]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/sk/if_sk.c
MFV r293415:
[FreeBSD/FreeBSD.git] / sys / dev / sk / if_sk.c
1 /*      $OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $ */
2
3 /*-
4  * Copyright (c) 1997, 1998, 1999, 2000
5  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *      This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 /*-
35  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
36  *
37  * Permission to use, copy, modify, and distribute this software for any
38  * purpose with or without fee is hereby granted, provided that the above
39  * copyright notice and this permission notice appear in all copies.
40  *
41  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
42  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
43  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
44  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
45  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
46  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
47  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
48  */
49
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52
53 /*
54  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
55  * the SK-984x series adapters, both single port and dual port.
56  * References:
57  *      The XaQti XMAC II datasheet,
58  *  http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
59  *      The SysKonnect GEnesis manual, http://www.syskonnect.com
60  *
61  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
62  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
63  * convenience to others until Vitesse corrects this problem:
64  *
65  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
66  *
67  * Written by Bill Paul <wpaul@ee.columbia.edu>
68  * Department of Electrical Engineering
69  * Columbia University, New York City
70  */
71 /*
72  * The SysKonnect gigabit ethernet adapters consist of two main
73  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
74  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
75  * components and a PHY while the GEnesis controller provides a PCI
76  * interface with DMA support. Each card may have between 512K and
77  * 2MB of SRAM on board depending on the configuration.
78  *
79  * The SysKonnect GEnesis controller can have either one or two XMAC
80  * chips connected to it, allowing single or dual port NIC configurations.
81  * SysKonnect has the distinction of being the only vendor on the market
82  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
83  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
84  * XMAC registers. This driver takes advantage of these features to allow
85  * both XMACs to operate as independent interfaces.
86  */
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/bus.h>
91 #include <sys/endian.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/module.h>
96 #include <sys/socket.h>
97 #include <sys/sockio.h>
98 #include <sys/queue.h>
99 #include <sys/sysctl.h>
100
101 #include <net/bpf.h>
102 #include <net/ethernet.h>
103 #include <net/if.h>
104 #include <net/if_var.h>
105 #include <net/if_arp.h>
106 #include <net/if_dl.h>
107 #include <net/if_media.h>
108 #include <net/if_types.h>
109 #include <net/if_vlan_var.h>
110
111 #include <netinet/in.h>
112 #include <netinet/in_systm.h>
113 #include <netinet/ip.h>
114
115 #include <machine/bus.h>
116 #include <machine/in_cksum.h>
117 #include <machine/resource.h>
118 #include <sys/rman.h>
119
120 #include <dev/mii/mii.h>
121 #include <dev/mii/miivar.h>
122 #include <dev/mii/brgphyreg.h>
123
124 #include <dev/pci/pcireg.h>
125 #include <dev/pci/pcivar.h>
126
127 #if 0
128 #define SK_USEIOSPACE
129 #endif
130
131 #include <dev/sk/if_skreg.h>
132 #include <dev/sk/xmaciireg.h>
133 #include <dev/sk/yukonreg.h>
134
135 MODULE_DEPEND(sk, pci, 1, 1, 1);
136 MODULE_DEPEND(sk, ether, 1, 1, 1);
137 MODULE_DEPEND(sk, miibus, 1, 1, 1);
138
139 /* "device miibus" required.  See GENERIC if you get errors here. */
140 #include "miibus_if.h"
141
142 static const struct sk_type sk_devs[] = {
143         {
144                 VENDORID_SK,
145                 DEVICEID_SK_V1,
146                 "SysKonnect Gigabit Ethernet (V1.0)"
147         },
148         {
149                 VENDORID_SK,
150                 DEVICEID_SK_V2,
151                 "SysKonnect Gigabit Ethernet (V2.0)"
152         },
153         {
154                 VENDORID_MARVELL,
155                 DEVICEID_SK_V2,
156                 "Marvell Gigabit Ethernet"
157         },
158         {
159                 VENDORID_MARVELL,
160                 DEVICEID_BELKIN_5005,
161                 "Belkin F5D5005 Gigabit Ethernet"
162         },
163         {
164                 VENDORID_3COM,
165                 DEVICEID_3COM_3C940,
166                 "3Com 3C940 Gigabit Ethernet"
167         },
168         {
169                 VENDORID_LINKSYS,
170                 DEVICEID_LINKSYS_EG1032,
171                 "Linksys EG1032 Gigabit Ethernet"
172         },
173         {
174                 VENDORID_DLINK,
175                 DEVICEID_DLINK_DGE530T_A1,
176                 "D-Link DGE-530T Gigabit Ethernet"
177         },
178         {
179                 VENDORID_DLINK,
180                 DEVICEID_DLINK_DGE530T_B1,
181                 "D-Link DGE-530T Gigabit Ethernet"
182         },
183         { 0, 0, NULL }
184 };
185
186 static int skc_probe(device_t);
187 static int skc_attach(device_t);
188 static int skc_detach(device_t);
189 static int skc_shutdown(device_t);
190 static int skc_suspend(device_t);
191 static int skc_resume(device_t);
192 static bus_dma_tag_t skc_get_dma_tag(device_t, device_t);
193 static int sk_detach(device_t);
194 static int sk_probe(device_t);
195 static int sk_attach(device_t);
196 static void sk_tick(void *);
197 static void sk_yukon_tick(void *);
198 static void sk_intr(void *);
199 static void sk_intr_xmac(struct sk_if_softc *);
200 static void sk_intr_bcom(struct sk_if_softc *);
201 static void sk_intr_yukon(struct sk_if_softc *);
202 static __inline void sk_rxcksum(struct ifnet *, struct mbuf *, u_int32_t);
203 static __inline int sk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
204 static void sk_rxeof(struct sk_if_softc *);
205 static void sk_jumbo_rxeof(struct sk_if_softc *);
206 static void sk_txeof(struct sk_if_softc *);
207 static void sk_txcksum(struct ifnet *, struct mbuf *, struct sk_tx_desc *);
208 static int sk_encap(struct sk_if_softc *, struct mbuf **);
209 static void sk_start(struct ifnet *);
210 static void sk_start_locked(struct ifnet *);
211 static int sk_ioctl(struct ifnet *, u_long, caddr_t);
212 static void sk_init(void *);
213 static void sk_init_locked(struct sk_if_softc *);
214 static void sk_init_xmac(struct sk_if_softc *);
215 static void sk_init_yukon(struct sk_if_softc *);
216 static void sk_stop(struct sk_if_softc *);
217 static void sk_watchdog(void *);
218 static int sk_ifmedia_upd(struct ifnet *);
219 static void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
220 static void sk_reset(struct sk_softc *);
221 static __inline void sk_discard_rxbuf(struct sk_if_softc *, int);
222 static __inline void sk_discard_jumbo_rxbuf(struct sk_if_softc *, int);
223 static int sk_newbuf(struct sk_if_softc *, int);
224 static int sk_jumbo_newbuf(struct sk_if_softc *, int);
225 static void sk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
226 static int sk_dma_alloc(struct sk_if_softc *);
227 static int sk_dma_jumbo_alloc(struct sk_if_softc *);
228 static void sk_dma_free(struct sk_if_softc *);
229 static void sk_dma_jumbo_free(struct sk_if_softc *);
230 static int sk_init_rx_ring(struct sk_if_softc *);
231 static int sk_init_jumbo_rx_ring(struct sk_if_softc *);
232 static void sk_init_tx_ring(struct sk_if_softc *);
233 static u_int32_t sk_win_read_4(struct sk_softc *, int);
234 static u_int16_t sk_win_read_2(struct sk_softc *, int);
235 static u_int8_t sk_win_read_1(struct sk_softc *, int);
236 static void sk_win_write_4(struct sk_softc *, int, u_int32_t);
237 static void sk_win_write_2(struct sk_softc *, int, u_int32_t);
238 static void sk_win_write_1(struct sk_softc *, int, u_int32_t);
239
240 static int sk_miibus_readreg(device_t, int, int);
241 static int sk_miibus_writereg(device_t, int, int, int);
242 static void sk_miibus_statchg(device_t);
243
244 static int sk_xmac_miibus_readreg(struct sk_if_softc *, int, int);
245 static int sk_xmac_miibus_writereg(struct sk_if_softc *, int, int,
246                                                 int);
247 static void sk_xmac_miibus_statchg(struct sk_if_softc *);
248
249 static int sk_marv_miibus_readreg(struct sk_if_softc *, int, int);
250 static int sk_marv_miibus_writereg(struct sk_if_softc *, int, int,
251                                                 int);
252 static void sk_marv_miibus_statchg(struct sk_if_softc *);
253
254 static uint32_t sk_xmchash(const uint8_t *);
255 static void sk_setfilt(struct sk_if_softc *, u_int16_t *, int);
256 static void sk_rxfilter(struct sk_if_softc *);
257 static void sk_rxfilter_genesis(struct sk_if_softc *);
258 static void sk_rxfilter_yukon(struct sk_if_softc *);
259
260 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high);
261 static int sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS);
262
263 /* Tunables. */
264 static int jumbo_disable = 0;
265 TUNABLE_INT("hw.skc.jumbo_disable", &jumbo_disable);
266  
267 /*
268  * It seems that SK-NET GENESIS supports very simple checksum offload
269  * capability for Tx and I believe it can generate 0 checksum value for
270  * UDP packets in Tx as the hardware can't differenciate UDP packets from
271  * TCP packets. 0 chcecksum value for UDP packet is an invalid one as it
272  * means sender didn't perforam checksum computation. For the safety I
273  * disabled UDP checksum offload capability at the moment. Alternatively
274  * we can intrduce a LINK0/LINK1 flag as hme(4) did in its Tx checksum
275  * offload routine.
276  */
277 #define SK_CSUM_FEATURES        (CSUM_TCP)
278
279 /*
280  * Note that we have newbus methods for both the GEnesis controller
281  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
282  * the miibus code is a child of the XMACs. We need to do it this way
283  * so that the miibus drivers can access the PHY registers on the
284  * right PHY. It's not quite what I had in mind, but it's the only
285  * design that achieves the desired effect.
286  */
287 static device_method_t skc_methods[] = {
288         /* Device interface */
289         DEVMETHOD(device_probe,         skc_probe),
290         DEVMETHOD(device_attach,        skc_attach),
291         DEVMETHOD(device_detach,        skc_detach),
292         DEVMETHOD(device_suspend,       skc_suspend),
293         DEVMETHOD(device_resume,        skc_resume),
294         DEVMETHOD(device_shutdown,      skc_shutdown),
295
296         DEVMETHOD(bus_get_dma_tag,      skc_get_dma_tag),
297
298         DEVMETHOD_END
299 };
300
301 static driver_t skc_driver = {
302         "skc",
303         skc_methods,
304         sizeof(struct sk_softc)
305 };
306
307 static devclass_t skc_devclass;
308
309 static device_method_t sk_methods[] = {
310         /* Device interface */
311         DEVMETHOD(device_probe,         sk_probe),
312         DEVMETHOD(device_attach,        sk_attach),
313         DEVMETHOD(device_detach,        sk_detach),
314         DEVMETHOD(device_shutdown,      bus_generic_shutdown),
315
316         /* MII interface */
317         DEVMETHOD(miibus_readreg,       sk_miibus_readreg),
318         DEVMETHOD(miibus_writereg,      sk_miibus_writereg),
319         DEVMETHOD(miibus_statchg,       sk_miibus_statchg),
320
321         DEVMETHOD_END
322 };
323
324 static driver_t sk_driver = {
325         "sk",
326         sk_methods,
327         sizeof(struct sk_if_softc)
328 };
329
330 static devclass_t sk_devclass;
331
332 DRIVER_MODULE(skc, pci, skc_driver, skc_devclass, NULL, NULL);
333 DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, NULL, NULL);
334 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, NULL, NULL);
335
336 static struct resource_spec sk_res_spec_io[] = {
337         { SYS_RES_IOPORT,       PCIR_BAR(1),    RF_ACTIVE },
338         { SYS_RES_IRQ,          0,              RF_ACTIVE | RF_SHAREABLE },
339         { -1,                   0,              0 }
340 };
341
342 static struct resource_spec sk_res_spec_mem[] = {
343         { SYS_RES_MEMORY,       PCIR_BAR(0),    RF_ACTIVE },
344         { SYS_RES_IRQ,          0,              RF_ACTIVE | RF_SHAREABLE },
345         { -1,                   0,              0 }
346 };
347
348 #define SK_SETBIT(sc, reg, x)           \
349         CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
350
351 #define SK_CLRBIT(sc, reg, x)           \
352         CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
353
354 #define SK_WIN_SETBIT_4(sc, reg, x)     \
355         sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
356
357 #define SK_WIN_CLRBIT_4(sc, reg, x)     \
358         sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
359
360 #define SK_WIN_SETBIT_2(sc, reg, x)     \
361         sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
362
363 #define SK_WIN_CLRBIT_2(sc, reg, x)     \
364         sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
365
366 static u_int32_t
367 sk_win_read_4(sc, reg)
368         struct sk_softc         *sc;
369         int                     reg;
370 {
371 #ifdef SK_USEIOSPACE
372         CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
373         return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
374 #else
375         return(CSR_READ_4(sc, reg));
376 #endif
377 }
378
379 static u_int16_t
380 sk_win_read_2(sc, reg)
381         struct sk_softc         *sc;
382         int                     reg;
383 {
384 #ifdef SK_USEIOSPACE
385         CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
386         return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
387 #else
388         return(CSR_READ_2(sc, reg));
389 #endif
390 }
391
392 static u_int8_t
393 sk_win_read_1(sc, reg)
394         struct sk_softc         *sc;
395         int                     reg;
396 {
397 #ifdef SK_USEIOSPACE
398         CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
399         return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
400 #else
401         return(CSR_READ_1(sc, reg));
402 #endif
403 }
404
405 static void
406 sk_win_write_4(sc, reg, val)
407         struct sk_softc         *sc;
408         int                     reg;
409         u_int32_t               val;
410 {
411 #ifdef SK_USEIOSPACE
412         CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
413         CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
414 #else
415         CSR_WRITE_4(sc, reg, val);
416 #endif
417         return;
418 }
419
420 static void
421 sk_win_write_2(sc, reg, val)
422         struct sk_softc         *sc;
423         int                     reg;
424         u_int32_t               val;
425 {
426 #ifdef SK_USEIOSPACE
427         CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
428         CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
429 #else
430         CSR_WRITE_2(sc, reg, val);
431 #endif
432         return;
433 }
434
435 static void
436 sk_win_write_1(sc, reg, val)
437         struct sk_softc         *sc;
438         int                     reg;
439         u_int32_t               val;
440 {
441 #ifdef SK_USEIOSPACE
442         CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
443         CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
444 #else
445         CSR_WRITE_1(sc, reg, val);
446 #endif
447         return;
448 }
449
450 static int
451 sk_miibus_readreg(dev, phy, reg)
452         device_t                dev;
453         int                     phy, reg;
454 {
455         struct sk_if_softc      *sc_if;
456         int                     v;
457
458         sc_if = device_get_softc(dev);
459
460         SK_IF_MII_LOCK(sc_if);
461         switch(sc_if->sk_softc->sk_type) {
462         case SK_GENESIS:
463                 v = sk_xmac_miibus_readreg(sc_if, phy, reg);
464                 break;
465         case SK_YUKON:
466         case SK_YUKON_LITE:
467         case SK_YUKON_LP:
468                 v = sk_marv_miibus_readreg(sc_if, phy, reg);
469                 break;
470         default:
471                 v = 0;
472                 break;
473         }
474         SK_IF_MII_UNLOCK(sc_if);
475
476         return (v);
477 }
478
479 static int
480 sk_miibus_writereg(dev, phy, reg, val)
481         device_t                dev;
482         int                     phy, reg, val;
483 {
484         struct sk_if_softc      *sc_if;
485         int                     v;
486
487         sc_if = device_get_softc(dev);
488
489         SK_IF_MII_LOCK(sc_if);
490         switch(sc_if->sk_softc->sk_type) {
491         case SK_GENESIS:
492                 v = sk_xmac_miibus_writereg(sc_if, phy, reg, val);
493                 break;
494         case SK_YUKON:
495         case SK_YUKON_LITE:
496         case SK_YUKON_LP:
497                 v = sk_marv_miibus_writereg(sc_if, phy, reg, val);
498                 break;
499         default:
500                 v = 0;
501                 break;
502         }
503         SK_IF_MII_UNLOCK(sc_if);
504
505         return (v);
506 }
507
508 static void
509 sk_miibus_statchg(dev)
510         device_t                dev;
511 {
512         struct sk_if_softc      *sc_if;
513
514         sc_if = device_get_softc(dev);
515
516         SK_IF_MII_LOCK(sc_if);
517         switch(sc_if->sk_softc->sk_type) {
518         case SK_GENESIS:
519                 sk_xmac_miibus_statchg(sc_if);
520                 break;
521         case SK_YUKON:
522         case SK_YUKON_LITE:
523         case SK_YUKON_LP:
524                 sk_marv_miibus_statchg(sc_if);
525                 break;
526         }
527         SK_IF_MII_UNLOCK(sc_if);
528
529         return;
530 }
531
532 static int
533 sk_xmac_miibus_readreg(sc_if, phy, reg)
534         struct sk_if_softc      *sc_if;
535         int                     phy, reg;
536 {
537         int                     i;
538
539         SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
540         SK_XM_READ_2(sc_if, XM_PHY_DATA);
541         if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
542                 for (i = 0; i < SK_TIMEOUT; i++) {
543                         DELAY(1);
544                         if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
545                             XM_MMUCMD_PHYDATARDY)
546                                 break;
547                 }
548
549                 if (i == SK_TIMEOUT) {
550                         if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
551                         return(0);
552                 }
553         }
554         DELAY(1);
555         i = SK_XM_READ_2(sc_if, XM_PHY_DATA);
556
557         return(i);
558 }
559
560 static int
561 sk_xmac_miibus_writereg(sc_if, phy, reg, val)
562         struct sk_if_softc      *sc_if;
563         int                     phy, reg, val;
564 {
565         int                     i;
566
567         SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
568         for (i = 0; i < SK_TIMEOUT; i++) {
569                 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
570                         break;
571         }
572
573         if (i == SK_TIMEOUT) {
574                 if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
575                 return (ETIMEDOUT);
576         }
577
578         SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
579         for (i = 0; i < SK_TIMEOUT; i++) {
580                 DELAY(1);
581                 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
582                         break;
583         }
584         if (i == SK_TIMEOUT)
585                 if_printf(sc_if->sk_ifp, "phy write timed out\n");
586
587         return(0);
588 }
589
590 static void
591 sk_xmac_miibus_statchg(sc_if)
592         struct sk_if_softc      *sc_if;
593 {
594         struct mii_data         *mii;
595
596         mii = device_get_softc(sc_if->sk_miibus);
597
598         /*
599          * If this is a GMII PHY, manually set the XMAC's
600          * duplex mode accordingly.
