]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/sound/pci/hda/hdac.c
Update ncurses to 20200118
[FreeBSD/FreeBSD.git] / sys / dev / sound / pci / hda / hdac.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2006 Stephane E. Potvin <sepotvin@videotron.ca>
5  * Copyright (c) 2006 Ariff Abdullah <ariff@FreeBSD.org>
6  * Copyright (c) 2008-2012 Alexander Motin <mav@FreeBSD.org>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30
31 /*
32  * Intel High Definition Audio (Controller) driver for FreeBSD.
33  */
34
35 #ifdef HAVE_KERNEL_OPTION_HEADERS
36 #include "opt_snd.h"
37 #endif
38
39 #include <dev/sound/pcm/sound.h>
40 #include <dev/pci/pcireg.h>
41 #include <dev/pci/pcivar.h>
42
43 #include <sys/ctype.h>
44 #include <sys/endian.h>
45 #include <sys/taskqueue.h>
46
47 #include <dev/sound/pci/hda/hdac_private.h>
48 #include <dev/sound/pci/hda/hdac_reg.h>
49 #include <dev/sound/pci/hda/hda_reg.h>
50 #include <dev/sound/pci/hda/hdac.h>
51
52 #define HDA_DRV_TEST_REV        "20120126_0002"
53
54 SND_DECLARE_FILE("$FreeBSD$");
55
56 #define hdac_lock(sc)           snd_mtxlock((sc)->lock)
57 #define hdac_unlock(sc)         snd_mtxunlock((sc)->lock)
58 #define hdac_lockassert(sc)     snd_mtxassert((sc)->lock)
59 #define hdac_lockowned(sc)      mtx_owned((sc)->lock)
60
61 #define HDAC_QUIRK_64BIT        (1 << 0)
62 #define HDAC_QUIRK_DMAPOS       (1 << 1)
63 #define HDAC_QUIRK_MSI          (1 << 2)
64
65 static const struct {
66         const char *key;
67         uint32_t value;
68 } hdac_quirks_tab[] = {
69         { "64bit", HDAC_QUIRK_DMAPOS },
70         { "dmapos", HDAC_QUIRK_DMAPOS },
71         { "msi", HDAC_QUIRK_MSI },
72 };
73
74 MALLOC_DEFINE(M_HDAC, "hdac", "HDA Controller");
75
76 static const struct {
77         uint32_t        model;
78         const char      *desc;
79         char            quirks_on;
80         char            quirks_off;
81 } hdac_devices[] = {
82         { HDA_INTEL_OAK,     "Intel Oaktrail",  0, 0 },
83         { HDA_INTEL_BAY,     "Intel BayTrail",  0, 0 },
84         { HDA_INTEL_HSW1,    "Intel Haswell",   0, 0 },
85         { HDA_INTEL_HSW2,    "Intel Haswell",   0, 0 },
86         { HDA_INTEL_HSW3,    "Intel Haswell",   0, 0 },
87         { HDA_INTEL_BDW1,    "Intel Broadwell", 0, 0 },
88         { HDA_INTEL_BDW2,    "Intel Broadwell", 0, 0 },
89         { HDA_INTEL_CPT,     "Intel Cougar Point",      0, 0 },
90         { HDA_INTEL_PATSBURG,"Intel Patsburg",  0, 0 },
91         { HDA_INTEL_PPT1,    "Intel Panther Point",     0, 0 },
92         { HDA_INTEL_LPT1,    "Intel Lynx Point",        0, 0 },
93         { HDA_INTEL_LPT2,    "Intel Lynx Point",        0, 0 },
94         { HDA_INTEL_WCPT,    "Intel Wildcat Point",     0, 0 },
95         { HDA_INTEL_WELLS1,  "Intel Wellsburg", 0, 0 },
96         { HDA_INTEL_WELLS2,  "Intel Wellsburg", 0, 0 },
97         { HDA_INTEL_LPTLP1,  "Intel Lynx Point-LP",     0, 0 },
98         { HDA_INTEL_LPTLP2,  "Intel Lynx Point-LP",     0, 0 },
99         { HDA_INTEL_SRPTLP,  "Intel Sunrise Point-LP",  0, 0 },
100         { HDA_INTEL_KBLKLP,  "Intel Kaby Lake-LP",      0, 0 },
101         { HDA_INTEL_SRPT,    "Intel Sunrise Point",     0, 0 },
102         { HDA_INTEL_KBLK,    "Intel Kaby Lake", 0, 0 },
103         { HDA_INTEL_KBLKH,   "Intel Kaby Lake-H",       0, 0 },
104         { HDA_INTEL_CFLK,    "Intel Coffee Lake",       0, 0 },
105         { HDA_INTEL_CNLK,    "Intel Cannon Lake",       0, 0 },
106         { HDA_INTEL_ICLK,    "Intel Ice Lake",          0, 0 },
107         { HDA_INTEL_CMLKLP,  "Intel Comet Lake-LP",     0, 0 },
108         { HDA_INTEL_CMLKH,   "Intel Comet Lake-H",      0, 0 },
109         { HDA_INTEL_TGLK,    "Intel Tiger Lake",        0, 0 },
110         { HDA_INTEL_GMLK,    "Intel Gemini Lake",       0, 0 },
111         { HDA_INTEL_82801F,  "Intel 82801F",    0, 0 },
112         { HDA_INTEL_63XXESB, "Intel 631x/632xESB",      0, 0 },
113         { HDA_INTEL_82801G,  "Intel 82801G",    0, 0 },
114         { HDA_INTEL_82801H,  "Intel 82801H",    0, 0 },
115         { HDA_INTEL_82801I,  "Intel 82801I",    0, 0 },
116         { HDA_INTEL_82801JI, "Intel 82801JI",   0, 0 },
117         { HDA_INTEL_82801JD, "Intel 82801JD",   0, 0 },
118         { HDA_INTEL_PCH,     "Intel Ibex Peak", 0, 0 },
119         { HDA_INTEL_PCH2,    "Intel Ibex Peak", 0, 0 },
120         { HDA_INTEL_SCH,     "Intel SCH",       0, 0 },
121         { HDA_NVIDIA_MCP51,  "NVIDIA MCP51",    0, HDAC_QUIRK_MSI },
122         { HDA_NVIDIA_MCP55,  "NVIDIA MCP55",    0, HDAC_QUIRK_MSI },
123         { HDA_NVIDIA_MCP61_1, "NVIDIA MCP61",   0, 0 },
124         { HDA_NVIDIA_MCP61_2, "NVIDIA MCP61",   0, 0 },
125         { HDA_NVIDIA_MCP65_1, "NVIDIA MCP65",   0, 0 },
126         { HDA_NVIDIA_MCP65_2, "NVIDIA MCP65",   0, 0 },
127         { HDA_NVIDIA_MCP67_1, "NVIDIA MCP67",   0, 0 },
128         { HDA_NVIDIA_MCP67_2, "NVIDIA MCP67",   0, 0 },
129         { HDA_NVIDIA_MCP73_1, "NVIDIA MCP73",   0, 0 },
130         { HDA_NVIDIA_MCP73_2, "NVIDIA MCP73",   0, 0 },
131         { HDA_NVIDIA_MCP78_1, "NVIDIA MCP78",   0, HDAC_QUIRK_64BIT },
132         { HDA_NVIDIA_MCP78_2, "NVIDIA MCP78",   0, HDAC_QUIRK_64BIT },
133         { HDA_NVIDIA_MCP78_3, "NVIDIA MCP78",   0, HDAC_QUIRK_64BIT },
134         { HDA_NVIDIA_MCP78_4, "NVIDIA MCP78",   0, HDAC_QUIRK_64BIT },
135         { HDA_NVIDIA_MCP79_1, "NVIDIA MCP79",   0, 0 },
136         { HDA_NVIDIA_MCP79_2, "NVIDIA MCP79",   0, 0 },
137         { HDA_NVIDIA_MCP79_3, "NVIDIA MCP79",   0, 0 },
138         { HDA_NVIDIA_MCP79_4, "NVIDIA MCP79",   0, 0 },
139         { HDA_NVIDIA_MCP89_1, "NVIDIA MCP89",   0, 0 },
140         { HDA_NVIDIA_MCP89_2, "NVIDIA MCP89",   0, 0 },
141         { HDA_NVIDIA_MCP89_3, "NVIDIA MCP89",   0, 0 },
142         { HDA_NVIDIA_MCP89_4, "NVIDIA MCP89",   0, 0 },
143         { HDA_NVIDIA_0BE2,   "NVIDIA (0x0be2)", 0, HDAC_QUIRK_MSI },
144         { HDA_NVIDIA_0BE3,   "NVIDIA (0x0be3)", 0, HDAC_QUIRK_MSI },
145         { HDA_NVIDIA_0BE4,   "NVIDIA (0x0be4)", 0, HDAC_QUIRK_MSI },
146         { HDA_NVIDIA_GT100,  "NVIDIA GT100",    0, HDAC_QUIRK_MSI },
147         { HDA_NVIDIA_GT104,  "NVIDIA GT104",    0, HDAC_QUIRK_MSI },
148         { HDA_NVIDIA_GT106,  "NVIDIA GT106",    0, HDAC_QUIRK_MSI },
149         { HDA_NVIDIA_GT108,  "NVIDIA GT108",    0, HDAC_QUIRK_MSI },
150         { HDA_NVIDIA_GT116,  "NVIDIA GT116",    0, HDAC_QUIRK_MSI },
151         { HDA_NVIDIA_GF119,  "NVIDIA GF119",    0, 0 },
152         { HDA_NVIDIA_GF110_1, "NVIDIA GF110",   0, HDAC_QUIRK_MSI },
153         { HDA_NVIDIA_GF110_2, "NVIDIA GF110",   0, HDAC_QUIRK_MSI },
154         { HDA_ATI_SB450,     "ATI SB450",       0, 0 },
155         { HDA_ATI_SB600,     "ATI SB600",       0, 0 },
156         { HDA_ATI_RS600,     "ATI RS600",       0, 0 },
157         { HDA_ATI_RS690,     "ATI RS690",       0, 0 },
158         { HDA_ATI_RS780,     "ATI RS780",       0, 0 },
159         { HDA_ATI_R600,      "ATI R600",        0, 0 },
160         { HDA_ATI_RV610,     "ATI RV610",       0, 0 },
161         { HDA_ATI_RV620,     "ATI RV620",       0, 0 },
162         { HDA_ATI_RV630,     "ATI RV630",       0, 0 },
163         { HDA_ATI_RV635,     "ATI RV635",       0, 0 },
164         { HDA_ATI_RV710,     "ATI RV710",       0, 0 },
165         { HDA_ATI_RV730,     "ATI RV730",       0, 0 },
166         { HDA_ATI_RV740,     "ATI RV740",       0, 0 },
167         { HDA_ATI_RV770,     "ATI RV770",       0, 0 },
168         { HDA_ATI_RV810,     "ATI RV810",       0, 0 },
169         { HDA_ATI_RV830,     "ATI RV830",       0, 0 },
170         { HDA_ATI_RV840,     "ATI RV840",       0, 0 },
171         { HDA_ATI_RV870,     "ATI RV870",       0, 0 },
172         { HDA_ATI_RV910,     "ATI RV910",       0, 0 },
173         { HDA_ATI_RV930,     "ATI RV930",       0, 0 },
174         { HDA_ATI_RV940,     "ATI RV940",       0, 0 },
175         { HDA_ATI_RV970,     "ATI RV970",       0, 0 },
176         { HDA_ATI_R1000,     "ATI R1000",       0, 0 },
177         { HDA_AMD_HUDSON2,   "AMD Hudson-2",    0, 0 },
178         { HDA_RDC_M3010,     "RDC M3010",       0, 0 },
179         { HDA_VIA_VT82XX,    "VIA VT8251/8237A",0, 0 },
180         { HDA_SIS_966,       "SiS 966/968",     0, 0 },
181         { HDA_ULI_M5461,     "ULI M5461",       0, 0 },
182         /* Unknown */
183         { HDA_INTEL_ALL,  "Intel",              0, 0 },
184         { HDA_NVIDIA_ALL, "NVIDIA",             0, 0 },
185         { HDA_ATI_ALL,    "ATI",                0, 0 },
186         { HDA_AMD_ALL,    "AMD",                0, 0 },
187         { HDA_CREATIVE_ALL,    "Creative",      0, 0 },
188         { HDA_VIA_ALL,    "VIA",                0, 0 },
189         { HDA_SIS_ALL,    "SiS",                0, 0 },
190         { HDA_ULI_ALL,    "ULI",                0, 0 },
191 };
192
193 static const struct {
194         uint16_t vendor;
195         uint8_t reg;
196         uint8_t mask;
197         uint8_t enable;
198 } hdac_pcie_snoop[] = {
199         {  INTEL_VENDORID, 0x00, 0x00, 0x00 },
200         {    ATI_VENDORID, 0x42, 0xf8, 0x02 },
201         { NVIDIA_VENDORID, 0x4e, 0xf0, 0x0f },
202 };
203
204 /****************************************************************************
205  * Function prototypes
206  ****************************************************************************/
207 static void     hdac_intr_handler(void *);
208 static int      hdac_reset(struct hdac_softc *, int);
209 static int      hdac_get_capabilities(struct hdac_softc *);
210 static void     hdac_dma_cb(void *, bus_dma_segment_t *, int, int);
