]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/sound/pci/hda/hdac.c
sound/hda: fix interrupt handler endless loop after r362294
[FreeBSD/FreeBSD.git] / sys / dev / sound / pci / hda / hdac.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2006 Stephane E. Potvin <sepotvin@videotron.ca>
5  * Copyright (c) 2006 Ariff Abdullah <ariff@FreeBSD.org>
6  * Copyright (c) 2008-2012 Alexander Motin <mav@FreeBSD.org>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30
31 /*
32  * Intel High Definition Audio (Controller) driver for FreeBSD.
33  */
34
35 #ifdef HAVE_KERNEL_OPTION_HEADERS
36 #include "opt_snd.h"
37 #endif
38
39 #include <dev/sound/pcm/sound.h>
40 #include <dev/pci/pcireg.h>
41 #include <dev/pci/pcivar.h>
42
43 #include <sys/ctype.h>
44 #include <sys/endian.h>
45 #include <sys/taskqueue.h>
46
47 #include <dev/sound/pci/hda/hdac_private.h>
48 #include <dev/sound/pci/hda/hdac_reg.h>
49 #include <dev/sound/pci/hda/hda_reg.h>
50 #include <dev/sound/pci/hda/hdac.h>
51
52 #define HDA_DRV_TEST_REV        "20120126_0002"
53
54 SND_DECLARE_FILE("$FreeBSD$");
55
56 #define hdac_lock(sc)           snd_mtxlock((sc)->lock)
57 #define hdac_unlock(sc)         snd_mtxunlock((sc)->lock)
58 #define hdac_lockassert(sc)     snd_mtxassert((sc)->lock)
59
60 #define HDAC_QUIRK_64BIT        (1 << 0)
61 #define HDAC_QUIRK_DMAPOS       (1 << 1)
62 #define HDAC_QUIRK_MSI          (1 << 2)
63
64 static const struct {
65         const char *key;
66         uint32_t value;
67 } hdac_quirks_tab[] = {
68         { "64bit", HDAC_QUIRK_64BIT },
69         { "dmapos", HDAC_QUIRK_DMAPOS },
70         { "msi", HDAC_QUIRK_MSI },
71 };
72
73 MALLOC_DEFINE(M_HDAC, "hdac", "HDA Controller");
74
75 static const struct {
76         uint32_t        model;
77         const char      *desc;
78         char            quirks_on;
79         char            quirks_off;
80 } hdac_devices[] = {
81         { HDA_INTEL_OAK,     "Intel Oaktrail",  0, 0 },
82         { HDA_INTEL_CMLKLP,  "Intel Comet Lake-LP",     0, 0 },
83         { HDA_INTEL_CMLKH,   "Intel Comet Lake-H",      0, 0 },
84         { HDA_INTEL_BAY,     "Intel BayTrail",  0, 0 },
85         { HDA_INTEL_HSW1,    "Intel Haswell",   0, 0 },
86         { HDA_INTEL_HSW2,    "Intel Haswell",   0, 0 },
87         { HDA_INTEL_HSW3,    "Intel Haswell",   0, 0 },
88         { HDA_INTEL_BDW1,    "Intel Broadwell", 0, 0 },
89         { HDA_INTEL_BDW2,    "Intel Broadwell", 0, 0 },
90         { HDA_INTEL_BXTNT,   "Intel Broxton-T", 0, 0 },
91         { HDA_INTEL_CPT,     "Intel Cougar Point",      0, 0 },
92         { HDA_INTEL_PATSBURG,"Intel Patsburg",  0, 0 },
93         { HDA_INTEL_PPT1,    "Intel Panther Point",     0, 0 },
94         { HDA_INTEL_BR,      "Intel Braswell",  0, 0 },
95         { HDA_INTEL_LPT1,    "Intel Lynx Point",        0, 0 },
96         { HDA_INTEL_LPT2,    "Intel Lynx Point",        0, 0 },
97         { HDA_INTEL_WCPT,    "Intel Wildcat Point",     0, 0 },
98         { HDA_INTEL_WELLS1,  "Intel Wellsburg", 0, 0 },
99         { HDA_INTEL_WELLS2,  "Intel Wellsburg", 0, 0 },
100         { HDA_INTEL_LPTLP1,  "Intel Lynx Point-LP",     0, 0 },
101         { HDA_INTEL_LPTLP2,  "Intel Lynx Point-LP",     0, 0 },
102         { HDA_INTEL_SRPTLP,  "Intel Sunrise Point-LP",  0, 0 },
103         { HDA_INTEL_KBLKLP,  "Intel Kaby Lake-LP",      0, 0 },
104         { HDA_INTEL_SRPT,    "Intel Sunrise Point",     0, 0 },
105         { HDA_INTEL_KBLK,    "Intel Kaby Lake", 0, 0 },
106         { HDA_INTEL_KBLKH,   "Intel Kaby Lake-H",       0, 0 },
107         { HDA_INTEL_CFLK,    "Intel Coffee Lake",       0, 0 },
108         { HDA_INTEL_CMLKS,   "Intel Comet Lake-S",      0, 0 },
109         { HDA_INTEL_CNLK,    "Intel Cannon Lake",       0, 0 },
110         { HDA_INTEL_ICLK,    "Intel Ice Lake",          0, 0 },
111         { HDA_INTEL_CMLKLP,  "Intel Comet Lake-LP",     0, 0 },
112         { HDA_INTEL_CMLKH,   "Intel Comet Lake-H",      0, 0 },
113         { HDA_INTEL_TGLK,    "Intel Tiger Lake",        0, 0 },
114         { HDA_INTEL_GMLK,    "Intel Gemini Lake",       0, 0 },
115         { HDA_INTEL_82801F,  "Intel 82801F",    0, 0 },
116         { HDA_INTEL_63XXESB, "Intel 631x/632xESB",      0, 0 },
117         { HDA_INTEL_82801G,  "Intel 82801G",    0, 0 },
118         { HDA_INTEL_82801H,  "Intel 82801H",    0, 0 },
119         { HDA_INTEL_82801I,  "Intel 82801I",    0, 0 },
120         { HDA_INTEL_JLK,     "Intel Jasper Lake",       0, 0 },
121         { HDA_INTEL_82801JI, "Intel 82801JI",   0, 0 },
122         { HDA_INTEL_82801JD, "Intel 82801JD",   0, 0 },
123         { HDA_INTEL_PCH,     "Intel Ibex Peak", 0, 0 },
124         { HDA_INTEL_PCH2,    "Intel Ibex Peak", 0, 0 },
125         { HDA_INTEL_ELLK,    "Intel Elkhart Lake",      0, 0 },
126         { HDA_INTEL_JLK2,    "Intel Jasper Lake",       0, 0 },
127         { HDA_INTEL_BXTNP,   "Intel Broxton-P", 0, 0 },
128         { HDA_INTEL_SCH,     "Intel SCH",       0, 0 },
129         { HDA_NVIDIA_MCP51,  "NVIDIA MCP51",    0, HDAC_QUIRK_MSI },
130         { HDA_NVIDIA_MCP55,  "NVIDIA MCP55",    0, HDAC_QUIRK_MSI },
131         { HDA_NVIDIA_MCP61_1, "NVIDIA MCP61",   0, 0 },
132         { HDA_NVIDIA_MCP61_2, "NVIDIA MCP61",   0, 0 },
133         { HDA_NVIDIA_MCP65_1, "NVIDIA MCP65",   0, 0 },
134         { HDA_NVIDIA_MCP65_2, "NVIDIA MCP65",   0, 0 },
135         { HDA_NVIDIA_MCP67_1, "NVIDIA MCP67",   0, 0 },
136         { HDA_NVIDIA_MCP67_2, "NVIDIA MCP67",   0, 0 },
137         { HDA_NVIDIA_MCP73_1, "NVIDIA MCP73",   0, 0 },
138         { HDA_NVIDIA_MCP73_2, "NVIDIA MCP73",   0, 0 },
139         { HDA_NVIDIA_MCP78_1, "NVIDIA MCP78",   0, HDAC_QUIRK_64BIT },
140         { HDA_NVIDIA_MCP78_2, "NVIDIA MCP78",   0, HDAC_QUIRK_64BIT },
141         { HDA_NVIDIA_MCP78_3, "NVIDIA MCP78",   0, HDAC_QUIRK_64BIT },
142         { HDA_NVIDIA_MCP78_4, "NVIDIA MCP78",   0, HDAC_QUIRK_64BIT },
143         { HDA_NVIDIA_MCP79_1, "NVIDIA MCP79",   0, 0 },
144         { HDA_NVIDIA_MCP79_2, "NVIDIA MCP79",   0, 0 },
145         { HDA_NVIDIA_MCP79_3, "NVIDIA MCP79",   0, 0 },
146         { HDA_NVIDIA_MCP79_4, "NVIDIA MCP79",   0, 0 },
147         { HDA_NVIDIA_MCP89_1, "NVIDIA MCP89",   0, 0 },
148         { HDA_NVIDIA_MCP89_2, "NVIDIA MCP89",   0, 0 },
149         { HDA_NVIDIA_MCP89_3, "NVIDIA MCP89",   0, 0 },
150         { HDA_NVIDIA_MCP89_4, "NVIDIA MCP89",   0, 0 },
151         { HDA_NVIDIA_0BE2,   "NVIDIA (0x0be2)", 0, HDAC_QUIRK_MSI },
152         { HDA_NVIDIA_0BE3,   "NVIDIA (0x0be3)", 0, HDAC_QUIRK_MSI },
153         { HDA_NVIDIA_0BE4,   "NVIDIA (0x0be4)", 0, HDAC_QUIRK_MSI },
154         { HDA_NVIDIA_GT100,  "NVIDIA GT100",    0, HDAC_QUIRK_MSI },
155         { HDA_NVIDIA_GT104,  "NVIDIA GT104",    0, HDAC_QUIRK_MSI },
156         { HDA_NVIDIA_GT106,  "NVIDIA GT106",    0, HDAC_QUIRK_MSI },
157         { HDA_NVIDIA_GT108,  "NVIDIA GT108",    0, HDAC_QUIRK_MSI },
158         { HDA_NVIDIA_GT116,  "NVIDIA GT116",    0, HDAC_QUIRK_MSI },
159         { HDA_NVIDIA_GF119,  "NVIDIA GF119",    0, 0 },
160         { HDA_NVIDIA_GF110_1, "NVIDIA GF110",   0, HDAC_QUIRK_MSI },
161         { HDA_NVIDIA_GF110_2, "NVIDIA GF110",   0, HDAC_QUIRK_MSI },
162         { HDA_ATI_SB450,     "ATI SB450",       0, 0 },
163         { HDA_ATI_SB600,     "ATI SB600",       0, 0 },
164         { HDA_ATI_RS600,     "ATI RS600",       0, 0 },
165         { HDA_ATI_RS690,     "ATI RS690",       0, 0 },
166         { HDA_ATI_RS780,     "ATI RS780",       0, 0 },
167         { HDA_ATI_R600,      "ATI R600",        0, 0 },
168         { HDA_ATI_RV610,     "ATI RV610",       0, 0 },
169         { HDA_ATI_RV620,     "ATI RV620",       0, 0 },
170         { HDA_ATI_RV630,     "ATI RV630",       0, 0 },
171         { HDA_ATI_RV635,     "ATI RV635",       0, 0 },
172         { HDA_ATI_RV710,     "ATI RV710",       0, 0 },
173         { HDA_ATI_RV730,     "ATI RV730",       0, 0 },
174         { HDA_ATI_RV740,     "ATI RV740",       0, 0 },
175         { HDA_ATI_RV770,     "ATI RV770",       0, 0 },
176         { HDA_ATI_RV810,     "ATI RV810",       0, 0 },
177         { HDA_ATI_RV830,     "ATI RV830",       0, 0 },
178         { HDA_ATI_RV840,     "ATI RV840",       0, 0 },
179         { HDA_ATI_RV870,     "ATI RV870",       0, 0 },
180         { HDA_ATI_RV910,     "ATI RV910",       0, 0 },
181         { HDA_ATI_RV930,     "ATI RV930",       0, 0 },
182         { HDA_ATI_RV940,     "ATI RV940",       0, 0 },
183         { HDA_ATI_RV970,     "ATI RV970",       0, 0 },
184         { HDA_ATI_R1000,     "ATI R1000",       0, 0 },
185         { HDA_AMD_X370,      "AMD X370",        0, 0 },
186         { HDA_AMD_X570,      "AMD X570",        0, 0 },
187         { HDA_AMD_STONEY,    "AMD Stoney",      0, 0 },
188         { HDA_AMD_RAVEN,     "AMD Raven",       0, 0 },
189         { HDA_AMD_HUDSON2,   "AMD Hudson-2",    0, 0 },
190         { HDA_RDC_M3010,     "RDC M3010",       0, 0 },
191         { HDA_VIA_VT82XX,    "VIA VT8251/8237A",0, 0 },
192         { HDA_SIS_966,       "SiS 966/968",     0, 0 },
193         { HDA_ULI_M5461,     "ULI M5461",       0, 0 },
194         /* Unknown */
195         { HDA_INTEL_ALL,  "Intel",              0, 0 },
196         { HDA_NVIDIA_ALL, "NVIDIA",             0, 0 },
197         { HDA_ATI_ALL,    "ATI",                0, 0 },
198         { HDA_AMD_ALL,    "AMD",                0, 0 },
199         { HDA_CREATIVE_ALL,    "Creative",      0, 0 },
200         { HDA_VIA_ALL,    "VIA",                0, 0 },
201         { HDA_SIS_ALL,    "SiS",                0, 0 },
202         { HDA_ULI_ALL,    "ULI",                0, 0 },
203 };
204
205 static const struct {