601          */
602         if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
603                 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
604                         SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
605                 } else {
606                         SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
607                 }
608         }
609 }
610
611 static int
612 sk_marv_miibus_readreg(sc_if, phy, reg)
613         struct sk_if_softc      *sc_if;
614         int                     phy, reg;
615 {
616         u_int16_t               val;
617         int                     i;
618
619         if (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
620             sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER) {
621                 return(0);
622         }
623
624         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
625                       YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
626
627         for (i = 0; i < SK_TIMEOUT; i++) {
628                 DELAY(1);
629                 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
630                 if (val & YU_SMICR_READ_VALID)
631                         break;
632         }
633
634         if (i == SK_TIMEOUT) {
635                 if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
636                 return(0);
637         }
638
639         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
640
641         return(val);
642 }
643
644 static int
645 sk_marv_miibus_writereg(sc_if, phy, reg, val)
646         struct sk_if_softc      *sc_if;
647         int                     phy, reg, val;
648 {
649         int                     i;
650
651         SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
652         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
653                       YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
654
655         for (i = 0; i < SK_TIMEOUT; i++) {
656                 DELAY(1);
657                 if ((SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY) == 0)
658                         break;
659         }
660         if (i == SK_TIMEOUT)
661                 if_printf(sc_if->sk_ifp, "phy write timeout\n");
662
663         return(0);
664 }
665
666 static void
667 sk_marv_miibus_statchg(sc_if)
668         struct sk_if_softc      *sc_if;
669 {
670         return;
671 }
672
673 #define HASH_BITS               6
674
675 static u_int32_t
676 sk_xmchash(addr)
677         const uint8_t *addr;
678 {
679         uint32_t crc;
680
681         /* Compute CRC for the address value. */
682         crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
683
684         return (~crc & ((1 << HASH_BITS) - 1));
685 }
686
687 static void
688 sk_setfilt(sc_if, addr, slot)
689         struct sk_if_softc      *sc_if;
690         u_int16_t               *addr;
691         int                     slot;
692 {
693         int                     base;
694
695         base = XM_RXFILT_ENTRY(slot);
696
697         SK_XM_WRITE_2(sc_if, base, addr[0]);
698         SK_XM_WRITE_2(sc_if, base + 2, addr[1]);
699         SK_XM_WRITE_2(sc_if, base + 4, addr[2]);
700
701         return;
702 }
703
704 static void
705 sk_rxfilter(sc_if)
706         struct sk_if_softc      *sc_if;
707 {
708         struct sk_softc         *sc;
709
710         SK_IF_LOCK_ASSERT(sc_if);
711
712         sc = sc_if->sk_softc;
713         if (sc->sk_type == SK_GENESIS)
714                 sk_rxfilter_genesis(sc_if);
715         else
716                 sk_rxfilter_yukon(sc_if);
717 }
718
719 static void
720 sk_rxfilter_genesis(sc_if)
721         struct sk_if_softc      *sc_if;
722 {
723         struct ifnet            *ifp = sc_if->sk_ifp;
724         u_int32_t               hashes[2] = { 0, 0 }, mode;
725         int                     h = 0, i;
726         struct ifmultiaddr      *ifma;
727         u_int16_t               dummy[] = { 0, 0, 0 };
728         u_int16_t               maddr[(ETHER_ADDR_LEN+1)/2];
729
730         SK_IF_LOCK_ASSERT(sc_if);
731
732         mode = SK_XM_READ_4(sc_if, XM_MODE);
733         mode &= ~(XM_MODE_RX_PROMISC | XM_MODE_RX_USE_HASH |
734             XM_MODE_RX_USE_PERFECT);
735         /* First, zot all the existing perfect filters. */
736         for (i = 1; i < XM_RXFILT_MAX; i++)
737                 sk_setfilt(sc_if, dummy, i);
738
739         /* Now program new ones. */
740         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
741                 if (ifp->if_flags & IFF_ALLMULTI)
742                         mode |= XM_MODE_RX_USE_HASH;
743                 if (ifp->if_flags & IFF_PROMISC)
744                         mode |= XM_MODE_RX_PROMISC;
745                 hashes[0] = 0xFFFFFFFF;
746                 hashes[1] = 0xFFFFFFFF;
747         } else {
748                 i = 1;
749                 if_maddr_rlock(ifp);
750                 TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead,
751                     ifma_link) {
752                         if (ifma->ifma_addr->sa_family != AF_LINK)
753                                 continue;
754                         /*
755                          * Program the first XM_RXFILT_MAX multicast groups
756                          * into the perfect filter.
757                          */
758                         bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
759                             maddr, ETHER_ADDR_LEN);
760                         if (i < XM_RXFILT_MAX) {
761                                 sk_setfilt(sc_if, maddr, i);
762                                 mode |= XM_MODE_RX_USE_PERFECT;
763                                 i++;
764                                 continue;
765                         }
766                         h = sk_xmchash((const uint8_t *)maddr);
767                         if (h < 32)
768                                 hashes[0] |= (1 << h);
769                         else
770                                 hashes[1] |= (1 << (h - 32));
771                         mode |= XM_MODE_RX_USE_HASH;
772                 }
773                 if_maddr_runlock(ifp);
774         }
775
776         SK_XM_WRITE_4(sc_if, XM_MODE, mode);
777         SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
778         SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
779 }
780
781 static void
782 sk_rxfilter_yukon(sc_if)
783         struct sk_if_softc      *sc_if;
784 {
785         struct ifnet            *ifp;
786         u_int32_t               crc, hashes[2] = { 0, 0 }, mode;
787         struct ifmultiaddr      *ifma;
788
789         SK_IF_LOCK_ASSERT(sc_if);
790
791         ifp = sc_if->sk_ifp;
792         mode = SK_YU_READ_2(sc_if, YUKON_RCR);
793         if (ifp->if_flags & IFF_PROMISC)
794                 mode &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN); 
795         else if (ifp->if_flags & IFF_ALLMULTI) {
796                 mode |= YU_RCR_UFLEN | YU_RCR_MUFLEN; 
797                 hashes[0] = 0xFFFFFFFF;
798                 hashes[1] = 0xFFFFFFFF;
799         } else {
800                 mode |= YU_RCR_UFLEN;
801                 if_maddr_rlock(ifp);
802                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
803                         if (ifma->ifma_addr->sa_family != AF_LINK)
804                                 continue;
805                         crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
806                             ifma->ifma_addr), ETHER_ADDR_LEN);
807                         /* Just want the 6 least significant bits. */
808                         crc &= 0x3f;
809                         /* Set the corresponding bit in the hash table. */
810                         hashes[crc >> 5] |= 1 << (crc & 0x1f);
811                 }
812                 if_maddr_runlock(ifp);
813                 if (hashes[0] != 0 || hashes[1] != 0)
814                         mode |= YU_RCR_MUFLEN;
815         }
816
817         SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
818         SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
819         SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
820         SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
821         SK_YU_WRITE_2(sc_if, YUKON_RCR, mode);
822 }
823
824 static int
825 sk_init_rx_ring(sc_if)
826         struct sk_if_softc      *sc_if;
827 {
828         struct sk_ring_data     *rd;
829         bus_addr_t              addr;
830         u_int32_t               csum_start;
831         int                     i;
832
833         sc_if->sk_cdata.sk_rx_cons = 0;
834
835         csum_start = (ETHER_HDR_LEN + sizeof(struct ip))  << 16 |
836             ETHER_HDR_LEN;
837         rd = &sc_if->sk_rdata;
838         bzero(rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
839         for (i = 0; i < SK_RX_RING_CNT; i++) {
840                 if (sk_newbuf(sc_if, i) != 0)
841                         return (ENOBUFS);
842                 if (i == (SK_RX_RING_CNT - 1))
843                         addr = SK_RX_RING_ADDR(sc_if, 0);
844                 else
845                         addr = SK_RX_RING_ADDR(sc_if, i + 1);
846                 rd->sk_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
847                 rd->sk_rx_ring[i].sk_csum_start = htole32(csum_start);
848         }
849
850         bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
851             sc_if->sk_cdata.sk_rx_ring_map,
852             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
853
854         return(0);
855 }
856
857 static int
858 sk_init_jumbo_rx_ring(sc_if)
859         struct sk_if_softc      *sc_if;
860 {
861         struct sk_ring_data     *rd;
862         bus_addr_t              addr;
863         u_int32_t               csum_start;
864         int                     i;
865
866         sc_if->sk_cdata.sk_jumbo_rx_cons = 0;
867
868         csum_start = ((ETHER_HDR_LEN + sizeof(struct ip)) << 16) |
869             ETHER_HDR_LEN;
870         rd = &sc_if->sk_rdata;
871         bzero(rd->sk_jumbo_rx_ring,
872             sizeof(struct sk_rx_desc) * SK_JUMBO_RX_RING_CNT);
873         for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
874                 if (sk_jumbo_newbuf(sc_if, i) != 0)
875                         return (ENOBUFS);
876                 if (i == (SK_JUMBO_RX_RING_CNT - 1))
877                         addr = SK_JUMBO_RX_RING_ADDR(sc_if, 0);
878                 else
879                         addr = SK_JUMBO_RX_RING_ADDR(sc_if, i + 1);
880                 rd->sk_jumbo_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
881                 rd->sk_jumbo_rx_ring[i].sk_csum_start = htole32(csum_start);
882         }
883
884         bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
885             sc_if->sk_cdata.sk_jumbo_rx_ring_map,
886             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
887
888         return (0);
889 }
890
891 static void
892 sk_init_tx_ring(sc_if)
893         struct sk_if_softc      *sc_if;
894 {
895         struct sk_ring_data     *rd;
896         struct sk_txdesc        *txd;
897         bus_addr_t              addr;
898         int                     i;
899
900         STAILQ_INIT(&sc_if->sk_cdata.sk_txfreeq);
901         STAILQ_INIT(&sc_if->sk_cdata.sk_txbusyq);
902
903         sc_if->sk_cdata.sk_tx_prod = 0;
904         sc_if->sk_cdata.sk_tx_cons = 0;
905         sc_if->sk_cdata.sk_tx_cnt = 0;
906
907         rd = &sc_if->sk_rdata;
908         bzero(rd->sk_tx_ring, sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
909         for (i = 0; i < SK_TX_RING_CNT; i++) {
910                 if (i == (SK_TX_RING_CNT - 1))
911                         addr = SK_TX_RING_ADDR(sc_if, 0);
912                 else
913                         addr = SK_TX_RING_ADDR(sc_if, i + 1);
914                 rd->sk_tx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
915                 txd = &sc_if->sk_cdata.sk_txdesc[i];
916                 STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
917         }
918
919         bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
920             sc_if->sk_cdata.sk_tx_ring_map,
921             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
922 }
923
924 static __inline void
925 sk_discard_rxbuf(sc_if, idx)
926         struct sk_if_softc      *sc_if;
927         int                     idx;
928 {
929         struct sk_rx_desc       *r;
930         struct sk_rxdesc        *rxd;
931         struct mbuf             *m;
932
933
934         r = &sc_if->sk_rdata.sk_rx_ring[idx];
935         rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
936         m = rxd->rx_m;
937         r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
938 }
939
940 static __inline void
941 sk_discard_jumbo_rxbuf(sc_if, idx)
942         struct sk_if_softc      *sc_if;
943         int                     idx;
944 {
945         struct sk_rx_desc       *r;
946         struct sk_rxdesc        *rxd;
947         struct mbuf             *m;
948
949         r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
950         rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
951         m = rxd->rx_m;
952         r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
953 }
954
955 static int
956 sk_newbuf(sc_if, idx)
957         struct sk_if_softc      *sc_if;
958         int                     idx;
959 {
960         struct sk_rx_desc       *r;
961         struct sk_rxdesc        *rxd;
962         struct mbuf             *m;
963         bus_dma_segment_t       segs[1];
964         bus_dmamap_t            map;
965         int                     nsegs;
966
967         m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
968         if (m == NULL)
969                 return (ENOBUFS);
970         m->m_len = m->m_pkthdr.len = MCLBYTES;
971         m_adj(m, ETHER_ALIGN);
972
973         if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_rx_tag,
974             sc_if->sk_cdata.sk_rx_sparemap, m, segs, &nsegs, 0) != 0) {
975                 m_freem(m);
976                 return (ENOBUFS);
977         }
978         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
979
980         rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
981         if (rxd->rx_m != NULL) {
982                 bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
983                     BUS_DMASYNC_POSTREAD);
984                 bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap);
985         }
986         map = rxd->rx_dmamap;
987         rxd->rx_dmamap = sc_if->sk_cdata.sk_rx_sparemap;
988         sc_if->sk_cdata.sk_rx_sparemap = map;
989         bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
990             BUS_DMASYNC_PREREAD);
991         rxd->rx_m = m;
992         r = &sc_if->sk_rdata.sk_rx_ring[idx];
993         r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
994         r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
995         r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
996
997         return (0);
998 }
999
1000 static int
1001 sk_jumbo_newbuf(sc_if, idx)
1002         struct sk_if_softc      *sc_if;
1003         int                     idx;
1004 {
1005         struct sk_rx_desc       *r;
1006         struct sk_rxdesc        *rxd;
1007         struct mbuf             *m;
1008         bus_dma_segment_t       segs[1];
1009         bus_dmamap_t            map;
1010         int                     nsegs;
1011
1012         m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1013         if (m == NULL)
1014                 return (ENOBUFS);
1015         m->m_pkthdr.len = m->m_len = MJUM9BYTES;
1016         /*
1017          * Adjust alignment so packet payload begins on a
1018          * longword boundary. Mandatory for Alpha, useful on
1019          * x86 too.
1020          */
1021         m_adj(m, ETHER_ALIGN);
1022
1023         if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_jumbo_rx_tag,
1024             sc_if->sk_cdata.sk_jumbo_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1025                 m_freem(m);
1026                 return (ENOBUFS);
1027         }
1028         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1029
1030         rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
1031         if (rxd->rx_m != NULL) {
1032                 bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
1033                     BUS_DMASYNC_POSTREAD);
1034                 bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
1035                     rxd->rx_dmamap);
1036         }
1037         map = rxd->rx_dmamap;
1038         rxd->rx_dmamap = sc_if->sk_cdata.sk_jumbo_rx_sparemap;
1039         sc_if->sk_cdata.sk_jumbo_rx_sparemap = map;
1040         bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
1041             BUS_DMASYNC_PREREAD);
1042         rxd->rx_m = m;
1043         r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
1044         r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
1045         r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
1046         r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
1047
1048         return (0);
1049 }
1050
1051 /*
1052  * Set media options.
