]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/sound/pcm/feeder_rate.c
sfxge(4): unify power of 2 alignment check macro
[FreeBSD/FreeBSD.git] / sys / dev / sound / pcm / feeder_rate.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2005-2009 Ariff Abdullah <ariff@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 /*
30  * feeder_rate: (Codename: Z Resampler), which means any effort to create
31  *              future replacement for this resampler are simply absurd unless
32  *              the world decide to add new alphabet after Z.
33  *
34  * FreeBSD bandlimited sinc interpolator, technically based on
35  * "Digital Audio Resampling" by Julius O. Smith III
36  *  - http://ccrma.stanford.edu/~jos/resample/
37  *
38  * The Good:
39  * + all out fixed point integer operations, no soft-float or anything like
40  *   that.
41  * + classic polyphase converters with high quality coefficient's polynomial
42  *   interpolators.
43  * + fast, faster, or the fastest of its kind.
44  * + compile time configurable.
45  * + etc etc..
46  *
47  * The Bad:
48  * - The z, z_, and Z_ . Due to mental block (or maybe just 0x7a69), I
49  *   couldn't think of anything simpler than that (feeder_rate_xxx is just
50  *   too long). Expect possible clashes with other zitizens (any?).
51  */
52
53 #ifdef _KERNEL
54 #ifdef HAVE_KERNEL_OPTION_HEADERS
55 #include "opt_snd.h"
56 #endif
57 #include <dev/sound/pcm/sound.h>
58 #include <dev/sound/pcm/pcm.h>
59 #include "feeder_if.h"
60
61 #define SND_USE_FXDIV
62 #include "snd_fxdiv_gen.h"
63
64 SND_DECLARE_FILE("$FreeBSD$");
65 #endif
66
67 #include "feeder_rate_gen.h"
68
69 #if !defined(_KERNEL) && defined(SND_DIAGNOSTIC)
70 #undef Z_DIAGNOSTIC
71 #define Z_DIAGNOSTIC            1
72 #elif defined(_KERNEL)
73 #undef Z_DIAGNOSTIC
74 #endif
75
76 #ifndef Z_QUALITY_DEFAULT
77 #define Z_QUALITY_DEFAULT       Z_QUALITY_LINEAR
78 #endif
79
80 #define Z_RESERVOIR             2048
81 #define Z_RESERVOIR_MAX         131072
82
83 #define Z_SINC_MAX              0x3fffff
84 #define Z_SINC_DOWNMAX          48              /* 384000 / 8000 */
85
86 #ifdef _KERNEL
87 #define Z_POLYPHASE_MAX         183040          /* 286 taps, 640 phases */
88 #else
89 #define Z_POLYPHASE_MAX         1464320         /* 286 taps, 5120 phases */
90 #endif
91
92 #define Z_RATE_DEFAULT          48000
93
94 #define Z_RATE_MIN              FEEDRATE_RATEMIN
95 #define Z_RATE_MAX              FEEDRATE_RATEMAX
96 #define Z_ROUNDHZ               FEEDRATE_ROUNDHZ
97 #define Z_ROUNDHZ_MIN           FEEDRATE_ROUNDHZ_MIN
98 #define Z_ROUNDHZ_MAX           FEEDRATE_ROUNDHZ_MAX
99
100 #define Z_RATE_SRC              FEEDRATE_SRC
101 #define Z_RATE_DST              FEEDRATE_DST
102 #define Z_RATE_QUALITY          FEEDRATE_QUALITY
103 #define Z_RATE_CHANNELS         FEEDRATE_CHANNELS
104
105 #define Z_PARANOID              1
106
107 #define Z_MULTIFORMAT           1
108
109 #ifdef _KERNEL
110 #undef Z_USE_ALPHADRIFT
111 #define Z_USE_ALPHADRIFT        1
112 #endif
113
114 #define Z_FACTOR_MIN            1
115 #define Z_FACTOR_MAX            Z_MASK
116 #define Z_FACTOR_SAFE(v)        (!((v) < Z_FACTOR_MIN || (v) > Z_FACTOR_MAX))
117
118 struct z_info;
119
120 typedef void (*z_resampler_t)(struct z_info *, uint8_t *);
121
122 struct z_info {
123         int32_t rsrc, rdst;     /* original source / destination rates */
124         int32_t src, dst;       /* rounded source / destination rates */
125         int32_t channels;       /* total channels */
126         int32_t bps;            /* bytes-per-sample */
127         int32_t quality;        /* resampling quality */
128
129         int32_t z_gx, z_gy;     /* interpolation / decimation ratio */
130         int32_t z_alpha;        /* output sample time phase / drift */
131         uint8_t *z_delay;       /* FIR delay line / linear buffer */
132         int32_t *z_coeff;       /* FIR coefficients */
133         int32_t *z_dcoeff;      /* FIR coefficients differences */
134         int32_t *z_pcoeff;      /* FIR polyphase coefficients */
135         int32_t z_scale;        /* output scaling */
136         int32_t z_dx;           /* input sample drift increment */
137         int32_t z_dy;           /* output sample drift increment */
138 #ifdef Z_USE_ALPHADRIFT
139         int32_t z_alphadrift;   /* alpha drift rate */
140         int32_t z_startdrift;   /* buffer start position drift rate */
141 #endif
142         int32_t z_mask;         /* delay line full length mask */
143         int32_t z_size;         /* half width of FIR taps */
144         int32_t z_full;         /* full size of delay line */
145         int32_t z_alloc;        /* largest allocated full size of delay line */
146         int32_t z_start;        /* buffer processing start position */
147         int32_t z_pos;          /* current position for the next feed */
148 #ifdef Z_DIAGNOSTIC
149         uint32_t z_cycle;       /* output cycle, purely for statistical */
150 #endif
151         int32_t z_maxfeed;      /* maximum feed to avoid 32bit overflow */
152
153         z_resampler_t z_resample;
154 };
155
156 int feeder_rate_min = Z_RATE_MIN;
157 int feeder_rate_max = Z_RATE_MAX;
158 int feeder_rate_round = Z_ROUNDHZ;
159 int feeder_rate_quality = Z_QUALITY_DEFAULT;
160
161 static int feeder_rate_polyphase_max = Z_POLYPHASE_MAX;
162
163 #ifdef _KERNEL
164 static char feeder_rate_presets[] = FEEDER_RATE_PRESETS;
165 SYSCTL_STRING(_hw_snd, OID_AUTO, feeder_rate_presets, CTLFLAG_RD,
166     &feeder_rate_presets, 0, "compile-time rate presets");
167 SYSCTL_INT(_hw_snd, OID_AUTO, feeder_rate_polyphase_max, CTLFLAG_RWTUN,
168     &feeder_rate_polyphase_max, 0, "maximum allowable polyphase entries");
169
170 static int
171 sysctl_hw_snd_feeder_rate_min(SYSCTL_HANDLER_ARGS)
172 {
173         int err, val;
174
175         val = feeder_rate_min;
176         err = sysctl_handle_int(oidp, &val, 0, req);
177
178         if (err != 0 || req->newptr == NULL || val == feeder_rate_min)
179                 return (err);
180
181         if (!(Z_FACTOR_SAFE(val) && val < feeder_rate_max))
182                 return (EINVAL);
183
184         feeder_rate_min = val;
185
186         return (0);
187 }
188 SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_min, CTLTYPE_INT | CTLFLAG_RWTUN,
189     0, sizeof(int), sysctl_hw_snd_feeder_rate_min, "I",
190     "minimum allowable rate");
191
192 static int
193 sysctl_hw_snd_feeder_rate_max(SYSCTL_HANDLER_ARGS)
194 {
195         int err, val;
196
197         val = feeder_rate_max;
198         err = sysctl_handle_int(oidp, &val, 0, req);
199
200         if (err != 0 || req->newptr == NULL || val == feeder_rate_max)
201                 return (err);
202
203         if (!(Z_FACTOR_SAFE(val) && val > feeder_rate_min))
204                 return (EINVAL);
205
206         feeder_rate_max = val;
207
208         return (0);
209 }
210 SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_max, CTLTYPE_INT | CTLFLAG_RWTUN,
211     0, sizeof(int), sysctl_hw_snd_feeder_rate_max, "I",
212     "maximum allowable rate");
213
214 static int
215 sysctl_hw_snd_feeder_rate_round(SYSCTL_HANDLER_ARGS)
216 {
217         int err, val;
218
219         val = feeder_rate_round;
220         err = sysctl_handle_int(oidp, &val, 0, req);
221
222         if (err != 0 || req->newptr == NULL || val == feeder_rate_round)
223                 return (err);
224
225         if (val < Z_ROUNDHZ_MIN || val > Z_ROUNDHZ_MAX)
226                 return (EINVAL);
227
228         feeder_rate_round = val - (val % Z_ROUNDHZ);
229
230         return (0);
231 }
232 SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_round, CTLTYPE_INT | CTLFLAG_RWTUN,
233     0, sizeof(int), sysctl_hw_snd_feeder_rate_round, "I",
234     "sample rate converter rounding threshold");
235
236 static int
237 sysctl_hw_snd_feeder_rate_quality(SYSCTL_HANDLER_ARGS)
238 {
239         struct snddev_info *d;
240         struct pcm_channel *c;
241         struct pcm_feeder *f;
242         int i, err, val;
243
244         val = feeder_rate_quality;
245         err = sysctl_handle_int(oidp, &val, 0, req);
246
247         if (err != 0 || req->newptr == NULL || val == feeder_rate_quality)
248                 return (err);
249
250         if (val < Z_QUALITY_MIN || val > Z_QUALITY_MAX)
251                 return (EINVAL);
252
253         feeder_rate_quality = val;
254
255         /*
256          * Traverse all available channels on each device and try to
257          * set resampler quality if and only if it is exist as
258          * part of feeder chains and the channel is idle.