206         uint16_t vendor;
207         uint8_t reg;
208         uint8_t mask;
209         uint8_t enable;
210 } hdac_pcie_snoop[] = {
211         {  INTEL_VENDORID, 0x00, 0x00, 0x00 },
212         {    ATI_VENDORID, 0x42, 0xf8, 0x02 },
213         {    AMD_VENDORID, 0x42, 0xf8, 0x02 },
214         { NVIDIA_VENDORID, 0x4e, 0xf0, 0x0f },
215 };
216
217 /****************************************************************************
218  * Function prototypes
219  ****************************************************************************/
220 static void     hdac_intr_handler(void *);
221 static int      hdac_reset(struct hdac_softc *, bool);
222 static int      hdac_get_capabilities(struct hdac_softc *);
223 static void     hdac_dma_cb(void *, bus_dma_segment_t *, int, int);
224 static int      hdac_dma_alloc(struct hdac_softc *,
225                                         struct hdac_dma *, bus_size_t);
226 static void     hdac_dma_free(struct hdac_softc *, struct hdac_dma *);
227 static int      hdac_mem_alloc(struct hdac_softc *);
228 static void     hdac_mem_free(struct hdac_softc *);
229 static int      hdac_irq_alloc(struct hdac_softc *);
230 static void     hdac_irq_free(struct hdac_softc *);
231 static void     hdac_corb_init(struct hdac_softc *);
232 static void     hdac_rirb_init(struct hdac_softc *);
233 static void     hdac_corb_start(struct hdac_softc *);
234 static void     hdac_rirb_start(struct hdac_softc *);
235
236 static void     hdac_attach2(void *);
237
238 static uint32_t hdac_send_command(struct hdac_softc *, nid_t, uint32_t);
239
240 static int      hdac_probe(device_t);
241 static int      hdac_attach(device_t);
242 static int      hdac_detach(device_t);
243 static int      hdac_suspend(device_t);
244 static int      hdac_resume(device_t);
245
246 static int      hdac_rirb_flush(struct hdac_softc *sc);
247 static int      hdac_unsolq_flush(struct hdac_softc *sc);
248
249 /* This function surely going to make its way into upper level someday. */
250 static void
251 hdac_config_fetch(struct hdac_softc *sc, uint32_t *on, uint32_t *off)
252 {
253         const char *res = NULL;
254         int i = 0, j, k, len, inv;
255
256         if (resource_string_value(device_get_name(sc->dev),
257             device_get_unit(sc->dev), "config", &res) != 0)
258                 return;
259         if (!(res != NULL && strlen(res) > 0))
260                 return;
261         HDA_BOOTVERBOSE(
262                 device_printf(sc->dev, "Config options:");
263         );
264         for (;;) {
265                 while (res[i] != '\0' &&
266                     (res[i] == ',' || isspace(res[i]) != 0))
267                         i++;
268                 if (res[i] == '\0') {
269                         HDA_BOOTVERBOSE(
270                                 printf("\n");
271                         );
272                         return;
273                 }
274                 j = i;
275                 while (res[j] != '\0' &&
276                     !(res[j] == ',' || isspace(res[j]) != 0))
277                         j++;
278                 len = j - i;
279                 if (len > 2 && strncmp(res + i, "no", 2) == 0)
280                         inv = 2;
281                 else
282                         inv = 0;
283                 for (k = 0; len > inv && k < nitems(hdac_quirks_tab); k++) {
284                         if (strncmp(res + i + inv,
285                             hdac_quirks_tab[k].key, len - inv) != 0)
286                                 continue;
287                         if (len - inv != strlen(hdac_quirks_tab[k].key))
288                                 continue;
289                         HDA_BOOTVERBOSE(
290                                 printf(" %s%s", (inv != 0) ? "no" : "",
291                                     hdac_quirks_tab[k].key);
292                         );
293                         if (inv == 0) {
294                                 *on |= hdac_quirks_tab[k].value;
295                                 *off &= ~hdac_quirks_tab[k].value;
296                         } else if (inv != 0) {
297                                 *off |= hdac_quirks_tab[k].value;
298                                 *on &= ~hdac_quirks_tab[k].value;
299                         }
300                         break;
301                 }
302                 i = j;
303         }
304 }
305
306 static void
307 hdac_one_intr(struct hdac_softc *sc, uint32_t intsts)
308 {
309         device_t dev;
310         uint8_t rirbsts;
311         int i;
312
313         /* Was this a controller interrupt? */
314         if (intsts & HDAC_INTSTS_CIS) {
315                 /*
316                  * Placeholder: if we ever enable any bits in HDAC_WAKEEN, then
317                  * we will need to check and clear HDAC_STATESTS.
318                  * That event is used to report codec status changes such as
319                  * a reset or a wake-up event.
320                  */
321                 /*
322                  * Placeholder: if we ever enable HDAC_CORBCTL_CMEIE, then we
323                  * will need to check and clear HDAC_CORBSTS_CMEI in
324                  * HDAC_CORBSTS.
325                  * That event is used to report CORB memory errors.
326                  */
327                 /*
328                  * Placeholder: if we ever enable HDAC_RIRBCTL_RIRBOIC, then we
329                  * will need to check and clear HDAC_RIRBSTS_RIRBOIS in
330                  * HDAC_RIRBSTS.
331                  * That event is used to report response FIFO overruns.
332                  */
333
334                 /* Get as many responses that we can */
335                 rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS);
336                 while (rirbsts & HDAC_RIRBSTS_RINTFL) {
337                         HDAC_WRITE_1(&sc->mem,
338                             HDAC_RIRBSTS, HDAC_RIRBSTS_RINTFL);
339                         hdac_rirb_flush(sc);
340                         rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS);
341                 }
342                 if (sc->unsolq_rp != sc->unsolq_wp)
343                         taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task);
344         }
345
346         if (intsts & HDAC_INTSTS_SIS_MASK) {
347                 for (i = 0; i < sc->num_ss; i++) {
348                         if ((intsts & (1 << i)) == 0)
349                                 continue;
350                         HDAC_WRITE_1(&sc->mem, (i << 5) + HDAC_SDSTS,
351                             HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS);
352                         if ((dev = sc->streams[i].dev) != NULL) {
353                                 HDAC_STREAM_INTR(dev,
354                                     sc->streams[i].dir, sc->streams[i].stream);
355                         }
356                 }
357         }
358 }
359
360 /****************************************************************************
361  * void hdac_intr_handler(void *)
362  *
363  * Interrupt handler. Processes interrupts received from the hdac.
364  ****************************************************************************/
365 static void
366 hdac_intr_handler(void *context)
367 {
368         struct hdac_softc *sc;
369         uint32_t intsts;
370
371         sc = (struct hdac_softc *)context;
372
373         /*
374          * Loop until HDAC_INTSTS_GIS gets clear.
375          * It is plausible that hardware interrupts a host only when GIS goes
376          * from zero to one.  GIS is formed by OR-ing multiple hardware
377          * statuses, so it's possible that a previously cleared status gets set
378          * again while another status has not been cleared yet.  Thus, there
379          * will be no new interrupt as GIS always stayed set.  If we don't
380          * re-examine GIS then we can leave it set and never get an interrupt
381          * again.
382          */
383         intsts = HDAC_READ_4(&sc->mem, HDAC_INTSTS);
384         while ((intsts & HDAC_INTSTS_GIS) != 0) {
385                 hdac_lock(sc);
386                 hdac_one_intr(sc, intsts);
387                 hdac_unlock(sc);
388                 intsts = HDAC_READ_4(&sc->mem, HDAC_INTSTS);
389         }
390 }
391
392 static void
393 hdac_poll_callback(void *arg)
394 {
395         struct hdac_softc *sc = arg;
396
397         if (sc == NULL)
398                 return;
399
400         hdac_lock(sc);
401         if (sc->polling == 0) {
402                 hdac_unlock(sc);
403                 return;
404         }
405         callout_reset(&sc->poll_callout, sc->poll_ival, hdac_poll_callback, sc);
406         hdac_unlock(sc);
407
408         hdac_intr_handler(sc);
409 }
410
411 /****************************************************************************
412  * int hdac_reset(hdac_softc *, bool)
413  *
414  * Reset the hdac to a quiescent and known state.
415  ****************************************************************************/
416 static int
417 hdac_reset(struct hdac_softc *sc, bool wakeup)
418 {
419         uint32_t gctl;
420         int count, i;
421
422         /*
423          * Stop all Streams DMA engine
424          */
425         for (i = 0; i < sc->num_iss; i++)
426                 HDAC_WRITE_4(&sc->mem, HDAC_ISDCTL(sc, i), 0x0);
427         for (i = 0; i < sc->num_oss; i++)
428                 HDAC_WRITE_4(&sc->mem, HDAC_OSDCTL(sc, i), 0x0);
429         for (i = 0; i < sc->num_bss; i++)
430                 HDAC_WRITE_4(&sc->mem, HDAC_BSDCTL(sc, i), 0x0);
431
432         /*
433          * Stop Control DMA engines.