211 static int      hdac_dma_alloc(struct hdac_softc *,
212                                         struct hdac_dma *, bus_size_t);
213 static void     hdac_dma_free(struct hdac_softc *, struct hdac_dma *);
214 static int      hdac_mem_alloc(struct hdac_softc *);
215 static void     hdac_mem_free(struct hdac_softc *);
216 static int      hdac_irq_alloc(struct hdac_softc *);
217 static void     hdac_irq_free(struct hdac_softc *);
218 static void     hdac_corb_init(struct hdac_softc *);
219 static void     hdac_rirb_init(struct hdac_softc *);
220 static void     hdac_corb_start(struct hdac_softc *);
221 static void     hdac_rirb_start(struct hdac_softc *);
222
223 static void     hdac_attach2(void *);
224
225 static uint32_t hdac_send_command(struct hdac_softc *, nid_t, uint32_t);
226
227 static int      hdac_probe(device_t);
228 static int      hdac_attach(device_t);
229 static int      hdac_detach(device_t);
230 static int      hdac_suspend(device_t);
231 static int      hdac_resume(device_t);
232
233 static int      hdac_rirb_flush(struct hdac_softc *sc);
234 static int      hdac_unsolq_flush(struct hdac_softc *sc);
235
236 #define hdac_command(a1, a2, a3)        \
237                 hdac_send_command(a1, a3, a2)
238
239 /* This function surely going to make its way into upper level someday. */
240 static void
241 hdac_config_fetch(struct hdac_softc *sc, uint32_t *on, uint32_t *off)
242 {
243         const char *res = NULL;
244         int i = 0, j, k, len, inv;
245
246         if (resource_string_value(device_get_name(sc->dev),
247             device_get_unit(sc->dev), "config", &res) != 0)
248                 return;
249         if (!(res != NULL && strlen(res) > 0))
250                 return;
251         HDA_BOOTVERBOSE(
252                 device_printf(sc->dev, "Config options:");
253         );
254         for (;;) {
255                 while (res[i] != '\0' &&
256                     (res[i] == ',' || isspace(res[i]) != 0))
257                         i++;
258                 if (res[i] == '\0') {
259                         HDA_BOOTVERBOSE(
260                                 printf("\n");
261                         );
262                         return;
263                 }
264                 j = i;
265                 while (res[j] != '\0' &&
266                     !(res[j] == ',' || isspace(res[j]) != 0))
267                         j++;
268                 len = j - i;
269                 if (len > 2 && strncmp(res + i, "no", 2) == 0)
270                         inv = 2;
271                 else
272                         inv = 0;
273                 for (k = 0; len > inv && k < nitems(hdac_quirks_tab); k++) {
274                         if (strncmp(res + i + inv,
275                             hdac_quirks_tab[k].key, len - inv) != 0)
276                                 continue;
277                         if (len - inv != strlen(hdac_quirks_tab[k].key))
278                                 continue;
279                         HDA_BOOTVERBOSE(
280                                 printf(" %s%s", (inv != 0) ? "no" : "",
281                                     hdac_quirks_tab[k].key);
282                         );
283                         if (inv == 0) {
284                                 *on |= hdac_quirks_tab[k].value;
285                                 *on &= ~hdac_quirks_tab[k].value;
286                         } else if (inv != 0) {
287                                 *off |= hdac_quirks_tab[k].value;
288                                 *off &= ~hdac_quirks_tab[k].value;
289                         }
290                         break;
291                 }
292                 i = j;
293         }
294 }
295
296 /****************************************************************************
297  * void hdac_intr_handler(void *)
298  *
299  * Interrupt handler. Processes interrupts received from the hdac.
300  ****************************************************************************/
301 static void
302 hdac_intr_handler(void *context)
303 {
304         struct hdac_softc *sc;
305         device_t dev;
306         uint32_t intsts;
307         uint8_t rirbsts;
308         int i;
309
310         sc = (struct hdac_softc *)context;
311         hdac_lock(sc);
312
313         /* Do we have anything to do? */
314         intsts = HDAC_READ_4(&sc->mem, HDAC_INTSTS);
315         if ((intsts & HDAC_INTSTS_GIS) == 0) {
316                 hdac_unlock(sc);
317                 return;
318         }
319
320         /* Was this a controller interrupt? */
321         if (intsts & HDAC_INTSTS_CIS) {
322                 rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS);
323                 /* Get as many responses that we can */
324                 while (rirbsts & HDAC_RIRBSTS_RINTFL) {
325                         HDAC_WRITE_1(&sc->mem,
326                             HDAC_RIRBSTS, HDAC_RIRBSTS_RINTFL);
327                         hdac_rirb_flush(sc);
328                         rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS);
329                 }
330                 if (sc->unsolq_rp != sc->unsolq_wp)
331                         taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task);
332         }
333
334         if (intsts & HDAC_INTSTS_SIS_MASK) {
335                 for (i = 0; i < sc->num_ss; i++) {
336                         if ((intsts & (1 << i)) == 0)
337                                 continue;
338                         HDAC_WRITE_1(&sc->mem, (i << 5) + HDAC_SDSTS,
339                             HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS );
340                         if ((dev = sc->streams[i].dev) != NULL) {
341                                 HDAC_STREAM_INTR(dev,
342                                     sc->streams[i].dir, sc->streams[i].stream);
343                         }
344                 }
345         }
346
347         HDAC_WRITE_4(&sc->mem, HDAC_INTSTS, intsts);
348         hdac_unlock(sc);
349 }
350
351 static void
352 hdac_poll_callback(void *arg)
353 {
354         struct hdac_softc *sc = arg;
355
356         if (sc == NULL)
357                 return;
358
359         hdac_lock(sc);
360         if (sc->polling == 0) {
361                 hdac_unlock(sc);
362                 return;
363         }
364         callout_reset(&sc->poll_callout, sc->poll_ival,
365             hdac_poll_callback, sc);
366         hdac_unlock(sc);
367
368         hdac_intr_handler(sc);
369 }
370
371 /****************************************************************************
372  * int hdac_reset(hdac_softc *, int)
373  *
374  * Reset the hdac to a quiescent and known state.
375  ****************************************************************************/
376 static int
377 hdac_reset(struct hdac_softc *sc, int wakeup)
378 {
379         uint32_t gctl;
380         int count, i;
381
382         /*
383          * Stop all Streams DMA engine
384          */
385         for (i = 0; i < sc->num_iss; i++)
386                 HDAC_WRITE_4(&sc->mem, HDAC_ISDCTL(sc, i), 0x0);
387         for (i = 0; i < sc->num_oss; i++)
388                 HDAC_WRITE_4(&sc->mem, HDAC_OSDCTL(sc, i), 0x0);
389         for (i = 0; i < sc->num_bss; i++)
390                 HDAC_WRITE_4(&sc->mem, HDAC_BSDCTL(sc, i), 0x0);
391
392         /*
393          * Stop Control DMA engines.
394          */
395         HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, 0x0);
396         HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, 0x0);
397
398         /*
399          * Reset DMA position buffer.
400          */
401         HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE, 0x0);
402         HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, 0x0);
403
404         /*
405          * Reset the controller. The reset must remain asserted for
406          * a minimum of 100us.
407          */
408         gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
409         HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl & ~HDAC_GCTL_CRST);
410         count = 10000;
411         do {
412                 gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
413                 if (!(gctl & HDAC_GCTL_CRST))
414                         break;
415                 DELAY(10);
416         } while (--count);
417         if (gctl & HDAC_GCTL_CRST) {
418                 device_printf(sc->dev, "Unable to put hdac in reset\n");
419                 return (ENXIO);
420         }
421
422         /* If wakeup is not requested - leave the controller in reset state. */
423         if (!wakeup)
424                 return (0);
425
426         DELAY(100);
427         gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
428         HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl | HDAC_GCTL_CRST);
429         count = 10000;
430         do {
431                 gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
432                 if (gctl & HDAC_GCTL_CRST)
433                         break;
434                 DELAY(10);
435         } while (--count);
436         if (!(gctl & HDAC_GCTL_CRST)) {
437                 device_printf(sc->dev, "Device stuck in reset\n");
438                 return (ENXIO);
439         }
440
441         /*
442          * Wait for codecs to finish their own reset sequence. The delay here
443          * should be of 250us but for some reasons, it's not enough on my
444          * computer. Let's use twice as much as necessary to make sure that
445          * it's reset properly.