259          */
260         for (i = 0; pcm_devclass != NULL &&
261             i < devclass_get_maxunit(pcm_devclass); i++) {
262                 d = devclass_get_softc(pcm_devclass, i);
263                 if (!PCM_REGISTERED(d))
264                         continue;
265                 PCM_LOCK(d);
266                 PCM_WAIT(d);
267                 PCM_ACQUIRE(d);
268                 CHN_FOREACH(c, d, channels.pcm) {
269                         CHN_LOCK(c);
270                         f = chn_findfeeder(c, FEEDER_RATE);
271                         if (f == NULL || f->data == NULL || CHN_STARTED(c)) {
272                                 CHN_UNLOCK(c);
273                                 continue;
274                         }
275                         (void)FEEDER_SET(f, FEEDRATE_QUALITY, val);
276                         CHN_UNLOCK(c);
277                 }
278                 PCM_RELEASE(d);
279                 PCM_UNLOCK(d);
280         }
281
282         return (0);
283 }
284 SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_quality, CTLTYPE_INT | CTLFLAG_RWTUN,
285     0, sizeof(int), sysctl_hw_snd_feeder_rate_quality, "I",
286     "sample rate converter quality ("__XSTRING(Z_QUALITY_MIN)"=low .. "
287     __XSTRING(Z_QUALITY_MAX)"=high)");
288 #endif  /* _KERNEL */
289
290
291 /*
292  * Resampler type.
293  */
294 #define Z_IS_ZOH(i)             ((i)->quality == Z_QUALITY_ZOH)
295 #define Z_IS_LINEAR(i)          ((i)->quality == Z_QUALITY_LINEAR)
296 #define Z_IS_SINC(i)            ((i)->quality > Z_QUALITY_LINEAR)
297
298 /*
299  * Macroses for accurate sample time drift calculations.
300  *
301  * gy2gx : given the amount of output, return the _exact_ required amount of
302  *         input.
303  * gx2gy : given the amount of input, return the _maximum_ amount of output
304  *         that will be generated.
305  * drift : given the amount of input and output, return the elapsed
306  *         sample-time.
307  */
308 #define _Z_GCAST(x)             ((uint64_t)(x))
309
310 #if defined(__GNUCLIKE_ASM) && defined(__i386__)
311 /*
312  * This is where i386 being beaten to a pulp. Fortunately this function is
313  * rarely being called and if it is, it will decide the best (hopefully)
314  * fastest way to do the division. If we can ensure that everything is dword
315  * aligned, letting the compiler to call udivdi3 to do the division can be
316  * faster compared to this.
317  *
318  * amd64 is the clear winner here, no question about it.
319  */
320 static __inline uint32_t
321 Z_DIV(uint64_t v, uint32_t d)
322 {
323         uint32_t hi, lo, quo, rem;
324
325         hi = v >> 32;
326         lo = v & 0xffffffff;
327
328         /*
329          * As much as we can, try to avoid long division like a plague.
330          */
331         if (hi == 0)
332                 quo = lo / d;
333         else
334                 __asm("divl %2"
335                     : "=a" (quo), "=d" (rem)
336                     : "r" (d), "0" (lo), "1" (hi));
337
338         return (quo);
339 }
340 #else
341 #define Z_DIV(x, y)             ((x) / (y))
342 #endif
343
344 #define _Z_GY2GX(i, a, v)                                               \
345         Z_DIV(((_Z_GCAST((i)->z_gx) * (v)) + ((i)->z_gy - (a) - 1)),    \
346         (i)->z_gy)
347
348 #define _Z_GX2GY(i, a, v)                                               \
349         Z_DIV(((_Z_GCAST((i)->z_gy) * (v)) + (a)), (i)->z_gx)
350
351 #define _Z_DRIFT(i, x, y)                                               \
352         ((_Z_GCAST((i)->z_gy) * (x)) - (_Z_GCAST((i)->z_gx) * (y)))
353
354 #define z_gy2gx(i, v)           _Z_GY2GX(i, (i)->z_alpha, v)
355 #define z_gx2gy(i, v)           _Z_GX2GY(i, (i)->z_alpha, v)
356 #define z_drift(i, x, y)        _Z_DRIFT(i, x, y)
357
358 /*
359  * Macroses for SINC coefficients table manipulations.. whatever.
360  */
361 #define Z_SINC_COEFF_IDX(i)     ((i)->quality - Z_QUALITY_LINEAR - 1)
362
363 #define Z_SINC_LEN(i)                                                   \
364         ((int32_t)(((uint64_t)z_coeff_tab[Z_SINC_COEFF_IDX(i)].len <<   \
365             Z_SHIFT) / (i)->z_dy))
366
367 #define Z_SINC_BASE_LEN(i)                                              \
368         ((z_coeff_tab[Z_SINC_COEFF_IDX(i)].len - 1) >> (Z_DRIFT_SHIFT - 1))
369
370 /*
371  * Macroses for linear delay buffer operations. Alignment is not
372  * really necessary since we're not using true circular buffer, but it
373  * will help us guard against possible trespasser. To be honest,
374  * the linear block operations does not need guarding at all due to
375  * accurate drifting!
376  */
377 #define z_align(i, v)           ((v) & (i)->z_mask)
378 #define z_next(i, o, v)         z_align(i, (o) + (v))
379 #define z_prev(i, o, v)         z_align(i, (o) - (v))
380 #define z_fetched(i)            (z_align(i, (i)->z_pos - (i)->z_start) - 1)
381 #define z_free(i)               ((i)->z_full - (i)->z_pos)
382
383 /*
384  * Macroses for Bla Bla .. :)
385  */
386 #define z_copy(src, dst, sz)    (void)memcpy(dst, src, sz)
387 #define z_feed(...)             FEEDER_FEED(__VA_ARGS__)
388
389 static __inline uint32_t
390 z_min(uint32_t x, uint32_t y)
391 {
392
393         return ((x < y) ? x : y);
394 }
395
396 static int32_t
397 z_gcd(int32_t x, int32_t y)
398 {
399         int32_t w;
400
401         while (y != 0) {
402                 w = x % y;
403                 x = y;
404                 y = w;
405         }
406
407         return (x);
408 }
409
410 static int32_t
411 z_roundpow2(int32_t v)
412 {
413         int32_t i;
414
415         i = 1;
416
417         /*
418          * Let it overflow at will..
419          */
420         while (i > 0 && i < v)
421                 i <<= 1;
422
423         return (i);
424 }
425
426 /*
427  * Zero Order Hold, the worst of the worst, an insult against quality,
428  * but super fast.
429  */
430 static void
431 z_feed_zoh(struct z_info *info, uint8_t *dst)
432 {
433 #if 0
434         z_copy(info->z_delay +
435             (info->z_start * info->channels * info->bps), dst,
436             info->channels * info->bps);
437 #else
438         uint32_t cnt;
439         uint8_t *src;
440
441         cnt = info->channels * info->bps;
442         src = info->z_delay + (info->z_start * cnt);
443
444         /*
445          * This is a bit faster than doing bcopy() since we're dealing
446          * with possible unaligned samples.
447          */
448         do {
449                 *dst++ = *src++;
450         } while (--cnt != 0);
451 #endif
452 }
453
454 /*
455  * Linear Interpolation. This at least sounds better (perceptually) and fast,
456  * but without any proper filtering which means aliasing still exist and
457  * could become worst with a right sample. Interpolation centered within
458  * Z_LINEAR_ONE between the present and previous sample and everything is
459  * done with simple 32bit scaling arithmetic.
460  */
461 #define Z_DECLARE_LINEAR(SIGN, BIT, ENDIAN)                                     \
462 static void                                                                     \
463 z_feed_linear_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst)            \
464 {                                                                               \
465         int32_t z;                                                              \
466         intpcm_t x, y;                                                          \
467         uint32_t ch;                                                            \
468         uint8_t *sx, *sy;                                                       \
469                                                                                 \
470         z = ((uint32_t)info->z_alpha * info->z_dx) >> Z_LINEAR_UNSHIFT;         \
471                                                                                 \
472         sx = info->z_delay + (info->z_start * info->channels *                  \
473             PCM_##BIT##_BPS);                                                   \
474         sy = sx - (info->channels * PCM_##BIT##_BPS);                           \
475                                                                                 \
476         ch = info->channels;                                                    \
477                                                                                 \
478         do {                                                                    \
479                 x = _PCM_READ_##SIGN##BIT##_##ENDIAN(sx);                       \
480                 y = _PCM_READ_##SIGN##BIT##_##ENDIAN(sy);                       \
481                 x = Z_LINEAR_INTERPOLATE_##BIT(z, x, y);                        \
482                 _PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, x);                      \
483                 sx += PCM_##BIT##_BPS;                                          \
484                 sy += PCM_##BIT##_BPS;                                          \
485                 dst += PCM_##BIT##_BPS;                                         \
486         } while (--ch != 0);                                                    \
487 }
488
489 /*
490  * Userland clipping diagnostic check, not enabled in kernel compilation.