434          */
435         HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, 0x0);
436         HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, 0x0);
437
438         /*
439          * Reset DMA position buffer.
440          */
441         HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE, 0x0);
442         HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, 0x0);
443
444         /*
445          * Reset the controller. The reset must remain asserted for
446          * a minimum of 100us.
447          */
448         gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
449         HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl & ~HDAC_GCTL_CRST);
450         count = 10000;
451         do {
452                 gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
453                 if (!(gctl & HDAC_GCTL_CRST))
454                         break;
455                 DELAY(10);
456         } while (--count);
457         if (gctl & HDAC_GCTL_CRST) {
458                 device_printf(sc->dev, "Unable to put hdac in reset\n");
459                 return (ENXIO);
460         }
461
462         /* If wakeup is not requested - leave the controller in reset state. */
463         if (!wakeup)
464                 return (0);
465
466         DELAY(100);
467         gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
468         HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl | HDAC_GCTL_CRST);
469         count = 10000;
470         do {
471                 gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
472                 if (gctl & HDAC_GCTL_CRST)
473                         break;
474                 DELAY(10);
475         } while (--count);
476         if (!(gctl & HDAC_GCTL_CRST)) {
477                 device_printf(sc->dev, "Device stuck in reset\n");
478                 return (ENXIO);
479         }
480
481         /*
482          * Wait for codecs to finish their own reset sequence. The delay here
483          * must be at least 521us (HDA 1.0a section 4.3 Codec Discovery).
484          */
485         DELAY(1000);
486
487         return (0);
488 }
489
490 /****************************************************************************
491  * int hdac_get_capabilities(struct hdac_softc *);
492  *
493  * Retreive the general capabilities of the hdac;
494  *      Number of Input Streams
495  *      Number of Output Streams
496  *      Number of bidirectional Streams
497  *      64bit ready
498  *      CORB and RIRB sizes
499  ****************************************************************************/
500 static int
501 hdac_get_capabilities(struct hdac_softc *sc)
502 {
503         uint16_t gcap;
504         uint8_t corbsize, rirbsize;
505
506         gcap = HDAC_READ_2(&sc->mem, HDAC_GCAP);
507         sc->num_iss = HDAC_GCAP_ISS(gcap);
508         sc->num_oss = HDAC_GCAP_OSS(gcap);
509         sc->num_bss = HDAC_GCAP_BSS(gcap);
510         sc->num_ss = sc->num_iss + sc->num_oss + sc->num_bss;
511         sc->num_sdo = HDAC_GCAP_NSDO(gcap);
512         sc->support_64bit = (gcap & HDAC_GCAP_64OK) != 0;
513         if (sc->quirks_on & HDAC_QUIRK_64BIT)
514                 sc->support_64bit = 1;
515         else if (sc->quirks_off & HDAC_QUIRK_64BIT)
516                 sc->support_64bit = 0;
517
518         corbsize = HDAC_READ_1(&sc->mem, HDAC_CORBSIZE);
519         if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_256) ==
520             HDAC_CORBSIZE_CORBSZCAP_256)
521                 sc->corb_size = 256;
522         else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_16) ==
523             HDAC_CORBSIZE_CORBSZCAP_16)
524                 sc->corb_size = 16;
525         else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_2) ==
526             HDAC_CORBSIZE_CORBSZCAP_2)
527                 sc->corb_size = 2;
528         else {
529                 device_printf(sc->dev, "%s: Invalid corb size (%x)\n",
530                     __func__, corbsize);
531                 return (ENXIO);
532         }
533
534         rirbsize = HDAC_READ_1(&sc->mem, HDAC_RIRBSIZE);
535         if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_256) ==
536             HDAC_RIRBSIZE_RIRBSZCAP_256)
537                 sc->rirb_size = 256;
538         else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_16) ==
539             HDAC_RIRBSIZE_RIRBSZCAP_16)
540                 sc->rirb_size = 16;
541         else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_2) ==
542             HDAC_RIRBSIZE_RIRBSZCAP_2)
543                 sc->rirb_size = 2;
544         else {
545                 device_printf(sc->dev, "%s: Invalid rirb size (%x)\n",
546                     __func__, rirbsize);
547                 return (ENXIO);
548         }
549
550         HDA_BOOTVERBOSE(
551                 device_printf(sc->dev, "Caps: OSS %d, ISS %d, BSS %d, "
552                     "NSDO %d%s, CORB %d, RIRB %d\n",
553                     sc->num_oss, sc->num_iss, sc->num_bss, 1 << sc->num_sdo,
554                     sc->support_64bit ? ", 64bit" : "",
555                     sc->corb_size, sc->rirb_size);
556         );
557
558         return (0);
559 }
560
561
562 /****************************************************************************
563  * void hdac_dma_cb
564  *
565  * This function is called by bus_dmamap_load when the mapping has been
566  * established. We just record the physical address of the mapping into
567  * the struct hdac_dma passed in.
568  ****************************************************************************/
569 static void
570 hdac_dma_cb(void *callback_arg, bus_dma_segment_t *segs, int nseg, int error)
571 {
572         struct hdac_dma *dma;
573
574         if (error == 0) {
575                 dma = (struct hdac_dma *)callback_arg;
576                 dma->dma_paddr = segs[0].ds_addr;
577         }
578 }
579
580
581 /****************************************************************************
582  * int hdac_dma_alloc
583  *
584  * This function allocate and setup a dma region (struct hdac_dma).
585  * It must be freed by a corresponding hdac_dma_free.
586  ****************************************************************************/
587 static int
588 hdac_dma_alloc(struct hdac_softc *sc, struct hdac_dma *dma, bus_size_t size)
589 {
590         bus_size_t roundsz;
591         int result;
592
593         roundsz = roundup2(size, HDA_DMA_ALIGNMENT);
594         bzero(dma, sizeof(*dma));
595
596         /*
597          * Create a DMA tag
598          */
599         result = bus_dma_tag_create(
600             bus_get_dma_tag(sc->dev),           /* parent */
601             HDA_DMA_ALIGNMENT,                  /* alignment */
602             0,                                  /* boundary */
603             (sc->support_64bit) ? BUS_SPACE_MAXADDR :
604                 BUS_SPACE_MAXADDR_32BIT,        /* lowaddr */
605             BUS_SPACE_MAXADDR,                  /* highaddr */
606             NULL,                               /* filtfunc */
607             NULL,                               /* fistfuncarg */
608             roundsz,                            /* maxsize */
609             1,                                  /* nsegments */
610             roundsz,                            /* maxsegsz */
611             0,                                  /* flags */
612             NULL,                               /* lockfunc */
613             NULL,                               /* lockfuncarg */
614             &dma->dma_tag);                     /* dmat */
615         if (result != 0) {
616                 device_printf(sc->dev, "%s: bus_dma_tag_create failed (%d)\n",
617                     __func__, result);
618                 goto hdac_dma_alloc_fail;
619         }
620
621         /*
622          * Allocate DMA memory
623          */
624         result = bus_dmamem_alloc(dma->dma_tag, (void **)&dma->dma_vaddr,
625             BUS_DMA_NOWAIT | BUS_DMA_ZERO |
626             ((sc->flags & HDAC_F_DMA_NOCACHE) ? BUS_DMA_NOCACHE :
627              BUS_DMA_COHERENT),
628             &dma->dma_map);
629         if (result != 0) {
630                 device_printf(sc->dev, "%s: bus_dmamem_alloc failed (%d)\n",
631                     __func__, result);
632                 goto hdac_dma_alloc_fail;
633         }
634
635         dma->dma_size = roundsz;
636
637         /*
638          * Map the memory
639          */
640         result = bus_dmamap_load(dma->dma_tag, dma->dma_map,
641             (void *)dma->dma_vaddr, roundsz, hdac_dma_cb, (void *)dma, 0);
642         if (result != 0 || dma->dma_paddr == 0) {
643                 if (result == 0)
644                         result = ENOMEM;
645                 device_printf(sc->dev, "%s: bus_dmamem_load failed (%d)\n",
646                     __func__, result);
647                 goto hdac_dma_alloc_fail;
648         }
649
650         HDA_BOOTHVERBOSE(
651                 device_printf(sc->dev, "%s: size=%ju -> roundsz=%ju\n",
652                     __func__, (uintmax_t)size, (uintmax_t)roundsz);
653         );
654
655         return (0);
656
657 hdac_dma_alloc_fail:
658         hdac_dma_free(sc, dma);
659
660         return (result);
661 }
662
663 /****************************************************************************
664  * void hdac_dma_free(struct hdac_softc *, struct hdac_dma *)
665  *
666  * Free a struct hdac_dma that has been previously allocated via the
667  * hdac_dma_alloc function.
668  ****************************************************************************/
669 static void
670 hdac_dma_free(struct hdac_softc *sc, struct hdac_dma *dma)
671 {
672         if (dma->dma_paddr != 0) {
673                 /* Flush caches */
674                 bus_dmamap_sync(dma->dma_tag, dma->dma_map,
675                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
676                 bus_dmamap_unload(dma->dma_tag, dma->dma_map);
677                 dma->dma_paddr = 0;
678         }
679         if (dma->dma_vaddr != NULL) {
680                 bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
681                 dma->dma_vaddr = NULL;
682         }
683         if (dma->dma_tag != NULL) {
684                 bus_dma_tag_destroy(dma->dma_tag);
685                 dma->dma_tag = NULL;
686         }
687         dma->dma_size = 0;
688 }
689
690 /****************************************************************************
691  * int hdac_mem_alloc(struct hdac_softc *)
692  *
693  * Allocate all the bus resources necessary to speak with the physical
694  * controller.
695  ****************************************************************************/
696 static int
697 hdac_mem_alloc(struct hdac_softc *sc)
698 {
699         struct hdac_mem *mem;
700
701         mem = &sc->mem;
702         mem->mem_rid = PCIR_BAR(0);
703         mem->mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
704             &mem->mem_rid, RF_ACTIVE);
705         if (mem->mem_res == NULL) {
706                 device_printf(sc->dev,
707                     "%s: Unable to allocate memory resource\n", __func__);
708                 return (ENOMEM);
709         }
710         mem->mem_tag = rman_get_bustag(mem->mem_res);
711         mem->mem_handle = rman_get_bushandle(mem->mem_res);
712
713         return (0);
714 }
715
716 /****************************************************************************
717  * void hdac_mem_free(struct hdac_softc *)
718  *
719  * Free up resources previously allocated by hdac_mem_alloc.
720  ****************************************************************************/
721 static void
722 hdac_mem_free(struct hdac_softc *sc)
723 {
724         struct hdac_mem *mem;
725
726         mem = &sc->mem;
727         if (mem->mem_res != NULL)
728                 bus_release_resource(sc->dev, SYS_RES_MEMORY, mem->mem_rid,
729                     mem->mem_res);
730         mem->mem_res = NULL;
731 }
732
733 /****************************************************************************
734  * int hdac_irq_alloc(struct hdac_softc *)
735  *
736  * Allocate and setup the resources necessary for interrupt handling.