1053  */
1054 static int
1055 sk_ifmedia_upd(ifp)
1056         struct ifnet            *ifp;
1057 {
1058         struct sk_if_softc      *sc_if = ifp->if_softc;
1059         struct mii_data         *mii;
1060
1061         mii = device_get_softc(sc_if->sk_miibus);
1062         sk_init(sc_if);
1063         mii_mediachg(mii);
1064
1065         return(0);
1066 }
1067
1068 /*
1069  * Report current media status.
1070  */
1071 static void
1072 sk_ifmedia_sts(ifp, ifmr)
1073         struct ifnet            *ifp;
1074         struct ifmediareq       *ifmr;
1075 {
1076         struct sk_if_softc      *sc_if;
1077         struct mii_data         *mii;
1078
1079         sc_if = ifp->if_softc;
1080         mii = device_get_softc(sc_if->sk_miibus);
1081
1082         mii_pollstat(mii);
1083         ifmr->ifm_active = mii->mii_media_active;
1084         ifmr->ifm_status = mii->mii_media_status;
1085
1086         return;
1087 }
1088
1089 static int
1090 sk_ioctl(ifp, command, data)
1091         struct ifnet            *ifp;
1092         u_long                  command;
1093         caddr_t                 data;
1094 {
1095         struct sk_if_softc      *sc_if = ifp->if_softc;
1096         struct ifreq            *ifr = (struct ifreq *) data;
1097         int                     error, mask;
1098         struct mii_data         *mii;
1099
1100         error = 0;
1101         switch(command) {
1102         case SIOCSIFMTU:
1103                 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > SK_JUMBO_MTU)
1104                         error = EINVAL;
1105                 else if (ifp->if_mtu != ifr->ifr_mtu) {
1106                         if (sc_if->sk_jumbo_disable != 0 &&
1107                             ifr->ifr_mtu > SK_MAX_FRAMELEN)
1108                                 error = EINVAL;
1109                         else {
1110                                 SK_IF_LOCK(sc_if);
1111                                 ifp->if_mtu = ifr->ifr_mtu;
1112                                 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1113                                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1114                                         sk_init_locked(sc_if);
1115                                 }
1116                                 SK_IF_UNLOCK(sc_if);
1117                         }
1118                 }
1119                 break;
1120         case SIOCSIFFLAGS:
1121                 SK_IF_LOCK(sc_if);
1122                 if (ifp->if_flags & IFF_UP) {
1123                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1124                                 if ((ifp->if_flags ^ sc_if->sk_if_flags)
1125                                     & (IFF_PROMISC | IFF_ALLMULTI))
1126                                         sk_rxfilter(sc_if);
1127                         } else
1128                                 sk_init_locked(sc_if);
1129                 } else {
1130                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1131                                 sk_stop(sc_if);
1132                 }
1133                 sc_if->sk_if_flags = ifp->if_flags;
1134                 SK_IF_UNLOCK(sc_if);
1135                 break;
1136         case SIOCADDMULTI:
1137         case SIOCDELMULTI:
1138                 SK_IF_LOCK(sc_if);
1139                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1140                         sk_rxfilter(sc_if);
1141                 SK_IF_UNLOCK(sc_if);
1142                 break;
1143         case SIOCGIFMEDIA:
1144         case SIOCSIFMEDIA:
1145                 mii = device_get_softc(sc_if->sk_miibus);
1146                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1147                 break;
1148         case SIOCSIFCAP:
1149                 SK_IF_LOCK(sc_if);
1150                 if (sc_if->sk_softc->sk_type == SK_GENESIS) {
1151                         SK_IF_UNLOCK(sc_if);
1152                         break;
1153                 }
1154                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1155                 if ((mask & IFCAP_TXCSUM) != 0 &&
1156                     (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
1157                         ifp->if_capenable ^= IFCAP_TXCSUM;
1158                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1159                                 ifp->if_hwassist |= SK_CSUM_FEATURES;
1160                         else
1161                                 ifp->if_hwassist &= ~SK_CSUM_FEATURES;
1162                 }
1163                 if ((mask & IFCAP_RXCSUM) != 0 &&
1164                     (IFCAP_RXCSUM & ifp->if_capabilities) != 0) 
1165                         ifp->if_capenable ^= IFCAP_RXCSUM;
1166                 SK_IF_UNLOCK(sc_if);
1167                 break;
1168         default:
1169                 error = ether_ioctl(ifp, command, data);
1170                 break;
1171         }
1172
1173         return (error);
1174 }
1175
1176 /*
1177  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1178  * IDs against our list and return a device name if we find a match.
1179  */
1180 static int
1181 skc_probe(dev)
1182         device_t                dev;
1183 {
1184         const struct sk_type    *t = sk_devs;
1185
1186         while(t->sk_name != NULL) {
1187                 if ((pci_get_vendor(dev) == t->sk_vid) &&
1188                     (pci_get_device(dev) == t->sk_did)) {
1189                         /*
1190                          * Only attach to rev. 2 of the Linksys EG1032 adapter.
1191                          * Rev. 3 is supported by re(4).
1192                          */
1193                         if ((t->sk_vid == VENDORID_LINKSYS) &&
1194                                 (t->sk_did == DEVICEID_LINKSYS_EG1032) &&
1195                                 (pci_get_subdevice(dev) !=
1196                                  SUBDEVICEID_LINKSYS_EG1032_REV2)) {
1197                                 t++;
1198                                 continue;
1199                         }
1200                         device_set_desc(dev, t->sk_name);
1201                         return (BUS_PROBE_DEFAULT);
1202                 }
1203                 t++;
1204         }
1205
1206         return(ENXIO);
1207 }
1208
1209 /*
1210  * Force the GEnesis into reset, then bring it out of reset.
1211  */
1212 static void
1213 sk_reset(sc)
1214         struct sk_softc         *sc;
1215 {
1216
1217         CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1218         CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1219         if (SK_YUKON_FAMILY(sc->sk_type))
1220                 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1221
1222         DELAY(1000);
1223         CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1224         DELAY(2);
1225         CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1226         if (SK_YUKON_FAMILY(sc->sk_type))
1227                 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1228
1229         if (sc->sk_type == SK_GENESIS) {
1230                 /* Configure packet arbiter */
1231                 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1232                 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1233                 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1234                 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1235                 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1236         }
1237
1238         /* Enable RAM interface */
1239         sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1240
1241         /*
1242          * Configure interrupt moderation. The moderation timer
1243          * defers interrupts specified in the interrupt moderation
1244          * timer mask based on the timeout specified in the interrupt
1245          * moderation timer init register. Each bit in the timer
1246          * register represents one tick, so to specify a timeout in
1247          * microseconds, we have to multiply by the correct number of
1248          * ticks-per-microsecond.
1249          */
1250         switch (sc->sk_type) {
1251         case SK_GENESIS:
1252                 sc->sk_int_ticks = SK_IMTIMER_TICKS_GENESIS;
1253                 break;
1254         default:
1255                 sc->sk_int_ticks = SK_IMTIMER_TICKS_YUKON;
1256                 break;
1257         }
1258         if (bootverbose)
1259                 device_printf(sc->sk_dev, "interrupt moderation is %d us\n",
1260                     sc->sk_int_mod);
1261         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
1262             sc->sk_int_ticks));
1263         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1264             SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1265         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1266
1267         return;
1268 }
1269
1270 static int
1271 sk_probe(dev)
1272         device_t                dev;
1273 {
1274         struct sk_softc         *sc;
1275
1276         sc = device_get_softc(device_get_parent(dev));
1277
1278         /*
1279          * Not much to do here. We always know there will be
1280          * at least one XMAC present, and if there are two,
1281          * skc_attach() will create a second device instance
1282          * for us.
1283          */
1284         switch (sc->sk_type) {
1285         case SK_GENESIS:
1286                 device_set_desc(dev, "XaQti Corp. XMAC II");
1287                 break;
1288         case SK_YUKON:
1289         case SK_YUKON_LITE:
1290         case SK_YUKON_LP:
1291                 device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
1292                 break;
1293         }
1294
1295         return (BUS_PROBE_DEFAULT);
1296 }
1297
1298 /*
1299  * Each XMAC chip is attached as a separate logical IP interface.
1300  * Single port cards will have only one logical interface of course.
1301  */
1302 static int
1303 sk_attach(dev)
1304         device_t                dev;
1305 {
1306         struct sk_softc         *sc;
1307         struct sk_if_softc      *sc_if;
1308         struct ifnet            *ifp;
1309         u_int32_t               r;
1310         int                     error, i, phy, port;
1311         u_char                  eaddr[6];
1312         u_char                  inv_mac[] = {0, 0, 0, 0, 0, 0};
1313
1314         if (dev == NULL)
1315                 return(EINVAL);
1316
1317         error = 0;
1318         sc_if = device_get_softc(dev);
1319         sc = device_get_softc(device_get_parent(dev));
1320         port = *(int *)device_get_ivars(dev);
1321
1322         sc_if->sk_if_dev = dev;
1323         sc_if->sk_port = port;
1324         sc_if->sk_softc = sc;
1325         sc->sk_if[port] = sc_if;
1326         if (port == SK_PORT_A)
1327                 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1328         if (port == SK_PORT_B)
1329                 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1330
1331         callout_init_mtx(&sc_if->sk_tick_ch, &sc_if->sk_softc->sk_mtx, 0);
1332         callout_init_mtx(&sc_if->sk_watchdog_ch, &sc_if->sk_softc->sk_mtx, 0);
1333
1334         if (sk_dma_alloc(sc_if) != 0) {
1335                 error = ENOMEM;
1336                 goto fail;
1337         }
1338         sk_dma_jumbo_alloc(sc_if);
1339
1340         ifp = sc_if->sk_ifp = if_alloc(IFT_ETHER);
1341         if (ifp == NULL) {
1342                 device_printf(sc_if->sk_if_dev, "can not if_alloc()\n");
1343                 error = ENOSPC;
1344                 goto fail;
1345         }
1346         ifp->if_softc = sc_if;
1347         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1348         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1349         /*
1350          * SK_GENESIS has a bug in checksum offload - From linux.
1351          */
1352         if (sc_if->sk_softc->sk_type != SK_GENESIS) {
1353                 ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM;
1354                 ifp->if_hwassist = 0;
1355         } else {
1356                 ifp->if_capabilities = 0;
1357                 ifp->if_hwassist = 0;
1358         }
1359         ifp->if_capenable = ifp->if_capabilities;
1360         /*
1361          * Some revision of Yukon controller generates corrupted
1362          * frame when TX checksum offloading is enabled.  The
1363          * frame has a valid checksum value so payload might be
1364          * modified during TX checksum calculation. Disable TX
1365          * checksum offloading but give users chance to enable it
1366          * when they know their controller works without problems
1367          * with TX checksum offloading.
1368          */
1369         ifp->if_capenable &= ~IFCAP_TXCSUM;
1370         ifp->if_ioctl = sk_ioctl;
1371         ifp->if_start = sk_start;
1372         ifp->if_init = sk_init;
1373         IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1374         ifp->if_snd.ifq_drv_maxlen = SK_TX_RING_CNT - 1;
1375         IFQ_SET_READY(&ifp->if_snd);
1376
1377         /*
1378          * Get station address for this interface. Note that
1379          * dual port cards actually come with three station
1380          * addresses: one for each port, plus an extra. The
1381          * extra one is used by the SysKonnect driver software
1382          * as a 'virtual' station address for when both ports
1383          * are operating in failover mode. Currently we don't
1384          * use this extra address.
1385          */
1386         SK_IF_LOCK(sc_if);
1387         for (i = 0; i < ETHER_ADDR_LEN; i++)
1388                 eaddr[i] =
1389                     sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1390
1391         /* Verify whether the station address is invalid or not. */
1392         if (bcmp(eaddr, inv_mac, sizeof(inv_mac)) == 0) {
1393                 device_printf(sc_if->sk_if_dev,
1394                     "Generating random ethernet address\n");
1395                 r = arc4random();
1396                 /*
1397                  * Set OUI to convenient locally assigned address.  'b'
1398                  * is 0x62, which has the locally assigned bit set, and
1399                  * the broadcast/multicast bit clear.
1400                  */
1401                 eaddr[0] = 'b';
1402                 eaddr[1] = 's';
1403                 eaddr[2] = 'd';
1404                 eaddr[3] = (r >> 16) & 0xff;
1405                 eaddr[4] = (r >>  8) & 0xff;
1406                 eaddr[5] = (r >>  0) & 0xff;
1407         }
1408         /*
1409          * Set up RAM buffer addresses. The NIC will have a certain
1410          * amount of SRAM on it, somewhere between 512K and 2MB. We
1411          * need to divide this up a) between the transmitter and
1412          * receiver and b) between the two XMACs, if this is a
1413          * dual port NIC. Our algotithm is to divide up the memory
1414          * evenly so that everyone gets a fair share.
1415          *
1416          * Just to be contrary, Yukon2 appears to have separate memory
1417          * for each MAC.
1418          */
1419         if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1420                 u_int32_t               chunk, val;
1421
1422                 chunk = sc->sk_ramsize / 2;
1423                 val = sc->sk_rboff / sizeof(u_int64_t);
1424                 sc_if->sk_rx_ramstart = val;
1425                 val += (chunk / sizeof(u_int64_t));
1426                 sc_if->sk_rx_ramend = val - 1;
1427                 sc_if->sk_tx_ramstart = val;
1428                 val += (chunk / sizeof(u_int64_t));
1429                 sc_if->sk_tx_ramend = val - 1;
1430         } else {
1431                 u_int32_t               chunk, val;
1432
1433                 chunk = sc->sk_ramsize / 4;
1434                 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1435                     sizeof(u_int64_t);
1436                 sc_if->sk_rx_ramstart = val;
1437                 val += (chunk / sizeof(u_int64_t));
1438                 sc_if->sk_rx_ramend = val - 1;
1439                 sc_if->sk_tx_ramstart = val;
1440                 val += (chunk / sizeof(u_int64_t));
1441                 sc_if->sk_tx_ramend = val - 1;
1442         }
1443
1444         /* Read and save PHY type and set PHY address */
1445         sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1446         if (!SK_YUKON_FAMILY(sc->sk_type)) {
1447                 switch(sc_if->sk_phytype) {
1448                 case SK_PHYTYPE_XMAC:
1449                         sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1450                         break;
1451                 case SK_PHYTYPE_BCOM:
1452                         sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1453                         break;
1454                 default:
1455                         device_printf(sc->sk_dev, "unsupported PHY type: %d\n",
1456                             sc_if->sk_phytype);
1457                         error = ENODEV;
1458                         SK_IF_UNLOCK(sc_if);
1459                         goto fail;
1460                 }
1461         } else {
1462                 if (sc_if->sk_phytype < SK_PHYTYPE_MARV_COPPER &&
1463                     sc->sk_pmd != 'S') {
1464                         /* not initialized, punt */
1465                         sc_if->sk_phytype = SK_PHYTYPE_MARV_COPPER;
1466                         sc->sk_coppertype = 1;
1467                 }
1468
1469                 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1470
1471                 if (!(sc->sk_coppertype))
1472                         sc_if->sk_phytype = SK_PHYTYPE_MARV_FIBER;
1473         }
1474
1475         /*
1476          * Call MI attach routine.  Can't hold locks when calling into ether_*.
1477          */
1478         SK_IF_UNLOCK(sc_if);
1479         ether_ifattach(ifp, eaddr);
1480         SK_IF_LOCK(sc_if);
1481
1482         /*
1483          * The hardware should be ready for VLAN_MTU by default:
1484          * XMAC II has 0x8100 in VLAN Tag Level 1 register initially;
1485          * YU_SMR_MFL_VLAN is set by this driver in Yukon.
1486          *
1487          */
1488         ifp->if_capabilities |= IFCAP_VLAN_MTU;
1489         ifp->if_capenable |= IFCAP_VLAN_MTU;
1490         /*
1491          * Tell the upper layer(s) we support long frames.
1492          * Must appear after the call to ether_ifattach() because
1493          * ether_ifattach() sets ifi_hdrlen to the default value.
1494          */
1495         ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1496
1497         /*
1498          * Do miibus setup.