491  * While doing sinc interpolation, unrealistic samples like full scale sine
492  * wav will clip, but for other things this will not make any noise at all.
493  * Everybody should learn how to normalized perceived loudness of their own
494  * music/sounds/samples (hint: ReplayGain).
495  */
496 #ifdef Z_DIAGNOSTIC
497 #define Z_CLIP_CHECK(v, BIT)    do {                                    \
498         if ((v) > PCM_S##BIT##_MAX) {                                   \
499                 fprintf(stderr, "Overflow: v=%jd, max=%jd\n",           \
500                     (intmax_t)(v), (intmax_t)PCM_S##BIT##_MAX);         \
501         } else if ((v) < PCM_S##BIT##_MIN) {                            \
502                 fprintf(stderr, "Underflow: v=%jd, min=%jd\n",          \
503                     (intmax_t)(v), (intmax_t)PCM_S##BIT##_MIN);         \
504         }                                                               \
505 } while (0)
506 #else
507 #define Z_CLIP_CHECK(...)
508 #endif
509
510 #define Z_CLAMP(v, BIT)                                                 \
511         (((v) > PCM_S##BIT##_MAX) ? PCM_S##BIT##_MAX :                  \
512         (((v) < PCM_S##BIT##_MIN) ? PCM_S##BIT##_MIN : (v)))
513
514 /*
515  * Sine Cardinal (SINC) Interpolation. Scaling is done in 64 bit, so
516  * there's no point to hold the plate any longer. All samples will be
517  * shifted to a full 32 bit, scaled and restored during write for
518  * maximum dynamic range (only for downsampling).
519  */
520 #define _Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, adv)                      \
521         c += z >> Z_SHIFT;                                              \
522         z &= Z_MASK;                                                    \
523         coeff = Z_COEFF_INTERPOLATE(z, z_coeff[c], z_dcoeff[c]);        \
524         x = _PCM_READ_##SIGN##BIT##_##ENDIAN(p);                        \
525         v += Z_NORM_##BIT((intpcm64_t)x * coeff);                       \
526         z += info->z_dy;                                                \
527         p adv##= info->channels * PCM_##BIT##_BPS
528
529 /* 
530  * XXX GCC4 optimization is such a !@#$%, need manual unrolling.
531  */
532 #if defined(__GNUC__) && __GNUC__ >= 4
533 #define Z_SINC_ACCUMULATE(...)  do {                                    \
534         _Z_SINC_ACCUMULATE(__VA_ARGS__);                                \
535         _Z_SINC_ACCUMULATE(__VA_ARGS__);                                \
536 } while (0)
537 #define Z_SINC_ACCUMULATE_DECR          2
538 #else
539 #define Z_SINC_ACCUMULATE(...)  do {                                    \
540         _Z_SINC_ACCUMULATE(__VA_ARGS__);                                \
541 } while (0)
542 #define Z_SINC_ACCUMULATE_DECR          1
543 #endif
544
545 #define Z_DECLARE_SINC(SIGN, BIT, ENDIAN)                                       \
546 static void                                                                     \
547 z_feed_sinc_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst)              \
548 {                                                                               \
549         intpcm64_t v;                                                           \
550         intpcm_t x;                                                             \
551         uint8_t *p;                                                             \
552         int32_t coeff, z, *z_coeff, *z_dcoeff;                                  \
553         uint32_t c, center, ch, i;                                              \
554                                                                                 \
555         z_coeff = info->z_coeff;                                                \
556         z_dcoeff = info->z_dcoeff;                                              \
557         center = z_prev(info, info->z_start, info->z_size);                     \
558         ch = info->channels * PCM_##BIT##_BPS;                                  \
559         dst += ch;                                                              \
560                                                                                 \
561         do {                                                                    \
562                 dst -= PCM_##BIT##_BPS;                                         \
563                 ch -= PCM_##BIT##_BPS;                                          \
564                 v = 0;                                                          \
565                 z = info->z_alpha * info->z_dx;                                 \
566                 c = 0;                                                          \
567                 p = info->z_delay + (z_next(info, center, 1) *                  \
568                     info->channels * PCM_##BIT##_BPS) + ch;                     \
569                 for (i = info->z_size; i != 0; i -= Z_SINC_ACCUMULATE_DECR)     \
570                         Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, +);                \
571                 z = info->z_dy - (info->z_alpha * info->z_dx);                  \
572                 c = 0;                                                          \
573                 p = info->z_delay + (center * info->channels *                  \
574                     PCM_##BIT##_BPS) + ch;                                      \
575                 for (i = info->z_size; i != 0; i -= Z_SINC_ACCUMULATE_DECR)     \
576                         Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, -);                \
577                 if (info->z_scale != Z_ONE)                                     \
578                         v = Z_SCALE_##BIT(v, info->z_scale);                    \
579                 else                                                            \
580                         v >>= Z_COEFF_SHIFT - Z_GUARD_BIT_##BIT;                \
581                 Z_CLIP_CHECK(v, BIT);                                           \
582                 _PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, Z_CLAMP(v, BIT));        \
583         } while (ch != 0);                                                      \
584 }
585
586 #define Z_DECLARE_SINC_POLYPHASE(SIGN, BIT, ENDIAN)                             \
587 static void                                                                     \
588 z_feed_sinc_polyphase_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst)    \
589 {                                                                               \
590         intpcm64_t v;                                                           \
591         intpcm_t x;                                                             \
592         uint8_t *p;                                                             \
593         int32_t ch, i, start, *z_pcoeff;                                        \
594                                                                                 \
595         ch = info->channels * PCM_##BIT##_BPS;                                  \
596         dst += ch;                                                              \
597         start = z_prev(info, info->z_start, (info->z_size << 1) - 1) * ch;      \
598                                                                                 \
599         do {                                                                    \
600                 dst -= PCM_##BIT##_BPS;                                         \
601                 ch -= PCM_##BIT##_BPS;                                          \
602                 v = 0;                                                          \
603                 p = info->z_delay + start + ch;                                 \
604                 z_pcoeff = info->z_pcoeff +                                     \
605                     ((info->z_alpha * info->z_size) << 1);                      \
606                 for (i = info->z_size; i != 0; i--) {                           \
607                         x = _PCM_READ_##SIGN##BIT##_##ENDIAN(p);                \
608                         v += Z_NORM_##BIT((intpcm64_t)x * *z_pcoeff);           \
609                         z_pcoeff++;                                             \
610                         p += info->channels * PCM_##BIT##_BPS;                  \
611                         x = _PCM_READ_##SIGN##BIT##_##ENDIAN(p);                \
612                         v += Z_NORM_##BIT((intpcm64_t)x * *z_pcoeff);           \
613                         z_pcoeff++;                                             \
614                         p += info->channels * PCM_##BIT##_BPS;                  \
615                 }                                                               \