737  ****************************************************************************/
738 static int
739 hdac_irq_alloc(struct hdac_softc *sc)
740 {
741         struct hdac_irq *irq;
742         int result;
743
744         irq = &sc->irq;
745         irq->irq_rid = 0x0;
746
747         if ((sc->quirks_off & HDAC_QUIRK_MSI) == 0 &&
748             (result = pci_msi_count(sc->dev)) == 1 &&
749             pci_alloc_msi(sc->dev, &result) == 0)
750                 irq->irq_rid = 0x1;
751
752         irq->irq_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
753             &irq->irq_rid, RF_SHAREABLE | RF_ACTIVE);
754         if (irq->irq_res == NULL) {
755                 device_printf(sc->dev, "%s: Unable to allocate irq\n",
756                     __func__);
757                 goto hdac_irq_alloc_fail;
758         }
759         result = bus_setup_intr(sc->dev, irq->irq_res, INTR_MPSAFE | INTR_TYPE_AV,
760             NULL, hdac_intr_handler, sc, &irq->irq_handle);
761         if (result != 0) {
762                 device_printf(sc->dev,
763                     "%s: Unable to setup interrupt handler (%d)\n",
764                     __func__, result);
765                 goto hdac_irq_alloc_fail;
766         }
767
768         return (0);
769
770 hdac_irq_alloc_fail:
771         hdac_irq_free(sc);
772
773         return (ENXIO);
774 }
775
776 /****************************************************************************
777  * void hdac_irq_free(struct hdac_softc *)
778  *
779  * Free up resources previously allocated by hdac_irq_alloc.
780  ****************************************************************************/
781 static void
782 hdac_irq_free(struct hdac_softc *sc)
783 {
784         struct hdac_irq *irq;
785
786         irq = &sc->irq;
787         if (irq->irq_res != NULL && irq->irq_handle != NULL)
788                 bus_teardown_intr(sc->dev, irq->irq_res, irq->irq_handle);
789         if (irq->irq_res != NULL)
790                 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->irq_rid,
791                     irq->irq_res);
792         if (irq->irq_rid == 0x1)
793                 pci_release_msi(sc->dev);
794         irq->irq_handle = NULL;
795         irq->irq_res = NULL;
796         irq->irq_rid = 0x0;
797 }
798
799 /****************************************************************************
800  * void hdac_corb_init(struct hdac_softc *)
801  *
802  * Initialize the corb registers for operations but do not start it up yet.
803  * The CORB engine must not be running when this function is called.
804  ****************************************************************************/
805 static void
806 hdac_corb_init(struct hdac_softc *sc)
807 {
808         uint8_t corbsize;
809         uint64_t corbpaddr;
810
811         /* Setup the CORB size. */
812         switch (sc->corb_size) {
813         case 256:
814                 corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_256);
815                 break;
816         case 16:
817                 corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_16);
818                 break;
819         case 2:
820                 corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_2);
821                 break;
822         default:
823                 panic("%s: Invalid CORB size (%x)\n", __func__, sc->corb_size);
824         }
825         HDAC_WRITE_1(&sc->mem, HDAC_CORBSIZE, corbsize);
826
827         /* Setup the CORB Address in the hdac */
828         corbpaddr = (uint64_t)sc->corb_dma.dma_paddr;
829         HDAC_WRITE_4(&sc->mem, HDAC_CORBLBASE, (uint32_t)corbpaddr);
830         HDAC_WRITE_4(&sc->mem, HDAC_CORBUBASE, (uint32_t)(corbpaddr >> 32));
831
832         /* Set the WP and RP */
833         sc->corb_wp = 0;
834         HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp);
835         HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, HDAC_CORBRP_CORBRPRST);
836         /*
837          * The HDA specification indicates that the CORBRPRST bit will always
838          * read as zero. Unfortunately, it seems that at least the 82801G
839          * doesn't reset the bit to zero, which stalls the corb engine.
840          * manually reset the bit to zero before continuing.
841          */
842         HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, 0x0);
843
844         /* Enable CORB error reporting */
845 #if 0
846         HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, HDAC_CORBCTL_CMEIE);
847 #endif
848 }
849
850 /****************************************************************************
851  * void hdac_rirb_init(struct hdac_softc *)
852  *
853  * Initialize the rirb registers for operations but do not start it up yet.
854  * The RIRB engine must not be running when this function is called.
855  ****************************************************************************/
856 static void
857 hdac_rirb_init(struct hdac_softc *sc)
858 {
859         uint8_t rirbsize;
860         uint64_t rirbpaddr;
861
862         /* Setup the RIRB size. */
863         switch (sc->rirb_size) {
864         case 256:
865                 rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_256);
866                 break;
867         case 16:
868                 rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_16);
869                 break;
870         case 2:
871                 rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_2);
872                 break;
873         default:
874                 panic("%s: Invalid RIRB size (%x)\n", __func__, sc->rirb_size);
875         }
876         HDAC_WRITE_1(&sc->mem, HDAC_RIRBSIZE, rirbsize);
877
878         /* Setup the RIRB Address in the hdac */
879         rirbpaddr = (uint64_t)sc->rirb_dma.dma_paddr;
880         HDAC_WRITE_4(&sc->mem, HDAC_RIRBLBASE, (uint32_t)rirbpaddr);
881         HDAC_WRITE_4(&sc->mem, HDAC_RIRBUBASE, (uint32_t)(rirbpaddr >> 32));
882
883         /* Setup the WP and RP */
884         sc->rirb_rp = 0;
885         HDAC_WRITE_2(&sc->mem, HDAC_RIRBWP, HDAC_RIRBWP_RIRBWPRST);
886
887         /* Setup the interrupt threshold */
888         HDAC_WRITE_2(&sc->mem, HDAC_RINTCNT, sc->rirb_size / 2);
889
890         /* Enable Overrun and response received reporting */
891 #if 0
892         HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL,
893             HDAC_RIRBCTL_RIRBOIC | HDAC_RIRBCTL_RINTCTL);
894 #else
895         HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, HDAC_RIRBCTL_RINTCTL);
896 #endif
897
898         /*
899          * Make sure that the Host CPU cache doesn't contain any dirty
900          * cache lines that falls in the rirb. If I understood correctly, it
901          * should be sufficient to do this only once as the rirb is purely
902          * read-only from now on.
903          */
904         bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
905             BUS_DMASYNC_PREREAD);
906 }
907
908 /****************************************************************************
909  * void hdac_corb_start(hdac_softc *)
910  *
911  * Startup the corb DMA engine
912  ****************************************************************************/
913 static void
914 hdac_corb_start(struct hdac_softc *sc)
915 {
916         uint32_t corbctl;
917
918         corbctl = HDAC_READ_1(&sc->mem, HDAC_CORBCTL);
919         corbctl |= HDAC_CORBCTL_CORBRUN;
920         HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, corbctl);
921 }
922
923 /****************************************************************************
924  * void hdac_rirb_start(hdac_softc *)
925  *
926  * Startup the rirb DMA engine
927  ****************************************************************************/
928 static void
929 hdac_rirb_start(struct hdac_softc *sc)
930 {
931         uint32_t rirbctl;
932
933         rirbctl = HDAC_READ_1(&sc->mem, HDAC_RIRBCTL);
934         rirbctl |= HDAC_RIRBCTL_RIRBDMAEN;
935         HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, rirbctl);
936 }
937
938 static int
939 hdac_rirb_flush(struct hdac_softc *sc)
940 {
941         struct hdac_rirb *rirb_base, *rirb;
942         nid_t cad;
943         uint32_t resp, resp_ex;
944         uint8_t rirbwp;
945         int ret;
946
947         rirb_base = (struct hdac_rirb *)sc->rirb_dma.dma_vaddr;
948         rirbwp = HDAC_READ_1(&sc->mem, HDAC_RIRBWP);
949         bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
950             BUS_DMASYNC_POSTREAD);
951
952         ret = 0;
953         while (sc->rirb_rp != rirbwp) {
954                 sc->rirb_rp++;
955                 sc->rirb_rp %= sc->rirb_size;
956                 rirb = &rirb_base[sc->rirb_rp];
957                 resp = le32toh(rirb->response);
958                 resp_ex = le32toh(rirb->response_ex);
959                 cad = HDAC_RIRB_RESPONSE_EX_SDATA_IN(resp_ex);
960                 if (resp_ex & HDAC_RIRB_RESPONSE_EX_UNSOLICITED) {
961                         sc->unsolq[sc->unsolq_wp++] = resp;
962                         sc->unsolq_wp %= HDAC_UNSOLQ_MAX;
963                         sc->unsolq[sc->unsolq_wp++] = cad;
964                         sc->unsolq_wp %= HDAC_UNSOLQ_MAX;
965                 } else if (sc->codecs[cad].pending <= 0) {
966                         device_printf(sc->dev, "Unexpected unsolicited "
967                             "response from address %d: %08x\n", cad, resp);
968                 } else {
969                         sc->codecs[cad].response = resp;
970                         sc->codecs[cad].pending--;
971                 }
972                 ret++;
973         }
974
975         bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
976             BUS_DMASYNC_PREREAD);
977         return (ret);
978 }
979
980 static int
981 hdac_unsolq_flush(struct hdac_softc *sc)
982 {
983         device_t child;
984         nid_t cad;
985         uint32_t resp;
986         int ret = 0;
987
988         if (sc->unsolq_st == HDAC_UNSOLQ_READY) {
989                 sc->unsolq_st = HDAC_UNSOLQ_BUSY;
990                 while (sc->unsolq_rp != sc->unsolq_wp) {
991                         resp = sc->unsolq[sc->unsolq_rp++];
992                         sc->unsolq_rp %= HDAC_UNSOLQ_MAX;
993                         cad = sc->unsolq[sc->unsolq_rp++];
994                         sc->unsolq_rp %= HDAC_UNSOLQ_MAX;
995                         if ((child = sc->codecs[cad].dev) != NULL)
996                                 HDAC_UNSOL_INTR(child, resp);
997                         ret++;
998                 }
999                 sc->unsolq_st = HDAC_UNSOLQ_READY;
1000         }
1001
1002         return (ret);
1003 }
1004
1005 /****************************************************************************
1006  * uint32_t hdac_send_command
1007  *
1008  * Wrapper function that sends only one command to a given codec
1009  ****************************************************************************/
1010 static uint32_t
1011 hdac_send_command(struct hdac_softc *sc, nid_t cad, uint32_t verb)
1012 {
1013         int timeout;
1014         uint32_t *corb;
1015
1016         hdac_lockassert(sc);
1017         verb &= ~HDA_CMD_CAD_MASK;
1018         verb |= ((uint32_t)cad) << HDA_CMD_CAD_SHIFT;
1019         sc->codecs[cad].response = HDA_INVALID;
1020
1021         sc->codecs[cad].pending++;
1022         sc->corb_wp++;
1023         sc->corb_wp %= sc->corb_size;
1024         corb = (uint32_t *)sc->corb_dma.dma_vaddr;
1025         bus_dmamap_sync(sc->corb_dma.dma_tag,
1026             sc->corb_dma.dma_map, BUS_DMASYNC_PREWRITE);
1027         corb[sc->corb_wp] = htole32(verb);
1028         bus_dmamap_sync(sc->corb_dma.dma_tag,
1029             sc->corb_dma.dma_map, BUS_DMASYNC_POSTWRITE);
1030         HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp);
1031
1032         timeout = 10000;
1033         do {
1034                 if (hdac_rirb_flush(sc) == 0)
1035                         DELAY(10);
1036         } while (sc->codecs[cad].pending != 0 && --timeout);
1037
1038         if (sc->codecs[cad].pending != 0) {
1039                 device_printf(sc->dev, "Command 0x%08x timeout on address %d\n",
1040                     verb, cad);
1041                 sc->codecs[cad].pending = 0;
1042         }
1043
1044         if (sc->unsolq_rp != sc->unsolq_wp)
1045                 taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task);
1046         return (sc->codecs[cad].response);
1047 }
1048
1049 /****************************************************************************
1050  * Device Methods
1051  ****************************************************************************/
1052
1053 /****************************************************************************
1054  * int hdac_probe(device_t)
1055  *
1056  * Probe for the presence of an hdac. If none is found, check for a generic
1057  * match using the subclass of the device.