1499          */
1500         phy = MII_PHY_ANY;
1501         switch (sc->sk_type) {
1502         case SK_GENESIS:
1503                 sk_init_xmac(sc_if);
1504                 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
1505                         phy = 0;
1506                 break;
1507         case SK_YUKON:
1508         case SK_YUKON_LITE:
1509         case SK_YUKON_LP:
1510                 sk_init_yukon(sc_if);
1511                 phy = 0;
1512                 break;
1513         }
1514
1515         SK_IF_UNLOCK(sc_if);
1516         error = mii_attach(dev, &sc_if->sk_miibus, ifp, sk_ifmedia_upd,
1517             sk_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
1518         if (error != 0) {
1519                 device_printf(sc_if->sk_if_dev, "attaching PHYs failed\n");
1520                 ether_ifdetach(ifp);
1521                 goto fail;
1522         }
1523
1524 fail:
1525         if (error) {
1526                 /* Access should be ok even though lock has been dropped */
1527                 sc->sk_if[port] = NULL;
1528                 sk_detach(dev);
1529         }
1530
1531         return(error);
1532 }
1533
1534 /*
1535  * Attach the interface. Allocate softc structures, do ifmedia
1536  * setup and ethernet/BPF attach.
1537  */
1538 static int
1539 skc_attach(dev)
1540         device_t                dev;
1541 {
1542         struct sk_softc         *sc;
1543         int                     error = 0, *port;
1544         uint8_t                 skrs;
1545         const char              *pname = NULL;
1546         char                    *revstr;
1547
1548         sc = device_get_softc(dev);
1549         sc->sk_dev = dev;
1550
1551         mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1552             MTX_DEF);
1553         mtx_init(&sc->sk_mii_mtx, "sk_mii_mutex", NULL, MTX_DEF);
1554         /*
1555          * Map control/status registers.
1556          */
1557         pci_enable_busmaster(dev);
1558
1559         /* Allocate resources */
1560 #ifdef SK_USEIOSPACE
1561         sc->sk_res_spec = sk_res_spec_io;
1562 #else
1563         sc->sk_res_spec = sk_res_spec_mem;
1564 #endif
1565         error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1566         if (error) {
1567                 if (sc->sk_res_spec == sk_res_spec_mem)
1568                         sc->sk_res_spec = sk_res_spec_io;
1569                 else
1570                         sc->sk_res_spec = sk_res_spec_mem;
1571                 error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1572                 if (error) {
1573                         device_printf(dev, "couldn't allocate %s resources\n",
1574                             sc->sk_res_spec == sk_res_spec_mem ? "memory" :
1575                             "I/O");
1576                         goto fail;
1577                 }
1578         }
1579
1580         sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1581         sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4) & 0xf;
1582
1583         /* Bail out if chip is not recognized. */
1584         if (sc->sk_type != SK_GENESIS && !SK_YUKON_FAMILY(sc->sk_type)) {
1585                 device_printf(dev, "unknown device: chipver=%02x, rev=%x\n",
1586                     sc->sk_type, sc->sk_rev);
1587                 error = ENXIO;
1588                 goto fail;
1589         }
1590
1591         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1592                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1593                 OID_AUTO, "int_mod", CTLTYPE_INT|CTLFLAG_RW,
1594                 &sc->sk_int_mod, 0, sysctl_hw_sk_int_mod, "I",
1595                 "SK interrupt moderation");
1596
1597         /* Pull in device tunables. */
1598         sc->sk_int_mod = SK_IM_DEFAULT;
1599         error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1600                 "int_mod", &sc->sk_int_mod);
1601         if (error == 0) {
1602                 if (sc->sk_int_mod < SK_IM_MIN ||
1603                     sc->sk_int_mod > SK_IM_MAX) {
1604                         device_printf(dev, "int_mod value out of range; "
1605                             "using default: %d\n", SK_IM_DEFAULT);
1606                         sc->sk_int_mod = SK_IM_DEFAULT;
1607                 }
1608         }
1609
1610         /* Reset the adapter. */
1611         sk_reset(sc);
1612
1613         skrs = sk_win_read_1(sc, SK_EPROM0);
1614         if (sc->sk_type == SK_GENESIS) {
1615                 /* Read and save RAM size and RAMbuffer offset */
1616                 switch(skrs) {
1617                 case SK_RAMSIZE_512K_64:
1618                         sc->sk_ramsize = 0x80000;
1619                         sc->sk_rboff = SK_RBOFF_0;
1620                         break;
1621                 case SK_RAMSIZE_1024K_64:
1622                         sc->sk_ramsize = 0x100000;
1623                         sc->sk_rboff = SK_RBOFF_80000;
1624                         break;
1625                 case SK_RAMSIZE_1024K_128:
1626                         sc->sk_ramsize = 0x100000;
1627                         sc->sk_rboff = SK_RBOFF_0;
1628                         break;
1629                 case SK_RAMSIZE_2048K_128:
1630                         sc->sk_ramsize = 0x200000;
1631                         sc->sk_rboff = SK_RBOFF_0;
1632                         break;
1633                 default:
1634                         device_printf(dev, "unknown ram size: %d\n", skrs);
1635                         error = ENXIO;
1636                         goto fail;
1637                 }
1638         } else { /* SK_YUKON_FAMILY */
1639                 if (skrs == 0x00)
1640                         sc->sk_ramsize = 0x20000;
1641                 else
1642                         sc->sk_ramsize = skrs * (1<<12);
1643                 sc->sk_rboff = SK_RBOFF_0;
1644         }
1645
1646         /* Read and save physical media type */
1647          sc->sk_pmd = sk_win_read_1(sc, SK_PMDTYPE);
1648
1649          if (sc->sk_pmd == 'T' || sc->sk_pmd == '1')
1650                  sc->sk_coppertype = 1;
1651          else
1652                  sc->sk_coppertype = 0;
1653
1654         /* Determine whether to name it with VPD PN or just make it up.
1655          * Marvell Yukon VPD PN seems to freqently be bogus. */
1656         switch (pci_get_device(dev)) {
1657         case DEVICEID_SK_V1:
1658         case DEVICEID_BELKIN_5005:
1659         case DEVICEID_3COM_3C940:
1660         case DEVICEID_LINKSYS_EG1032:
1661         case DEVICEID_DLINK_DGE530T_A1:
1662         case DEVICEID_DLINK_DGE530T_B1:
1663                 /* Stay with VPD PN. */
1664                 (void) pci_get_vpd_ident(dev, &pname);
1665                 break;
1666         case DEVICEID_SK_V2:
1667                 /* YUKON VPD PN might bear no resemblance to reality. */
1668                 switch (sc->sk_type) {
1669                 case SK_GENESIS:
1670                         /* Stay with VPD PN. */
1671                         (void) pci_get_vpd_ident(dev, &pname);
1672                         break;
1673                 case SK_YUKON:
1674                         pname = "Marvell Yukon Gigabit Ethernet";
1675                         break;
1676                 case SK_YUKON_LITE:
1677                         pname = "Marvell Yukon Lite Gigabit Ethernet";
1678                         break;
1679                 case SK_YUKON_LP:
1680                         pname = "Marvell Yukon LP Gigabit Ethernet";
1681                         break;
1682                 default:
1683                         pname = "Marvell Yukon (Unknown) Gigabit Ethernet";
1684                         break;
1685                 }
1686
1687                 /* Yukon Lite Rev. A0 needs special test. */
1688                 if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) {
1689                         u_int32_t far;
1690                         u_int8_t testbyte;
1691
1692                         /* Save flash address register before testing. */
1693                         far = sk_win_read_4(sc, SK_EP_ADDR);
1694
1695                         sk_win_write_1(sc, SK_EP_ADDR+0x03, 0xff);
1696                         testbyte = sk_win_read_1(sc, SK_EP_ADDR+0x03);
1697
1698                         if (testbyte != 0x00) {
1699                                 /* Yukon Lite Rev. A0 detected. */
1700                                 sc->sk_type = SK_YUKON_LITE;
1701                                 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1702                                 /* Restore flash address register. */
1703                                 sk_win_write_4(sc, SK_EP_ADDR, far);
1704                         }
1705                 }
1706                 break;
1707         default:
1708                 device_printf(dev, "unknown device: vendor=%04x, device=%04x, "
1709                         "chipver=%02x, rev=%x\n",
1710                         pci_get_vendor(dev), pci_get_device(dev),
1711                         sc->sk_type, sc->sk_rev);
1712                 error = ENXIO;
1713                 goto fail;
1714         }
1715
1716         if (sc->sk_type == SK_YUKON_LITE) {
1717                 switch (sc->sk_rev) {
1718                 case SK_YUKON_LITE_REV_A0:
1719                         revstr = "A0";
1720                         break;
1721                 case SK_YUKON_LITE_REV_A1:
1722                         revstr = "A1";
1723                         break;
1724                 case SK_YUKON_LITE_REV_A3:
1725                         revstr = "A3";
1726                         break;
1727                 default:
1728                         revstr = "";
1729                         break;
1730                 }
1731         } else {
1732                 revstr = "";
1733         }
1734
1735         /* Announce the product name and more VPD data if there. */
1736         if (pname != NULL)
1737                 device_printf(dev, "%s rev. %s(0x%x)\n",
1738                         pname, revstr, sc->sk_rev);
1739
1740         if (bootverbose) {
1741                 device_printf(dev, "chip ver  = 0x%02x\n", sc->sk_type);
1742                 device_printf(dev, "chip rev  = 0x%02x\n", sc->sk_rev);
1743                 device_printf(dev, "SK_EPROM0 = 0x%02x\n", skrs);
1744                 device_printf(dev, "SRAM size = 0x%06x\n", sc->sk_ramsize);
1745         }
1746
1747         sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1748         if (sc->sk_devs[SK_PORT_A] == NULL) {
1749                 device_printf(dev, "failed to add child for PORT_A\n");
1750                 error = ENXIO;
1751                 goto fail;
1752         }
1753         port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1754         if (port == NULL) {
1755                 device_printf(dev, "failed to allocate memory for "
1756                     "ivars of PORT_A\n");
1757                 error = ENXIO;
1758                 goto fail;
1759         }
1760         *port = SK_PORT_A;
1761         device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1762
1763         if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1764                 sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1765                 if (sc->sk_devs[SK_PORT_B] == NULL) {
1766                         device_printf(dev, "failed to add child for PORT_B\n");
1767                         error = ENXIO;
1768                         goto fail;
1769                 }
1770                 port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1771                 if (port == NULL) {
1772                         device_printf(dev, "failed to allocate memory for "
1773                             "ivars of PORT_B\n");
1774                         error = ENXIO;
1775                         goto fail;
1776                 }
1777                 *port = SK_PORT_B;
1778                 device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1779         }
1780
1781         /* Turn on the 'driver is loaded' LED. */
1782         CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1783
1784         error = bus_generic_attach(dev);
1785         if (error) {
1786                 device_printf(dev, "failed to attach port(s)\n");
1787                 goto fail;
1788         }
1789
1790         /* Hook interrupt last to avoid having to lock softc */
1791         error = bus_setup_intr(dev, sc->sk_res[1], INTR_TYPE_NET|INTR_MPSAFE,
1792             NULL, sk_intr, sc, &sc->sk_intrhand);
1793
1794         if (error) {
1795                 device_printf(dev, "couldn't set up irq\n");
1796                 goto fail;
1797         }
1798
1799 fail:
1800         if (error)
1801                 skc_detach(dev);
1802
1803         return(error);
1804 }
1805
1806 /*
1807  * Shutdown hardware and free up resources. This can be called any
1808  * time after the mutex has been initialized. It is called in both
1809  * the error case in attach and the normal detach case so it needs
1810  * to be careful about only freeing resources that have actually been
1811  * allocated.
1812  */
1813 static int
1814 sk_detach(dev)
1815         device_t                dev;
1816 {
1817         struct sk_if_softc      *sc_if;
1818         struct ifnet            *ifp;
1819
1820         sc_if = device_get_softc(dev);
1821         KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx),
1822             ("sk mutex not initialized in sk_detach"));
1823         SK_IF_LOCK(sc_if);
1824
1825         ifp = sc_if->sk_ifp;
1826         /* These should only be active if attach_xmac succeeded */
1827         if (device_is_attached(dev)) {
1828                 sk_stop(sc_if);
1829                 /* Can't hold locks while calling detach */
1830                 SK_IF_UNLOCK(sc_if);
1831                 callout_drain(&sc_if->sk_tick_ch);
1832                 callout_drain(&sc_if->sk_watchdog_ch);
1833                 ether_ifdetach(ifp);
1834                 SK_IF_LOCK(sc_if);
1835         }
1836         if (ifp)
1837                 if_free(ifp);
1838         /*
1839          * We're generally called from skc_detach() which is using
1840          * device_delete_child() to get to here. It's already trashed
1841          * miibus for us, so don't do it here or we'll panic.
1842          */
1843         /*
1844         if (sc_if->sk_miibus != NULL)
1845                 device_delete_child(dev, sc_if->sk_miibus);
1846         */
1847         bus_generic_detach(dev);
1848         sk_dma_jumbo_free(sc_if);
1849         sk_dma_free(sc_if);
1850         SK_IF_UNLOCK(sc_if);
1851
1852         return(0);
1853 }
1854
1855 static int
1856 skc_detach(dev)
1857         device_t                dev;
1858 {
1859         struct sk_softc         *sc;
1860
1861         sc = device_get_softc(dev);
1862         KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized"));
1863
1864         if (device_is_alive(dev)) {
1865                 if (sc->sk_devs[SK_PORT_A] != NULL) {
1866                         free(device_get_ivars(sc->sk_devs[SK_PORT_A]), M_DEVBUF);
1867                         device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1868                 }
1869                 if (sc->sk_devs[SK_PORT_B] != NULL) {
1870                         free(device_get_ivars(sc->sk_devs[SK_PORT_B]), M_DEVBUF);
1871                         device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1872                 }
1873                 bus_generic_detach(dev);
1874         }
1875
1876         if (sc->sk_intrhand)
1877                 bus_teardown_intr(dev, sc->sk_res[1], sc->sk_intrhand);
1878         bus_release_resources(dev, sc->sk_res_spec, sc->sk_res);
1879
1880         mtx_destroy(&sc->sk_mii_mtx);
1881         mtx_destroy(&sc->sk_mtx);
1882
1883         return(0);
1884 }
1885
1886 static bus_dma_tag_t
1887 skc_get_dma_tag(device_t bus, device_t child __unused)
1888 {
1889
1890         return (bus_get_dma_tag(bus));
1891 }
1892
1893 struct sk_dmamap_arg {
1894         bus_addr_t      sk_busaddr;
1895 };
1896
1897 static void
1898 sk_dmamap_cb(arg, segs, nseg, error)
1899         void                    *arg;
1900         bus_dma_segment_t       *segs;
1901         int                     nseg;
1902         int                     error;
1903 {
1904         struct sk_dmamap_arg    *ctx;
1905
1906         if (error != 0)
1907                 return;
1908
1909         ctx = arg;
1910         ctx->sk_busaddr = segs[0].ds_addr;
1911 }
1912
1913 /*
1914  * Allocate jumbo buffer storage. The SysKonnect adapters support
1915  * "jumbograms" (9K frames), although SysKonnect doesn't currently
1916  * use them in their drivers. In order for us to use them, we need
1917  * large 9K receive buffers, however standard mbuf clusters are only
1918  * 2048 bytes in size. Consequently, we need to allocate and manage
1919  * our own jumbo buffer pool. Fortunately, this does not require an
1920  * excessive amount of additional code.
1921  */
1922 static int
1923 sk_dma_alloc(sc_if)
1924         struct sk_if_softc      *sc_if;
1925 {
1926         struct sk_dmamap_arg    ctx;
1927         struct sk_txdesc        *txd;
1928         struct sk_rxdesc        *rxd;
1929         int                     error, i;
1930
1931         /* create parent tag */
1932         /*
1933          * XXX
1934          * This driver should use BUS_SPACE_MAXADDR for lowaddr argument
1935          * in bus_dma_tag_create(9) as the NIC would support DAC mode.
1936          * However bz@ reported that it does not work on amd64 with > 4GB
1937          * RAM. Until we have more clues of the breakage, disable DAC mode
1938          * by limiting DMA address to be in 32bit address space.