616                 if (info->z_scale != Z_ONE)                                     \
617                         v = Z_SCALE_##BIT(v, info->z_scale);                    \
618                 else                                                            \
619                         v >>= Z_COEFF_SHIFT - Z_GUARD_BIT_##BIT;                \
620                 Z_CLIP_CHECK(v, BIT);                                           \
621                 _PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, Z_CLAMP(v, BIT));        \
622         } while (ch != 0);                                                      \
623 }
624
625 #define Z_DECLARE(SIGN, BIT, ENDIAN)                                    \
626         Z_DECLARE_LINEAR(SIGN, BIT, ENDIAN)                             \
627         Z_DECLARE_SINC(SIGN, BIT, ENDIAN)                               \
628         Z_DECLARE_SINC_POLYPHASE(SIGN, BIT, ENDIAN)
629
630 #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
631 Z_DECLARE(S, 16, LE)
632 Z_DECLARE(S, 32, LE)
633 #endif
634 #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
635 Z_DECLARE(S, 16, BE)
636 Z_DECLARE(S, 32, BE)
637 #endif
638 #ifdef SND_FEEDER_MULTIFORMAT
639 Z_DECLARE(S,  8, NE)
640 Z_DECLARE(S, 24, LE)
641 Z_DECLARE(S, 24, BE)
642 Z_DECLARE(U,  8, NE)
643 Z_DECLARE(U, 16, LE)
644 Z_DECLARE(U, 24, LE)
645 Z_DECLARE(U, 32, LE)
646 Z_DECLARE(U, 16, BE)
647 Z_DECLARE(U, 24, BE)
648 Z_DECLARE(U, 32, BE)
649 #endif
650
651 enum {
652         Z_RESAMPLER_ZOH,
653         Z_RESAMPLER_LINEAR,
654         Z_RESAMPLER_SINC,
655         Z_RESAMPLER_SINC_POLYPHASE,
656         Z_RESAMPLER_LAST
657 };
658
659 #define Z_RESAMPLER_IDX(i)                                              \
660         (Z_IS_SINC(i) ? Z_RESAMPLER_SINC : (i)->quality)
661
662 #define Z_RESAMPLER_ENTRY(SIGN, BIT, ENDIAN)                                    \
663         {                                                                       \
664             AFMT_##SIGN##BIT##_##ENDIAN,                                        \
665             {                                                                   \
666                 [Z_RESAMPLER_ZOH]    = z_feed_zoh,                              \
667                 [Z_RESAMPLER_LINEAR] = z_feed_linear_##SIGN##BIT##ENDIAN,       \
668                 [Z_RESAMPLER_SINC]   = z_feed_sinc_##SIGN##BIT##ENDIAN,         \
669                 [Z_RESAMPLER_SINC_POLYPHASE]   =                                \
670                     z_feed_sinc_polyphase_##SIGN##BIT##ENDIAN                   \
671             }                                                                   \
672         }
673
674 static const struct {
675         uint32_t format;
676         z_resampler_t resampler[Z_RESAMPLER_LAST];
677 } z_resampler_tab[] = {
678 #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
679         Z_RESAMPLER_ENTRY(S, 16, LE),
680         Z_RESAMPLER_ENTRY(S, 32, LE),
681 #endif
682 #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
683         Z_RESAMPLER_ENTRY(S, 16, BE),
684         Z_RESAMPLER_ENTRY(S, 32, BE),
685 #endif
686 #ifdef SND_FEEDER_MULTIFORMAT
687         Z_RESAMPLER_ENTRY(S,  8, NE),
688         Z_RESAMPLER_ENTRY(S, 24, LE),
689         Z_RESAMPLER_ENTRY(S, 24, BE),
690         Z_RESAMPLER_ENTRY(U,  8, NE),
691         Z_RESAMPLER_ENTRY(U, 16, LE),
692         Z_RESAMPLER_ENTRY(U, 24, LE),
693         Z_RESAMPLER_ENTRY(U, 32, LE),
694         Z_RESAMPLER_ENTRY(U, 16, BE),
695         Z_RESAMPLER_ENTRY(U, 24, BE),
696         Z_RESAMPLER_ENTRY(U, 32, BE),
697 #endif
698 };
699
700 #define Z_RESAMPLER_TAB_SIZE                                            \
701         ((int32_t)(sizeof(z_resampler_tab) / sizeof(z_resampler_tab[0])))
702
703 static void
704 z_resampler_reset(struct z_info *info)
705 {
706
707         info->src = info->rsrc - (info->rsrc % ((feeder_rate_round > 0 &&
708             info->rsrc > feeder_rate_round) ? feeder_rate_round : 1));
709         info->dst = info->rdst - (info->rdst % ((feeder_rate_round > 0 &&
710             info->rdst > feeder_rate_round) ? feeder_rate_round : 1));
711         info->z_gx = 1;
712         info->z_gy = 1;
713         info->z_alpha = 0;
714         info->z_resample = NULL;
715         info->z_size = 1;
716         info->z_coeff = NULL;
717         info->z_dcoeff = NULL;
718         if (info->z_pcoeff != NULL) {
719                 free(info->z_pcoeff, M_DEVBUF);
720                 info->z_pcoeff = NULL;
721         }
722         info->z_scale = Z_ONE;
723         info->z_dx = Z_FULL_ONE;
724         info->z_dy = Z_FULL_ONE;
725 #ifdef Z_DIAGNOSTIC
726         info->z_cycle = 0;
727 #endif
728         if (info->quality < Z_QUALITY_MIN)
729                 info->quality = Z_QUALITY_MIN;
730         else if (info->quality > Z_QUALITY_MAX)
731                 info->quality = Z_QUALITY_MAX;
732 }
733
734 #ifdef Z_PARANOID
735 static int32_t
736 z_resampler_sinc_len(struct z_info *info)
737 {
738         int32_t c, z, len, lmax;
739
740         if (!Z_IS_SINC(info))
741                 return (1);
742
743         /*
744          * A rather careful (or useless) way to calculate filter length.
745          * Z_SINC_LEN() itself is accurate enough to do its job. Extra
746          * sanity checking is not going to hurt though..
747          */
748         c = 0;
749         z = info->z_dy;
750         len = 0;
751         lmax = z_coeff_tab[Z_SINC_COEFF_IDX(info)].len;
752
753         do {
754                 c += z >> Z_SHIFT;
755                 z &= Z_MASK;
756                 z += info->z_dy;
757         } while (c < lmax && ++len > 0);
758
759         if (len != Z_SINC_LEN(info)) {
760 #ifdef _KERNEL
761                 printf("%s(): sinc l=%d != Z_SINC_LEN=%d\n",
762                     __func__, len, Z_SINC_LEN(info));
763 #else
764                 fprintf(stderr, "%s(): sinc l=%d != Z_SINC_LEN=%d\n",
765                     __func__, len, Z_SINC_LEN(info));
766                 return (-1);
767 #endif
768         }
769
770         return (len);
771 }
772 #else
773 #define z_resampler_sinc_len(i)         (Z_IS_SINC(i) ? Z_SINC_LEN(i) : 1)
774 #endif
775
776 #define Z_POLYPHASE_COEFF_SHIFT         0
777
778 /*
779  * Pick suitable polynomial interpolators based on filter oversampled ratio
780  * (2 ^ Z_DRIFT_SHIFT).
781  */
782 #if !(defined(Z_COEFF_INTERP_ZOH) || defined(Z_COEFF_INTERP_LINEAR) ||          \
783     defined(Z_COEFF_INTERP_QUADRATIC) || defined(Z_COEFF_INTERP_HERMITE) ||     \
784     defined(Z_COEFF_INTER_BSPLINE) || defined(Z_COEFF_INTERP_OPT32X) ||         \
785     defined(Z_COEFF_INTERP_OPT16X) || defined(Z_COEFF_INTERP_OPT8X) ||          \
786     defined(Z_COEFF_INTERP_OPT4X) || defined(Z_COEFF_INTERP_OPT2X))
787 #if Z_DRIFT_SHIFT >= 6
788 #define Z_COEFF_INTERP_BSPLINE          1
789 #elif Z_DRIFT_SHIFT >= 5
790 #define Z_COEFF_INTERP_OPT32X           1
791 #elif Z_DRIFT_SHIFT == 4
792 #define Z_COEFF_INTERP_OPT16X           1
793 #elif Z_DRIFT_SHIFT == 3
794 #define Z_COEFF_INTERP_OPT8X            1
795 #elif Z_DRIFT_SHIFT == 2
796 #define Z_COEFF_INTERP_OPT4X            1
797 #elif Z_DRIFT_SHIFT == 1
798 #define Z_COEFF_INTERP_OPT2X            1
799 #else
800 #error "Z_DRIFT_SHIFT screwed!"
801 #endif
802 #endif
803
804 /*
805  * In classic polyphase mode, the actual coefficients for each phases need to
806  * be calculated based on default prototype filters. For highly oversampled
807  * filter, linear or quadradatic interpolator should be enough. Anything less
808  * than that require 'special' interpolators to reduce interpolation errors.
809  *
810  * "Polynomial Interpolators for High-Quality Resampling of Oversampled Audio"
811  *    by Olli Niemitalo
812  *    - http://www.student.oulu.fi/~oniemita/dsp/deip.pdf
813  *
814  */
815 static int32_t
816 z_coeff_interpolate(int32_t z, int32_t *z_coeff)
817 {
818         int32_t coeff;
819 #if defined(Z_COEFF_INTERP_ZOH)
820
821         /* 1-point, 0th-order (Zero Order Hold) */
822         z = z;
823         coeff = z_coeff[0];
824 #elif defined(Z_COEFF_INTERP_LINEAR)
825         int32_t zl0, zl1;
826
827         /* 2-point, 1st-order Linear */
828         zl0 = z_coeff[0];
829         zl1 = z_coeff[1] - z_coeff[0];
830
831         coeff = Z_RSHIFT((int64_t)zl1 * z, Z_SHIFT) + zl0;
832 #elif defined(Z_COEFF_INTERP_QUADRATIC)
833         int32_t zq0, zq1, zq2;
834
835         /* 3-point, 2nd-order Quadratic */
836         zq0 = z_coeff[0];
837         zq1 = z_coeff[1] - z_coeff[-1];
838         zq2 = z_coeff[1] + z_coeff[-1] - (z_coeff[0] << 1);
839
840         coeff = Z_RSHIFT((Z_RSHIFT((int64_t)zq2 * z, Z_SHIFT) +
841             zq1) * z, Z_SHIFT + 1) + zq0;
842 #elif defined(Z_COEFF_INTERP_HERMITE)
843         int32_t zh0, zh1, zh2, zh3;
844
845         /* 4-point, 3rd-order Hermite */