1058  ****************************************************************************/
1059 static int
1060 hdac_probe(device_t dev)
1061 {
1062         int i, result;
1063         uint32_t model;
1064         uint16_t class, subclass;
1065         char desc[64];
1066
1067         model = (uint32_t)pci_get_device(dev) << 16;
1068         model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff;
1069         class = pci_get_class(dev);
1070         subclass = pci_get_subclass(dev);
1071
1072         bzero(desc, sizeof(desc));
1073         result = ENXIO;
1074         for (i = 0; i < nitems(hdac_devices); i++) {
1075                 if (hdac_devices[i].model == model) {
1076                         strlcpy(desc, hdac_devices[i].desc, sizeof(desc));
1077                         result = BUS_PROBE_DEFAULT;
1078                         break;
1079                 }
1080                 if (HDA_DEV_MATCH(hdac_devices[i].model, model) &&
1081                     class == PCIC_MULTIMEDIA &&
1082                     subclass == PCIS_MULTIMEDIA_HDA) {
1083                         snprintf(desc, sizeof(desc), "%s (0x%04x)",
1084                             hdac_devices[i].desc, pci_get_device(dev));
1085                         result = BUS_PROBE_GENERIC;
1086                         break;
1087                 }
1088         }
1089         if (result == ENXIO && class == PCIC_MULTIMEDIA &&
1090             subclass == PCIS_MULTIMEDIA_HDA) {
1091                 snprintf(desc, sizeof(desc), "Generic (0x%08x)", model);
1092                 result = BUS_PROBE_GENERIC;
1093         }
1094         if (result != ENXIO) {
1095                 strlcat(desc, " HDA Controller", sizeof(desc));
1096                 device_set_desc_copy(dev, desc);
1097         }
1098
1099         return (result);
1100 }
1101
1102 static void
1103 hdac_unsolq_task(void *context, int pending)
1104 {
1105         struct hdac_softc *sc;
1106
1107         sc = (struct hdac_softc *)context;
1108
1109         hdac_lock(sc);
1110         hdac_unsolq_flush(sc);
1111         hdac_unlock(sc);
1112 }
1113
1114 /****************************************************************************
1115  * int hdac_attach(device_t)
1116  *
1117  * Attach the device into the kernel. Interrupts usually won't be enabled
1118  * when this function is called. Setup everything that doesn't require
1119  * interrupts and defer probing of codecs until interrupts are enabled.
1120  ****************************************************************************/
1121 static int
1122 hdac_attach(device_t dev)
1123 {
1124         struct hdac_softc *sc;
1125         int result;
1126         int i, devid = -1;
1127         uint32_t model;
1128         uint16_t class, subclass;
1129         uint16_t vendor;
1130         uint8_t v;
1131
1132         sc = device_get_softc(dev);
1133         HDA_BOOTVERBOSE(
1134                 device_printf(dev, "PCI card vendor: 0x%04x, device: 0x%04x\n",
1135                     pci_get_subvendor(dev), pci_get_subdevice(dev));
1136                 device_printf(dev, "HDA Driver Revision: %s\n",
1137                     HDA_DRV_TEST_REV);
1138         );
1139
1140         model = (uint32_t)pci_get_device(dev) << 16;
1141         model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff;
1142         class = pci_get_class(dev);
1143         subclass = pci_get_subclass(dev);
1144
1145         for (i = 0; i < nitems(hdac_devices); i++) {
1146                 if (hdac_devices[i].model == model) {
1147                         devid = i;
1148                         break;
1149                 }
1150                 if (HDA_DEV_MATCH(hdac_devices[i].model, model) &&
1151                     class == PCIC_MULTIMEDIA &&
1152                     subclass == PCIS_MULTIMEDIA_HDA) {
1153                         devid = i;
1154                         break;
1155                 }
1156         }
1157
1158         sc->lock = snd_mtxcreate(device_get_nameunit(dev), "HDA driver mutex");
1159         sc->dev = dev;
1160         TASK_INIT(&sc->unsolq_task, 0, hdac_unsolq_task, sc);
1161         callout_init(&sc->poll_callout, 1);
1162         for (i = 0; i < HDAC_CODEC_MAX; i++)
1163                 sc->codecs[i].dev = NULL;
1164         if (devid >= 0) {
1165                 sc->quirks_on = hdac_devices[devid].quirks_on;
1166                 sc->quirks_off = hdac_devices[devid].quirks_off;
1167         } else {
1168                 sc->quirks_on = 0;
1169                 sc->quirks_off = 0;
1170         }
1171         if (resource_int_value(device_get_name(dev),
1172             device_get_unit(dev), "msi", &i) == 0) {
1173                 if (i == 0)
1174                         sc->quirks_off |= HDAC_QUIRK_MSI;
1175                 else {
1176                         sc->quirks_on |= HDAC_QUIRK_MSI;
1177                         sc->quirks_off |= ~HDAC_QUIRK_MSI;
1178                 }
1179         }
1180         hdac_config_fetch(sc, &sc->quirks_on, &sc->quirks_off);
1181         HDA_BOOTVERBOSE(
1182                 device_printf(sc->dev,
1183                     "Config options: on=0x%08x off=0x%08x\n",
1184                     sc->quirks_on, sc->quirks_off);
1185         );
1186         sc->poll_ival = hz;
1187         if (resource_int_value(device_get_name(dev),
1188             device_get_unit(dev), "polling", &i) == 0 && i != 0)
1189                 sc->polling = 1;
1190         else
1191                 sc->polling = 0;
1192
1193         pci_enable_busmaster(dev);
1194
1195         vendor = pci_get_vendor(dev);
1196         if (vendor == INTEL_VENDORID) {
1197                 /* TCSEL -> TC0 */
1198                 v = pci_read_config(dev, 0x44, 1);
1199                 pci_write_config(dev, 0x44, v & 0xf8, 1);
1200                 HDA_BOOTHVERBOSE(
1201                         device_printf(dev, "TCSEL: 0x%02d -> 0x%02d\n", v,
1202                             pci_read_config(dev, 0x44, 1));
1203                 );
1204         }
1205
1206 #if defined(__i386__) || defined(__amd64__)
1207         sc->flags |= HDAC_F_DMA_NOCACHE;
1208
1209         if (resource_int_value(device_get_name(dev),
1210             device_get_unit(dev), "snoop", &i) == 0 && i != 0) {
1211 #else
1212         sc->flags &= ~HDAC_F_DMA_NOCACHE;
1213 #endif
1214                 /*
1215                  * Try to enable PCIe snoop to avoid messing around with
1216                  * uncacheable DMA attribute. Since PCIe snoop register
1217                  * config is pretty much vendor specific, there are no
1218                  * general solutions on how to enable it, forcing us (even
1219                  * Microsoft) to enable uncacheable or write combined DMA
1220                  * by default.
1221                  *
1222                  * http://msdn2.microsoft.com/en-us/library/ms790324.aspx
1223                  */
1224                 for (i = 0; i < nitems(hdac_pcie_snoop); i++) {
1225                         if (hdac_pcie_snoop[i].vendor != vendor)
1226                                 continue;
1227                         sc->flags &= ~HDAC_F_DMA_NOCACHE;
1228                         if (hdac_pcie_snoop[i].reg == 0x00)
1229                                 break;
1230                         v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1);
1231                         if ((v & hdac_pcie_snoop[i].enable) ==
1232                             hdac_pcie_snoop[i].enable)
1233                                 break;
1234                         v &= hdac_pcie_snoop[i].mask;
1235                         v |= hdac_pcie_snoop[i].enable;
1236                         pci_write_config(dev, hdac_pcie_snoop[i].reg, v, 1);
1237                         v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1);
1238                         if ((v & hdac_pcie_snoop[i].enable) !=
1239                             hdac_pcie_snoop[i].enable) {
1240                                 HDA_BOOTVERBOSE(
1241                                         device_printf(dev,
1242                                             "WARNING: Failed to enable PCIe "
1243                                             "snoop!\n");
1244                                 );
1245 #if defined(__i386__) || defined(__amd64__)
1246                                 sc->flags |= HDAC_F_DMA_NOCACHE;
1247 #endif
1248                         }
1249                         break;
1250                 }
1251 #if defined(__i386__) || defined(__amd64__)
1252         }
1253 #endif
1254
1255         HDA_BOOTHVERBOSE(
1256                 device_printf(dev, "DMA Coherency: %s / vendor=0x%04x\n",
1257                     (sc->flags & HDAC_F_DMA_NOCACHE) ?