1939          */
1940         error = bus_dma_tag_create(
1941                     bus_get_dma_tag(sc_if->sk_if_dev),/* parent */
1942                     1, 0,                       /* algnmnt, boundary */
1943                     BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
1944                     BUS_SPACE_MAXADDR,          /* highaddr */
1945                     NULL, NULL,                 /* filter, filterarg */
1946                     BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
1947                     0,                          /* nsegments */
1948                     BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
1949                     0,                          /* flags */
1950                     NULL, NULL,                 /* lockfunc, lockarg */
1951                     &sc_if->sk_cdata.sk_parent_tag);
1952         if (error != 0) {
1953                 device_printf(sc_if->sk_if_dev,
1954                     "failed to create parent DMA tag\n");
1955                 goto fail;
1956         }
1957
1958         /* create tag for Tx ring */
1959         error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1960                     SK_RING_ALIGN, 0,           /* algnmnt, boundary */
1961                     BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
1962                     BUS_SPACE_MAXADDR,          /* highaddr */
1963                     NULL, NULL,                 /* filter, filterarg */
1964                     SK_TX_RING_SZ,              /* maxsize */
1965                     1,                          /* nsegments */
1966                     SK_TX_RING_SZ,              /* maxsegsize */
1967                     0,                          /* flags */
1968                     NULL, NULL,                 /* lockfunc, lockarg */
1969                     &sc_if->sk_cdata.sk_tx_ring_tag);
1970         if (error != 0) {
1971                 device_printf(sc_if->sk_if_dev,
1972                     "failed to allocate Tx ring DMA tag\n");
1973                 goto fail;
1974         }
1975
1976         /* create tag for Rx ring */
1977         error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1978                     SK_RING_ALIGN, 0,           /* algnmnt, boundary */
1979                     BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
1980                     BUS_SPACE_MAXADDR,          /* highaddr */
1981                     NULL, NULL,                 /* filter, filterarg */
1982                     SK_RX_RING_SZ,              /* maxsize */
1983                     1,                          /* nsegments */
1984                     SK_RX_RING_SZ,              /* maxsegsize */
1985                     0,                          /* flags */
1986                     NULL, NULL,                 /* lockfunc, lockarg */
1987                     &sc_if->sk_cdata.sk_rx_ring_tag);
1988         if (error != 0) {
1989                 device_printf(sc_if->sk_if_dev,
1990                     "failed to allocate Rx ring DMA tag\n");
1991                 goto fail;
1992         }
1993
1994         /* create tag for Tx buffers */
1995         error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1996                     1, 0,                       /* algnmnt, boundary */
1997                     BUS_SPACE_MAXADDR,          /* lowaddr */
1998                     BUS_SPACE_MAXADDR,          /* highaddr */
1999                     NULL, NULL,                 /* filter, filterarg */
2000                     MCLBYTES * SK_MAXTXSEGS,    /* maxsize */
2001                     SK_MAXTXSEGS,               /* nsegments */
2002                     MCLBYTES,                   /* maxsegsize */
2003                     0,                          /* flags */
2004                     NULL, NULL,                 /* lockfunc, lockarg */
2005                     &sc_if->sk_cdata.sk_tx_tag);
2006         if (error != 0) {
2007                 device_printf(sc_if->sk_if_dev,
2008                     "failed to allocate Tx DMA tag\n");
2009                 goto fail;
2010         }
2011
2012         /* create tag for Rx buffers */
2013         error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2014                     1, 0,                       /* algnmnt, boundary */
2015                     BUS_SPACE_MAXADDR,          /* lowaddr */
2016                     BUS_SPACE_MAXADDR,          /* highaddr */
2017                     NULL, NULL,                 /* filter, filterarg */
2018                     MCLBYTES,                   /* maxsize */
2019                     1,                          /* nsegments */
2020                     MCLBYTES,                   /* maxsegsize */
2021                     0,                          /* flags */
2022                     NULL, NULL,                 /* lockfunc, lockarg */
2023                     &sc_if->sk_cdata.sk_rx_tag);
2024         if (error != 0) {
2025                 device_printf(sc_if->sk_if_dev,
2026                     "failed to allocate Rx DMA tag\n");
2027                 goto fail;
2028         }
2029
2030         /* allocate DMA'able memory and load the DMA map for Tx ring */
2031         error = bus_dmamem_alloc(sc_if->sk_cdata.sk_tx_ring_tag,
2032             (void **)&sc_if->sk_rdata.sk_tx_ring, BUS_DMA_NOWAIT |
2033             BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_tx_ring_map);
2034         if (error != 0) {
2035                 device_printf(sc_if->sk_if_dev,
2036                     "failed to allocate DMA'able memory for Tx ring\n");
2037                 goto fail;
2038         }
2039
2040         ctx.sk_busaddr = 0;
2041         error = bus_dmamap_load(sc_if->sk_cdata.sk_tx_ring_tag,
2042             sc_if->sk_cdata.sk_tx_ring_map, sc_if->sk_rdata.sk_tx_ring,
2043             SK_TX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2044         if (error != 0) {
2045                 device_printf(sc_if->sk_if_dev,
2046                     "failed to load DMA'able memory for Tx ring\n");
2047                 goto fail;
2048         }
2049         sc_if->sk_rdata.sk_tx_ring_paddr = ctx.sk_busaddr;
2050
2051         /* allocate DMA'able memory and load the DMA map for Rx ring */
2052         error = bus_dmamem_alloc(sc_if->sk_cdata.sk_rx_ring_tag,
2053             (void **)&sc_if->sk_rdata.sk_rx_ring, BUS_DMA_NOWAIT |
2054             BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_rx_ring_map);
2055         if (error != 0) {
2056                 device_printf(sc_if->sk_if_dev,
2057                     "failed to allocate DMA'able memory for Rx ring\n");
2058                 goto fail;
2059         }
2060
2061         ctx.sk_busaddr = 0;
2062         error = bus_dmamap_load(sc_if->sk_cdata.sk_rx_ring_tag,
2063             sc_if->sk_cdata.sk_rx_ring_map, sc_if->sk_rdata.sk_rx_ring,
2064             SK_RX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2065         if (error != 0) {
2066                 device_printf(sc_if->sk_if_dev,
2067                     "failed to load DMA'able memory for Rx ring\n");
2068                 goto fail;
2069         }
2070         sc_if->sk_rdata.sk_rx_ring_paddr = ctx.sk_busaddr;
2071
2072         /* create DMA maps for Tx buffers */
2073         for (i = 0; i < SK_TX_RING_CNT; i++) {
2074                 txd = &sc_if->sk_cdata.sk_txdesc[i];
2075                 txd->tx_m = NULL;
2076                 txd->tx_dmamap = NULL;
2077                 error = bus_dmamap_create(sc_if->sk_cdata.sk_tx_tag, 0,
2078                     &txd->tx_dmamap);
2079                 if (error != 0) {
2080                         device_printf(sc_if->sk_if_dev,
2081                             "failed to create Tx dmamap\n");
2082                         goto fail;
2083                 }
2084         }
2085
2086         /* create DMA maps for Rx buffers */
2087         if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2088             &sc_if->sk_cdata.sk_rx_sparemap)) != 0) {
2089                 device_printf(sc_if->sk_if_dev,
2090                     "failed to create spare Rx dmamap\n");
2091                 goto fail;
2092         }
2093         for (i = 0; i < SK_RX_RING_CNT; i++) {
2094                 rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2095                 rxd->rx_m = NULL;
2096                 rxd->rx_dmamap = NULL;
2097                 error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2098                     &rxd->rx_dmamap);
2099                 if (error != 0) {
2100                         device_printf(sc_if->sk_if_dev,
2101                             "failed to create Rx dmamap\n");
2102                         goto fail;
2103                 }
2104         }
2105
2106 fail:
2107         return (error);
2108 }
2109
2110 static int
2111 sk_dma_jumbo_alloc(sc_if)
2112         struct sk_if_softc      *sc_if;
2113 {
2114         struct sk_dmamap_arg    ctx;
2115         struct sk_rxdesc        *jrxd;
2116         int                     error, i;
2117
2118         if (jumbo_disable != 0) {
2119                 device_printf(sc_if->sk_if_dev, "disabling jumbo frame support\n");
2120                 sc_if->sk_jumbo_disable = 1;
2121                 return (0);
2122         }
2123         /* create tag for jumbo Rx ring */
2124         error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2125                     SK_RING_ALIGN, 0,           /* algnmnt, boundary */
2126                     BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
2127                     BUS_SPACE_MAXADDR,          /* highaddr */
2128                     NULL, NULL,                 /* filter, filterarg */
2129                     SK_JUMBO_RX_RING_SZ,        /* maxsize */
2130                     1,                          /* nsegments */
2131                     SK_JUMBO_RX_RING_SZ,        /* maxsegsize */
2132                     0,                          /* flags */
2133                     NULL, NULL,                 /* lockfunc, lockarg */
2134                     &sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2135         if (error != 0) {
2136                 device_printf(sc_if->sk_if_dev,
2137                     "failed to allocate jumbo Rx ring DMA tag\n");
2138                 goto jumbo_fail;
2139         }
2140
2141         /* create tag for jumbo Rx buffers */
2142         error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2143                     1, 0,                       /* algnmnt, boundary */
2144                     BUS_SPACE_MAXADDR,          /* lowaddr */
2145                     BUS_SPACE_MAXADDR,          /* highaddr */
2146                     NULL, NULL,                 /* filter, filterarg */
2147                     MJUM9BYTES,                 /* maxsize */
2148                     1,                          /* nsegments */
2149                     MJUM9BYTES,                 /* maxsegsize */
2150                     0,                          /* flags */
2151                     NULL, NULL,                 /* lockfunc, lockarg */
2152                     &sc_if->sk_cdata.sk_jumbo_rx_tag);
2153         if (error != 0) {
2154                 device_printf(sc_if->sk_if_dev,
2155                     "failed to allocate jumbo Rx DMA tag\n");
2156                 goto jumbo_fail;
2157         }
2158
2159         /* allocate DMA'able memory and load the DMA map for jumbo Rx ring */
2160         error = bus_dmamem_alloc(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2161             (void **)&sc_if->sk_rdata.sk_jumbo_rx_ring, BUS_DMA_NOWAIT |
2162             BUS_DMA_COHERENT | BUS_DMA_ZERO,
2163             &sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2164         if (error != 0) {
2165                 device_printf(sc_if->sk_if_dev,
2166                     "failed to allocate DMA'able memory for jumbo Rx ring\n");
2167                 goto jumbo_fail;
2168         }
2169
2170         ctx.sk_busaddr = 0;
2171         error = bus_dmamap_load(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2172             sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2173             sc_if->sk_rdata.sk_jumbo_rx_ring, SK_JUMBO_RX_RING_SZ, sk_dmamap_cb,
2174             &ctx, BUS_DMA_NOWAIT);
2175         if (error != 0) {
2176                 device_printf(sc_if->sk_if_dev,
2177                     "failed to load DMA'able memory for jumbo Rx ring\n");
2178                 goto jumbo_fail;
2179         }
2180         sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = ctx.sk_busaddr;
2181
2182         /* create DMA maps for jumbo Rx buffers */
2183         if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2184             &sc_if->sk_cdata.sk_jumbo_rx_sparemap)) != 0) {
2185                 device_printf(sc_if->sk_if_dev,
2186                     "failed to create spare jumbo Rx dmamap\n");
2187                 goto jumbo_fail;
2188         }
2189         for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2190                 jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2191                 jrxd->rx_m = NULL;
2192                 jrxd->rx_dmamap = NULL;
2193                 error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2194                     &jrxd->rx_dmamap);
2195                 if (error != 0) {
2196                         device_printf(sc_if->sk_if_dev,
2197                             "failed to create jumbo Rx dmamap\n");
2198                         goto jumbo_fail;
2199                 }
2200         }
2201
2202         return (0);
2203
2204 jumbo_fail:
2205         sk_dma_jumbo_free(sc_if);
2206         device_printf(sc_if->sk_if_dev, "disabling jumbo frame support due to "
2207             "resource shortage\n");
2208         sc_if->sk_jumbo_disable = 1;
2209         return (0);
2210 }
2211
2212 static void
2213 sk_dma_free(sc_if)
2214         struct sk_if_softc      *sc_if;
2215 {
2216         struct sk_txdesc        *txd;
2217         struct sk_rxdesc        *rxd;
2218         int                     i;
2219
2220         /* Tx ring */
2221         if (sc_if->sk_cdata.sk_tx_ring_tag) {
2222                 if (sc_if->sk_rdata.sk_tx_ring_paddr)
2223                         bus_dmamap_unload(sc_if->sk_cdata.sk_tx_ring_tag,
2224                             sc_if->sk_cdata.sk_tx_ring_map);
2225                 if (sc_if->sk_rdata.sk_tx_ring)
2226                         bus_dmamem_free(sc_if->sk_cdata.sk_tx_ring_tag,
2227                             sc_if->sk_rdata.sk_tx_ring,
2228                             sc_if->sk_cdata.sk_tx_ring_map);
2229                 sc_if->sk_rdata.sk_tx_ring = NULL;
2230                 sc_if->sk_rdata.sk_tx_ring_paddr = 0;
2231                 bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_ring_tag);
2232                 sc_if->sk_cdata.sk_tx_ring_tag = NULL;
2233         }
2234         /* Rx ring */
2235         if (sc_if->sk_cdata.sk_rx_ring_tag) {
2236                 if (sc_if->sk_rdata.sk_rx_ring_paddr)
2237                         bus_dmamap_unload(sc_if->sk_cdata.sk_rx_ring_tag,
2238                             sc_if->sk_cdata.sk_rx_ring_map);
2239                 if (sc_if->sk_rdata.sk_rx_ring)
2240                         bus_dmamem_free(sc_if->sk_cdata.sk_rx_ring_tag,
2241                             sc_if->sk_rdata.sk_rx_ring,
2242                             sc_if->sk_cdata.sk_rx_ring_map);
2243                 sc_if->sk_rdata.sk_rx_ring = NULL;
2244                 sc_if->sk_rdata.sk_rx_ring_paddr = 0;
2245                 bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_ring_tag);
2246                 sc_if->sk_cdata.sk_rx_ring_tag = NULL;
2247         }
2248         /* Tx buffers */
2249         if (sc_if->sk_cdata.sk_tx_tag) {
2250                 for (i = 0; i < SK_TX_RING_CNT; i++) {
2251                         txd = &sc_if->sk_cdata.sk_txdesc[i];
2252                         if (txd->tx_dmamap) {
2253                                 bus_dmamap_destroy(sc_if->sk_cdata.sk_tx_tag,
2254                                     txd->tx_dmamap);
2255                                 txd->tx_dmamap = NULL;
2256                         }
2257                 }
2258                 bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_tag);
2259                 sc_if->sk_cdata.sk_tx_tag = NULL;
2260         }
2261         /* Rx buffers */
2262         if (sc_if->sk_cdata.sk_rx_tag) {
2263                 for (i = 0; i < SK_RX_RING_CNT; i++) {
2264                         rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2265                         if (rxd->rx_dmamap) {
2266                                 bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2267                                     rxd->rx_dmamap);
2268                                 rxd->rx_dmamap = NULL;
2269                         }
2270                 }
2271                 if (sc_if->sk_cdata.sk_rx_sparemap) {