846         zh0 = z_coeff[0];
847         zh1 = z_coeff[1] - z_coeff[-1];
848         zh2 = (z_coeff[-1] << 1) - (z_coeff[0] * 5) + (z_coeff[1] << 2) -
849             z_coeff[2];
850         zh3 = z_coeff[2] - z_coeff[-1] + ((z_coeff[0] - z_coeff[1]) * 3);
851
852         coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((int64_t)zh3 * z, Z_SHIFT) +
853             zh2) * z, Z_SHIFT) + zh1) * z, Z_SHIFT + 1) + zh0;
854 #elif defined(Z_COEFF_INTERP_BSPLINE)
855         int32_t zb0, zb1, zb2, zb3;
856
857         /* 4-point, 3rd-order B-Spline */
858         zb0 = Z_RSHIFT(0x15555555LL * (((int64_t)z_coeff[0] << 2) +
859             z_coeff[-1] + z_coeff[1]), 30);
860         zb1 = z_coeff[1] - z_coeff[-1];
861         zb2 = z_coeff[-1] + z_coeff[1] - (z_coeff[0] << 1);
862         zb3 = Z_RSHIFT(0x15555555LL * (((z_coeff[0] - z_coeff[1]) * 3) +
863             z_coeff[2] - z_coeff[-1]), 30);
864
865         coeff = (Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((int64_t)zb3 * z, Z_SHIFT) +
866             zb2) * z, Z_SHIFT) + zb1) * z, Z_SHIFT) + zb0 + 1) >> 1;
867 #elif defined(Z_COEFF_INTERP_OPT32X)
868         int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3;
869         int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5;
870
871         /* 6-point, 5th-order Optimal 32x */
872         zoz = z - (Z_ONE >> 1);
873         zoe1 = z_coeff[1] + z_coeff[0];
874         zoe2 = z_coeff[2] + z_coeff[-1];
875         zoe3 = z_coeff[3] + z_coeff[-2];
876         zoo1 = z_coeff[1] - z_coeff[0];
877         zoo2 = z_coeff[2] - z_coeff[-1];
878         zoo3 = z_coeff[3] - z_coeff[-2];
879
880         zoc0 = Z_RSHIFT((0x1ac2260dLL * zoe1) + (0x0526cdcaLL * zoe2) +
881             (0x00170c29LL * zoe3), 30);
882         zoc1 = Z_RSHIFT((0x14f8a49aLL * zoo1) + (0x0d6d1109LL * zoo2) +
883             (0x008cd4dcLL * zoo3), 30);
884         zoc2 = Z_RSHIFT((-0x0d3e94a4LL * zoe1) + (0x0bddded4LL * zoe2) +
885             (0x0160b5d0LL * zoe3), 30);
886         zoc3 = Z_RSHIFT((-0x0de10cc4LL * zoo1) + (0x019b2a7dLL * zoo2) +
887             (0x01cfe914LL * zoo3), 30);
888         zoc4 = Z_RSHIFT((0x02aa12d7LL * zoe1) + (-0x03ff1bb3LL * zoe2) +
889             (0x015508ddLL * zoe3), 30);
890         zoc5 = Z_RSHIFT((0x051d29e5LL * zoo1) + (-0x028e7647LL * zoo2) +
891             (0x0082d81aLL * zoo3), 30);
892
893         coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
894             (int64_t)zoc5 * zoz, Z_SHIFT) +
895             zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) +
896             zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0;
897 #elif defined(Z_COEFF_INTERP_OPT16X)
898         int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3;
899         int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5;
900
901         /* 6-point, 5th-order Optimal 16x */
902         zoz = z - (Z_ONE >> 1);
903         zoe1 = z_coeff[1] + z_coeff[0];
904         zoe2 = z_coeff[2] + z_coeff[-1];
905         zoe3 = z_coeff[3] + z_coeff[-2];
906         zoo1 = z_coeff[1] - z_coeff[0];
907         zoo2 = z_coeff[2] - z_coeff[-1];
908         zoo3 = z_coeff[3] - z_coeff[-2];
909
910         zoc0 = Z_RSHIFT((0x1ac2260dLL * zoe1) + (0x0526cdcaLL * zoe2) +
911             (0x00170c29LL * zoe3), 30);
912         zoc1 = Z_RSHIFT((0x14f8a49aLL * zoo1) + (0x0d6d1109LL * zoo2) +
913             (0x008cd4dcLL * zoo3), 30);
914         zoc2 = Z_RSHIFT((-0x0d3e94a4LL * zoe1) + (0x0bddded4LL * zoe2) +
915             (0x0160b5d0LL * zoe3), 30);
916         zoc3 = Z_RSHIFT((-0x0de10cc4LL * zoo1) + (0x019b2a7dLL * zoo2) +
917             (0x01cfe914LL * zoo3), 30);
918         zoc4 = Z_RSHIFT((0x02aa12d7LL * zoe1) + (-0x03ff1bb3LL * zoe2) +
919             (0x015508ddLL * zoe3), 30);
920         zoc5 = Z_RSHIFT((0x051d29e5LL * zoo1) + (-0x028e7647LL * zoo2) +
921             (0x0082d81aLL * zoo3), 30);
922
923         coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
924             (int64_t)zoc5 * zoz, Z_SHIFT) +
925             zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) +
926             zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0;
927 #elif defined(Z_COEFF_INTERP_OPT8X)
928         int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3;
929         int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5;
930
931         /* 6-point, 5th-order Optimal 8x */
932         zoz = z - (Z_ONE >> 1);
933         zoe1 = z_coeff[1] + z_coeff[0];
934         zoe2 = z_coeff[2] + z_coeff[-1];
935         zoe3 = z_coeff[3] + z_coeff[-2];
936         zoo1 = z_coeff[1] - z_coeff[0];
937         zoo2 = z_coeff[2] - z_coeff[-1];
938         zoo3 = z_coeff[3] - z_coeff[-2];
939
940         zoc0 = Z_RSHIFT((0x1aa9b47dLL * zoe1) + (0x053d9944LL * zoe2) +
941             (0x0018b23fLL * zoe3), 30);
942         zoc1 = Z_RSHIFT((0x14a104d1LL * zoo1) + (0x0d7d2504LL * zoo2) +
943             (0x0094b599LL * zoo3), 30);
944         zoc2 = Z_RSHIFT((-0x0d22530bLL * zoe1) + (0x0bb37a2cLL * zoe2) +
945             (0x016ed8e0LL * zoe3), 30);
946         zoc3 = Z_RSHIFT((-0x0d744b1cLL * zoo1) + (0x01649591LL * zoo2) +
947             (0x01dae93aLL * zoo3), 30);
948         zoc4 = Z_RSHIFT((0x02a7ee1bLL * zoe1) + (-0x03fbdb24LL * zoe2) +
949             (0x0153ed07LL * zoe3), 30);
950         zoc5 = Z_RSHIFT((0x04cf9b6cLL * zoo1) + (-0x0266b378LL * zoo2) +
951             (0x007a7c26LL * zoo3), 30);
952
953         coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
954             (int64_t)zoc5 * zoz, Z_SHIFT) +
955             zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) +
956             zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0;
957 #elif defined(Z_COEFF_INTERP_OPT4X)
958         int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3;
959         int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5;
960
961         /* 6-point, 5th-order Optimal 4x */
962         zoz = z - (Z_ONE >> 1);
963         zoe1 = z_coeff[1] + z_coeff[0];
964         zoe2 = z_coeff[2] + z_coeff[-1];
965         zoe3 = z_coeff[3] + z_coeff[-2];
966         zoo1 = z_coeff[1] - z_coeff[0];
967         zoo2 = z_coeff[2] - z_coeff[-1];
968         zoo3 = z_coeff[3] - z_coeff[-2];
969
970         zoc0 = Z_RSHIFT((0x1a8eda43LL * zoe1) + (0x0556ee38LL * zoe2) +
971             (0x001a3784LL * zoe3), 30);
972         zoc1 = Z_RSHIFT((0x143d863eLL * zoo1) + (0x0d910e36LL * zoo2) +
973             (0x009ca889LL * zoo3), 30);
974         zoc2 = Z_RSHIFT((-0x0d026821LL * zoe1) + (0x0b837773LL * zoe2) +
975             (0x017ef0c6LL * zoe3), 30);
976         zoc3 = Z_RSHIFT((-0x0cef1502LL * zoo1) + (0x01207a8eLL * zoo2) +
977             (0x01e936dbLL * zoo3), 30);
978         zoc4 = Z_RSHIFT((0x029fe643LL * zoe1) + (-0x03ef3fc8LL * zoe2) +
979             (0x014f5923LL * zoe3), 30);
980         zoc5 = Z_RSHIFT((0x043a9d08LL * zoo1) + (-0x02154febLL * zoo2) +
981             (0x00670dbdLL * zoo3), 30);
982
983         coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
984             (int64_t)zoc5 * zoz, Z_SHIFT) +
985             zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) +
986             zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0;
987 #elif defined(Z_COEFF_INTERP_OPT2X)
988         int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3;
989         int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5;
990
991         /* 6-point, 5th-order Optimal 2x */
992         zoz = z - (Z_ONE >> 1);
993         zoe1 = z_coeff[1] + z_coeff[0];
994         zoe2 = z_coeff[2] + z_coeff[-1];
995         zoe3 = z_coeff[3] + z_coeff[-2];
996         zoo1 = z_coeff[1] - z_coeff[0];
997         zoo2 = z_coeff[2] - z_coeff[-1];
998         zoo3 = z_coeff[3] - z_coeff[-2];
999
1000         zoc0 = Z_RSHIFT((0x19edb6fdLL * zoe1) + (0x05ebd062LL * zoe2) +
1001             (0x00267881LL * zoe3), 30);
1002         zoc1 = Z_RSHIFT((0x1223af76LL * zoo1) + (0x0de3dd6bLL * zoo2) +
1003             (0x00d683cdLL * zoo3), 30);
1004         zoc2 = Z_RSHIFT((-0x0c3ee068LL * zoe1) + (0x0a5c3769LL * zoe2) +
1005             (0x01e2aceaLL * zoe3), 30);
1006         zoc3 = Z_RSHIFT((-0x0a8ab614LL * zoo1) + (-0x0019522eLL * zoo2) +
1007             (0x022cefc7LL * zoo3), 30);
1008         zoc4 = Z_RSHIFT((0x0276187dLL * zoe1) + (-0x03a801e8LL * zoe2) +
1009             (0x0131d935LL * zoe3), 30);
1010         zoc5 = Z_RSHIFT((0x02c373f5LL * zoo1) + (-0x01275f83LL * zoo2) +
1011             (0x0018ee79LL * zoo3), 30);
1012
1013         coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
1014             (int64_t)zoc5 * zoz, Z_SHIFT) +
1015             zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) +
1016             zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0;
1017 #else
1018 #error "Interpolation type screwed!"