446          */
447         DELAY(1000);
448
449         return (0);
450 }
451
452
453 /****************************************************************************
454  * int hdac_get_capabilities(struct hdac_softc *);
455  *
456  * Retreive the general capabilities of the hdac;
457  *      Number of Input Streams
458  *      Number of Output Streams
459  *      Number of bidirectional Streams
460  *      64bit ready
461  *      CORB and RIRB sizes
462  ****************************************************************************/
463 static int
464 hdac_get_capabilities(struct hdac_softc *sc)
465 {
466         uint16_t gcap;
467         uint8_t corbsize, rirbsize;
468
469         gcap = HDAC_READ_2(&sc->mem, HDAC_GCAP);
470         sc->num_iss = HDAC_GCAP_ISS(gcap);
471         sc->num_oss = HDAC_GCAP_OSS(gcap);
472         sc->num_bss = HDAC_GCAP_BSS(gcap);
473         sc->num_ss = sc->num_iss + sc->num_oss + sc->num_bss;
474         sc->num_sdo = HDAC_GCAP_NSDO(gcap);
475         sc->support_64bit = (gcap & HDAC_GCAP_64OK) != 0;
476         if (sc->quirks_on & HDAC_QUIRK_64BIT)
477                 sc->support_64bit = 1;
478         else if (sc->quirks_off & HDAC_QUIRK_64BIT)
479                 sc->support_64bit = 0;
480
481         corbsize = HDAC_READ_1(&sc->mem, HDAC_CORBSIZE);
482         if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_256) ==
483             HDAC_CORBSIZE_CORBSZCAP_256)
484                 sc->corb_size = 256;
485         else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_16) ==
486             HDAC_CORBSIZE_CORBSZCAP_16)
487                 sc->corb_size = 16;
488         else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_2) ==
489             HDAC_CORBSIZE_CORBSZCAP_2)
490                 sc->corb_size = 2;
491         else {
492                 device_printf(sc->dev, "%s: Invalid corb size (%x)\n",
493                     __func__, corbsize);
494                 return (ENXIO);
495         }
496
497         rirbsize = HDAC_READ_1(&sc->mem, HDAC_RIRBSIZE);
498         if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_256) ==
499             HDAC_RIRBSIZE_RIRBSZCAP_256)
500                 sc->rirb_size = 256;
501         else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_16) ==
502             HDAC_RIRBSIZE_RIRBSZCAP_16)
503                 sc->rirb_size = 16;
504         else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_2) ==
505             HDAC_RIRBSIZE_RIRBSZCAP_2)
506                 sc->rirb_size = 2;
507         else {
508                 device_printf(sc->dev, "%s: Invalid rirb size (%x)\n",
509                     __func__, rirbsize);
510                 return (ENXIO);
511         }
512
513         HDA_BOOTVERBOSE(
514                 device_printf(sc->dev, "Caps: OSS %d, ISS %d, BSS %d, "
515                     "NSDO %d%s, CORB %d, RIRB %d\n",
516                     sc->num_oss, sc->num_iss, sc->num_bss, 1 << sc->num_sdo,
517                     sc->support_64bit ? ", 64bit" : "",
518                     sc->corb_size, sc->rirb_size);
519         );
520
521         return (0);
522 }
523
524
525 /****************************************************************************
526  * void hdac_dma_cb
527  *
528  * This function is called by bus_dmamap_load when the mapping has been
529  * established. We just record the physical address of the mapping into
530  * the struct hdac_dma passed in.
531  ****************************************************************************/
532 static void
533 hdac_dma_cb(void *callback_arg, bus_dma_segment_t *segs, int nseg, int error)
534 {
535         struct hdac_dma *dma;
536
537         if (error == 0) {
538                 dma = (struct hdac_dma *)callback_arg;
539                 dma->dma_paddr = segs[0].ds_addr;
540         }
541 }
542
543
544 /****************************************************************************
545  * int hdac_dma_alloc
546  *
547  * This function allocate and setup a dma region (struct hdac_dma).
548  * It must be freed by a corresponding hdac_dma_free.
549  ****************************************************************************/
550 static int
551 hdac_dma_alloc(struct hdac_softc *sc, struct hdac_dma *dma, bus_size_t size)
552 {
553         bus_size_t roundsz;
554         int result;
555
556         roundsz = roundup2(size, HDA_DMA_ALIGNMENT);
557         bzero(dma, sizeof(*dma));
558
559         /*
560          * Create a DMA tag
561          */
562         result = bus_dma_tag_create(
563             bus_get_dma_tag(sc->dev),           /* parent */
564             HDA_DMA_ALIGNMENT,                  /* alignment */
565             0,                                  /* boundary */
566             (sc->support_64bit) ? BUS_SPACE_MAXADDR :
567                 BUS_SPACE_MAXADDR_32BIT,        /* lowaddr */
568             BUS_SPACE_MAXADDR,                  /* highaddr */
569             NULL,                               /* filtfunc */
570             NULL,                               /* fistfuncarg */
571             roundsz,                            /* maxsize */
572             1,                                  /* nsegments */
573             roundsz,                            /* maxsegsz */
574             0,                                  /* flags */
575             NULL,                               /* lockfunc */
576             NULL,                               /* lockfuncarg */
577             &dma->dma_tag);                     /* dmat */
578         if (result != 0) {
579                 device_printf(sc->dev, "%s: bus_dma_tag_create failed (%d)\n",
580                     __func__, result);
581                 goto hdac_dma_alloc_fail;
582         }
583
584         /*
585          * Allocate DMA memory
586          */
587         result = bus_dmamem_alloc(dma->dma_tag, (void **)&dma->dma_vaddr,
588             BUS_DMA_NOWAIT | BUS_DMA_ZERO |
589             ((sc->flags & HDAC_F_DMA_NOCACHE) ? BUS_DMA_NOCACHE :
590              BUS_DMA_COHERENT),
591             &dma->dma_map);
592         if (result != 0) {
593                 device_printf(sc->dev, "%s: bus_dmamem_alloc failed (%d)\n",
594                     __func__, result);
595                 goto hdac_dma_alloc_fail;
596         }
597
598         dma->dma_size = roundsz;
599
600         /*
601          * Map the memory
602          */
603         result = bus_dmamap_load(dma->dma_tag, dma->dma_map,
604             (void *)dma->dma_vaddr, roundsz, hdac_dma_cb, (void *)dma, 0);
605         if (result != 0 || dma->dma_paddr == 0) {
606                 if (result == 0)
607                         result = ENOMEM;
608                 device_printf(sc->dev, "%s: bus_dmamem_load failed (%d)\n",
609                     __func__, result);
610                 goto hdac_dma_alloc_fail;
611         }
612
613         HDA_BOOTHVERBOSE(
614                 device_printf(sc->dev, "%s: size=%ju -> roundsz=%ju\n",
615                     __func__, (uintmax_t)size, (uintmax_t)roundsz);
616         );
617
618         return (0);
619
620 hdac_dma_alloc_fail:
621         hdac_dma_free(sc, dma);
622
623         return (result);
624 }
625
626
627 /****************************************************************************
628  * void hdac_dma_free(struct hdac_softc *, struct hdac_dma *)
629  *
630  * Free a struct dhac_dma that has been previously allocated via the
631  * hdac_dma_alloc function.
632  ****************************************************************************/
633 static void
634 hdac_dma_free(struct hdac_softc *sc, struct hdac_dma *dma)
635 {
636         if (dma->dma_paddr != 0) {
637                 /* Flush caches */
638                 bus_dmamap_sync(dma->dma_tag, dma->dma_map,
639                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
640                 bus_dmamap_unload(dma->dma_tag, dma->dma_map);
641                 dma->dma_paddr = 0;
642         }
643         if (dma->dma_vaddr != NULL) {
644                 bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
645                 dma->dma_vaddr = NULL;
646         }
647         if (dma->dma_tag != NULL) {
648                 bus_dma_tag_destroy(dma->dma_tag);
649                 dma->dma_tag = NULL;
650         }
651         dma->dma_size = 0;
652 }
653
654 /****************************************************************************
655  * int hdac_mem_alloc(struct hdac_softc *)
656  *
657  * Allocate all the bus resources necessary to speak with the physical
658  * controller.
659  ****************************************************************************/
660 static int
661 hdac_mem_alloc(struct hdac_softc *sc)
662 {
663         struct hdac_mem *mem;
664
665         mem = &sc->mem;
666         mem->mem_rid = PCIR_BAR(0);
667         mem->mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
668             &mem->mem_rid, RF_ACTIVE);
669         if (mem->mem_res == NULL) {
670                 device_printf(sc->dev,
671                     "%s: Unable to allocate memory resource\n", __func__);
672                 return (ENOMEM);
673         }
674         mem->mem_tag = rman_get_bustag(mem->mem_res);
675         mem->mem_handle = rman_get_bushandle(mem->mem_res);
676
677         return (0);
678 }
679
680 /****************************************************************************
681  * void hdac_mem_free(struct hdac_softc *)
682  *
683  * Free up resources previously allocated by hdac_mem_alloc.
684  ****************************************************************************/
685 static void
686 hdac_mem_free(struct hdac_softc *sc)
687 {
688         struct hdac_mem *mem;
689
690         mem = &sc->mem;
691         if (mem->mem_res != NULL)
692                 bus_release_resource(sc->dev, SYS_RES_MEMORY, mem->mem_rid,
693                     mem->mem_res);
694         mem->mem_res = NULL;
695 }
696
697 /****************************************************************************
698  * int hdac_irq_alloc(struct hdac_softc *)
699  *
700  * Allocate and setup the resources necessary for interrupt handling.
701  ****************************************************************************/
702 static int
703 hdac_irq_alloc(struct hdac_softc *sc)
704 {
705         struct hdac_irq *irq;
706         int result;
707
708         irq = &sc->irq;
709         irq->irq_rid = 0x0;
710
711         if ((sc->quirks_off & HDAC_QUIRK_MSI) == 0 &&
712             (result = pci_msi_count(sc->dev)) == 1 &&
713             pci_alloc_msi(sc->dev, &result) == 0)
714                 irq->irq_rid = 0x1;
715
716         irq->irq_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
717             &irq->irq_rid, RF_SHAREABLE | RF_ACTIVE);
718         if (irq->irq_res == NULL) {
719                 device_printf(sc->dev, "%s: Unable to allocate irq\n",
720                     __func__);
721                 goto hdac_irq_alloc_fail;
722         }
723         result = bus_setup_intr(sc->dev, irq->irq_res, INTR_MPSAFE | INTR_TYPE_AV,
724             NULL, hdac_intr_handler, sc, &irq->irq_handle);
725         if (result != 0) {
726                 device_printf(sc->dev,
727                     "%s: Unable to setup interrupt handler (%d)\n",
728                     __func__, result);
729                 goto hdac_irq_alloc_fail;
730         }
731
732         return (0);
733
734 hdac_irq_alloc_fail:
735         hdac_irq_free(sc);
736
737         return (ENXIO);
738 }
739
740 /****************************************************************************
741  * void hdac_irq_free(struct hdac_softc *)
742  *
743  * Free up resources previously allocated by hdac_irq_alloc.