2272                         bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2273                             sc_if->sk_cdata.sk_rx_sparemap);
2274                         sc_if->sk_cdata.sk_rx_sparemap = NULL;
2275                 }
2276                 bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_tag);
2277                 sc_if->sk_cdata.sk_rx_tag = NULL;
2278         }
2279
2280         if (sc_if->sk_cdata.sk_parent_tag) {
2281                 bus_dma_tag_destroy(sc_if->sk_cdata.sk_parent_tag);
2282                 sc_if->sk_cdata.sk_parent_tag = NULL;
2283         }
2284 }
2285
2286 static void
2287 sk_dma_jumbo_free(sc_if)
2288         struct sk_if_softc      *sc_if;
2289 {
2290         struct sk_rxdesc        *jrxd;
2291         int                     i;
2292
2293         /* jumbo Rx ring */
2294         if (sc_if->sk_cdata.sk_jumbo_rx_ring_tag) {
2295                 if (sc_if->sk_rdata.sk_jumbo_rx_ring_paddr)
2296                         bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2297                             sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2298                 if (sc_if->sk_rdata.sk_jumbo_rx_ring)
2299                         bus_dmamem_free(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2300                             sc_if->sk_rdata.sk_jumbo_rx_ring,
2301                             sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2302                 sc_if->sk_rdata.sk_jumbo_rx_ring = NULL;
2303                 sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = 0;
2304                 bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2305                 sc_if->sk_cdata.sk_jumbo_rx_ring_tag = NULL;
2306         }
2307
2308         /* jumbo Rx buffers */
2309         if (sc_if->sk_cdata.sk_jumbo_rx_tag) {
2310                 for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2311                         jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2312                         if (jrxd->rx_dmamap) {
2313                                 bus_dmamap_destroy(
2314                                     sc_if->sk_cdata.sk_jumbo_rx_tag,
2315                                     jrxd->rx_dmamap);
2316                                 jrxd->rx_dmamap = NULL;
2317                         }
2318                 }
2319                 if (sc_if->sk_cdata.sk_jumbo_rx_sparemap) {
2320                         bus_dmamap_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag,
2321                             sc_if->sk_cdata.sk_jumbo_rx_sparemap);
2322                         sc_if->sk_cdata.sk_jumbo_rx_sparemap = NULL;
2323                 }
2324                 bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag);
2325                 sc_if->sk_cdata.sk_jumbo_rx_tag = NULL;
2326         }
2327 }
2328
2329 static void
2330 sk_txcksum(ifp, m, f)
2331         struct ifnet            *ifp;
2332         struct mbuf             *m;
2333         struct sk_tx_desc       *f;
2334 {
2335         struct ip               *ip;
2336         u_int16_t               offset;
2337         u_int8_t                *p;
2338
2339         offset = sizeof(struct ip) + ETHER_HDR_LEN;
2340         for(; m && m->m_len == 0; m = m->m_next)
2341                 ;
2342         if (m == NULL || m->m_len < ETHER_HDR_LEN) {
2343                 if_printf(ifp, "%s: m_len < ETHER_HDR_LEN\n", __func__);
2344                 /* checksum may be corrupted */
2345                 goto sendit;
2346         }
2347         if (m->m_len < ETHER_HDR_LEN + sizeof(u_int32_t)) {
2348                 if (m->m_len != ETHER_HDR_LEN) {
2349                         if_printf(ifp, "%s: m_len != ETHER_HDR_LEN\n",
2350                             __func__);
2351                         /* checksum may be corrupted */
2352                         goto sendit;
2353                 }
2354                 for(m = m->m_next; m && m->m_len == 0; m = m->m_next)
2355                         ;
2356                 if (m == NULL) {
2357                         offset = sizeof(struct ip) + ETHER_HDR_LEN;
2358                         /* checksum may be corrupted */
2359                         goto sendit;
2360                 }
2361                 ip = mtod(m, struct ip *);
2362         } else {
2363                 p = mtod(m, u_int8_t *);
2364                 p += ETHER_HDR_LEN;
2365                 ip = (struct ip *)p;
2366         }
2367         offset = (ip->ip_hl << 2) + ETHER_HDR_LEN;
2368
2369 sendit:
2370         f->sk_csum_startval = 0;
2371         f->sk_csum_start = htole32(((offset + m->m_pkthdr.csum_data) & 0xffff) |
2372             (offset << 16));
2373 }
2374
2375 static int
2376 sk_encap(sc_if, m_head)
2377         struct sk_if_softc      *sc_if;
2378         struct mbuf             **m_head;
2379 {
2380         struct sk_txdesc        *txd;
2381         struct sk_tx_desc       *f = NULL;
2382         struct mbuf             *m;
2383         bus_dma_segment_t       txsegs[SK_MAXTXSEGS];
2384         u_int32_t               cflags, frag, si, sk_ctl;
2385         int                     error, i, nseg;
2386
2387         SK_IF_LOCK_ASSERT(sc_if);
2388
2389         if ((txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txfreeq)) == NULL)
2390                 return (ENOBUFS);
2391
2392         error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2393             txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2394         if (error == EFBIG) {
2395                 m = m_defrag(*m_head, M_NOWAIT);
2396                 if (m == NULL) {
2397                         m_freem(*m_head);
2398                         *m_head = NULL;
2399                         return (ENOMEM);
2400                 }
2401                 *m_head = m;
2402                 error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2403                     txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2404                 if (error != 0) {
2405                         m_freem(*m_head);
2406                         *m_head = NULL;
2407                         return (error);
2408                 }
2409         } else if (error != 0)
2410                 return (error);
2411         if (nseg == 0) {
2412                 m_freem(*m_head);
2413                 *m_head = NULL;
2414                 return (EIO);
2415         }
2416         if (sc_if->sk_cdata.sk_tx_cnt + nseg >= SK_TX_RING_CNT) {
2417                 bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2418                 return (ENOBUFS);
2419         }
2420
2421         m = *m_head;
2422         if ((m->m_pkthdr.csum_flags & sc_if->sk_ifp->if_hwassist) != 0)
2423                 cflags = SK_OPCODE_CSUM;
2424         else
2425                 cflags = SK_OPCODE_DEFAULT;
2426         si = frag = sc_if->sk_cdata.sk_tx_prod;
2427         for (i = 0; i < nseg; i++) {
2428                 f = &sc_if->sk_rdata.sk_tx_ring[frag];
2429                 f->sk_data_lo = htole32(SK_ADDR_LO(txsegs[i].ds_addr));
2430                 f->sk_data_hi = htole32(SK_ADDR_HI(txsegs[i].ds_addr));
2431                 sk_ctl = txsegs[i].ds_len | cflags;
2432                 if (i == 0) {
2433                         if (cflags == SK_OPCODE_CSUM)
2434                                 sk_txcksum(sc_if->sk_ifp, m, f);
2435                         sk_ctl |= SK_TXCTL_FIRSTFRAG;
2436                 } else
2437                         sk_ctl |= SK_TXCTL_OWN;
2438                 f->sk_ctl = htole32(sk_ctl);
2439                 sc_if->sk_cdata.sk_tx_cnt++;
2440                 SK_INC(frag, SK_TX_RING_CNT);
2441         }
2442         sc_if->sk_cdata.sk_tx_prod = frag;
2443
2444         /* set EOF on the last desciptor */
2445         frag = (frag + SK_TX_RING_CNT - 1) % SK_TX_RING_CNT;
2446         f = &sc_if->sk_rdata.sk_tx_ring[frag];
2447         f->sk_ctl |= htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
2448
2449         /* turn the first descriptor ownership to NIC */
2450         f = &sc_if->sk_rdata.sk_tx_ring[si];
2451         f->sk_ctl |= htole32(SK_TXCTL_OWN);
2452
2453         STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txfreeq, tx_q);
2454         STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txbusyq, txd, tx_q);
2455         txd->tx_m = m;
2456
2457         /* sync descriptors */
2458         bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2459             BUS_DMASYNC_PREWRITE);
2460         bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2461             sc_if->sk_cdata.sk_tx_ring_map,
2462             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2463
2464         return (0);
2465 }
2466
2467 static void
2468 sk_start(ifp)
2469         struct ifnet            *ifp;
2470 {
2471         struct sk_if_softc *sc_if;
2472
2473         sc_if = ifp->if_softc;
2474
2475         SK_IF_LOCK(sc_if);
2476         sk_start_locked(ifp);
2477         SK_IF_UNLOCK(sc_if);
2478
2479         return;
2480 }
2481
2482 static void
2483 sk_start_locked(ifp)
2484         struct ifnet            *ifp;
2485 {
2486         struct sk_softc         *sc;
2487         struct sk_if_softc      *sc_if;
2488         struct mbuf             *m_head;
2489         int                     enq;
2490
2491         sc_if = ifp->if_softc;
2492         sc = sc_if->sk_softc;
2493
2494         SK_IF_LOCK_ASSERT(sc_if);
2495
2496         for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2497             sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 1; ) {
2498                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2499                 if (m_head == NULL)
2500                         break;
2501
2502                 /*
2503                  * Pack the data into the transmit ring. If we
2504                  * don't have room, set the OACTIVE flag and wait
2505                  * for the NIC to drain the ring.
2506                  */
2507                 if (sk_encap(sc_if, &m_head)) {
2508                         if (m_head == NULL)
2509                                 break;
2510                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2511                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2512                         break;
2513                 }
2514
2515                 enq++;
2516                 /*
2517                  * If there's a BPF listener, bounce a copy of this frame
2518                  * to him.
2519                  */
2520                 BPF_MTAP(ifp, m_head);
2521         }
2522
2523         if (enq > 0) {
2524                 /* Transmit */
2525                 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2526
2527                 /* Set a timeout in case the chip goes out to lunch. */
2528                 sc_if->sk_watchdog_timer = 5;
2529         }
2530 }
2531
2532
2533 static void
2534 sk_watchdog(arg)
2535         void                    *arg;
2536 {
2537         struct sk_if_softc      *sc_if;
2538         struct ifnet            *ifp;
2539
2540         ifp = arg;
2541         sc_if = ifp->if_softc;
2542
2543         SK_IF_LOCK_ASSERT(sc_if);
2544
2545         if (sc_if->sk_watchdog_timer == 0 || --sc_if->sk_watchdog_timer)
2546                 goto done;
2547
2548         /*
2549          * Reclaim first as there is a possibility of losing Tx completion
2550          * interrupts.
2551          */
2552         sk_txeof(sc_if);
2553         if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2554                 if_printf(sc_if->sk_ifp, "watchdog timeout\n");
2555                 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2556                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2557                 sk_init_locked(sc_if);
2558         }
2559
2560 done:
2561         callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
2562
2563         return;
2564 }
2565
2566 static int
2567 skc_shutdown(dev)
2568         device_t                dev;
2569 {
2570         struct sk_softc         *sc;
2571
2572         sc = device_get_softc(dev);
2573         SK_LOCK(sc);
2574
2575         /* Turn off the 'driver is loaded' LED. */
2576         CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2577
2578         /*
2579          * Reset the GEnesis controller. Doing this should also
2580          * assert the resets on the attached XMAC(s).
2581          */
2582         sk_reset(sc);
2583         SK_UNLOCK(sc);
2584
2585         return (0);
2586 }
2587
2588 static int
2589 skc_suspend(dev)
2590         device_t                dev;
2591 {
2592         struct sk_softc         *sc;
2593         struct sk_if_softc      *sc_if0, *sc_if1;
2594         struct ifnet            *ifp0 = NULL, *ifp1 = NULL;
2595
2596         sc = device_get_softc(dev);
2597
2598         SK_LOCK(sc);
2599
2600         sc_if0 = sc->sk_if[SK_PORT_A];
2601         sc_if1 = sc->sk_if[SK_PORT_B];
2602         if (sc_if0 != NULL)
2603                 ifp0 = sc_if0->sk_ifp;
2604         if (sc_if1 != NULL)
2605                 ifp1 = sc_if1->sk_ifp;
2606         if (ifp0 != NULL)
2607                 sk_stop(sc_if0);
2608         if (ifp1 != NULL)
2609                 sk_stop(sc_if1);
2610         sc->sk_suspended = 1;
2611
2612         SK_UNLOCK(sc);
2613
2614         return (0);
2615 }
2616
2617 static int
2618 skc_resume(dev)
2619         device_t                dev;
2620 {
2621         struct sk_softc         *sc;
2622         struct sk_if_softc      *sc_if0, *sc_if1;
2623         struct ifnet            *ifp0 = NULL, *ifp1 = NULL;
2624
2625         sc = device_get_softc(dev);
2626
2627         SK_LOCK(sc);
2628
2629         sc_if0 = sc->sk_if[SK_PORT_A];
2630         sc_if1 = sc->sk_if[SK_PORT_B];
2631         if (sc_if0 != NULL)
2632                 ifp0 = sc_if0->sk_ifp;
2633         if (sc_if1 != NULL)
2634                 ifp1 = sc_if1->sk_ifp;
2635         if (ifp0 != NULL && ifp0->if_flags & IFF_UP)
2636                 sk_init_locked(sc_if0);
2637         if (ifp1 != NULL && ifp1->if_flags & IFF_UP)
2638                 sk_init_locked(sc_if1);
2639         sc->sk_suspended = 0;
2640
2641         SK_UNLOCK(sc);
2642
2643         return (0);
2644 }
2645
2646 /*
2647  * According to the data sheet from SK-NET GENESIS the hardware can compute
2648  * two Rx checksums at the same time(Each checksum start position is
2649  * programmed in Rx descriptors). However it seems that TCP/UDP checksum
2650  * does not work at least on my Yukon hardware. I tried every possible ways
2651  * to get correct checksum value but couldn't get correct one. So TCP/UDP
2652  * checksum offload was disabled at the moment and only IP checksum offload
2653  * was enabled.
2654  * As nomral IP header size is 20 bytes I can't expect it would give an
2655  * increase in throughput. However it seems it doesn't hurt performance in
2656  * my testing. If there is a more detailed information for checksum secret
2657  * of the hardware in question please contact yongari@FreeBSD.org to add
2658  * TCP/UDP checksum offload support.
2659  */
2660 static __inline void
2661 sk_rxcksum(ifp, m, csum)
2662         struct ifnet            *ifp;
2663         struct mbuf             *m;
2664         u_int32_t               csum;
2665 {
2666         struct ether_header     *eh;
2667         struct ip               *ip;
2668         int32_t                 hlen, len, pktlen;
2669         u_int16_t               csum1, csum2, ipcsum;
2670
2671         pktlen = m->m_pkthdr.len;
2672         if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
2673                 return;
2674         eh = mtod(m, struct ether_header *);
2675         if (eh->ether_type != htons(ETHERTYPE_IP))
2676                 return;
2677         ip = (struct ip *)(eh + 1);
2678         if (ip->ip_v != IPVERSION)
2679                 return;
2680         hlen = ip->ip_hl << 2;
2681         pktlen -= sizeof(struct ether_header);
2682         if (hlen < sizeof(struct ip))
2683                 return;
2684         if (ntohs(ip->ip_len) < hlen)
2685                 return;
2686         if (ntohs(ip->ip_len) != pktlen)
2687                 return;
2688
2689         csum1 = htons(csum & 0xffff);
2690         csum2 = htons((csum >> 16) & 0xffff);
2691         ipcsum = in_addword(csum1, ~csum2 & 0xffff);
2692         /* checksum fixup for IP options */
2693         len = hlen - sizeof(struct ip);
2694         if (len > 0) {
2695                 /*
2696                  * If the second checksum value is correct we can compute IP
2697                  * checksum with simple math. Unfortunately the second checksum
2698                  * value is wrong so we can't verify the checksum from the
2699                  * value(It seems there is some magic here to get correct
2700                  * value). If the second checksum value is correct it also
2701                  * means we can get TCP/UDP checksum) here. However, it still
2702                  * needs pseudo header checksum calculation due to hardware
2703                  * limitations.