1019 #endif
1020
1021 #if Z_POLYPHASE_COEFF_SHIFT > 0
1022         coeff = Z_RSHIFT(coeff, Z_POLYPHASE_COEFF_SHIFT);
1023 #endif
1024         return (coeff);
1025 }
1026
1027 static int
1028 z_resampler_build_polyphase(struct z_info *info)
1029 {
1030         int32_t alpha, c, i, z, idx;
1031
1032         /* Let this be here first. */
1033         if (info->z_pcoeff != NULL) {
1034                 free(info->z_pcoeff, M_DEVBUF);
1035                 info->z_pcoeff = NULL;
1036         }
1037
1038         if (feeder_rate_polyphase_max < 1)
1039                 return (ENOTSUP);
1040
1041         if (((int64_t)info->z_size * info->z_gy * 2) >
1042             feeder_rate_polyphase_max) {
1043 #ifndef _KERNEL
1044                 fprintf(stderr, "Polyphase entries exceed: [%d/%d] %jd > %d\n",
1045                     info->z_gx, info->z_gy,
1046                     (intmax_t)info->z_size * info->z_gy * 2,
1047                     feeder_rate_polyphase_max);
1048 #endif
1049                 return (E2BIG);
1050         }
1051
1052         info->z_pcoeff = malloc(sizeof(int32_t) *
1053             info->z_size * info->z_gy * 2, M_DEVBUF, M_NOWAIT | M_ZERO);
1054         if (info->z_pcoeff == NULL)
1055                 return (ENOMEM);
1056
1057         for (alpha = 0; alpha < info->z_gy; alpha++) {
1058                 z = alpha * info->z_dx;
1059                 c = 0;
1060                 for (i = info->z_size; i != 0; i--) {
1061                         c += z >> Z_SHIFT;
1062                         z &= Z_MASK;
1063                         idx = (alpha * info->z_size * 2) +
1064                             (info->z_size * 2) - i;
1065                         info->z_pcoeff[idx] =
1066                             z_coeff_interpolate(z, info->z_coeff + c);
1067                         z += info->z_dy;
1068                 }
1069                 z = info->z_dy - (alpha * info->z_dx);
1070                 c = 0;
1071                 for (i = info->z_size; i != 0; i--) {
1072                         c += z >> Z_SHIFT;
1073                         z &= Z_MASK;
1074                         idx = (alpha * info->z_size * 2) + i - 1;
1075                         info->z_pcoeff[idx] =
1076                             z_coeff_interpolate(z, info->z_coeff + c);
1077                         z += info->z_dy;
1078                 }
1079         }
1080         
1081 #ifndef _KERNEL
1082         fprintf(stderr, "Polyphase: [%d/%d] %d entries\n",
1083             info->z_gx, info->z_gy, info->z_size * info->z_gy * 2);
1084 #endif
1085
1086         return (0);
1087 }
1088
1089 static int
1090 z_resampler_setup(struct pcm_feeder *f)
1091 {
1092         struct z_info *info;
1093         int64_t gy2gx_max, gx2gy_max;
1094         uint32_t format;
1095         int32_t align, i, z_scale;
1096         int adaptive;
1097
1098         info = f->data;
1099         z_resampler_reset(info);
1100
1101         if (info->src == info->dst)
1102                 return (0);
1103
1104         /* Shrink by greatest common divisor. */
1105         i = z_gcd(info->src, info->dst);
1106         info->z_gx = info->src / i;
1107         info->z_gy = info->dst / i;
1108
1109         /* Too big, or too small. Bail out. */
1110         if (!(Z_FACTOR_SAFE(info->z_gx) && Z_FACTOR_SAFE(info->z_gy)))
1111                 return (EINVAL);
1112
1113         format = f->desc->in;
1114         adaptive = 0;
1115         z_scale = 0;
1116
1117         /*
1118          * Setup everything: filter length, conversion factor, etc.
1119          */
1120         if (Z_IS_SINC(info)) {
1121                 /*
1122                  * Downsampling, or upsampling scaling factor. As long as the
1123                  * factor can be represented by a fraction of 1 << Z_SHIFT,
1124                  * we're pretty much in business. Scaling is not needed for
1125                  * upsampling, so we just slap Z_ONE there.
1126                  */
1127                 if (info->z_gx > info->z_gy)
1128                         /*
1129                          * If the downsampling ratio is beyond sanity,
1130                          * enable semi-adaptive mode. Although handling
1131                          * extreme ratio is possible, the result of the
1132                          * conversion is just pointless, unworthy,
1133                          * nonsensical noises, etc.
1134                          */
1135                         if ((info->z_gx / info->z_gy) > Z_SINC_DOWNMAX)
1136                                 z_scale = Z_ONE / Z_SINC_DOWNMAX;
1137                         else
1138                                 z_scale = ((uint64_t)info->z_gy << Z_SHIFT) /
1139                                     info->z_gx;
1140                 else
1141                         z_scale = Z_ONE;
1142
1143                 /*
1144                  * This is actually impossible, unless anything above
1145                  * overflow.
1146                  */
1147                 if (z_scale < 1)
1148                         return (E2BIG);
1149
1150                 /*
1151                  * Calculate sample time/coefficients index drift. It is
1152                  * a constant for upsampling, but downsampling require
1153                  * heavy duty filtering with possible too long filters.
1154                  * If anything goes wrong, revisit again and enable
1155                  * adaptive mode.
1156                  */
1157 z_setup_adaptive_sinc:
1158                 if (info->z_pcoeff != NULL) {
1159                         free(info->z_pcoeff, M_DEVBUF);
1160                         info->z_pcoeff = NULL;
1161                 }
1162
1163                 if (adaptive == 0) {
1164                         info->z_dy = z_scale << Z_DRIFT_SHIFT;
1165                         if (info->z_dy < 1)
1166                                 return (E2BIG);
1167                         info->z_scale = z_scale;
1168                 } else {
1169                         info->z_dy = Z_FULL_ONE;
1170                         info->z_scale = Z_ONE;
1171                 }
1172
1173 #if 0
1174 #define Z_SCALE_DIV     10000
1175 #define Z_SCALE_LIMIT(s, v)                                             \
1176         ((((uint64_t)(s) * (v)) + (Z_SCALE_DIV >> 1)) / Z_SCALE_DIV)
1177
1178                 info->z_scale = Z_SCALE_LIMIT(info->z_scale, 9780);
1179 #endif
1180
1181                 /* Smallest drift increment. */
1182                 info->z_dx = info->z_dy / info->z_gy;
1183
1184                 /*
1185                  * Overflow or underflow. Try adaptive, let it continue and
1186                  * retry.
1187                  */
1188                 if (info->z_dx < 1) {
1189                         if (adaptive == 0) {
1190                                 adaptive = 1;
1191                                 goto z_setup_adaptive_sinc;
1192                         }
1193                         return (E2BIG);
1194                 }
1195
1196                 /*
1197                  * Round back output drift.
1198                  */
1199                 info->z_dy = info->z_dx * info->z_gy;
1200
1201                 for (i = 0; i < Z_COEFF_TAB_SIZE; i++) {
1202                         if (Z_SINC_COEFF_IDX(info) != i)
1203                                 continue;
1204                         /*
1205                          * Calculate required filter length and guard
1206                          * against possible abusive result. Note that
1207                          * this represents only 1/2 of the entire filter
1208                          * length.
1209                          */
1210                         info->z_size = z_resampler_sinc_len(info);
1211
1212                         /*
1213                          * Multiple of 2 rounding, for better accumulator
1214                          * performance.
1215                          */
1216                         info->z_size &= ~1;
1217
1218                         if (info->z_size < 2 || info->z_size > Z_SINC_MAX) {
1219                                 if (adaptive == 0) {
1220                                         adaptive = 1;
1221                                         goto z_setup_adaptive_sinc;
1222                                 }
1223                                 return (E2BIG);
1224                         }
1225                         info->z_coeff = z_coeff_tab[i].coeff + Z_COEFF_OFFSET;
1226                         info->z_dcoeff = z_coeff_tab[i].dcoeff;
1227                         break;
1228                 }
1229
1230                 if (info->z_coeff == NULL || info->z_dcoeff == NULL)
1231                         return (EINVAL);
1232         } else if (Z_IS_LINEAR(info)) {
1233                 /*
1234                  * Don't put much effort if we're doing linear interpolation.
1235                  * Just center the interpolation distance within Z_LINEAR_ONE,
1236                  * and be happy about it.
1237                  */
1238                 info->z_dx = Z_LINEAR_FULL_ONE / info->z_gy;
1239         }
1240
1241         /*
1242          * We're safe for now, lets continue.. Look for our resampler
1243          * depending on configured format and quality.
