1577                 return;
1578
1579         for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1580                 if (sc->sge_cdata.sge_tx_cnt > (SGE_TX_RING_CNT -
1581                     SGE_MAXTXSEGS)) {
1582                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1583                         break;
1584                 }
1585                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1586                 if (m_head == NULL)
1587                         break;
1588                 if (sge_encap(sc, &m_head)) {
1589                         if (m_head == NULL)
1590                                 break;
1591                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1592                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1593                         break;
1594                 }
1595                 queued++;
1596                 /*
1597                  * If there's a BPF listener, bounce a copy of this frame
1598                  * to him.
1599                  */
1600                 BPF_MTAP(ifp, m_head);
1601         }
1602
1603         if (queued > 0) {
1604                 bus_dmamap_sync(sc->sge_cdata.sge_tx_tag,
1605                     sc->sge_cdata.sge_tx_dmamap,
1606                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1607                 CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB | TX_CTL_POLL);
1608                 sc->sge_timer = 5;
1609         }
1610 }
1611
1612 static void
1613 sge_init(void *arg)
1614 {
1615         struct sge_softc *sc;
1616
1617         sc = arg;
1618         SGE_LOCK(sc);
1619         sge_init_locked(sc);
1620         SGE_UNLOCK(sc);
1621 }
1622
1623 static void
1624 sge_init_locked(struct sge_softc *sc)
1625 {
1626         struct ifnet *ifp;
1627         struct mii_data *mii;
1628         uint16_t rxfilt;
1629         int i;
1630
1631         SGE_LOCK_ASSERT(sc);
1632         ifp = sc->sge_ifp;
1633         mii = device_get_softc(sc->sge_miibus);
1634         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1635                 return;
1636         /*
1637          * Cancel pending I/O and free all RX/TX buffers.
1638          */
1639         sge_stop(sc);
1640         sge_reset(sc);
1641
1642         /* Init circular RX list. */
1643         if (sge_list_rx_init(sc) == ENOBUFS) {
1644                 device_printf(sc->sge_dev, "no memory for Rx buffers\n");
1645                 sge_stop(sc);
1646                 return;
1647         }
1648         /* Init TX descriptors. */
1649         sge_list_tx_init(sc);
1650         /*
1651          * Load the address of the RX and TX lists.
1652          */
1653         CSR_WRITE_4(sc, TX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_tx_paddr));
1654         CSR_WRITE_4(sc, RX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_rx_paddr));
1655
1656         CSR_WRITE_4(sc, TxMacControl, 0x60);
1657         CSR_WRITE_4(sc, RxWakeOnLan, 0);
1658         CSR_WRITE_4(sc, RxWakeOnLanData, 0);
1659         /* Allow receiving VLAN frames. */
1660         CSR_WRITE_2(sc, RxMPSControl, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN +
1661             SGE_RX_PAD_BYTES);
1662
1663         for (i = 0; i < ETHER_ADDR_LEN; i++)
1664                 CSR_WRITE_1(sc, RxMacAddr + i, IF_LLADDR(ifp)[i]);
1665         /* Configure RX MAC. */
1666         rxfilt = RXMAC_STRIP_FCS | RXMAC_PAD_ENB | RXMAC_CSUM_ENB;
1667         CSR_WRITE_2(sc, RxMacControl, rxfilt);
1668         sge_rxfilter(sc);
1669         sge_setvlan(sc);
1670
1671         /* Initialize default speed/duplex information. */
1672         if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0)
1673                 sc->sge_flags |= SGE_FLAG_SPEED_1000;
1674         sc->sge_flags |= SGE_FLAG_FDX;
1675         if ((sc->sge_flags & SGE_FLAG_RGMII) != 0)
1676                 CSR_WRITE_4(sc, StationControl, 0x04008001);
1677         else
1678                 CSR_WRITE_4(sc, StationControl, 0x04000001);
1679         /*
1680          * XXX Try to mitigate interrupts.
1681          */
1682         CSR_WRITE_4(sc, IntrControl, 0x08880000);
1683 #ifdef notyet
1684         if (sc->sge_intrcontrol != 0)
1685                 CSR_WRITE_4(sc, IntrControl, sc->sge_intrcontrol);
1686         if (sc->sge_intrtimer != 0)
1687                 CSR_WRITE_4(sc, IntrTimer, sc->sge_intrtimer);
1688 #endif
1689
1690         /*
1691          * Clear and enable interrupts.
1692          */
1693         CSR_WRITE_4(sc, IntrStatus, 0xFFFFFFFF);
1694         CSR_WRITE_4(sc, IntrMask, SGE_INTRS);
1695
1696         /* Enable receiver and transmitter. */
1697         CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB);
1698         CSR_WRITE_4(sc, RX_CTL, 0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
1699
1700         ifp->if_drv_flags |= IFF_DRV_RUNNING;
1701         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1702
1703         sc->sge_flags &= ~SGE_FLAG_LINK;
1704         mii_mediachg(mii);
1705         callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc);
1706 }
1707
1708 /*
1709  * Set media options.
1710  */
1711 static int
1712 sge_ifmedia_upd(struct ifnet *ifp)
1713 {
1714         struct sge_softc *sc;
1715         struct mii_data *mii;
1716                 struct mii_softc *miisc;
1717         int error;
1718
1719         sc = ifp->if_softc;
1720         SGE_LOCK(sc);
1721         mii = device_get_softc(sc->sge_miibus);
1722         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1723                 PHY_RESET(miisc);
1724         error = mii_mediachg(mii);
1725         SGE_UNLOCK(sc);
1726
1727         return (error);
1728 }
1729
1730 /*
1731  * Report current media status.