2704                  */
2705                 return;
2706         }
2707         m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
2708         if (ipcsum == 0xffff)
2709                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2710 }
2711
2712 static __inline int
2713 sk_rxvalid(sc, stat, len)
2714         struct sk_softc         *sc;
2715         u_int32_t               stat, len;
2716 {
2717
2718         if (sc->sk_type == SK_GENESIS) {
2719                 if ((stat & XM_RXSTAT_ERRFRAME) == XM_RXSTAT_ERRFRAME ||
2720                     XM_RXSTAT_BYTES(stat) != len)
2721                         return (0);
2722         } else {
2723                 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
2724                     YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
2725                     YU_RXSTAT_JABBER)) != 0 ||
2726                     (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
2727                     YU_RXSTAT_BYTES(stat) != len)
2728                         return (0);
2729         }
2730
2731         return (1);
2732 }
2733
2734 static void
2735 sk_rxeof(sc_if)
2736         struct sk_if_softc      *sc_if;
2737 {
2738         struct sk_softc         *sc;
2739         struct mbuf             *m;
2740         struct ifnet            *ifp;
2741         struct sk_rx_desc       *cur_rx;
2742         struct sk_rxdesc        *rxd;
2743         int                     cons, prog;
2744         u_int32_t               csum, rxstat, sk_ctl;
2745
2746         sc = sc_if->sk_softc;
2747         ifp = sc_if->sk_ifp;
2748
2749         SK_IF_LOCK_ASSERT(sc_if);
2750
2751         bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2752             sc_if->sk_cdata.sk_rx_ring_map, BUS_DMASYNC_POSTREAD);
2753
2754         prog = 0;
2755         for (cons = sc_if->sk_cdata.sk_rx_cons; prog < SK_RX_RING_CNT;
2756             prog++, SK_INC(cons, SK_RX_RING_CNT)) {
2757                 cur_rx = &sc_if->sk_rdata.sk_rx_ring[cons];
2758                 sk_ctl = le32toh(cur_rx->sk_ctl);
2759                 if ((sk_ctl & SK_RXCTL_OWN) != 0)
2760                         break;
2761                 rxd = &sc_if->sk_cdata.sk_rxdesc[cons];
2762                 rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2763
2764                 if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2765                     SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2766                     SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2767                     SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2768                     SK_RXBYTES(sk_ctl) > SK_MAX_FRAMELEN ||
2769                     sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2770                         if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2771                         sk_discard_rxbuf(sc_if, cons);
2772                         continue;
2773                 }
2774
2775                 m = rxd->rx_m;
2776                 csum = le32toh(cur_rx->sk_csum);
2777                 if (sk_newbuf(sc_if, cons) != 0) {
2778                         if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2779                         /* reuse old buffer */
2780                         sk_discard_rxbuf(sc_if, cons);
2781                         continue;
2782                 }
2783                 m->m_pkthdr.rcvif = ifp;
2784                 m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2785                 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2786                 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2787                         sk_rxcksum(ifp, m, csum);
2788                 SK_IF_UNLOCK(sc_if);
2789                 (*ifp->if_input)(ifp, m);
2790                 SK_IF_LOCK(sc_if);
2791         }
2792
2793         if (prog > 0) {
2794                 sc_if->sk_cdata.sk_rx_cons = cons;
2795                 bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2796                     sc_if->sk_cdata.sk_rx_ring_map,
2797                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2798         }
2799 }
2800
2801 static void
2802 sk_jumbo_rxeof(sc_if)
2803         struct sk_if_softc      *sc_if;
2804 {
2805         struct sk_softc         *sc;
2806         struct mbuf             *m;
2807         struct ifnet            *ifp;
2808         struct sk_rx_desc       *cur_rx;
2809         struct sk_rxdesc        *jrxd;
2810         int                     cons, prog;
2811         u_int32_t               csum, rxstat, sk_ctl;
2812
2813         sc = sc_if->sk_softc;
2814         ifp = sc_if->sk_ifp;
2815
2816         SK_IF_LOCK_ASSERT(sc_if);
2817
2818         bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2819             sc_if->sk_cdata.sk_jumbo_rx_ring_map, BUS_DMASYNC_POSTREAD);
2820
2821         prog = 0;
2822         for (cons = sc_if->sk_cdata.sk_jumbo_rx_cons;
2823             prog < SK_JUMBO_RX_RING_CNT;
2824             prog++, SK_INC(cons, SK_JUMBO_RX_RING_CNT)) {
2825                 cur_rx = &sc_if->sk_rdata.sk_jumbo_rx_ring[cons];
2826                 sk_ctl = le32toh(cur_rx->sk_ctl);
2827                 if ((sk_ctl & SK_RXCTL_OWN) != 0)
2828                         break;
2829                 jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[cons];
2830                 rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2831
2832                 if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2833                     SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2834                     SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2835                     SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2836                     SK_RXBYTES(sk_ctl) > SK_JUMBO_FRAMELEN ||
2837                     sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2838                         if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2839                         sk_discard_jumbo_rxbuf(sc_if, cons);
2840                         continue;
2841                 }
2842
2843                 m = jrxd->rx_m;
2844                 csum = le32toh(cur_rx->sk_csum);
2845                 if (sk_jumbo_newbuf(sc_if, cons) != 0) {
2846                         if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2847                         /* reuse old buffer */
2848                         sk_discard_jumbo_rxbuf(sc_if, cons);
2849                         continue;
2850                 }
2851                 m->m_pkthdr.rcvif = ifp;
2852                 m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2853                 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2854                 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2855                         sk_rxcksum(ifp, m, csum);
2856                 SK_IF_UNLOCK(sc_if);
2857                 (*ifp->if_input)(ifp, m);
2858                 SK_IF_LOCK(sc_if);
2859         }
2860
2861         if (prog > 0) {
2862                 sc_if->sk_cdata.sk_jumbo_rx_cons = cons;
2863                 bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2864                     sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2865                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2866         }
2867 }
2868
2869 static void
2870 sk_txeof(sc_if)
2871         struct sk_if_softc      *sc_if;
2872 {
2873         struct sk_txdesc        *txd;
2874         struct sk_tx_desc       *cur_tx;
2875         struct ifnet            *ifp;
2876         u_int32_t               idx, sk_ctl;
2877
2878         ifp = sc_if->sk_ifp;
2879
2880         txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2881         if (txd == NULL)
2882                 return;
2883         bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2884             sc_if->sk_cdata.sk_tx_ring_map, BUS_DMASYNC_POSTREAD);
2885         /*
2886          * Go through our tx ring and free mbufs for those
2887          * frames that have been sent.
2888          */
2889         for (idx = sc_if->sk_cdata.sk_tx_cons;; SK_INC(idx, SK_TX_RING_CNT)) {
2890                 if (sc_if->sk_cdata.sk_tx_cnt <= 0)
2891                         break;
2892                 cur_tx = &sc_if->sk_rdata.sk_tx_ring[idx];
2893                 sk_ctl = le32toh(cur_tx->sk_ctl);
2894                 if (sk_ctl & SK_TXCTL_OWN)
2895                         break;
2896                 sc_if->sk_cdata.sk_tx_cnt--;
2897                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2898                 if ((sk_ctl & SK_TXCTL_LASTFRAG) == 0)
2899                         continue;
2900                 bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2901                     BUS_DMASYNC_POSTWRITE);
2902                 bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2903
2904                 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2905                 m_freem(txd->tx_m);
2906                 txd->tx_m = NULL;
2907                 STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txbusyq, tx_q);
2908                 STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
2909                 txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2910         }
2911         sc_if->sk_cdata.sk_tx_cons = idx;
2912         sc_if->sk_watchdog_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2913
2914         bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2915             sc_if->sk_cdata.sk_tx_ring_map,
2916             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2917 }
2918
2919 static void
2920 sk_tick(xsc_if)
2921         void                    *xsc_if;
2922 {
2923         struct sk_if_softc      *sc_if;
2924         struct mii_data         *mii;
2925         struct ifnet            *ifp;
2926         int                     i;
2927
2928         sc_if = xsc_if;
2929         ifp = sc_if->sk_ifp;
2930         mii = device_get_softc(sc_if->sk_miibus);
2931
2932         if (!(ifp->if_flags & IFF_UP))
2933                 return;
2934
2935         if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2936                 sk_intr_bcom(sc_if);
2937                 return;
2938         }
2939
2940         /*
2941          * According to SysKonnect, the correct way to verify that
2942          * the link has come back up is to poll bit 0 of the GPIO
2943          * register three times. This pin has the signal from the
2944          * link_sync pin connected to it; if we read the same link
2945          * state 3 times in a row, we know the link is up.
2946          */
2947         for (i = 0; i < 3; i++) {
2948                 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2949                         break;
2950         }
2951
2952         if (i != 3) {
2953                 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2954                 return;
2955         }
2956
2957         /* Turn the GP0 interrupt back on. */
2958         SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2959         SK_XM_READ_2(sc_if, XM_ISR);
2960         mii_tick(mii);
2961         callout_stop(&sc_if->sk_tick_ch);
2962 }
2963
2964 static void
2965 sk_yukon_tick(xsc_if)
2966         void                    *xsc_if;
2967 {
2968         struct sk_if_softc      *sc_if;
2969         struct mii_data         *mii;
2970
2971         sc_if = xsc_if;
2972         mii = device_get_softc(sc_if->sk_miibus);
2973
2974         mii_tick(mii);
2975         callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
2976 }
2977
2978 static void
2979 sk_intr_bcom(sc_if)
2980         struct sk_if_softc      *sc_if;
2981 {
2982         struct mii_data         *mii;
2983         struct ifnet            *ifp;
2984         int                     status;
2985         mii = device_get_softc(sc_if->sk_miibus);
2986         ifp = sc_if->sk_ifp;
2987
2988         SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2989
2990         /*
2991          * Read the PHY interrupt register to make sure
2992          * we clear any pending interrupts.
2993          */
2994         status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2995
2996         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2997                 sk_init_xmac(sc_if);
2998                 return;
2999         }
3000
3001         if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
3002                 int                     lstat;
3003                 lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
3004                     BRGPHY_MII_AUXSTS);
3005
3006                 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
3007                         mii_mediachg(mii);
3008                         /* Turn off the link LED. */
3009                         SK_IF_WRITE_1(sc_if, 0,
3010                             SK_LINKLED1_CTL, SK_LINKLED_OFF);
3011                         sc_if->sk_link = 0;
3012                 } else if (status & BRGPHY_ISR_LNK_CHG) {
3013                         sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3014                             BRGPHY_MII_IMR, 0xFF00);
3015                         mii_tick(mii);
3016                         sc_if->sk_link = 1;
3017                         /* Turn on the link LED. */
3018                         SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
3019                             SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
3020                             SK_LINKLED_BLINK_OFF);
3021                 } else {
3022                         mii_tick(mii);
3023                         callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3024                 }
3025         }
3026
3027         SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3028
3029         return;
3030 }
3031
3032 static void
3033 sk_intr_xmac(sc_if)
3034         struct sk_if_softc      *sc_if;
3035 {
3036         struct sk_softc         *sc;
3037         u_int16_t               status;
3038
3039         sc = sc_if->sk_softc;
3040         status = SK_XM_READ_2(sc_if, XM_ISR);
3041
3042         /*
3043          * Link has gone down. Start MII tick timeout to
3044          * watch for link resync.
3045          */
3046         if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
3047                 if (status & XM_ISR_GP0_SET) {
3048                         SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
3049                         callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3050                 }
3051
3052                 if (status & XM_ISR_AUTONEG_DONE) {
3053                         callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3054                 }
3055         }
3056
3057         if (status & XM_IMR_TX_UNDERRUN)
3058                 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
3059
3060         if (status & XM_IMR_RX_OVERRUN)
3061                 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
3062
3063         status = SK_XM_READ_2(sc_if, XM_ISR);
3064
3065         return;
3066 }
3067
3068 static void
3069 sk_intr_yukon(sc_if)
3070         struct sk_if_softc      *sc_if;
3071 {
3072         u_int8_t status;
3073
3074         status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
3075         /* RX overrun */
3076         if ((status & SK_GMAC_INT_RX_OVER) != 0) {
3077                 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
3078                     SK_RFCTL_RX_FIFO_OVER);
3079         }
3080         /* TX underrun */
3081         if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
3082                 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
3083                     SK_TFCTL_TX_FIFO_UNDER);
3084         }
3085 }
3086
3087 static void
3088 sk_intr(xsc)
3089         void                    *xsc;
3090 {
3091         struct sk_softc         *sc = xsc;
3092         struct sk_if_softc      *sc_if0, *sc_if1;
3093         struct ifnet            *ifp0 = NULL, *ifp1 = NULL;
3094         u_int32_t               status;
3095
3096         SK_LOCK(sc);
3097
3098         status = CSR_READ_4(sc, SK_ISSR);
3099         if (status == 0 || status == 0xffffffff || sc->sk_suspended)
3100                 goto done_locked;
3101
3102         sc_if0 = sc->sk_if[SK_PORT_A];
3103         sc_if1 = sc->sk_if[SK_PORT_B];
3104
3105         if (sc_if0 != NULL)
3106                 ifp0 = sc_if0->sk_ifp;
3107         if (sc_if1 != NULL)
3108                 ifp1 = sc_if1->sk_ifp;
3109
3110         for (; (status &= sc->sk_intrmask) != 0;) {
3111                 /* Handle receive interrupts first. */
3112                 if (status & SK_ISR_RX1_EOF) {
3113                         if (ifp0->if_mtu > SK_MAX_FRAMELEN)
3114                                 sk_jumbo_rxeof(sc_if0);
3115                         else
3116                                 sk_rxeof(sc_if0);
3117                         CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
3118                             SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3119                 }
3120                 if (status & SK_ISR_RX2_EOF) {
3121                         if (ifp1->if_mtu > SK_MAX_FRAMELEN)
3122                                 sk_jumbo_rxeof(sc_if1);
3123                         else
3124                                 sk_rxeof(sc_if1);
3125                         CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
3126                             SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3127                 }
3128
3129                 /* Then transmit interrupts. */
3130                 if (status & SK_ISR_TX1_S_EOF) {
3131                         sk_txeof(sc_if0);
3132                         CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, SK_TXBMU_CLR_IRQ_EOF);
3133                 }
3134                 if (status & SK_ISR_TX2_S_EOF) {
3135                         sk_txeof(sc_if1);
3136                         CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, SK_TXBMU_CLR_IRQ_EOF);
3137                 }
3138
3139                 /* Then MAC interrupts. */
3140                 if (status & SK_ISR_MAC1 &&
3141                     ifp0->if_drv_flags & IFF_DRV_RUNNING) {
3142                         if (sc->sk_type == SK_GENESIS)
3143                                 sk_intr_xmac(sc_if0);
3144                         else
3145                                 sk_intr_yukon(sc_if0);
3146                 }
3147
3148                 if (status & SK_ISR_MAC2 &&
3149                     ifp1->if_drv_flags & IFF_DRV_RUNNING) {
3150                         if (sc->sk_type == SK_GENESIS)
3151                                 sk_intr_xmac(sc_if1);
3152                         else
3153                                 sk_intr_yukon(sc_if1);
3154                 }
3155
3156                 if (status & SK_ISR_EXTERNAL_REG) {
3157                         if (ifp0 != NULL &&
3158                             sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
3159                                 sk_intr_bcom(sc_if0);
3160                         if (ifp1 != NULL &&
3161                             sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
3162                                 sk_intr_bcom(sc_if1);
3163                 }
3164                 status = CSR_READ_4(sc, SK_ISSR);
3165         }
3166
3167         CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3168
3169         if (ifp0 != NULL && !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3170                 sk_start_locked(ifp0);
3171         if (ifp1 != NULL && !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3172                 sk_start_locked(ifp1);
3173
3174 done_locked:
3175         SK_UNLOCK(sc);
3176 }
3177
3178 static void
3179 sk_init_xmac(sc_if)
3180         struct sk_if_softc      *sc_if;
3181 {
3182         struct sk_softc         *sc;
3183         struct ifnet            *ifp;
3184         u_int16_t               eaddr[(ETHER_ADDR_LEN+1)/2];
3185         static const struct sk_bcom_hack bhack[] = {
3186         { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
3187         { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
3188         { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
3189         { 0, 0 } };
3190
3191         SK_IF_LOCK_ASSERT(sc_if);
3192
3193         sc = sc_if->sk_softc;
3194         ifp = sc_if->sk_ifp;
3195
3196         /* Unreset the XMAC. */
3197         SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
3198         DELAY(1000);
3199
3200         /* Reset the XMAC's internal state. */
3201         SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3202
3203         /* Save the XMAC II revision */
3204         sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
3205
3206         /*
3207          * Perform additional initialization for external PHYs,
3208          * namely for the 1000baseTX cards that use the XMAC's
3209          * GMII mode.
3210          */
3211         if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3212                 int                     i = 0;
3213                 u_int32_t               val;
3214
3215                 /* Take PHY out of reset. */
3216                 val = sk_win_read_4(sc, SK_GPIO);
3217                 if (sc_if->sk_port == SK_PORT_A)
3218                         val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
3219                 else
3220                         val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
3221                 sk_win_write_4(sc, SK_GPIO, val);
3222
3223                 /* Enable GMII mode on the XMAC. */
3224                 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
3225
3226                 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3227                     BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
3228                 DELAY(10000);
3229                 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3230                     BRGPHY_MII_IMR, 0xFFF0);
3231
3232                 /*
3233                  * Early versions of the BCM5400 apparently have
3234                  * a bug that requires them to have their reserved
3235                  * registers initialized to some magic values. I don't
3236                  * know what the numbers do, I'm just the messenger.
3237                  */
3238                 if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
3239                     == 0x6041) {
3240                         while(bhack[i].reg) {
3241                                 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3242                                     bhack[i].reg, bhack[i].val);
3243                                 i++;
3244                         }
3245                 }
3246         }
3247
3248         /* Set station address */
3249         bcopy(IF_LLADDR(sc_if->sk_ifp), eaddr, ETHER_ADDR_LEN);
3250         SK_XM_WRITE_2(sc_if, XM_PAR0, eaddr[0]);
3251         SK_XM_WRITE_2(sc_if, XM_PAR1, eaddr[1]);
3252         SK_XM_WRITE_2(sc_if, XM_PAR2, eaddr[2]);
3253         SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
3254
3255         if (ifp->if_flags & IFF_BROADCAST) {
3256                 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3257         } else {
3258                 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3259         }
3260
3261         /* We don't need the FCS appended to the packet. */
3262         SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
3263
3264         /* We want short frames padded to 60 bytes. */
3265         SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
3266
3267         /*
3268          * Enable the reception of all error frames. This is is
3269          * a necessary evil due to the design of the XMAC. The
3270          * XMAC's receive FIFO is only 8K in size, however jumbo
3271          * frames can be up to 9000 bytes in length. When bad
3272          * frame filtering is enabled, the XMAC's RX FIFO operates
3273          * in 'store and forward' mode. For this to work, the
3274          * entire frame has to fit into the FIFO, but that means
3275          * that jumbo frames larger than 8192 bytes will be
3276          * truncated. Disabling all bad frame filtering causes
3277          * the RX FIFO to operate in streaming mode, in which
3278          * case the XMAC will start transfering frames out of the
3279          * RX FIFO as soon as the FIFO threshold is reached.
3280          */
3281         if (ifp->if_mtu > SK_MAX_FRAMELEN) {
3282                 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
3283                     XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
3284                     XM_MODE_RX_INRANGELEN);
3285                 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3286         } else
3287                 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3288
3289         /*
3290          * Bump up the transmit threshold. This helps hold off transmit
3291          * underruns when we're blasting traffic from both ports at once.