1244          */
1245         for (i = 0; i < Z_RESAMPLER_TAB_SIZE; i++) {
1246                 int ridx;
1247
1248                 if (AFMT_ENCODING(format) != z_resampler_tab[i].format)
1249                         continue;
1250                 if (Z_IS_SINC(info) && adaptive == 0 &&
1251                     z_resampler_build_polyphase(info) == 0)
1252                         ridx = Z_RESAMPLER_SINC_POLYPHASE;
1253                 else
1254                         ridx = Z_RESAMPLER_IDX(info);
1255                 info->z_resample = z_resampler_tab[i].resampler[ridx];
1256                 break;
1257         }
1258
1259         if (info->z_resample == NULL)
1260                 return (EINVAL);
1261
1262         info->bps = AFMT_BPS(format);
1263         align = info->channels * info->bps;
1264
1265         /*
1266          * Calculate largest value that can be fed into z_gy2gx() and
1267          * z_gx2gy() without causing (signed) 32bit overflow. z_gy2gx() will
1268          * be called early during feeding process to determine how much input
1269          * samples that is required to generate requested output, while
1270          * z_gx2gy() will be called just before samples filtering /
1271          * accumulation process based on available samples that has been
1272          * calculated using z_gx2gy().
1273          *
1274          * Now that is damn confusing, I guess ;-) .
1275          */
1276         gy2gx_max = (((uint64_t)info->z_gy * INT32_MAX) - info->z_gy + 1) /
1277             info->z_gx;
1278
1279         if ((gy2gx_max * align) > SND_FXDIV_MAX)
1280                 gy2gx_max = SND_FXDIV_MAX / align;
1281
1282         if (gy2gx_max < 1)
1283                 return (E2BIG);
1284
1285         gx2gy_max = (((uint64_t)info->z_gx * INT32_MAX) - info->z_gy) /
1286             info->z_gy;
1287
1288         if (gx2gy_max > INT32_MAX)
1289                 gx2gy_max = INT32_MAX;
1290
1291         if (gx2gy_max < 1)
1292                 return (E2BIG);
1293
1294         /*
1295          * Ensure that z_gy2gx() at its largest possible calculated value
1296          * (alpha = 0) will not cause overflow further late during z_gx2gy()
1297          * stage.
1298          */
1299         if (z_gy2gx(info, gy2gx_max) > _Z_GCAST(gx2gy_max))
1300                 return (E2BIG);
1301
1302         info->z_maxfeed = gy2gx_max * align;
1303
1304 #ifdef Z_USE_ALPHADRIFT
1305         info->z_startdrift = z_gy2gx(info, 1);
1306         info->z_alphadrift = z_drift(info, info->z_startdrift, 1);
1307 #endif
1308
1309         i = z_gy2gx(info, 1);
1310         info->z_full = z_roundpow2((info->z_size << 1) + i);
1311
1312         /*
1313          * Too big to be true, and overflowing left and right like mad ..
1314          */
1315         if ((info->z_full * align) < 1) {
1316                 if (adaptive == 0 && Z_IS_SINC(info)) {
1317                         adaptive = 1;
1318                         goto z_setup_adaptive_sinc;
1319                 }
1320                 return (E2BIG);
1321         }
1322
1323         /*
1324          * Increase full buffer size if its too small to reduce cyclic
1325          * buffer shifting in main conversion/feeder loop.
1326          */
1327         while (info->z_full < Z_RESERVOIR_MAX &&
1328             (info->z_full - (info->z_size << 1)) < Z_RESERVOIR)
1329                 info->z_full <<= 1;
1330
1331         /* Initialize buffer position. */
1332         info->z_mask = info->z_full - 1;
1333         info->z_start = z_prev(info, info->z_size << 1, 1);
1334         info->z_pos = z_next(info, info->z_start, 1);
1335
1336         /*
1337          * Allocate or reuse delay line buffer, whichever makes sense.
1338          */
1339         i = info->z_full * align;
1340         if (i < 1)
1341                 return (E2BIG);
1342
1343         if (info->z_delay == NULL || info->z_alloc < i ||
1344             i <= (info->z_alloc >> 1)) {
1345                 if (info->z_delay != NULL)
1346                         free(info->z_delay, M_DEVBUF);
1347                 info->z_delay = malloc(i, M_DEVBUF, M_NOWAIT | M_ZERO);
1348                 if (info->z_delay == NULL)
1349                         return (ENOMEM);
1350                 info->z_alloc = i;
1351         }
1352
1353         /*
1354          * Zero out head of buffer to avoid pops and clicks.
1355          */
1356         memset(info->z_delay, sndbuf_zerodata(f->desc->out),
1357             info->z_pos * align);
1358
1359 #ifdef Z_DIAGNOSTIC
1360         /*
1361          * XXX Debuging mess !@#$%^
1362          */
1363 #define dumpz(x)        fprintf(stderr, "\t%12s = %10u : %-11d\n",      \
1364                             "z_"__STRING(x), (uint32_t)info->z_##x,     \
1365                             (int32_t)info->z_##x)
1366         fprintf(stderr, "\n%s():\n", __func__);
1367         fprintf(stderr, "\tchannels=%d, bps=%d, format=0x%08x, quality=%d\n",
1368             info->channels, info->bps, format, info->quality);
1369         fprintf(stderr, "\t%d (%d) -> %d (%d), ",
1370             info->src, info->rsrc, info->dst, info->rdst);
1371         fprintf(stderr, "[%d/%d]\n", info->z_gx, info->z_gy);
1372         fprintf(stderr, "\tminreq=%d, ", z_gy2gx(info, 1));
1373         if (adaptive != 0)
1374                 z_scale = Z_ONE;
1375         fprintf(stderr, "factor=0x%08x/0x%08x (%f)\n",
1376             z_scale, Z_ONE, (double)z_scale / Z_ONE);
1377         fprintf(stderr, "\tbase_length=%d, ", Z_SINC_BASE_LEN(info));
1378         fprintf(stderr, "adaptive=%s\n", (adaptive != 0) ? "YES" : "NO");
1379         dumpz(size);
1380         dumpz(alloc);
1381         if (info->z_alloc < 1024)
1382                 fprintf(stderr, "\t%15s%10d Bytes\n",
1383                     "", info->z_alloc);
1384         else if (info->z_alloc < (1024 << 10))
1385                 fprintf(stderr, "\t%15s%10d KBytes\n",
1386                     "", info->z_alloc >> 10);
1387         else if (info->z_alloc < (1024 << 20))
1388                 fprintf(stderr, "\t%15s%10d MBytes\n",
1389                     "", info->z_alloc >> 20);
1390         else
1391                 fprintf(stderr, "\t%15s%10d GBytes\n",
1392                     "", info->z_alloc >> 30);
1393         fprintf(stderr, "\t%12s   %10d (min output samples)\n",
1394             "",
1395             (int32_t)z_gx2gy(info, info->z_full - (info->z_size << 1)));
1396         fprintf(stderr, "\t%12s   %10d (min allocated output samples)\n",
1397             "",
1398             (int32_t)z_gx2gy(info, (info->z_alloc / align) -
1399             (info->z_size << 1)));
1400         fprintf(stderr, "\t%12s = %10d\n",
1401             "z_gy2gx()", (int32_t)z_gy2gx(info, 1));
1402         fprintf(stderr, "\t%12s = %10d -> z_gy2gx() -> %d\n",
1403             "Max", (int32_t)gy2gx_max, (int32_t)z_gy2gx(info, gy2gx_max));
1404         fprintf(stderr, "\t%12s = %10d\n",
1405             "z_gx2gy()", (int32_t)z_gx2gy(info, 1));
1406         fprintf(stderr, "\t%12s = %10d -> z_gx2gy() -> %d\n",
1407             "Max", (int32_t)gx2gy_max, (int32_t)z_gx2gy(info, gx2gy_max));
1408         dumpz(maxfeed);
1409         dumpz(full);
1410         dumpz(start);
1411         dumpz(pos);
1412         dumpz(scale);
1413         fprintf(stderr, "\t%12s   %10f\n", "",
1414             (double)info->z_scale / Z_ONE);
1415         dumpz(dx);
1416         fprintf(stderr, "\t%12s   %10f\n", "",
1417             (double)info->z_dx / info->z_dy);
1418         dumpz(dy);
1419         fprintf(stderr, "\t%12s   %10d (drift step)\n", "",
1420             info->z_dy >> Z_SHIFT);
1421         fprintf(stderr, "\t%12s   %10d (scaling differences)\n", "",
1422             (z_scale << Z_DRIFT_SHIFT) - info->z_dy);
1423         fprintf(stderr, "\t%12s = %u bytes\n",
1424             "intpcm32_t", sizeof(intpcm32_t));
1425         fprintf(stderr, "\t%12s = 0x%08x, smallest=%.16lf\n",
1426             "Z_ONE", Z_ONE, (double)1.0 / (double)Z_ONE);
1427 #endif
1428
1429         return (0);
1430 }
1431
1432 static int
1433 z_resampler_set(struct pcm_feeder *f, int what, int32_t value)
1434 {
1435         struct z_info *info;
1436         int32_t oquality;
1437
1438         info = f->data;
1439
1440         switch (what) {
1441         case Z_RATE_SRC:
1442                 if (value < feeder_rate_min || value > feeder_rate_max)
1443                         return (E2BIG);
1444                 if (value == info->rsrc)
1445                         return (0);
1446                 info->rsrc = value;
1447                 break;
1448         case Z_RATE_DST:
1449                 if (value < feeder_rate_min || value > feeder_rate_max)
1450                         return (E2BIG);
1451                 if (value == info->rdst)
1452                         return (0);
1453                 info->rdst = value;
1454                 break;
1455         case Z_RATE_QUALITY:
1456                 if (value < Z_QUALITY_MIN || value > Z_QUALITY_MAX)
1457                         return (EINVAL);
1458                 if (value == info->quality)
1459                         return (0);
1460                 /*
1461                  * If we failed to set the requested quality, restore
1462                  * the old one. We cannot afford leaving it broken since
1463                  * passive feeder chains like vchans never reinitialize
1464                  * itself.