1258                     "Uncacheable" : "PCIe snoop", vendor);
1259         );
1260
1261         /* Allocate resources */
1262         result = hdac_mem_alloc(sc);
1263         if (result != 0)
1264                 goto hdac_attach_fail;
1265         result = hdac_irq_alloc(sc);
1266         if (result != 0)
1267                 goto hdac_attach_fail;
1268
1269         /* Get Capabilities */
1270         result = hdac_get_capabilities(sc);
1271         if (result != 0)
1272                 goto hdac_attach_fail;
1273
1274         /* Allocate CORB, RIRB, POS and BDLs dma memory */
1275         result = hdac_dma_alloc(sc, &sc->corb_dma,
1276             sc->corb_size * sizeof(uint32_t));
1277         if (result != 0)
1278                 goto hdac_attach_fail;
1279         result = hdac_dma_alloc(sc, &sc->rirb_dma,
1280             sc->rirb_size * sizeof(struct hdac_rirb));
1281         if (result != 0)
1282                 goto hdac_attach_fail;
1283         sc->streams = malloc(sizeof(struct hdac_stream) * sc->num_ss,
1284             M_HDAC, M_ZERO | M_WAITOK);
1285         for (i = 0; i < sc->num_ss; i++) {
1286                 result = hdac_dma_alloc(sc, &sc->streams[i].bdl,
1287                     sizeof(struct hdac_bdle) * HDA_BDL_MAX);
1288                 if (result != 0)
1289                         goto hdac_attach_fail;
1290         }
1291         if (sc->quirks_on & HDAC_QUIRK_DMAPOS) {
1292                 if (hdac_dma_alloc(sc, &sc->pos_dma, (sc->num_ss) * 8) != 0) {
1293                         HDA_BOOTVERBOSE(
1294                                 device_printf(dev, "Failed to "
1295                                     "allocate DMA pos buffer "
1296                                     "(non-fatal)\n");
1297                         );
1298                 } else {
1299                         uint64_t addr = sc->pos_dma.dma_paddr;
1300
1301                         HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, addr >> 32);
1302                         HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE,
1303                             (addr & HDAC_DPLBASE_DPLBASE_MASK) |
1304                             HDAC_DPLBASE_DPLBASE_DMAPBE);
1305                 }
1306         }
1307
1308         result = bus_dma_tag_create(
1309             bus_get_dma_tag(sc->dev),           /* parent */
1310             HDA_DMA_ALIGNMENT,                  /* alignment */
1311             0,                                  /* boundary */
1312             (sc->support_64bit) ? BUS_SPACE_MAXADDR :
1313                 BUS_SPACE_MAXADDR_32BIT,        /* lowaddr */
1314             BUS_SPACE_MAXADDR,                  /* highaddr */
1315             NULL,                               /* filtfunc */
1316             NULL,                               /* fistfuncarg */
1317             HDA_BUFSZ_MAX,                      /* maxsize */
1318             1,                                  /* nsegments */
1319             HDA_BUFSZ_MAX,                      /* maxsegsz */
1320             0,                                  /* flags */
1321             NULL,                               /* lockfunc */
1322             NULL,                               /* lockfuncarg */
1323             &sc->chan_dmat);                    /* dmat */
1324         if (result != 0) {
1325                 device_printf(dev, "%s: bus_dma_tag_create failed (%d)\n",
1326                      __func__, result);
1327                 goto hdac_attach_fail;
1328         }
1329
1330         /* Quiesce everything */
1331         HDA_BOOTHVERBOSE(
1332                 device_printf(dev, "Reset controller...\n");
1333         );
1334         hdac_reset(sc, true);
1335
1336         /* Initialize the CORB and RIRB */
1337         hdac_corb_init(sc);
1338         hdac_rirb_init(sc);
1339
1340         /* Defer remaining of initialization until interrupts are enabled */
1341         sc->intrhook.ich_func = hdac_attach2;
1342         sc->intrhook.ich_arg = (void *)sc;
1343         if (cold == 0 || config_intrhook_establish(&sc->intrhook) != 0) {
1344                 sc->intrhook.ich_func = NULL;
1345                 hdac_attach2((void *)sc);
1346         }
1347
1348         return (0);
1349
1350 hdac_attach_fail:
1351         hdac_irq_free(sc);
1352         if (sc->streams != NULL)
1353                 for (i = 0; i < sc->num_ss; i++)
1354                         hdac_dma_free(sc, &sc->streams[i].bdl);
1355         free(sc->streams, M_HDAC);
1356         hdac_dma_free(sc, &sc->rirb_dma);
1357         hdac_dma_free(sc, &sc->corb_dma);
1358         hdac_mem_free(sc);
1359         snd_mtxfree(sc->lock);
1360
1361         return (ENXIO);
1362 }
1363
1364 static int
1365 sysctl_hdac_pindump(SYSCTL_HANDLER_ARGS)
1366 {
1367         struct hdac_softc *sc;
1368         device_t *devlist;
1369         device_t dev;
1370         int devcount, i, err, val;
1371
1372         dev = oidp->oid_arg1;
1373         sc = device_get_softc(dev);
1374         if (sc == NULL)
1375                 return (EINVAL);
1376         val = 0;
1377         err = sysctl_handle_int(oidp, &val, 0, req);
1378         if (err != 0 || req->newptr == NULL || val == 0)
1379                 return (err);
1380
1381         /* XXX: Temporary. For debugging. */
1382         if (val == 100) {
1383                 hdac_suspend(dev);
1384                 return (0);
1385         } else if (val == 101) {
1386                 hdac_resume(dev);
1387                 return (0);
1388         }
1389
1390         if ((err = device_get_children(dev, &devlist, &devcount)) != 0)
1391                 return (err);
1392         hdac_lock(sc);
1393         for (i = 0; i < devcount; i++)
1394                 HDAC_PINDUMP(devlist[i]);
1395         hdac_unlock(sc);
1396         free(devlist, M_TEMP);
1397         return (0);
1398 }
1399
1400 static int
1401 hdac_mdata_rate(uint16_t fmt)
1402 {
1403         static const int mbits[8] = { 8, 16, 32, 32, 32, 32, 32, 32 };
1404         int rate, bits;
1405
1406         if (fmt & (1 << 14))
1407                 rate = 44100;
1408         else
1409                 rate = 48000;
1410         rate *= ((fmt >> 11) & 0x07) + 1;
1411         rate /= ((fmt >> 8) & 0x07) + 1;
1412         bits = mbits[(fmt >> 4) & 0x03];
1413         bits *= (fmt & 0x0f) + 1;
1414         return (rate * bits);
1415 }
1416
1417 static int
1418 hdac_bdata_rate(uint16_t fmt, int output)
1419 {
1420         static const int bbits[8] = { 8, 16, 20, 24, 32, 32, 32, 32 };
1421         int rate, bits;
1422
1423         rate = 48000;
1424         rate *= ((fmt >> 11) & 0x07) + 1;
1425         bits = bbits[(fmt >> 4) & 0x03];
1426         bits *= (fmt & 0x0f) + 1;
1427         if (!output)
1428                 bits = ((bits + 7) & ~0x07) + 10;
1429         return (rate * bits);
1430 }
1431
1432 static void
1433 hdac_poll_reinit(struct hdac_softc *sc)
1434 {
1435         int i, pollticks, min = 1000000;
1436         struct hdac_stream *s;
1437
1438         if (sc->polling == 0)
1439                 return;
1440         if (sc->unsol_registered > 0)
1441                 min = hz / 2;
1442         for (i = 0; i < sc->num_ss; i++) {
1443                 s = &sc->streams[i];
1444                 if (s->running == 0)
1445                         continue;
1446                 pollticks = ((uint64_t)hz * s->blksz) /
1447                     (hdac_mdata_rate(s->format) / 8);
1448                 pollticks >>= 1;
1449                 if (pollticks > hz)
1450                         pollticks = hz;
1451                 if (pollticks < 1)
1452                         pollticks = 1;
1453                 if (min > pollticks)
1454                         min = pollticks;
1455         }
1456         sc->poll_ival = min;
1457         if (min == 1000000)
1458                 callout_stop(&sc->poll_callout);
1459         else
1460                 callout_reset(&sc->poll_callout, 1, hdac_poll_callback, sc);
1461 }
1462
1463 static int
1464 sysctl_hdac_polling(SYSCTL_HANDLER_ARGS)
1465 {
1466         struct hdac_softc *sc;
1467         device_t dev;
1468         uint32_t ctl;
1469         int err, val;
1470
1471         dev = oidp->oid_arg1;
1472         sc = device_get_softc(dev);
1473         if (sc == NULL)
1474                 return (EINVAL);
1475         hdac_lock(sc);
1476         val = sc->polling;
1477         hdac_unlock(sc);
1478         err = sysctl_handle_int(oidp, &val, 0, req);
1479
1480         if (err != 0 || req->newptr == NULL)
1481                 return (err);
1482         if (val < 0 || val > 1)
1483                 return (EINVAL);
1484
1485         hdac_lock(sc);
1486         if (val != sc->polling) {
1487                 if (val == 0) {
1488                         callout_stop(&sc->poll_callout);
1489                         hdac_unlock(sc);
1490                         callout_drain(&sc->poll_callout);
1491                         hdac_lock(sc);
1492                         sc->polling = 0;
1493                         ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
1494                         ctl |= HDAC_INTCTL_GIE;
1495                         HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
1496                 } else {
1497                         ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
1498                         ctl &= ~HDAC_INTCTL_GIE;
1499                         HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
1500                         sc->polling = 1;
1501                         hdac_poll_reinit(sc);
1502                 }
1503         }
1504         hdac_unlock(sc);
1505
1506         return (err);
1507 }
1508
1509 static void
1510 hdac_attach2(void *arg)
1511 {
1512         struct hdac_softc *sc;
1513         device_t child;
1514         uint32_t vendorid, revisionid;
1515         int i;
1516         uint16_t statests;
1517
1518         sc = (struct hdac_softc *)arg;
1519
1520         hdac_lock(sc);
1521
1522         /* Remove ourselves from the config hooks */
1523         if (sc->intrhook.ich_func != NULL) {
1524                 config_intrhook_disestablish(&sc->intrhook);
1525                 sc->intrhook.ich_func = NULL;
1526         }
1527
1528         HDA_BOOTHVERBOSE(
1529                 device_printf(sc->dev, "Starting CORB Engine...\n");
1530         );
1531         hdac_corb_start(sc);
1532         HDA_BOOTHVERBOSE(
1533                 device_printf(sc->dev, "Starting RIRB Engine...\n");
1534         );
1535         hdac_rirb_start(sc);
1536
1537         /*
1538          * Clear HDAC_WAKEEN as at present we have no use for SDI wake
1539          * (status change) interrupts.  The documentation says that we
1540          * should not make any assumptions about the state of this register
1541          * and set it explicitly.
1542          * NB: this needs to be done before the interrupt is enabled as
1543          * the handler does not expect this interrupt source.
1544          */
1545         HDAC_WRITE_2(&sc->mem, HDAC_WAKEEN, 0);
1546
1547         /*
1548          * Read and clear post-reset SDI wake status.
1549          * Each set bit corresponds to a codec that came out of reset.
1550          */
1551         statests = HDAC_READ_2(&sc->mem, HDAC_STATESTS);
1552         HDAC_WRITE_2(&sc->mem, HDAC_STATESTS, statests);
1553
1554         HDA_BOOTHVERBOSE(
1555                 device_printf(sc->dev,
1556                     "Enabling controller interrupt...\n");
1557         );
1558         HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) |
1559             HDAC_GCTL_UNSOL);
1560         if (sc->polling == 0) {
1561                 HDAC_WRITE_4(&sc->mem, HDAC_INTCTL,
1562                     HDAC_INTCTL_CIE | HDAC_INTCTL_GIE);
1563         }
1564         DELAY(1000);
1565
1566         HDA_BOOTHVERBOSE(
1567                 device_printf(sc->dev, "Scanning HDA codecs ...\n");
1568         );
1569         hdac_unlock(sc);
1570         for (i = 0; i < HDAC_CODEC_MAX; i++) {
1571                 if (HDAC_STATESTS_SDIWAKE(statests, i)) {
1572                         HDA_BOOTHVERBOSE(
1573                                 device_printf(sc->dev,
1574                                     "Found CODEC at address %d\n", i);
1575                         );
1576                         hdac_lock(sc);
1577                         vendorid = hdac_send_command(sc, i,
1578                             HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_VENDOR_ID));
1579                         revisionid = hdac_send_command(sc, i,
1580                             HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_REVISION_ID));
1581                         hdac_unlock(sc);
1582                         if (vendorid == HDA_INVALID &&
1583                             revisionid == HDA_INVALID) {
1584                                 device_printf(sc->dev,
1585                                     "CODEC at address %d not responding!\n", i);
1586                                 continue;
1587                         }
1588                         sc->codecs[i].vendor_id =
1589                             HDA_PARAM_VENDOR_ID_VENDOR_ID(vendorid);
1590                         sc->codecs[i].device_id =
1591                             HDA_PARAM_VENDOR_ID_DEVICE_ID(vendorid);
1592                         sc->codecs[i].revision_id =
1593                             HDA_PARAM_REVISION_ID_REVISION_ID(revisionid);
1594                         sc->codecs[i].stepping_id =
1595                             HDA_PARAM_REVISION_ID_STEPPING_ID(revisionid);
1596                         child = device_add_child(sc->dev, "hdacc", -1);
1597                         if (child == NULL) {
1598                                 device_printf(sc->dev,
1599                                     "Failed to add CODEC device\n");
1600                                 continue;
1601                         }
1602                         device_set_ivars(child, (void *)(intptr_t)i);
1603                         sc->codecs[i].dev = child;
1604                 }
1605         }
1606         bus_generic_attach(sc->dev);
1607
1608         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
1609             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO,
1610             "pindump", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc->dev,
1611             sizeof(sc->dev), sysctl_hdac_pindump, "I", "Dump pin states/data");
1612         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
1613             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO,
1614             "polling", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc->dev,
1615             sizeof(sc->dev), sysctl_hdac_polling, "I", "Enable polling mode");
1616 }
1617
1618 /****************************************************************************
1619  * int hdac_suspend(device_t)
1620  *
1621  * Suspend and power down HDA bus and codecs.