1732  */
1733 static void
1734 sge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1735 {
1736         struct sge_softc *sc;
1737         struct mii_data *mii;
1738
1739         sc = ifp->if_softc;
1740         SGE_LOCK(sc);
1741         mii = device_get_softc(sc->sge_miibus);
1742         if ((ifp->if_flags & IFF_UP) == 0) {
1743                 SGE_UNLOCK(sc);
1744                 return;
1745         }
1746         mii_pollstat(mii);
1747         ifmr->ifm_active = mii->mii_media_active;
1748         ifmr->ifm_status = mii->mii_media_status;
1749         SGE_UNLOCK(sc);
1750 }
1751
1752 static int
1753 sge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1754 {
1755         struct sge_softc *sc;
1756         struct ifreq *ifr;
1757         struct mii_data *mii;
1758         int error = 0, mask, reinit;
1759
1760         sc = ifp->if_softc;
1761         ifr = (struct ifreq *)data;
1762
1763         switch(command) {
1764         case SIOCSIFFLAGS:
1765                 SGE_LOCK(sc);
1766                 if ((ifp->if_flags & IFF_UP) != 0) {
1767                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
1768                             ((ifp->if_flags ^ sc->sge_if_flags) &
1769                             (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1770                                 sge_rxfilter(sc);
1771                         else
1772                                 sge_init_locked(sc);
1773                 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1774                         sge_stop(sc);
1775                 sc->sge_if_flags = ifp->if_flags;
1776                 SGE_UNLOCK(sc);
1777                 break;
1778         case SIOCSIFCAP:
1779                 SGE_LOCK(sc);
1780                 reinit = 0;
1781                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1782                 if ((mask & IFCAP_TXCSUM) != 0 &&
1783                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1784                         ifp->if_capenable ^= IFCAP_TXCSUM;
1785                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1786                                 ifp->if_hwassist |= SGE_CSUM_FEATURES;
1787                         else
1788                                 ifp->if_hwassist &= ~SGE_CSUM_FEATURES;
1789                 }
1790                 if ((mask & IFCAP_RXCSUM) != 0 &&
1791                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
1792                         ifp->if_capenable ^= IFCAP_RXCSUM;
1793                 if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1794                     (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1795                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1796                 if ((mask & IFCAP_TSO4) != 0 &&
1797                     (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1798                         ifp->if_capenable ^= IFCAP_TSO4;
1799                         if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1800                                 ifp->if_hwassist |= CSUM_TSO;
1801                         else
1802                                 ifp->if_hwassist &= ~CSUM_TSO;
1803                 }
1804                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1805                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1806                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1807                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1808                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1809                         /*
1810                          * Due to unknown reason, toggling VLAN hardware
1811                          * tagging require interface reinitialization.
1812                          */
1813                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1814                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1815                                 ifp->if_capenable &=
1816                                     ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
1817                         reinit = 1;
1818                 }
1819                 if (reinit > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1820                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1821                         sge_init_locked(sc);
1822                 }
1823                 SGE_UNLOCK(sc);
1824                 VLAN_CAPABILITIES(ifp);
1825                 break;
1826         case SIOCADDMULTI:
1827         case SIOCDELMULTI:
1828                 SGE_LOCK(sc);
1829                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1830                         sge_rxfilter(sc);
1831                 SGE_UNLOCK(sc);
1832                 break;
1833         case SIOCGIFMEDIA:
1834         case SIOCSIFMEDIA:
1835                 mii = device_get_softc(sc->sge_miibus);
1836                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1837                 break;
1838         default:
1839                 error = ether_ioctl(ifp, command, data);
1840                 break;
1841         }
1842
1843         return (error);
1844 }
1845
1846 static void
1847 sge_watchdog(struct sge_softc *sc)
1848 {
1849         struct ifnet *ifp;
1850
1851         SGE_LOCK_ASSERT(sc);
1852         if (sc->sge_timer == 0 || --sc->sge_timer > 0)
1853                 return;
1854
1855         ifp = sc->sge_ifp;
1856         if ((sc->sge_flags & SGE_FLAG_LINK) == 0) {
1857                 if (1 || bootverbose)
1858                         device_printf(sc->sge_dev,
1859                             "watchdog timeout (lost link)\n");
1860                 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1861                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1862                 sge_init_locked(sc);
1863                 return;
1864         }
1865         device_printf(sc->sge_dev, "watchdog timeout\n");
1866         if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1867
1868         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1869         sge_init_locked(sc);
1870         if (!IFQ_DRV_IS_EMPTY(&sc->sge_ifp->if_snd))
1871                 sge_start_locked(ifp);
1872 }
1873
1874 /*
1875  * Stop the adapter and free any mbufs allocated to the
1876  * RX and TX lists.
1877  */
1878 static void
1879 sge_stop(struct sge_softc *sc)
1880 {
1881         struct ifnet *ifp;
1882
1883         ifp = sc->sge_ifp;
1884
1885         SGE_LOCK_ASSERT(sc);
1886
1887         sc->sge_timer = 0;
1888         callout_stop(&sc->sge_stat_ch);
1889         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1890
1891         CSR_WRITE_4(sc, IntrMask, 0);
1892         CSR_READ_4(sc, IntrMask);
1893         CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
1894         /* Stop TX/RX MAC. */
1895         CSR_WRITE_4(sc, TX_CTL, 0x1a00);
1896         CSR_WRITE_4(sc, RX_CTL, 0x1a00);
1897         /* XXX Can we assume active DMA cycles gone? */
1898         DELAY(2000);
1899         CSR_WRITE_4(sc, IntrMask, 0);
1900         CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
1901
1902         sc->sge_flags &= ~SGE_FLAG_LINK;
1903         sge_list_rx_free(sc);
1904         sge_list_tx_free(sc);
1905 }