744  ****************************************************************************/
745 static void
746 hdac_irq_free(struct hdac_softc *sc)
747 {
748         struct hdac_irq *irq;
749
750         irq = &sc->irq;
751         if (irq->irq_res != NULL && irq->irq_handle != NULL)
752                 bus_teardown_intr(sc->dev, irq->irq_res, irq->irq_handle);
753         if (irq->irq_res != NULL)
754                 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->irq_rid,
755                     irq->irq_res);
756         if (irq->irq_rid == 0x1)
757                 pci_release_msi(sc->dev);
758         irq->irq_handle = NULL;
759         irq->irq_res = NULL;
760         irq->irq_rid = 0x0;
761 }
762
763 /****************************************************************************
764  * void hdac_corb_init(struct hdac_softc *)
765  *
766  * Initialize the corb registers for operations but do not start it up yet.
767  * The CORB engine must not be running when this function is called.
768  ****************************************************************************/
769 static void
770 hdac_corb_init(struct hdac_softc *sc)
771 {
772         uint8_t corbsize;
773         uint64_t corbpaddr;
774
775         /* Setup the CORB size. */
776         switch (sc->corb_size) {
777         case 256:
778                 corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_256);
779                 break;
780         case 16:
781                 corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_16);
782                 break;
783         case 2:
784                 corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_2);
785                 break;
786         default:
787                 panic("%s: Invalid CORB size (%x)\n", __func__, sc->corb_size);
788         }
789         HDAC_WRITE_1(&sc->mem, HDAC_CORBSIZE, corbsize);
790
791         /* Setup the CORB Address in the hdac */
792         corbpaddr = (uint64_t)sc->corb_dma.dma_paddr;
793         HDAC_WRITE_4(&sc->mem, HDAC_CORBLBASE, (uint32_t)corbpaddr);
794         HDAC_WRITE_4(&sc->mem, HDAC_CORBUBASE, (uint32_t)(corbpaddr >> 32));
795
796         /* Set the WP and RP */
797         sc->corb_wp = 0;
798         HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp);
799         HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, HDAC_CORBRP_CORBRPRST);
800         /*
801          * The HDA specification indicates that the CORBRPRST bit will always
802          * read as zero. Unfortunately, it seems that at least the 82801G
803          * doesn't reset the bit to zero, which stalls the corb engine.
804          * manually reset the bit to zero before continuing.
805          */
806         HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, 0x0);
807
808         /* Enable CORB error reporting */
809 #if 0
810         HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, HDAC_CORBCTL_CMEIE);
811 #endif
812 }
813
814 /****************************************************************************
815  * void hdac_rirb_init(struct hdac_softc *)
816  *
817  * Initialize the rirb registers for operations but do not start it up yet.
818  * The RIRB engine must not be running when this function is called.
819  ****************************************************************************/
820 static void
821 hdac_rirb_init(struct hdac_softc *sc)
822 {
823         uint8_t rirbsize;
824         uint64_t rirbpaddr;
825
826         /* Setup the RIRB size. */
827         switch (sc->rirb_size) {
828         case 256:
829                 rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_256);
830                 break;
831         case 16:
832                 rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_16);
833                 break;
834         case 2:
835                 rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_2);
836                 break;
837         default:
838                 panic("%s: Invalid RIRB size (%x)\n", __func__, sc->rirb_size);
839         }
840         HDAC_WRITE_1(&sc->mem, HDAC_RIRBSIZE, rirbsize);
841
842         /* Setup the RIRB Address in the hdac */
843         rirbpaddr = (uint64_t)sc->rirb_dma.dma_paddr;
844         HDAC_WRITE_4(&sc->mem, HDAC_RIRBLBASE, (uint32_t)rirbpaddr);
845         HDAC_WRITE_4(&sc->mem, HDAC_RIRBUBASE, (uint32_t)(rirbpaddr >> 32));
846
847         /* Setup the WP and RP */
848         sc->rirb_rp = 0;
849         HDAC_WRITE_2(&sc->mem, HDAC_RIRBWP, HDAC_RIRBWP_RIRBWPRST);
850
851         /* Setup the interrupt threshold */
852         HDAC_WRITE_2(&sc->mem, HDAC_RINTCNT, sc->rirb_size / 2);
853
854         /* Enable Overrun and response received reporting */
855 #if 0
856         HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL,
857             HDAC_RIRBCTL_RIRBOIC | HDAC_RIRBCTL_RINTCTL);
858 #else
859         HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, HDAC_RIRBCTL_RINTCTL);
860 #endif
861
862         /*
863          * Make sure that the Host CPU cache doesn't contain any dirty
864          * cache lines that falls in the rirb. If I understood correctly, it
865          * should be sufficient to do this only once as the rirb is purely
866          * read-only from now on.
867          */
868         bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
869             BUS_DMASYNC_PREREAD);
870 }
871
872 /****************************************************************************
873  * void hdac_corb_start(hdac_softc *)
874  *
875  * Startup the corb DMA engine
876  ****************************************************************************/
877 static void
878 hdac_corb_start(struct hdac_softc *sc)
879 {
880         uint32_t corbctl;
881
882         corbctl = HDAC_READ_1(&sc->mem, HDAC_CORBCTL);
883         corbctl |= HDAC_CORBCTL_CORBRUN;
884         HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, corbctl);
885 }
886
887 /****************************************************************************
888  * void hdac_rirb_start(hdac_softc *)
889  *
890  * Startup the rirb DMA engine
891  ****************************************************************************/
892 static void
893 hdac_rirb_start(struct hdac_softc *sc)
894 {
895         uint32_t rirbctl;
896
897         rirbctl = HDAC_READ_1(&sc->mem, HDAC_RIRBCTL);
898         rirbctl |= HDAC_RIRBCTL_RIRBDMAEN;
899         HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, rirbctl);
900 }
901
902 static int
903 hdac_rirb_flush(struct hdac_softc *sc)
904 {
905         struct hdac_rirb *rirb_base, *rirb;
906         nid_t cad;
907         uint32_t resp, resp_ex;
908         uint8_t rirbwp;
909         int ret;
910
911         rirb_base = (struct hdac_rirb *)sc->rirb_dma.dma_vaddr;
912         rirbwp = HDAC_READ_1(&sc->mem, HDAC_RIRBWP);
913         bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
914             BUS_DMASYNC_POSTREAD);
915
916         ret = 0;
917         while (sc->rirb_rp != rirbwp) {
918                 sc->rirb_rp++;
919                 sc->rirb_rp %= sc->rirb_size;
920                 rirb = &rirb_base[sc->rirb_rp];
921                 resp = le32toh(rirb->response);
922                 resp_ex = le32toh(rirb->response_ex);
923                 cad = HDAC_RIRB_RESPONSE_EX_SDATA_IN(resp_ex);
924                 if (resp_ex & HDAC_RIRB_RESPONSE_EX_UNSOLICITED) {
925                         sc->unsolq[sc->unsolq_wp++] = resp;
926                         sc->unsolq_wp %= HDAC_UNSOLQ_MAX;
927                         sc->unsolq[sc->unsolq_wp++] = cad;
928                         sc->unsolq_wp %= HDAC_UNSOLQ_MAX;
929                 } else if (sc->codecs[cad].pending <= 0) {
930                         device_printf(sc->dev, "Unexpected unsolicited "
931                             "response from address %d: %08x\n", cad, resp);
932                 } else {
933                         sc->codecs[cad].response = resp;
934                         sc->codecs[cad].pending--;
935                 }
936                 ret++;
937         }
938
939         bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
940             BUS_DMASYNC_PREREAD);
941         return (ret);
942 }
943
944 static int
945 hdac_unsolq_flush(struct hdac_softc *sc)
946 {
947         device_t child;
948         nid_t cad;
949         uint32_t resp;
950         int ret = 0;
951
952         if (sc->unsolq_st == HDAC_UNSOLQ_READY) {
953                 sc->unsolq_st = HDAC_UNSOLQ_BUSY;
954                 while (sc->unsolq_rp != sc->unsolq_wp) {
955                         resp = sc->unsolq[sc->unsolq_rp++];
956                         sc->unsolq_rp %= HDAC_UNSOLQ_MAX;
957                         cad = sc->unsolq[sc->unsolq_rp++];
958                         sc->unsolq_rp %= HDAC_UNSOLQ_MAX;
959                         if ((child = sc->codecs[cad].dev) != NULL)
960                                 HDAC_UNSOL_INTR(child, resp);
961                         ret++;
962                 }
963                 sc->unsolq_st = HDAC_UNSOLQ_READY;
964         }
965
966         return (ret);
967 }
968
969 /****************************************************************************
970  * uint32_t hdac_command_sendone_internal
971  *
972  * Wrapper function that sends only one command to a given codec
973  ****************************************************************************/
974 static uint32_t
975 hdac_send_command(struct hdac_softc *sc, nid_t cad, uint32_t verb)
976 {
977         int timeout;
978         uint32_t *corb;
979
980         if (!hdac_lockowned(sc))
981                 device_printf(sc->dev, "WARNING!!!! mtx not owned!!!!\n");
982         verb &= ~HDA_CMD_CAD_MASK;
983         verb |= ((uint32_t)cad) << HDA_CMD_CAD_SHIFT;
984         sc->codecs[cad].response = HDA_INVALID;
985
986         sc->codecs[cad].pending++;
987         sc->corb_wp++;
988         sc->corb_wp %= sc->corb_size;
989         corb = (uint32_t *)sc->corb_dma.dma_vaddr;
990         bus_dmamap_sync(sc->corb_dma.dma_tag,
991             sc->corb_dma.dma_map, BUS_DMASYNC_PREWRITE);
992         corb[sc->corb_wp] = htole32(verb);
993         bus_dmamap_sync(sc->corb_dma.dma_tag,
994             sc->corb_dma.dma_map, BUS_DMASYNC_POSTWRITE);
995         HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp);
996
997         timeout = 10000;
998         do {
999                 if (hdac_rirb_flush(sc) == 0)
1000                         DELAY(10);
1001         } while (sc->codecs[cad].pending != 0 && --timeout);
1002
1003         if (sc->codecs[cad].pending != 0) {
1004                 device_printf(sc->dev, "Command timeout on address %d\n", cad);
1005                 sc->codecs[cad].pending = 0;
1006         }
1007
1008         if (sc->unsolq_rp != sc->unsolq_wp)
1009                 taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task);
1010         return (sc->codecs[cad].response);
1011 }
1012
1013 /****************************************************************************
1014  * Device Methods
1015  ****************************************************************************/
1016
1017 /****************************************************************************
1018  * int hdac_probe(device_t)
1019  *
1020  * Probe for the presence of an hdac. If none is found, check for a generic
1021  * match using the subclass of the device.