1622  ****************************************************************************/
1623 static int
1624 hdac_suspend(device_t dev)
1625 {
1626         struct hdac_softc *sc = device_get_softc(dev);
1627
1628         HDA_BOOTHVERBOSE(
1629                 device_printf(dev, "Suspend...\n");
1630         );
1631         bus_generic_suspend(dev);
1632
1633         hdac_lock(sc);
1634         HDA_BOOTHVERBOSE(
1635                 device_printf(dev, "Reset controller...\n");
1636         );
1637         callout_stop(&sc->poll_callout);
1638         hdac_reset(sc, false);
1639         hdac_unlock(sc);
1640         callout_drain(&sc->poll_callout);
1641         taskqueue_drain(taskqueue_thread, &sc->unsolq_task);
1642         HDA_BOOTHVERBOSE(
1643                 device_printf(dev, "Suspend done\n");
1644         );
1645         return (0);
1646 }
1647
1648 /****************************************************************************
1649  * int hdac_resume(device_t)
1650  *
1651  * Powerup and restore HDA bus and codecs state.
1652  ****************************************************************************/
1653 static int
1654 hdac_resume(device_t dev)
1655 {
1656         struct hdac_softc *sc = device_get_softc(dev);
1657         int error;
1658
1659         HDA_BOOTHVERBOSE(
1660                 device_printf(dev, "Resume...\n");
1661         );
1662         hdac_lock(sc);
1663
1664         /* Quiesce everything */
1665         HDA_BOOTHVERBOSE(
1666                 device_printf(dev, "Reset controller...\n");
1667         );
1668         hdac_reset(sc, true);
1669
1670         /* Initialize the CORB and RIRB */
1671         hdac_corb_init(sc);
1672         hdac_rirb_init(sc);
1673
1674         HDA_BOOTHVERBOSE(
1675                 device_printf(dev, "Starting CORB Engine...\n");
1676         );
1677         hdac_corb_start(sc);
1678         HDA_BOOTHVERBOSE(
1679                 device_printf(dev, "Starting RIRB Engine...\n");
1680         );
1681         hdac_rirb_start(sc);
1682
1683         /*
1684          * Clear HDAC_WAKEEN as at present we have no use for SDI wake
1685          * (status change) events.  The documentation says that we should
1686          * not make any assumptions about the state of this register and
1687          * set it explicitly.
1688          * Also, clear HDAC_STATESTS.
1689          * NB: this needs to be done before the interrupt is enabled as
1690          * the handler does not expect this interrupt source.
1691          */
1692         HDAC_WRITE_2(&sc->mem, HDAC_WAKEEN, 0);
1693         HDAC_WRITE_2(&sc->mem, HDAC_STATESTS, HDAC_STATESTS_SDIWAKE_MASK);
1694
1695         HDA_BOOTHVERBOSE(
1696                 device_printf(dev, "Enabling controller interrupt...\n");
1697         );
1698         HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) |
1699             HDAC_GCTL_UNSOL);
1700         HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, HDAC_INTCTL_CIE | HDAC_INTCTL_GIE);
1701         DELAY(1000);
1702         hdac_poll_reinit(sc);
1703         hdac_unlock(sc);
1704
1705         error = bus_generic_resume(dev);
1706         HDA_BOOTHVERBOSE(
1707                 device_printf(dev, "Resume done\n");
1708         );
1709         return (error);
1710 }
1711
1712 /****************************************************************************
1713  * int hdac_detach(device_t)
1714  *
1715  * Detach and free up resources utilized by the hdac device.
1716  ****************************************************************************/
1717 static int
1718 hdac_detach(device_t dev)
1719 {
1720         struct hdac_softc *sc = device_get_softc(dev);
1721         device_t *devlist;
1722         int cad, i, devcount, error;
1723
1724         if ((error = device_get_children(dev, &devlist, &devcount)) != 0)
1725                 return (error);
1726         for (i = 0; i < devcount; i++) {
1727                 cad = (intptr_t)device_get_ivars(devlist[i]);
1728                 if ((error = device_delete_child(dev, devlist[i])) != 0) {
1729                         free(devlist, M_TEMP);
1730                         return (error);
1731                 }
1732                 sc->codecs[cad].dev = NULL;
1733         }
1734         free(devlist, M_TEMP);
1735
1736         hdac_lock(sc);
1737         hdac_reset(sc, false);
1738         hdac_unlock(sc);
1739         taskqueue_drain(taskqueue_thread, &sc->unsolq_task);
1740         hdac_irq_free(sc);
1741
1742         for (i = 0; i < sc->num_ss; i++)
1743                 hdac_dma_free(sc, &sc->streams[i].bdl);
1744         free(sc->streams, M_HDAC);
1745         hdac_dma_free(sc, &sc->pos_dma);
1746         hdac_dma_free(sc, &sc->rirb_dma);
1747         hdac_dma_free(sc, &sc->corb_dma);
1748         if (sc->chan_dmat != NULL) {
1749                 bus_dma_tag_destroy(sc->chan_dmat);
1750                 sc->chan_dmat = NULL;
1751         }
1752         hdac_mem_free(sc);
1753         snd_mtxfree(sc->lock);
1754         return (0);
1755 }
1756
1757 static bus_dma_tag_t
1758 hdac_get_dma_tag(device_t dev, device_t child)
1759 {
1760         struct hdac_softc *sc = device_get_softc(dev);
1761
1762         return (sc->chan_dmat);
1763 }
1764
1765 static int
1766 hdac_print_child(device_t dev, device_t child)
1767 {
1768         int retval;
1769
1770         retval = bus_print_child_header(dev, child);
1771         retval += printf(" at cad %d", (int)(intptr_t)device_get_ivars(child));
1772         retval += bus_print_child_footer(dev, child);
1773
1774         return (retval);
1775 }
1776
1777 static int
1778 hdac_child_location_str(device_t dev, device_t child, char *buf, size_t buflen)
1779 {
1780
1781         snprintf(buf, buflen, "cad=%d", (int)(intptr_t)device_get_ivars(child));
1782         return (0);
1783 }
1784
1785 static int
1786 hdac_child_pnpinfo_str_method(device_t dev, device_t child, char *buf,
1787     size_t buflen)
1788 {
1789         struct hdac_softc *sc = device_get_softc(dev);
1790         nid_t cad = (uintptr_t)device_get_ivars(child);
1791
1792         snprintf(buf, buflen,
1793             "vendor=0x%04x device=0x%04x revision=0x%02x stepping=0x%02x",
1794             sc->codecs[cad].vendor_id, sc->codecs[cad].device_id,
1795             sc->codecs[cad].revision_id, sc->codecs[cad].stepping_id);
1796         return (0);
1797 }
1798
1799 static int
1800 hdac_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
1801 {
1802         struct hdac_softc *sc = device_get_softc(dev);
1803         nid_t cad = (uintptr_t)device_get_ivars(child);
1804
1805         switch (which) {
1806         case HDA_IVAR_CODEC_ID:
1807                 *result = cad;
1808                 break;
1809         case HDA_IVAR_VENDOR_ID:
1810                 *result = sc->codecs[cad].vendor_id;
1811                 break;
1812         case HDA_IVAR_DEVICE_ID:
1813                 *result = sc->codecs[cad].device_id;
1814                 break;
1815         case HDA_IVAR_REVISION_ID:
1816                 *result = sc->codecs[cad].revision_id;
1817                 break;
1818         case HDA_IVAR_STEPPING_ID:
1819                 *result = sc->codecs[cad].stepping_id;
1820                 break;
1821         case HDA_IVAR_SUBVENDOR_ID:
1822                 *result = pci_get_subvendor(dev);
1823                 break;
1824         case HDA_IVAR_SUBDEVICE_ID:
1825                 *result = pci_get_subdevice(dev);
1826                 break;
1827         case HDA_IVAR_DMA_NOCACHE:
1828                 *result = (sc->flags & HDAC_F_DMA_NOCACHE) != 0;
1829                 break;
1830         case HDA_IVAR_STRIPES_MASK:
1831                 *result = (1 << (1 << sc->num_sdo)) - 1;
1832                 break;
1833         default:
1834                 return (ENOENT);
1835         }
1836         return (0);
1837 }
1838
1839 static struct mtx *
1840 hdac_get_mtx(device_t dev, device_t child)
1841 {
1842         struct hdac_softc *sc = device_get_softc(dev);
1843
1844         return (sc->lock);
1845 }
1846
1847 static uint32_t
1848 hdac_codec_command(device_t dev, device_t child, uint32_t verb)
1849 {
1850
1851         return (hdac_send_command(device_get_softc(dev),
1852             (intptr_t)device_get_ivars(child), verb));
1853 }
1854
1855 static int
1856 hdac_find_stream(struct hdac_softc *sc, int dir, int stream)
1857 {
1858         int i, ss;
1859
1860         ss = -1;
1861         /* Allocate ISS/OSS first. */
1862         if (dir == 0) {
1863                 for (i = 0; i < sc->num_iss; i++) {
1864                         if (sc->streams[i].stream == stream) {
1865                                 ss = i;
1866                                 break;
1867                         }
1868                 }
1869         } else {
1870                 for (i = 0; i < sc->num_oss; i++) {
1871                         if (sc->streams[i + sc->num_iss].stream == stream) {
1872                                 ss = i + sc->num_iss;
1873                                 break;
1874                         }
1875                 }
1876         }
1877         /* Fallback to BSS. */
1878         if (ss == -1) {
1879                 for (i = 0; i < sc->num_bss; i++) {
1880                         if (sc->streams[i + sc->num_iss + sc->num_oss].stream
1881                             == stream) {
1882                                 ss = i + sc->num_iss + sc->num_oss;
1883                                 break;
1884                         }
1885                 }
1886         }
1887         return (ss);
1888 }
1889
1890 static int
1891 hdac_stream_alloc(device_t dev, device_t child, int dir, int format, int stripe,
1892     uint32_t **dmapos)
1893 {
1894         struct hdac_softc *sc = device_get_softc(dev);
1895         nid_t cad = (uintptr_t)device_get_ivars(child);
1896         int stream, ss, bw, maxbw, prevbw;
1897
1898         /* Look for empty stream. */
1899         ss = hdac_find_stream(sc, dir, 0);
1900
1901         /* Return if found nothing. */
1902         if (ss < 0)
1903                 return (0);
1904
1905         /* Check bus bandwidth. */
1906         bw = hdac_bdata_rate(format, dir);
1907         if (dir == 1) {
1908                 bw *= 1 << (sc->num_sdo - stripe);