3292          */
3293         SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
3294
3295         /* Set Rx filter */
3296         sk_rxfilter_genesis(sc_if);
3297
3298         /* Clear and enable interrupts */
3299         SK_XM_READ_2(sc_if, XM_ISR);
3300         if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
3301                 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
3302         else
3303                 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3304
3305         /* Configure MAC arbiter */
3306         switch(sc_if->sk_xmac_rev) {
3307         case XM_XMAC_REV_B2:
3308                 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
3309                 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
3310                 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
3311                 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
3312                 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
3313                 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
3314                 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
3315                 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
3316                 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3317                 break;
3318         case XM_XMAC_REV_C1:
3319                 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
3320                 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
3321                 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
3322                 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
3323                 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
3324                 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
3325                 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
3326                 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
3327                 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3328                 break;
3329         default:
3330                 break;
3331         }
3332         sk_win_write_2(sc, SK_MACARB_CTL,
3333             SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
3334
3335         sc_if->sk_link = 1;
3336
3337         return;
3338 }
3339
3340 static void
3341 sk_init_yukon(sc_if)
3342         struct sk_if_softc      *sc_if;
3343 {
3344         u_int32_t               phy, v;
3345         u_int16_t               reg;
3346         struct sk_softc         *sc;
3347         struct ifnet            *ifp;
3348         u_int8_t                *eaddr;
3349         int                     i;
3350
3351         SK_IF_LOCK_ASSERT(sc_if);
3352
3353         sc = sc_if->sk_softc;
3354         ifp = sc_if->sk_ifp;
3355
3356         if (sc->sk_type == SK_YUKON_LITE &&
3357             sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3358                 /*
3359                  * Workaround code for COMA mode, set PHY reset.
3360                  * Otherwise it will not correctly take chip out of
3361                  * powerdown (coma)
3362                  */
3363                 v = sk_win_read_4(sc, SK_GPIO);
3364                 v |= SK_GPIO_DIR9 | SK_GPIO_DAT9;
3365                 sk_win_write_4(sc, SK_GPIO, v);
3366         }
3367
3368         /* GMAC and GPHY Reset */
3369         SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
3370         SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
3371         DELAY(1000);
3372
3373         if (sc->sk_type == SK_YUKON_LITE &&
3374             sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3375                 /*
3376                  * Workaround code for COMA mode, clear PHY reset
3377                  */
3378                 v = sk_win_read_4(sc, SK_GPIO);
3379                 v |= SK_GPIO_DIR9;
3380                 v &= ~SK_GPIO_DAT9;
3381                 sk_win_write_4(sc, SK_GPIO, v);
3382         }
3383
3384         phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
3385                 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
3386
3387         if (sc->sk_coppertype)
3388                 phy |= SK_GPHY_COPPER;
3389         else
3390                 phy |= SK_GPHY_FIBER;
3391
3392         SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
3393         DELAY(1000);
3394         SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
3395         SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
3396                       SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
3397
3398         /* unused read of the interrupt source register */
3399         SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
3400
3401         reg = SK_YU_READ_2(sc_if, YUKON_PAR);
3402
3403         /* MIB Counter Clear Mode set */
3404         reg |= YU_PAR_MIB_CLR;
3405         SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3406
3407         /* MIB Counter Clear Mode clear */
3408         reg &= ~YU_PAR_MIB_CLR;
3409         SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3410
3411         /* receive control reg */
3412         SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
3413
3414         /* transmit parameter register */
3415         SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
3416                       YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
3417
3418         /* serial mode register */
3419         reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
3420         if (ifp->if_mtu > SK_MAX_FRAMELEN)
3421                 reg |= YU_SMR_MFL_JUMBO;
3422         SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
3423
3424         /* Setup Yukon's station address */
3425         eaddr = IF_LLADDR(sc_if->sk_ifp);
3426         for (i = 0; i < 3; i++)
3427                 SK_YU_WRITE_2(sc_if, SK_MAC0_0 + i * 4,
3428                     eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3429         /* Set GMAC source address of flow control. */
3430         for (i = 0; i < 3; i++)
3431                 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
3432                     eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3433         /* Set GMAC virtual address. */
3434         for (i = 0; i < 3; i++)
3435                 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4,
3436                     eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3437
3438         /* Set Rx filter */
3439         sk_rxfilter_yukon(sc_if);
3440
3441         /* enable interrupt mask for counter overflows */
3442         SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
3443         SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
3444         SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
3445
3446         /* Configure RX MAC FIFO Flush Mask */
3447         v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
3448             YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
3449             YU_RXSTAT_JABBER;
3450         SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
3451
3452         /* Disable RX MAC FIFO Flush for YUKON-Lite Rev. A0 only */
3453         if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A0)
3454                 v = SK_TFCTL_OPERATION_ON;
3455         else
3456                 v = SK_TFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
3457         /* Configure RX MAC FIFO */
3458         SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
3459         SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
3460
3461         /* Increase flush threshould to 64 bytes */
3462         SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
3463             SK_RFCTL_FIFO_THRESHOLD + 1);
3464
3465         /* Configure TX MAC FIFO */
3466         SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
3467         SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
3468 }
3469
3470 /*
3471  * Note that to properly initialize any part of the GEnesis chip,
3472  * you first have to take it out of reset mode.
3473  */
3474 static void
3475 sk_init(xsc)
3476         void                    *xsc;
3477 {
3478         struct sk_if_softc      *sc_if = xsc;
3479
3480         SK_IF_LOCK(sc_if);
3481         sk_init_locked(sc_if);
3482         SK_IF_UNLOCK(sc_if);
3483
3484         return;
3485 }
3486
3487 static void
3488 sk_init_locked(sc_if)
3489         struct sk_if_softc      *sc_if;
3490 {
3491         struct sk_softc         *sc;
3492         struct ifnet            *ifp;
3493         struct mii_data         *mii;
3494         u_int16_t               reg;
3495         u_int32_t               imr;
3496         int                     error;
3497
3498         SK_IF_LOCK_ASSERT(sc_if);
3499
3500         ifp = sc_if->sk_ifp;
3501         sc = sc_if->sk_softc;
3502         mii = device_get_softc(sc_if->sk_miibus);
3503
3504         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3505                 return;
3506
3507         /* Cancel pending I/O and free all RX/TX buffers. */
3508         sk_stop(sc_if);
3509
3510         if (sc->sk_type == SK_GENESIS) {
3511                 /* Configure LINK_SYNC LED */
3512                 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
3513                 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
3514                         SK_LINKLED_LINKSYNC_ON);
3515
3516                 /* Configure RX LED */
3517                 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
3518                         SK_RXLEDCTL_COUNTER_START);
3519
3520                 /* Configure TX LED */
3521                 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
3522                         SK_TXLEDCTL_COUNTER_START);
3523         }
3524
3525         /*
3526          * Configure descriptor poll timer
3527          *
3528          * SK-NET GENESIS data sheet says that possibility of losing Start
3529          * transmit command due to CPU/cache related interim storage problems
3530          * under certain conditions. The document recommends a polling
3531          * mechanism to send a Start transmit command to initiate transfer
3532          * of ready descriptors regulary. To cope with this issue sk(4) now
3533          * enables descriptor poll timer to initiate descriptor processing
3534          * periodically as defined by SK_DPT_TIMER_MAX. However sk(4) still
3535          * issue SK_TXBMU_TX_START to Tx BMU to get fast execution of Tx
3536          * command instead of waiting for next descriptor polling time.
3537          * The same rule may apply to Rx side too but it seems that is not
3538          * needed at the moment.
3539          * Since sk(4) uses descriptor polling as a last resort there is no
3540          * need to set smaller polling time than maximum allowable one.
3541          */
3542         SK_IF_WRITE_4(sc_if, 0, SK_DPT_INIT, SK_DPT_TIMER_MAX);
3543
3544         /* Configure I2C registers */
3545
3546         /* Configure XMAC(s) */
3547         switch (sc->sk_type) {
3548         case SK_GENESIS:
3549                 sk_init_xmac(sc_if);
3550                 break;
3551         case SK_YUKON:
3552         case SK_YUKON_LITE:
3553         case SK_YUKON_LP:
3554                 sk_init_yukon(sc_if);
3555                 break;
3556         }
3557         mii_mediachg(mii);
3558
3559         if (sc->sk_type == SK_GENESIS) {
3560                 /* Configure MAC FIFOs */
3561                 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
3562                 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
3563                 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
3564
3565                 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
3566                 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
3567                 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
3568         }
3569
3570         /* Configure transmit arbiter(s) */
3571         SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
3572             SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
3573
3574         /* Configure RAMbuffers */
3575         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
3576         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
3577         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
3578         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
3579         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
3580         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
3581
3582         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
3583         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
3584         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
3585         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
3586         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
3587         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
3588         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
3589
3590         /* Configure BMUs */
3591         SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
3592         if (ifp->if_mtu > SK_MAX_FRAMELEN) {
3593                 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3594                     SK_ADDR_LO(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3595                 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3596                     SK_ADDR_HI(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3597         } else {
3598                 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3599                     SK_ADDR_LO(SK_RX_RING_ADDR(sc_if, 0)));
3600                 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3601                     SK_ADDR_HI(SK_RX_RING_ADDR(sc_if, 0)));
3602         }
3603
3604         SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
3605         SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
3606             SK_ADDR_LO(SK_TX_RING_ADDR(sc_if, 0)));
3607         SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI,
3608             SK_ADDR_HI(SK_TX_RING_ADDR(sc_if, 0)));
3609
3610         /* Init descriptors */
3611         if (ifp->if_mtu > SK_MAX_FRAMELEN)
3612                 error = sk_init_jumbo_rx_ring(sc_if);
3613         else
3614                 error = sk_init_rx_ring(sc_if);
3615         if (error != 0) {
3616                 device_printf(sc_if->sk_if_dev,
3617                     "initialization failed: no memory for rx buffers\n");
3618                 sk_stop(sc_if);
3619                 return;
3620         }
3621         sk_init_tx_ring(sc_if);
3622
3623         /* Set interrupt moderation if changed via sysctl. */
3624         imr = sk_win_read_4(sc, SK_IMTIMERINIT);
3625         if (imr != SK_IM_USECS(sc->sk_int_mod, sc->sk_int_ticks)) {
3626                 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
3627                     sc->sk_int_ticks));
3628                 if (bootverbose)
3629                         device_printf(sc_if->sk_if_dev,
3630                             "interrupt moderation is %d us.\n",
3631                             sc->sk_int_mod);
3632         }
3633
3634         /* Configure interrupt handling */
3635         CSR_READ_4(sc, SK_ISSR);
3636         if (sc_if->sk_port == SK_PORT_A)
3637                 sc->sk_intrmask |= SK_INTRS1;
3638         else
3639                 sc->sk_intrmask |= SK_INTRS2;
3640
3641         sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
3642
3643         CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3644
3645         /* Start BMUs. */
3646         SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
3647
3648         switch(sc->sk_type) {
3649         case SK_GENESIS:
3650                 /* Enable XMACs TX and RX state machines */
3651                 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
3652                 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3653                 break;
3654         case SK_YUKON:
3655         case SK_YUKON_LITE:
3656         case SK_YUKON_LP:
3657                 reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
3658                 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
3659 #if 0
3660                 /* XXX disable 100Mbps and full duplex mode? */
3661                 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_DIS);
3662 #endif
3663                 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
3664         }
3665
3666         /* Activate descriptor polling timer */
3667         SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_START);
3668         /* start transfer of Tx descriptors */
3669         CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
3670
3671         ifp->if_drv_flags |= IFF_DRV_RUNNING;
3672         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3673
3674         switch (sc->sk_type) {
3675         case SK_YUKON:
3676         case SK_YUKON_LITE:
3677         case SK_YUKON_LP:
3678                 callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
3679                 break;
3680         }
3681
3682         callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
3683
3684         return;
3685 }
3686
3687 static void
3688 sk_stop(sc_if)
3689         struct sk_if_softc      *sc_if;
3690 {
3691         int                     i;
3692         struct sk_softc         *sc;
3693         struct sk_txdesc        *txd;
3694         struct sk_rxdesc        *rxd;
3695         struct sk_rxdesc        *jrxd;
3696         struct ifnet            *ifp;
3697         u_int32_t               val;
3698
3699         SK_IF_LOCK_ASSERT(sc_if);
3700         sc = sc_if->sk_softc;
3701         ifp = sc_if->sk_ifp;
3702
3703         callout_stop(&sc_if->sk_tick_ch);
3704         callout_stop(&sc_if->sk_watchdog_ch);
3705
3706         /* stop Tx descriptor polling timer */
3707         SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
3708         /* stop transfer of Tx descriptors */
3709         CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_STOP);
3710         for (i = 0; i < SK_TIMEOUT; i++) {
3711                 val = CSR_READ_4(sc, sc_if->sk_tx_bmu);
3712                 if ((val & SK_TXBMU_TX_STOP) == 0)
3713                         break;
3714                 DELAY(1);
3715         }
3716         if (i == SK_TIMEOUT)
3717                 device_printf(sc_if->sk_if_dev,
3718                     "can not stop transfer of Tx descriptor\n");
3719         /* stop transfer of Rx descriptors */
3720         SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_STOP);
3721         for (i = 0; i < SK_TIMEOUT; i++) {
3722                 val = SK_IF_READ_4(sc_if, 0, SK_RXQ1_BMU_CSR);
3723                 if ((val & SK_RXBMU_RX_STOP) == 0)
3724                         break;
3725                 DELAY(1);
3726         }
3727         if (i == SK_TIMEOUT)
3728                 device_printf(sc_if->sk_if_dev,
3729                     "can not stop transfer of Rx descriptor\n");
3730
3731         if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3732                 /* Put PHY back into reset. */
3733                 val = sk_win_read_4(sc, SK_GPIO);
3734                 if (sc_if->sk_port == SK_PORT_A) {
3735                         val |= SK_GPIO_DIR0;
3736                         val &= ~SK_GPIO_DAT0;
3737                 } else {
3738                         val |= SK_GPIO_DIR2;
3739                         val &= ~SK_GPIO_DAT2;
3740                 }
3741                 sk_win_write_4(sc, SK_GPIO, val);
3742         }
3743
3744         /* Turn off various components of this interface. */
3745         SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3746         switch (sc->sk_type) {
3747         case SK_GENESIS:
3748                 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
3749                 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
3750                 break;
3751         case SK_YUKON:
3752         case SK_YUKON_LITE:
3753         case SK_YUKON_LP:
3754                 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
3755                 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
3756                 break;
3757         }
3758         SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
3759         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3760         SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
3761         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3762         SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
3763         SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3764         SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3765         SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
3766         SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
3767
3768         /* Disable interrupts */
3769         if (sc_if->sk_port == SK_PORT_A)
3770                 sc->sk_intrmask &= ~SK_INTRS1;
3771         else
3772                 sc->sk_intrmask &= ~SK_INTRS2;
3773         CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3774
3775         SK_XM_READ_2(sc_if, XM_ISR);
3776         SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3777
3778         /* Free RX and TX mbufs still in the queues. */
3779         for (i = 0; i < SK_RX_RING_CNT; i++) {
3780                 rxd = &sc_if->sk_cdata.sk_rxdesc[i];
3781                 if (rxd->rx_m != NULL) {
3782                         bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag,
3783                             rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3784                         bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag,
3785                             rxd->rx_dmamap);
3786                         m_freem(rxd->rx_m);
3787                         rxd->rx_m = NULL;
3788                 }
3789         }
3790         for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
3791                 jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
3792                 if (jrxd->rx_m != NULL) {
3793                         bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag,
3794                             jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3795                         bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
3796                             jrxd->rx_dmamap);
3797                         m_freem(jrxd->rx_m);
3798                         jrxd->rx_m = NULL;
3799                 }
3800         }
3801         for (i = 0; i < SK_TX_RING_CNT; i++) {
3802                 txd = &sc_if->sk_cdata.sk_txdesc[i];
3803                 if (txd->tx_m != NULL) {
3804                         bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag,
3805                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3806                         bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag,
3807                             txd->tx_dmamap);
3808                         m_freem(txd->tx_m);
3809                         txd->tx_m = NULL;
3810                 }
3811         }
3812
3813         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
3814
3815         return;
3816 }
3817
3818 static int
3819 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3820 {
3821         int error, value;
3822
3823         if (!arg1)
3824                 return (EINVAL);
3825         value = *(int *)arg1;
3826         error = sysctl_handle_int(oidp, &value, 0, req);
3827         if (error || !req->newptr)
3828                 return (error);
3829         if (value < low || value > high)
3830                 return (EINVAL);
3831         *(int *)arg1 = value;
3832         return (0);
3833 }
3834
3835 static int
3836 sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS)
3837 {
3838         return (sysctl_int_range(oidp, arg1, arg2, req, SK_IM_MIN, SK_IM_MAX));
3839 }