1022  ****************************************************************************/
1023 static int
1024 hdac_probe(device_t dev)
1025 {
1026         int i, result;
1027         uint32_t model;
1028         uint16_t class, subclass;
1029         char desc[64];
1030
1031         model = (uint32_t)pci_get_device(dev) << 16;
1032         model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff;
1033         class = pci_get_class(dev);
1034         subclass = pci_get_subclass(dev);
1035
1036         bzero(desc, sizeof(desc));
1037         result = ENXIO;
1038         for (i = 0; i < nitems(hdac_devices); i++) {
1039                 if (hdac_devices[i].model == model) {
1040                         strlcpy(desc, hdac_devices[i].desc, sizeof(desc));
1041                         result = BUS_PROBE_DEFAULT;
1042                         break;
1043                 }
1044                 if (HDA_DEV_MATCH(hdac_devices[i].model, model) &&
1045                     class == PCIC_MULTIMEDIA &&
1046                     subclass == PCIS_MULTIMEDIA_HDA) {
1047                         snprintf(desc, sizeof(desc),
1048                             "%s (0x%04x)",
1049                             hdac_devices[i].desc, pci_get_device(dev));
1050                         result = BUS_PROBE_GENERIC;
1051                         break;
1052                 }
1053         }
1054         if (result == ENXIO && class == PCIC_MULTIMEDIA &&
1055             subclass == PCIS_MULTIMEDIA_HDA) {
1056                 snprintf(desc, sizeof(desc), "Generic (0x%08x)", model);
1057                 result = BUS_PROBE_GENERIC;
1058         }
1059         if (result != ENXIO) {
1060                 strlcat(desc, " HDA Controller", sizeof(desc));
1061                 device_set_desc_copy(dev, desc);
1062         }
1063
1064         return (result);
1065 }
1066
1067 static void
1068 hdac_unsolq_task(void *context, int pending)
1069 {
1070         struct hdac_softc *sc;
1071
1072         sc = (struct hdac_softc *)context;
1073
1074         hdac_lock(sc);
1075         hdac_unsolq_flush(sc);
1076         hdac_unlock(sc);
1077 }
1078
1079 /****************************************************************************
1080  * int hdac_attach(device_t)
1081  *
1082  * Attach the device into the kernel. Interrupts usually won't be enabled
1083  * when this function is called. Setup everything that doesn't require
1084  * interrupts and defer probing of codecs until interrupts are enabled.
1085  ****************************************************************************/
1086 static int
1087 hdac_attach(device_t dev)
1088 {
1089         struct hdac_softc *sc;
1090         int result;
1091         int i, devid = -1;
1092         uint32_t model;
1093         uint16_t class, subclass;
1094         uint16_t vendor;
1095         uint8_t v;
1096
1097         sc = device_get_softc(dev);
1098         HDA_BOOTVERBOSE(
1099                 device_printf(dev, "PCI card vendor: 0x%04x, device: 0x%04x\n",
1100                     pci_get_subvendor(dev), pci_get_subdevice(dev));
1101                 device_printf(dev, "HDA Driver Revision: %s\n",
1102                     HDA_DRV_TEST_REV);
1103         );
1104
1105         model = (uint32_t)pci_get_device(dev) << 16;
1106         model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff;
1107         class = pci_get_class(dev);
1108         subclass = pci_get_subclass(dev);
1109
1110         for (i = 0; i < nitems(hdac_devices); i++) {
1111                 if (hdac_devices[i].model == model) {
1112                         devid = i;
1113                         break;
1114                 }
1115                 if (HDA_DEV_MATCH(hdac_devices[i].model, model) &&
1116                     class == PCIC_MULTIMEDIA &&
1117                     subclass == PCIS_MULTIMEDIA_HDA) {
1118                         devid = i;
1119                         break;
1120                 }
1121         }
1122
1123         sc->lock = snd_mtxcreate(device_get_nameunit(dev), "HDA driver mutex");
1124         sc->dev = dev;
1125         TASK_INIT(&sc->unsolq_task, 0, hdac_unsolq_task, sc);
1126         callout_init(&sc->poll_callout, 1);
1127         for (i = 0; i < HDAC_CODEC_MAX; i++)
1128                 sc->codecs[i].dev = NULL;
1129         if (devid >= 0) {
1130                 sc->quirks_on = hdac_devices[devid].quirks_on;
1131                 sc->quirks_off = hdac_devices[devid].quirks_off;
1132         } else {
1133                 sc->quirks_on = 0;
1134                 sc->quirks_off = 0;
1135         }
1136         if (resource_int_value(device_get_name(dev),
1137             device_get_unit(dev), "msi", &i) == 0) {
1138                 if (i == 0)
1139                         sc->quirks_off |= HDAC_QUIRK_MSI;
1140                 else {
1141                         sc->quirks_on |= HDAC_QUIRK_MSI;
1142                         sc->quirks_off |= ~HDAC_QUIRK_MSI;
1143                 }
1144         }
1145         hdac_config_fetch(sc, &sc->quirks_on, &sc->quirks_off);
1146         HDA_BOOTVERBOSE(
1147                 device_printf(sc->dev,
1148                     "Config options: on=0x%08x off=0x%08x\n",
1149                     sc->quirks_on, sc->quirks_off);
1150         );
1151         sc->poll_ival = hz;
1152         if (resource_int_value(device_get_name(dev),
1153             device_get_unit(dev), "polling", &i) == 0 && i != 0)
1154                 sc->polling = 1;
1155         else
1156                 sc->polling = 0;
1157
1158         pci_enable_busmaster(dev);
1159
1160         vendor = pci_get_vendor(dev);
1161         if (vendor == INTEL_VENDORID) {
1162                 /* TCSEL -> TC0 */
1163                 v = pci_read_config(dev, 0x44, 1);
1164                 pci_write_config(dev, 0x44, v & 0xf8, 1);
1165                 HDA_BOOTHVERBOSE(
1166                         device_printf(dev, "TCSEL: 0x%02d -> 0x%02d\n", v,
1167                             pci_read_config(dev, 0x44, 1));
1168                 );
1169         }
1170
1171 #if defined(__i386__) || defined(__amd64__)
1172         sc->flags |= HDAC_F_DMA_NOCACHE;
1173
1174         if (resource_int_value(device_get_name(dev),
1175             device_get_unit(dev), "snoop", &i) == 0 && i != 0) {
1176 #else
1177         sc->flags &= ~HDAC_F_DMA_NOCACHE;
1178 #endif
1179                 /*
1180                  * Try to enable PCIe snoop to avoid messing around with
1181                  * uncacheable DMA attribute. Since PCIe snoop register
1182                  * config is pretty much vendor specific, there are no
1183                  * general solutions on how to enable it, forcing us (even
1184                  * Microsoft) to enable uncacheable or write combined DMA
1185                  * by default.
1186                  *
1187                  * http://msdn2.microsoft.com/en-us/library/ms790324.aspx
1188                  */
1189                 for (i = 0; i < nitems(hdac_pcie_snoop); i++) {
1190                         if (hdac_pcie_snoop[i].vendor != vendor)
1191                                 continue;
1192                         sc->flags &= ~HDAC_F_DMA_NOCACHE;
1193                         if (hdac_pcie_snoop[i].reg == 0x00)
1194                                 break;
1195                         v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1);
1196                         if ((v & hdac_pcie_snoop[i].enable) ==
1197                             hdac_pcie_snoop[i].enable)
1198                                 break;
1199                         v &= hdac_pcie_snoop[i].mask;
1200                         v |= hdac_pcie_snoop[i].enable;
1201                         pci_write_config(dev, hdac_pcie_snoop[i].reg, v, 1);
1202                         v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1);
1203                         if ((v & hdac_pcie_snoop[i].enable) !=
1204                             hdac_pcie_snoop[i].enable) {
1205                                 HDA_BOOTVERBOSE(
1206                                         device_printf(dev,
1207                                             "WARNING: Failed to enable PCIe "
1208                                             "snoop!\n");
1209                                 );
1210 #if defined(__i386__) || defined(__amd64__)
1211                                 sc->flags |= HDAC_F_DMA_NOCACHE;
1212 #endif
1213                         }
1214                         break;
1215                 }
1216 #if defined(__i386__) || defined(__amd64__)
1217         }
1218 #endif
1219
1220         HDA_BOOTHVERBOSE(
1221                 device_printf(dev, "DMA Coherency: %s / vendor=0x%04x\n",
1222                     (sc->flags & HDAC_F_DMA_NOCACHE) ?