1909                 prevbw = sc->sdo_bw_used;
1910                 maxbw = 48000 * 960 * (1 << sc->num_sdo);
1911         } else {
1912                 prevbw = sc->codecs[cad].sdi_bw_used;
1913                 maxbw = 48000 * 464;
1914         }
1915         HDA_BOOTHVERBOSE(
1916                 device_printf(dev, "%dKbps of %dKbps bandwidth used%s\n",
1917                     (bw + prevbw) / 1000, maxbw / 1000,
1918                     bw + prevbw > maxbw ? " -- OVERFLOW!" : "");
1919         );
1920         if (bw + prevbw > maxbw)
1921                 return (0);
1922         if (dir == 1)
1923                 sc->sdo_bw_used += bw;
1924         else
1925                 sc->codecs[cad].sdi_bw_used += bw;
1926
1927         /* Allocate stream number */
1928         if (ss >= sc->num_iss + sc->num_oss)
1929                 stream = 15 - (ss - sc->num_iss - sc->num_oss);
1930         else if (ss >= sc->num_iss)
1931                 stream = ss - sc->num_iss + 1;
1932         else
1933                 stream = ss + 1;
1934
1935         sc->streams[ss].dev = child;
1936         sc->streams[ss].dir = dir;
1937         sc->streams[ss].stream = stream;
1938         sc->streams[ss].bw = bw;
1939         sc->streams[ss].format = format;
1940         sc->streams[ss].stripe = stripe;
1941         if (dmapos != NULL) {
1942                 if (sc->pos_dma.dma_vaddr != NULL)
1943                         *dmapos = (uint32_t *)(sc->pos_dma.dma_vaddr + ss * 8);
1944                 else
1945                         *dmapos = NULL;
1946         }
1947         return (stream);
1948 }
1949
1950 static void
1951 hdac_stream_free(device_t dev, device_t child, int dir, int stream)
1952 {
1953         struct hdac_softc *sc = device_get_softc(dev);
1954         nid_t cad = (uintptr_t)device_get_ivars(child);
1955         int ss;
1956
1957         ss = hdac_find_stream(sc, dir, stream);
1958         KASSERT(ss >= 0,
1959             ("Free for not allocated stream (%d/%d)\n", dir, stream));
1960         if (dir == 1)
1961                 sc->sdo_bw_used -= sc->streams[ss].bw;
1962         else
1963                 sc->codecs[cad].sdi_bw_used -= sc->streams[ss].bw;
1964         sc->streams[ss].stream = 0;
1965         sc->streams[ss].dev = NULL;
1966 }
1967
1968 static int
1969 hdac_stream_start(device_t dev, device_t child, int dir, int stream,
1970     bus_addr_t buf, int blksz, int blkcnt)
1971 {
1972         struct hdac_softc *sc = device_get_softc(dev);
1973         struct hdac_bdle *bdle;
1974         uint64_t addr;
1975         int i, ss, off;
1976         uint32_t ctl;
1977
1978         ss = hdac_find_stream(sc, dir, stream);
1979         KASSERT(ss >= 0,
1980             ("Start for not allocated stream (%d/%d)\n", dir, stream));
1981
1982         addr = (uint64_t)buf;
1983         bdle = (struct hdac_bdle *)sc->streams[ss].bdl.dma_vaddr;
1984         for (i = 0; i < blkcnt; i++, bdle++) {
1985                 bdle->addrl = htole32((uint32_t)addr);
1986                 bdle->addrh = htole32((uint32_t)(addr >> 32));
1987                 bdle->len = htole32(blksz);
1988                 bdle->ioc = htole32(1);
1989                 addr += blksz;
1990         }
1991
1992         bus_dmamap_sync(sc->streams[ss].bdl.dma_tag,
1993             sc->streams[ss].bdl.dma_map, BUS_DMASYNC_PREWRITE);
1994
1995         off = ss << 5;
1996         HDAC_WRITE_4(&sc->mem, off + HDAC_SDCBL, blksz * blkcnt);
1997         HDAC_WRITE_2(&sc->mem, off + HDAC_SDLVI, blkcnt - 1);
1998         addr = sc->streams[ss].bdl.dma_paddr;
1999         HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPL, (uint32_t)addr);
2000         HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPU, (uint32_t)(addr >> 32));
2001
2002         ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL2);
2003         if (dir)
2004                 ctl |= HDAC_SDCTL2_DIR;
2005         else
2006                 ctl &= ~HDAC_SDCTL2_DIR;
2007         ctl &= ~HDAC_SDCTL2_STRM_MASK;
2008         ctl |= stream << HDAC_SDCTL2_STRM_SHIFT;
2009         ctl &= ~HDAC_SDCTL2_STRIPE_MASK;
2010         ctl |= sc->streams[ss].stripe << HDAC_SDCTL2_STRIPE_SHIFT;
2011         HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL2, ctl);
2012
2013         HDAC_WRITE_2(&sc->mem, off + HDAC_SDFMT, sc->streams[ss].format);
2014
2015         ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
2016         ctl |= 1 << ss;
2017         HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
2018
2019         HDAC_WRITE_1(&sc->mem, off + HDAC_SDSTS,
2020             HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS);
2021         ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2022         ctl |= HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE |
2023             HDAC_SDCTL_RUN;
2024         HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2025
2026         sc->streams[ss].blksz = blksz;
2027         sc->streams[ss].running = 1;
2028         hdac_poll_reinit(sc);
2029         return (0);
2030 }
2031
2032 static void
2033 hdac_stream_stop(device_t dev, device_t child, int dir, int stream)
2034 {
2035         struct hdac_softc *sc = device_get_softc(dev);
2036         int ss, off;
2037         uint32_t ctl;
2038
2039         ss = hdac_find_stream(sc, dir, stream);
2040         KASSERT(ss >= 0,
2041             ("Stop for not allocated stream (%d/%d)\n", dir, stream));
2042
2043         bus_dmamap_sync(sc->streams[ss].bdl.dma_tag,
2044             sc->streams[ss].bdl.dma_map, BUS_DMASYNC_POSTWRITE);
2045
2046         off = ss << 5;
2047         ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2048         ctl &= ~(HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE |
2049             HDAC_SDCTL_RUN);
2050         HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2051
2052         ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
2053         ctl &= ~(1 << ss);
2054         HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
2055
2056         sc->streams[ss].running = 0;
2057         hdac_poll_reinit(sc);
2058 }
2059
2060 static void
2061 hdac_stream_reset(device_t dev, device_t child, int dir, int stream)
2062 {
2063         struct hdac_softc *sc = device_get_softc(dev);
2064         int timeout = 1000;
2065         int to = timeout;
2066         int ss, off;
2067         uint32_t ctl;
2068
2069         ss = hdac_find_stream(sc, dir, stream);
2070         KASSERT(ss >= 0,
2071             ("Reset for not allocated stream (%d/%d)\n", dir, stream));
2072
2073         off = ss << 5;
2074         ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2075         ctl |= HDAC_SDCTL_SRST;
2076         HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2077         do {
2078                 ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2079                 if (ctl & HDAC_SDCTL_SRST)
2080                         break;
2081                 DELAY(10);
2082         } while (--to);
2083         if (!(ctl & HDAC_SDCTL_SRST))
2084                 device_printf(dev, "Reset setting timeout\n");
2085         ctl &= ~HDAC_SDCTL_SRST;
2086         HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2087         to = timeout;
2088         do {
2089                 ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2090                 if (!(ctl & HDAC_SDCTL_SRST))
2091                         break;
2092                 DELAY(10);
2093         } while (--to);
2094         if (ctl & HDAC_SDCTL_SRST)
2095                 device_printf(dev, "Reset timeout!\n");
2096 }
2097
2098 static uint32_t
2099 hdac_stream_getptr(device_t dev, device_t child, int dir, int stream)
2100 {
2101         struct hdac_softc *sc = device_get_softc(dev);
2102         int ss, off;
2103
2104         ss = hdac_find_stream(sc, dir, stream);
2105         KASSERT(ss >= 0,
2106             ("Reset for not allocated stream (%d/%d)\n", dir, stream));
2107
2108         off = ss << 5;
2109         return (HDAC_READ_4(&sc->mem, off + HDAC_SDLPIB));
2110 }
2111
2112 static int
2113 hdac_unsol_alloc(device_t dev, device_t child, int tag)
2114 {
2115         struct hdac_softc *sc = device_get_softc(dev);
2116
2117         sc->unsol_registered++;
2118         hdac_poll_reinit(sc);
2119         return (tag);
2120 }
2121
2122 static void
2123 hdac_unsol_free(device_t dev, device_t child, int tag)
2124 {
2125         struct hdac_softc *sc = device_get_softc(dev);
2126
2127         sc->unsol_registered--;
2128         hdac_poll_reinit(sc);
2129 }
2130
2131 static device_method_t hdac_methods[] = {
2132         /* device interface */
2133         DEVMETHOD(device_probe,         hdac_probe),
2134         DEVMETHOD(device_attach,        hdac_attach),
2135         DEVMETHOD(device_detach,        hdac_detach),
2136         DEVMETHOD(device_suspend,       hdac_suspend),
2137         DEVMETHOD(device_resume,        hdac_resume),
2138         /* Bus interface */
2139         DEVMETHOD(bus_get_dma_tag,      hdac_get_dma_tag),
2140         DEVMETHOD(bus_print_child,      hdac_print_child),
2141         DEVMETHOD(bus_child_location_str, hdac_child_location_str),
2142         DEVMETHOD(bus_child_pnpinfo_str, hdac_child_pnpinfo_str_method),
2143         DEVMETHOD(bus_read_ivar,        hdac_read_ivar),
2144         DEVMETHOD(hdac_get_mtx,         hdac_get_mtx),
2145         DEVMETHOD(hdac_codec_command,   hdac_codec_command),
2146         DEVMETHOD(hdac_stream_alloc,    hdac_stream_alloc),
2147         DEVMETHOD(hdac_stream_free,     hdac_stream_free),
2148         DEVMETHOD(hdac_stream_start,    hdac_stream_start),
2149         DEVMETHOD(hdac_stream_stop,     hdac_stream_stop),
2150         DEVMETHOD(hdac_stream_reset,    hdac_stream_reset),
2151         DEVMETHOD(hdac_stream_getptr,   hdac_stream_getptr),
2152         DEVMETHOD(hdac_unsol_alloc,     hdac_unsol_alloc),
2153         DEVMETHOD(hdac_unsol_free,      hdac_unsol_free),
2154         DEVMETHOD_END
2155 };
2156
2157 static driver_t hdac_driver = {
2158         "hdac",
2159         hdac_methods,
2160         sizeof(struct hdac_softc),
2161 };
2162
2163 static devclass_t hdac_devclass;
2164
2165 DRIVER_MODULE(snd_hda, pci, hdac_driver, hdac_devclass, NULL, NULL);