1223                     "Uncacheable" : "PCIe snoop", vendor);
1224         );
1225
1226         /* Allocate resources */
1227         result = hdac_mem_alloc(sc);
1228         if (result != 0)
1229                 goto hdac_attach_fail;
1230         result = hdac_irq_alloc(sc);
1231         if (result != 0)
1232                 goto hdac_attach_fail;
1233
1234         /* Get Capabilities */
1235         result = hdac_get_capabilities(sc);
1236         if (result != 0)
1237                 goto hdac_attach_fail;
1238
1239         /* Allocate CORB, RIRB, POS and BDLs dma memory */
1240         result = hdac_dma_alloc(sc, &sc->corb_dma,
1241             sc->corb_size * sizeof(uint32_t));
1242         if (result != 0)
1243                 goto hdac_attach_fail;
1244         result = hdac_dma_alloc(sc, &sc->rirb_dma,
1245             sc->rirb_size * sizeof(struct hdac_rirb));
1246         if (result != 0)
1247                 goto hdac_attach_fail;
1248         sc->streams = malloc(sizeof(struct hdac_stream) * sc->num_ss,
1249             M_HDAC, M_ZERO | M_WAITOK);
1250         for (i = 0; i < sc->num_ss; i++) {
1251                 result = hdac_dma_alloc(sc, &sc->streams[i].bdl,
1252                     sizeof(struct hdac_bdle) * HDA_BDL_MAX);
1253                 if (result != 0)
1254                         goto hdac_attach_fail;
1255         }
1256         if (sc->quirks_on & HDAC_QUIRK_DMAPOS) {
1257                 if (hdac_dma_alloc(sc, &sc->pos_dma, (sc->num_ss) * 8) != 0) {
1258                         HDA_BOOTVERBOSE(
1259                                 device_printf(dev, "Failed to "
1260                                     "allocate DMA pos buffer "
1261                                     "(non-fatal)\n");
1262                         );
1263                 } else {
1264                         uint64_t addr = sc->pos_dma.dma_paddr;
1265
1266                         HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, addr >> 32);
1267                         HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE,
1268                             (addr & HDAC_DPLBASE_DPLBASE_MASK) |
1269                             HDAC_DPLBASE_DPLBASE_DMAPBE);
1270                 }
1271         }
1272
1273         result = bus_dma_tag_create(
1274             bus_get_dma_tag(sc->dev),           /* parent */
1275             HDA_DMA_ALIGNMENT,                  /* alignment */
1276             0,                                  /* boundary */
1277             (sc->support_64bit) ? BUS_SPACE_MAXADDR :
1278                 BUS_SPACE_MAXADDR_32BIT,        /* lowaddr */
1279             BUS_SPACE_MAXADDR,                  /* highaddr */
1280             NULL,                               /* filtfunc */
1281             NULL,                               /* fistfuncarg */
1282             HDA_BUFSZ_MAX,                      /* maxsize */
1283             1,                                  /* nsegments */
1284             HDA_BUFSZ_MAX,                      /* maxsegsz */
1285             0,                                  /* flags */
1286             NULL,                               /* lockfunc */
1287             NULL,                               /* lockfuncarg */
1288             &sc->chan_dmat);                    /* dmat */
1289         if (result != 0) {
1290                 device_printf(dev, "%s: bus_dma_tag_create failed (%d)\n",
1291                      __func__, result);
1292                 goto hdac_attach_fail;
1293         }
1294
1295         /* Quiesce everything */
1296         HDA_BOOTHVERBOSE(
1297                 device_printf(dev, "Reset controller...\n");
1298         );
1299         hdac_reset(sc, 1);
1300
1301         /* Initialize the CORB and RIRB */
1302         hdac_corb_init(sc);
1303         hdac_rirb_init(sc);
1304
1305         /* Defer remaining of initialization until interrupts are enabled */
1306         sc->intrhook.ich_func = hdac_attach2;
1307         sc->intrhook.ich_arg = (void *)sc;
1308         if (cold == 0 || config_intrhook_establish(&sc->intrhook) != 0) {
1309                 sc->intrhook.ich_func = NULL;
1310                 hdac_attach2((void *)sc);
1311         }
1312
1313         return (0);
1314
1315 hdac_attach_fail:
1316         hdac_irq_free(sc);
1317         if (sc->streams != NULL)
1318                 for (i = 0; i < sc->num_ss; i++)
1319                         hdac_dma_free(sc, &sc->streams[i].bdl);
1320         free(sc->streams, M_HDAC);
1321         hdac_dma_free(sc, &sc->rirb_dma);
1322         hdac_dma_free(sc, &sc->corb_dma);
1323         hdac_mem_free(sc);
1324         snd_mtxfree(sc->lock);
1325
1326         return (ENXIO);
1327 }
1328
1329 static int
1330 sysctl_hdac_pindump(SYSCTL_HANDLER_ARGS)
1331 {
1332         struct hdac_softc *sc;
1333         device_t *devlist;
1334         device_t dev;
1335         int devcount, i, err, val;
1336
1337         dev = oidp->oid_arg1;
1338         sc = device_get_softc(dev);
1339         if (sc == NULL)
1340                 return (EINVAL);
1341         val = 0;
1342         err = sysctl_handle_int(oidp, &val, 0, req);
1343         if (err != 0 || req->newptr == NULL || val == 0)
1344                 return (err);
1345
1346         /* XXX: Temporary. For debugging. */
1347         if (val == 100) {
1348                 hdac_suspend(dev);
1349                 return (0);
1350         } else if (val == 101) {
1351                 hdac_resume(dev);
1352                 return (0);
1353         }
1354
1355         if ((err = device_get_children(dev, &devlist, &devcount)) != 0)
1356                 return (err);
1357         hdac_lock(sc);
1358         for (i = 0; i < devcount; i++)
1359                 HDAC_PINDUMP(devlist[i]);
1360         hdac_unlock(sc);
1361         free(devlist, M_TEMP);
1362         return (0);
1363 }
1364
1365 static int
1366 hdac_mdata_rate(uint16_t fmt)
1367 {
1368         static const int mbits[8] = { 8, 16, 32, 32, 32, 32, 32, 32 };
1369         int rate, bits;
1370
1371         if (fmt & (1 << 14))
1372                 rate = 44100;
1373         else
1374                 rate = 48000;
1375         rate *= ((fmt >> 11) & 0x07) + 1;
1376         rate /= ((fmt >> 8) & 0x07) + 1;
1377         bits = mbits[(fmt >> 4) & 0x03];
1378         bits *= (fmt & 0x0f) + 1;
1379         return (rate * bits);
1380 }
1381
1382 static int
1383 hdac_bdata_rate(uint16_t fmt, int output)
1384 {
1385         static const int bbits[8] = { 8, 16, 20, 24, 32, 32, 32, 32 };
1386         int rate, bits;
1387
1388         rate = 48000;
1389         rate *= ((fmt >> 11) & 0x07) + 1;
1390         bits = bbits[(fmt >> 4) & 0x03];
1391         bits *= (fmt & 0x0f) + 1;
1392         if (!output)
1393                 bits = ((bits + 7) & ~0x07) + 10;
1394         return (rate * bits);
1395 }
1396
1397 static void
1398 hdac_poll_reinit(struct hdac_softc *sc)
1399 {
1400         int i, pollticks, min = 1000000;
1401         struct hdac_stream *s;
1402
1403         if (sc->polling == 0)
1404                 return;
1405         if (sc->unsol_registered > 0)
1406                 min = hz / 2;
1407         for (i = 0; i < sc->num_ss; i++) {
1408                 s = &sc->streams[i];
1409                 if (s->running == 0)
1410                         continue;
1411                 pollticks = ((uint64_t)hz * s->blksz) /
1412                     (hdac_mdata_rate(s->format) / 8);
1413                 pollticks >>= 1;
1414                 if (pollticks > hz)
1415                         pollticks = hz;
1416                 if (pollticks < 1) {
1417                         HDA_BOOTVERBOSE(
1418                                 device_printf(sc->dev,
1419                                     "poll interval < 1 tick !\n");
1420                         );
1421                         pollticks = 1;
1422                 }
1423                 if (min > pollticks)
1424                         min = pollticks;
1425         }
1426         HDA_BOOTVERBOSE(
1427                 device_printf(sc->dev,
1428                     "poll interval %d -> %d ticks\n",
1429                     sc->poll_ival, min);
1430         );
1431         sc->poll_ival = min;
1432         if (min == 1000000)
1433                 callout_stop(&sc->poll_callout);
1434         else
1435                 callout_reset(&sc->poll_callout, 1, hdac_poll_callback, sc);
1436 }
1437
1438 static int
1439 sysctl_hdac_polling(SYSCTL_HANDLER_ARGS)
1440 {
1441         struct hdac_softc *sc;
1442         device_t dev;
1443         uint32_t ctl;
1444         int err, val;
1445
1446         dev = oidp->oid_arg1;
1447         sc = device_get_softc(dev);
1448         if (sc == NULL)
1449                 return (EINVAL);
1450         hdac_lock(sc);
1451         val = sc->polling;
1452         hdac_unlock(sc);
1453         err = sysctl_handle_int(oidp, &val, 0, req);
1454
1455         if (err != 0 || req->newptr == NULL)
1456                 return (err);
1457         if (val < 0 || val > 1)
1458                 return (EINVAL);
1459
1460         hdac_lock(sc);
1461         if (val != sc->polling) {
1462                 if (val == 0) {
1463                         callout_stop(&sc->poll_callout);
1464                         hdac_unlock(sc);
1465                         callout_drain(&sc->poll_callout);
1466                         hdac_lock(sc);
1467                         sc->polling = 0;
1468                         ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
1469                         ctl |= HDAC_INTCTL_GIE;
1470                         HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
1471                 } else {
1472                         ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
1473                         ctl &= ~HDAC_INTCTL_GIE;
1474                         HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
1475                         sc->polling = 1;
1476                         hdac_poll_reinit(sc);
1477                 }
1478         }
1479         hdac_unlock(sc);
1480
1481         return (err);
1482 }
1483
1484 static void
1485 hdac_attach2(void *arg)
1486 {
1487         struct hdac_softc *sc;
1488         device_t child;
1489         uint32_t vendorid, revisionid;
1490         int i;
1491         uint16_t statests;
1492
1493         sc = (struct hdac_softc *)arg;
1494
1495         hdac_lock(sc);
1496
1497         /* Remove ourselves from the config hooks */
1498         if (sc->intrhook.ich_func != NULL) {
1499                 config_intrhook_disestablish(&sc->intrhook);
1500                 sc->intrhook.ich_func = NULL;
1501         }
1502
1503         HDA_BOOTHVERBOSE(
1504                 device_printf(sc->dev, "Starting CORB Engine...\n");
1505         );
1506         hdac_corb_start(sc);
1507         HDA_BOOTHVERBOSE(
1508                 device_printf(sc->dev, "Starting RIRB Engine...\n");
1509         );
1510         hdac_rirb_start(sc);
1511         HDA_BOOTHVERBOSE(
1512                 device_printf(sc->dev,
1513                     "Enabling controller interrupt...\n");
1514         );
1515         HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) |
1516             HDAC_GCTL_UNSOL);
1517         if (sc->polling == 0) {
1518                 HDAC_WRITE_4(&sc->mem, HDAC_INTCTL,
1519                     HDAC_INTCTL_CIE | HDAC_INTCTL_GIE);
1520         }
1521         DELAY(1000);
1522
1523         HDA_BOOTHVERBOSE(
1524                 device_printf(sc->dev, "Scanning HDA codecs ...\n");
1525         );
1526         statests = HDAC_READ_2(&sc->mem, HDAC_STATESTS);
1527         hdac_unlock(sc);
1528         for (i = 0; i < HDAC_CODEC_MAX; i++) {
1529                 if (HDAC_STATESTS_SDIWAKE(statests, i)) {
1530                         HDA_BOOTHVERBOSE(
1531                                 device_printf(sc->dev,
1532                                     "Found CODEC at address %d\n", i);
1533                         );
1534                         hdac_lock(sc);
1535                         vendorid = hdac_send_command(sc, i,
1536                             HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_VENDOR_ID));
1537                         revisionid = hdac_send_command(sc, i,
1538                             HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_REVISION_ID));
1539                         hdac_unlock(sc);
1540                         if (vendorid == HDA_INVALID &&
1541                             revisionid == HDA_INVALID) {
1542                                 device_printf(sc->dev,
1543                                     "CODEC is not responding!\n");
1544                                 continue;
1545                         }
1546                         sc->codecs[i].vendor_id =
1547                             HDA_PARAM_VENDOR_ID_VENDOR_ID(vendorid);
1548                         sc->codecs[i].device_id =
1549                             HDA_PARAM_VENDOR_ID_DEVICE_ID(vendorid);
1550                         sc->codecs[i].revision_id =
1551                             HDA_PARAM_REVISION_ID_REVISION_ID(revisionid);
1552                         sc->codecs[i].stepping_id =
1553                             HDA_PARAM_REVISION_ID_STEPPING_ID(revisionid);
1554                         child = device_add_child(sc->dev, "hdacc", -1);
1555                         if (child == NULL) {
1556                                 device_printf(sc->dev,
1557                                     "Failed to add CODEC device\n");
1558                                 continue;
1559                         }
1560                         device_set_ivars(child, (void *)(intptr_t)i);
1561                         sc->codecs[i].dev = child;
1562                 }
1563         }
1564         bus_generic_attach(sc->dev);
1565
1566         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
1567             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO,
1568             "pindump", CTLTYPE_INT | CTLFLAG_RW, sc->dev, sizeof(sc->dev),
1569             sysctl_hdac_pindump, "I", "Dump pin states/data");
1570         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
1571             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO,
1572             "polling", CTLTYPE_INT | CTLFLAG_RW, sc->dev, sizeof(sc->dev),
1573             sysctl_hdac_polling, "I", "Enable polling mode");
1574 }
1575
1576 /****************************************************************************
1577  * int hdac_suspend(device_t)
1578  *
1579  * Suspend and power down HDA bus and codecs.
1580  ****************************************************************************/
1581 static int
1582 hdac_suspend(device_t dev)
1583 {
1584         struct hdac_softc *sc = device_get_softc(dev);
1585
1586         HDA_BOOTHVERBOSE(
1587                 device_printf(dev, "Suspend...\n");
1588         );
1589         bus_generic_suspend(dev);
1590
1591         hdac_lock(sc);
1592         HDA_BOOTHVERBOSE(
1593                 device_printf(dev, "Reset controller...\n");
1594         );
1595         callout_stop(&sc->poll_callout);
1596         hdac_reset(sc, 0);
1597         hdac_unlock(sc);
1598         callout_drain(&sc->poll_callout);
1599         taskqueue_drain(taskqueue_thread, &sc->unsolq_task);
1600         HDA_BOOTHVERBOSE(
1601                 device_printf(dev, "Suspend done\n");
1602         );
1603         return (0);
1604 }
1605
1606 /****************************************************************************
1607  * int hdac_resume(device_t)
1608  *
1609  * Powerup and restore HDA bus and codecs state.
1610  ****************************************************************************/
1611 static int
1612 hdac_resume(device_t dev)
1613 {
1614         struct hdac_softc *sc = device_get_softc(dev);
1615         int error;
1616
1617         HDA_BOOTHVERBOSE(
1618                 device_printf(dev, "Resume...\n");
1619         );
1620         hdac_lock(sc);
1621
1622         /* Quiesce everything */
1623         HDA_BOOTHVERBOSE(
1624                 device_printf(dev, "Reset controller...\n");
1625         );
1626         hdac_reset(sc, 1);
1627
1628         /* Initialize the CORB and RIRB */
1629         hdac_corb_init(sc);
1630         hdac_rirb_init(sc);
1631
1632         HDA_BOOTHVERBOSE(
1633                 device_printf(dev, "Starting CORB Engine...\n");
1634         );
1635         hdac_corb_start(sc);
1636         HDA_BOOTHVERBOSE(
1637                 device_printf(dev, "Starting RIRB Engine...\n");
1638         );
1639         hdac_rirb_start(sc);
1640         HDA_BOOTHVERBOSE(
1641                 device_printf(dev, "Enabling controller interrupt...\n");
1642         );
1643         HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) |
1644             HDAC_GCTL_UNSOL);
1645         HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, HDAC_INTCTL_CIE | HDAC_INTCTL_GIE);
1646         DELAY(1000);
1647         hdac_poll_reinit(sc);
1648         hdac_unlock(sc);
1649
1650         error = bus_generic_resume(dev);
1651         HDA_BOOTHVERBOSE(
1652                 device_printf(dev, "Resume done\n");
1653         );
1654         return (error);
1655 }
1656
1657 /****************************************************************************
1658  * int hdac_detach(device_t)
1659  *
1660  * Detach and free up resources utilized by the hdac device.
1661  ****************************************************************************/
1662 static int
1663 hdac_detach(device_t dev)
1664 {
1665         struct hdac_softc *sc = device_get_softc(dev);
1666         device_t *devlist;
1667         int cad, i, devcount, error;
1668
1669         if ((error = device_get_children(dev, &devlist, &devcount)) != 0)
1670                 return (error);
1671         for (i = 0; i < devcount; i++) {
1672                 cad = (intptr_t)device_get_ivars(devlist[i]);
1673                 if ((error = device_delete_child(dev, devlist[i])) != 0) {
1674                         free(devlist, M_TEMP);
1675                         return (error);
1676                 }
1677                 sc->codecs[cad].dev = NULL;
1678         }
1679         free(devlist, M_TEMP);
1680
1681         hdac_lock(sc);
1682         hdac_reset(sc, 0);
1683         hdac_unlock(sc);
1684         taskqueue_drain(taskqueue_thread, &sc->unsolq_task);
1685         hdac_irq_free(sc);
1686
1687         for (i = 0; i < sc->num_ss; i++)
1688                 hdac_dma_free(sc, &sc->streams[i].bdl);
1689         free(sc->streams, M_HDAC);
1690         hdac_dma_free(sc, &sc->pos_dma);
1691         hdac_dma_free(sc, &sc->rirb_dma);
1692         hdac_dma_free(sc, &sc->corb_dma);
1693         if (sc->chan_dmat != NULL) {
1694                 bus_dma_tag_destroy(sc->chan_dmat);
1695                 sc->chan_dmat = NULL;
1696         }
1697         hdac_mem_free(sc);
1698         snd_mtxfree(sc->lock);
1699         return (0);
1700 }
1701
1702 static bus_dma_tag_t
1703 hdac_get_dma_tag(device_t dev, device_t child)
1704 {
1705         struct hdac_softc *sc = device_get_softc(dev);
1706
1707         return (sc->chan_dmat);
1708 }
1709
1710 static int
1711 hdac_print_child(device_t dev, device_t child)
1712 {
1713         int retval;
1714
1715         retval = bus_print_child_header(dev, child);
1716         retval += printf(" at cad %d",
1717             (int)(intptr_t)device_get_ivars(child));
1718         retval += bus_print_child_footer(dev, child);
1719
1720         return (retval);
1721 }
1722
1723 static int
1724 hdac_child_location_str(device_t dev, device_t child, char *buf,
1725     size_t buflen)
1726 {
1727
1728         snprintf(buf, buflen, "cad=%d",
1729             (int)(intptr_t)device_get_ivars(child));
1730         return (0);
1731 }
1732
1733 static int
1734 hdac_child_pnpinfo_str_method(device_t dev, device_t child, char *buf,
1735     size_t buflen)
1736 {
1737         struct hdac_softc *sc = device_get_softc(dev);
1738         nid_t cad = (uintptr_t)device_get_ivars(child);
1739
1740         snprintf(buf, buflen, "vendor=0x%04x device=0x%04x revision=0x%02x "
1741             "stepping=0x%02x",
1742             sc->codecs[cad].vendor_id, sc->codecs[cad].device_id,
1743             sc->codecs[cad].revision_id, sc->codecs[cad].stepping_id);
1744         return (0);
1745 }
1746
1747 static int
1748 hdac_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
1749 {
1750         struct hdac_softc *sc = device_get_softc(dev);
1751         nid_t cad = (uintptr_t)device_get_ivars(child);
1752
1753         switch (which) {
1754         case HDA_IVAR_CODEC_ID:
1755                 *result = cad;
1756                 break;
1757         case HDA_IVAR_VENDOR_ID:
1758                 *result = sc->codecs[cad].vendor_id;
1759                 break;
1760         case HDA_IVAR_DEVICE_ID:
1761                 *result = sc->codecs[cad].device_id;
1762                 break;
1763         case HDA_IVAR_REVISION_ID:
1764                 *result = sc->codecs[cad].revision_id;
1765                 break;
1766         case HDA_IVAR_STEPPING_ID:
1767                 *result = sc->codecs[cad].stepping_id;
1768                 break;
1769         case HDA_IVAR_SUBVENDOR_ID:
1770                 *result = pci_get_subvendor(dev);
1771                 break;
1772         case HDA_IVAR_SUBDEVICE_ID:
1773                 *result = pci_get_subdevice(dev);
1774                 break;
1775         case HDA_IVAR_DMA_NOCACHE:
1776                 *result = (sc->flags & HDAC_F_DMA_NOCACHE) != 0;
1777                 break;
1778         case HDA_IVAR_STRIPES_MASK:
1779                 *result = (1 << (1 << sc->num_sdo)) - 1;
1780                 break;
1781         default:
1782                 return (ENOENT);
1783         }
1784         return (0);
1785 }
1786
1787 static struct mtx *
1788 hdac_get_mtx(device_t dev, device_t child)
1789 {
1790         struct hdac_softc *sc = device_get_softc(dev);
1791
1792         return (sc->lock);
1793 }
1794
1795 static uint32_t
1796 hdac_codec_command(device_t dev, device_t child, uint32_t verb)
1797 {
1798
1799         return (hdac_send_command(device_get_softc(dev),
1800             (intptr_t)device_get_ivars(child), verb));
1801 }
1802
1803 static int
1804 hdac_find_stream(struct hdac_softc *sc, int dir, int stream)
1805 {
1806         int i, ss;
1807
1808         ss = -1;
1809         /* Allocate ISS/OSS first. */
1810         if (dir == 0) {
1811                 for (i = 0; i < sc->num_iss; i++) {
1812                         if (sc->streams[i].stream == stream) {
1813                                 ss = i;
1814                                 break;
1815                         }
1816                 }
1817         } else {
1818                 for (i = 0; i < sc->num_oss; i++) {
1819                         if (sc->streams[i + sc->num_iss].stream == stream) {
1820                                 ss = i + sc->num_iss;
1821                                 break;
1822                         }
1823                 }
1824         }
1825         /* Fallback to BSS. */
1826         if (ss == -1) {
1827                 for (i = 0; i < sc->num_bss; i++) {
1828                         if (sc->streams[i + sc->num_iss + sc->num_oss].stream
1829                             == stream) {
1830                                 ss = i + sc->num_iss + sc->num_oss;
1831                                 break;
1832                         }
1833                 }
1834         }
1835         return (ss);
1836 }
1837
1838 static int
1839 hdac_stream_alloc(device_t dev, device_t child, int dir, int format, int stripe,
1840     uint32_t **dmapos)
1841 {
1842         struct hdac_softc *sc = device_get_softc(dev);
1843         nid_t cad = (uintptr_t)device_get_ivars(child);
1844         int stream, ss, bw, maxbw, prevbw;
1845
1846         /* Look for empty stream. */
1847         ss = hdac_find_stream(sc, dir, 0);
1848
1849         /* Return if found nothing. */
1850         if (ss < 0)
1851                 return (0);
1852
1853         /* Check bus bandwidth. */
1854         bw = hdac_bdata_rate(format, dir);
1855         if (dir == 1) {
1856                 bw *= 1 << (sc->num_sdo - stripe);
1857                 prevbw = sc->sdo_bw_used;
1858                 maxbw = 48000 * 960 * (1 << sc->num_sdo);
1859         } else {
1860                 prevbw = sc->codecs[cad].sdi_bw_used;
1861                 maxbw = 48000 * 464;
1862         }
1863         HDA_BOOTHVERBOSE(
1864                 device_printf(dev, "%dKbps of %dKbps bandwidth used%s\n",
1865                     (bw + prevbw) / 1000, maxbw / 1000,
1866                     bw + prevbw > maxbw ? " -- OVERFLOW!" : "");
1867         );
1868         if (bw + prevbw > maxbw)
1869                 return (0);
1870         if (dir == 1)
1871                 sc->sdo_bw_used += bw;
1872         else
1873                 sc->codecs[cad].sdi_bw_used += bw;
1874
1875         /* Allocate stream number */
1876         if (ss >= sc->num_iss + sc->num_oss)
1877                 stream = 15 - (ss - sc->num_iss - sc->num_oss);
1878         else if (ss >= sc->num_iss)
1879                 stream = ss - sc->num_iss + 1;
1880         else
1881                 stream = ss + 1;
1882
1883         sc->streams[ss].dev = child;
1884         sc->streams[ss].dir = dir;
1885         sc->streams[ss].stream = stream;
1886         sc->streams[ss].bw = bw;
1887         sc->streams[ss].format = format;
1888         sc->streams[ss].stripe = stripe;
1889         if (dmapos != NULL) {
1890                 if (sc->pos_dma.dma_vaddr != NULL)
1891                         *dmapos = (uint32_t *)(sc->pos_dma.dma_vaddr + ss * 8);
1892                 else
1893                         *dmapos = NULL;
1894         }
1895         return (stream);
1896 }
1897
1898 static void
1899 hdac_stream_free(device_t dev, device_t child, int dir, int stream)
1900 {
1901         struct hdac_softc *sc = device_get_softc(dev);
1902         nid_t cad = (uintptr_t)device_get_ivars(child);
1903         int ss;
1904
1905         ss = hdac_find_stream(sc, dir, stream);
1906         KASSERT(ss >= 0,
1907             ("Free for not allocated stream (%d/%d)\n", dir, stream));
1908         if (dir == 1)
1909                 sc->sdo_bw_used -= sc->streams[ss].bw;
1910         else
1911                 sc->codecs[cad].sdi_bw_used -= sc->streams[ss].bw;
1912         sc->streams[ss].stream = 0;
1913         sc->streams[ss].dev = NULL;
1914 }
1915
1916 static int
1917 hdac_stream_start(device_t dev, device_t child,
1918     int dir, int stream, bus_addr_t buf, int blksz, int blkcnt)
1919 {
1920         struct hdac_softc *sc = device_get_softc(dev);
1921         struct hdac_bdle *bdle;
1922         uint64_t addr;
1923         int i, ss, off;
1924         uint32_t ctl;
1925
1926         ss = hdac_find_stream(sc, dir, stream);
1927         KASSERT(ss >= 0,
1928             ("Start for not allocated stream (%d/%d)\n", dir, stream));
1929
1930         addr = (uint64_t)buf;
1931         bdle = (struct hdac_bdle *)sc->streams[ss].bdl.dma_vaddr;
1932         for (i = 0; i < blkcnt; i++, bdle++) {
1933                 bdle->addrl = htole32((uint32_t)addr);
1934                 bdle->addrh = htole32((uint32_t)(addr >> 32));
1935                 bdle->len = htole32(blksz);
1936                 bdle->ioc = htole32(1);
1937                 addr += blksz;
1938         }
1939
1940         bus_dmamap_sync(sc->streams[ss].bdl.dma_tag,
1941             sc->streams[ss].bdl.dma_map, BUS_DMASYNC_PREWRITE);
1942
1943         off = ss << 5;
1944         HDAC_WRITE_4(&sc->mem, off + HDAC_SDCBL, blksz * blkcnt);
1945         HDAC_WRITE_2(&sc->mem, off + HDAC_SDLVI, blkcnt - 1);
1946         addr = sc->streams[ss].bdl.dma_paddr;
1947         HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPL, (uint32_t)addr);
1948         HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPU, (uint32_t)(addr >> 32));
1949
1950         ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL2);
1951         if (dir)
1952                 ctl |= HDAC_SDCTL2_DIR;
1953         else
1954                 ctl &= ~HDAC_SDCTL2_DIR;
1955         ctl &= ~HDAC_SDCTL2_STRM_MASK;
1956         ctl |= stream << HDAC_SDCTL2_STRM_SHIFT;
1957         ctl &= ~HDAC_SDCTL2_STRIPE_MASK;
1958         ctl |= sc->streams[ss].stripe << HDAC_SDCTL2_STRIPE_SHIFT;
1959         HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL2, ctl);
1960
1961         HDAC_WRITE_2(&sc->mem, off + HDAC_SDFMT, sc->streams[ss].format);
1962
1963         ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
1964         ctl |= 1 << ss;
1965         HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
1966
1967         HDAC_WRITE_1(&sc->mem, off + HDAC_SDSTS,
1968             HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS);
1969         ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
1970         ctl |= HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE |
1971             HDAC_SDCTL_RUN;
1972         HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
1973
1974         sc->streams[ss].blksz = blksz;
1975         sc->streams[ss].running = 1;
1976         hdac_poll_reinit(sc);
1977         return (0);
1978 }
1979
1980 static void
1981 hdac_stream_stop(device_t dev, device_t child, int dir, int stream)
1982 {
1983         struct hdac_softc *sc = device_get_softc(dev);
1984         int ss, off;
1985         uint32_t ctl;
1986
1987         ss = hdac_find_stream(sc, dir, stream);
1988         KASSERT(ss >= 0,
1989             ("Stop for not allocated stream (%d/%d)\n", dir, stream));
1990
1991         bus_dmamap_sync(sc->streams[ss].bdl.dma_tag,
1992             sc->streams[ss].bdl.dma_map, BUS_DMASYNC_POSTWRITE);
1993
1994         off = ss << 5;
1995         ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
1996         ctl &= ~(HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE |
1997             HDAC_SDCTL_RUN);
1998         HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
1999
2000         ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
2001         ctl &= ~(1 << ss);
2002         HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
2003
2004         sc->streams[ss].running = 0;
2005         hdac_poll_reinit(sc);
2006 }
2007
2008 static void
2009 hdac_stream_reset(device_t dev, device_t child, int dir, int stream)
2010 {
2011         struct hdac_softc *sc = device_get_softc(dev);
2012         int timeout = 1000;
2013         int to = timeout;
2014         int ss, off;
2015         uint32_t ctl;
2016
2017         ss = hdac_find_stream(sc, dir, stream);
2018         KASSERT(ss >= 0,
2019             ("Reset for not allocated stream (%d/%d)\n", dir, stream));
2020
2021         off = ss << 5;
2022         ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2023         ctl |= HDAC_SDCTL_SRST;
2024         HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2025         do {
2026                 ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2027                 if (ctl & HDAC_SDCTL_SRST)
2028                         break;
2029                 DELAY(10);
2030         } while (--to);
2031         if (!(ctl & HDAC_SDCTL_SRST))
2032                 device_printf(dev, "Reset setting timeout\n");
2033         ctl &= ~HDAC_SDCTL_SRST;
2034         HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2035         to = timeout;
2036         do {
2037                 ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2038                 if (!(ctl & HDAC_SDCTL_SRST))
2039                         break;
2040                 DELAY(10);
2041         } while (--to);
2042         if (ctl & HDAC_SDCTL_SRST)
2043                 device_printf(dev, "Reset timeout!\n");
2044 }
2045
2046 static uint32_t
2047 hdac_stream_getptr(device_t dev, device_t child, int dir, int stream)
2048 {
2049         struct hdac_softc *sc = device_get_softc(dev);
2050         int ss, off;
2051
2052         ss = hdac_find_stream(sc, dir, stream);
2053         KASSERT(ss >= 0,
2054             ("Reset for not allocated stream (%d/%d)\n", dir, stream));
2055
2056         off = ss << 5;
2057         return (HDAC_READ_4(&sc->mem, off + HDAC_SDLPIB));
2058 }
2059
2060 static int
2061 hdac_unsol_alloc(device_t dev, device_t child, int tag)
2062 {
2063         struct hdac_softc *sc = device_get_softc(dev);
2064
2065         sc->unsol_registered++;
2066         hdac_poll_reinit(sc);
2067         return (tag);
2068 }
2069
2070 static void
2071 hdac_unsol_free(device_t dev, device_t child, int tag)
2072 {
2073         struct hdac_softc *sc = device_get_softc(dev);
2074
2075         sc->unsol_registered--;
2076         hdac_poll_reinit(sc);
2077 }
2078
2079 static device_method_t hdac_methods[] = {
2080         /* device interface */
2081         DEVMETHOD(device_probe,         hdac_probe),
2082         DEVMETHOD(device_attach,        hdac_attach),
2083         DEVMETHOD(device_detach,        hdac_detach),
2084         DEVMETHOD(device_suspend,       hdac_suspend),
2085         DEVMETHOD(device_resume,        hdac_resume),
2086         /* Bus interface */
2087         DEVMETHOD(bus_get_dma_tag,      hdac_get_dma_tag),
2088         DEVMETHOD(bus_print_child,      hdac_print_child),
2089         DEVMETHOD(bus_child_location_str, hdac_child_location_str),
2090         DEVMETHOD(bus_child_pnpinfo_str, hdac_child_pnpinfo_str_method),
2091         DEVMETHOD(bus_read_ivar,        hdac_read_ivar),
2092         DEVMETHOD(hdac_get_mtx,         hdac_get_mtx),
2093         DEVMETHOD(hdac_codec_command,   hdac_codec_command),
2094         DEVMETHOD(hdac_stream_alloc,    hdac_stream_alloc),
2095         DEVMETHOD(hdac_stream_free,     hdac_stream_free),
2096         DEVMETHOD(hdac_stream_start,    hdac_stream_start),
2097         DEVMETHOD(hdac_stream_stop,     hdac_stream_stop),
2098         DEVMETHOD(hdac_stream_reset,    hdac_stream_reset),
2099         DEVMETHOD(hdac_stream_getptr,   hdac_stream_getptr),
2100         DEVMETHOD(hdac_unsol_alloc,     hdac_unsol_alloc),
2101         DEVMETHOD(hdac_unsol_free,      hdac_unsol_free),
2102         DEVMETHOD_END
2103 };
2104
2105 static driver_t hdac_driver = {
2106         "hdac",
2107         hdac_methods,
2108         sizeof(struct hdac_softc),
2109 };
2110
2111 static devclass_t hdac_devclass;
2112
2113 DRIVER_MODULE(snd_hda, pci, hdac_driver, hdac_devclass, NULL, NULL);