1465                  */
1466                 oquality = info->quality;
1467                 info->quality = value;
1468                 if (z_resampler_setup(f) == 0)
1469                         return (0);
1470                 info->quality = oquality;
1471                 break;
1472         case Z_RATE_CHANNELS:
1473                 if (value < SND_CHN_MIN || value > SND_CHN_MAX)
1474                         return (EINVAL);
1475                 if (value == info->channels)
1476                         return (0);
1477                 info->channels = value;
1478                 break;
1479         default:
1480                 return (EINVAL);
1481                 break;
1482         }
1483
1484         return (z_resampler_setup(f));
1485 }
1486
1487 static int
1488 z_resampler_get(struct pcm_feeder *f, int what)
1489 {
1490         struct z_info *info;
1491
1492         info = f->data;
1493
1494         switch (what) {
1495         case Z_RATE_SRC:
1496                 return (info->rsrc);
1497                 break;
1498         case Z_RATE_DST:
1499                 return (info->rdst);
1500                 break;
1501         case Z_RATE_QUALITY:
1502                 return (info->quality);
1503                 break;
1504         case Z_RATE_CHANNELS:
1505                 return (info->channels);
1506                 break;
1507         default:
1508                 break;
1509         }
1510
1511         return (-1);
1512 }
1513
1514 static int
1515 z_resampler_init(struct pcm_feeder *f)
1516 {
1517         struct z_info *info;
1518         int ret;
1519
1520         if (f->desc->in != f->desc->out)
1521                 return (EINVAL);
1522
1523         info = malloc(sizeof(*info), M_DEVBUF, M_NOWAIT | M_ZERO);
1524         if (info == NULL)
1525                 return (ENOMEM);
1526
1527         info->rsrc = Z_RATE_DEFAULT;
1528         info->rdst = Z_RATE_DEFAULT;
1529         info->quality = feeder_rate_quality;
1530         info->channels = AFMT_CHANNEL(f->desc->in);
1531
1532         f->data = info;
1533
1534         ret = z_resampler_setup(f);
1535         if (ret != 0) {
1536                 if (info->z_pcoeff != NULL)
1537                         free(info->z_pcoeff, M_DEVBUF);
1538                 if (info->z_delay != NULL)
1539                         free(info->z_delay, M_DEVBUF);
1540                 free(info, M_DEVBUF);
1541                 f->data = NULL;
1542         }
1543
1544         return (ret);
1545 }
1546
1547 static int
1548 z_resampler_free(struct pcm_feeder *f)
1549 {
1550         struct z_info *info;
1551
1552         info = f->data;
1553         if (info != NULL) {
1554                 if (info->z_pcoeff != NULL)
1555                         free(info->z_pcoeff, M_DEVBUF);
1556                 if (info->z_delay != NULL)
1557                         free(info->z_delay, M_DEVBUF);
1558                 free(info, M_DEVBUF);
1559         }
1560
1561         f->data = NULL;
1562
1563         return (0);
1564 }
1565
1566 static uint32_t
1567 z_resampler_feed_internal(struct pcm_feeder *f, struct pcm_channel *c,
1568     uint8_t *b, uint32_t count, void *source)
1569 {
1570         struct z_info *info;
1571         int32_t alphadrift, startdrift, reqout, ocount, reqin, align;
1572         int32_t fetch, fetched, start, cp;
1573         uint8_t *dst;
1574
1575         info = f->data;
1576         if (info->z_resample == NULL)
1577                 return (z_feed(f->source, c, b, count, source));
1578
1579         /*
1580          * Calculate sample size alignment and amount of sample output.
1581          * We will do everything in sample domain, but at the end we
1582          * will jump back to byte domain.
1583          */
1584         align = info->channels * info->bps;
1585         ocount = SND_FXDIV(count, align);
1586         if (ocount == 0)
1587                 return (0);
1588
1589         /*
1590          * Calculate amount of input samples that is needed to generate
1591          * exact amount of output.
1592          */
1593         reqin = z_gy2gx(info, ocount) - z_fetched(info);
1594
1595 #ifdef Z_USE_ALPHADRIFT
1596         startdrift = info->z_startdrift;
1597         alphadrift = info->z_alphadrift;
1598 #else
1599         startdrift = _Z_GY2GX(info, 0, 1);
1600         alphadrift = z_drift(info, startdrift, 1);
1601 #endif
1602
1603         dst = b;
1604
1605         do {
1606                 if (reqin != 0) {
1607                         fetch = z_min(z_free(info), reqin);
1608                         if (fetch == 0) {
1609                                 /*
1610                                  * No more free spaces, so wind enough
1611                                  * samples back to the head of delay line
1612                                  * in byte domain.
1613                                  */
1614                                 fetched = z_fetched(info);
1615                                 start = z_prev(info, info->z_start,
1616                                     (info->z_size << 1) - 1);
1617                                 cp = (info->z_size << 1) + fetched;
1618                                 z_copy(info->z_delay + (start * align),
1619                                     info->z_delay, cp * align);
1620                                 info->z_start =
1621                                     z_prev(info, info->z_size << 1, 1);
1622                                 info->z_pos =
1623                                     z_next(info, info->z_start, fetched + 1);
1624                                 fetch = z_min(z_free(info), reqin);
1625 #ifdef Z_DIAGNOSTIC
1626                                 if (1) {
1627                                         static uint32_t kk = 0;
1628                                         fprintf(stderr,
1629                                             "Buffer Move: "
1630                                             "start=%d fetched=%d cp=%d "
1631                                             "cycle=%u [%u]\r",
1632                                             start, fetched, cp, info->z_cycle,
1633                                             ++kk);
1634                                 }
1635                                 info->z_cycle = 0;
1636 #endif
1637                         }
1638                         if (fetch != 0) {
1639                                 /*
1640                                  * Fetch in byte domain and jump back
1641                                  * to sample domain.
1642                                  */
1643                                 fetched = SND_FXDIV(z_feed(f->source, c,
1644                                     info->z_delay + (info->z_pos * align),
1645                                     fetch * align, source), align);
1646                                 /*
1647                                  * Prepare to convert fetched buffer,
1648                                  * or mark us done if we cannot fulfill
1649                                  * the request.
1650                                  */
1651                                 reqin -= fetched;
1652                                 info->z_pos += fetched;
1653                                 if (fetched != fetch)
1654                                         reqin = 0;
1655                         }
1656                 }
1657
1658                 reqout = z_min(z_gx2gy(info, z_fetched(info)), ocount);
1659                 if (reqout != 0) {
1660                         ocount -= reqout;
1661
1662                         /*
1663                          * Drift.. drift.. drift..
1664                          *
1665                          * Notice that there are 2 methods of doing the drift
1666                          * operations: The former is much cleaner (in a sense
1667                          * of mathematical readings of my eyes), but slower
1668                          * due to integer division in z_gy2gx(). Nevertheless,
1669                          * both should give the same exact accurate drifting
1670                          * results, so the later is favourable.
1671                          */
1672                         do {
1673                                 info->z_resample(info, dst);
1674 #if 0
1675                                 startdrift = z_gy2gx(info, 1);
1676                                 alphadrift = z_drift(info, startdrift, 1);
1677                                 info->z_start += startdrift;
1678                                 info->z_alpha += alphadrift;
1679 #else
1680                                 info->z_alpha += alphadrift;
1681                                 if (info->z_alpha < info->z_gy)
1682                                         info->z_start += startdrift;
1683                                 else {
1684                                         info->z_start += startdrift - 1;
1685                                         info->z_alpha -= info->z_gy;
1686                                 }
1687 #endif
1688                                 dst += align;
1689 #ifdef Z_DIAGNOSTIC
1690                                 info->z_cycle++;
1691 #endif
1692                         } while (--reqout != 0);
1693                 }
1694         } while (reqin != 0 && ocount != 0);
1695
1696         /*
1697          * Back to byte domain..
1698          */
1699         return (dst - b);
1700 }
1701
1702 static int
1703 z_resampler_feed(struct pcm_feeder *f, struct pcm_channel *c, uint8_t *b,
1704     uint32_t count, void *source)
1705 {
1706         uint32_t feed, maxfeed, left;
1707
1708         /*
1709          * Split count to smaller chunks to avoid possible 32bit overflow.
1710          */
1711         maxfeed = ((struct z_info *)(f->data))->z_maxfeed;
1712         left = count;
1713
1714         do {
1715                 feed = z_resampler_feed_internal(f, c, b,
1716                     z_min(maxfeed, left), source);
1717                 b += feed;
1718                 left -= feed;
1719         } while (left != 0 && feed != 0);
1720
1721         return (count - left);
1722 }
1723
1724 static struct pcm_feederdesc feeder_rate_desc[] = {
1725         { FEEDER_RATE, 0, 0, 0, 0 },
1726         { 0, 0, 0, 0, 0 },
1727 };
1728
1729 static kobj_method_t feeder_rate_methods[] = {
1730         KOBJMETHOD(feeder_init,         z_resampler_init),
1731         KOBJMETHOD(feeder_free,         z_resampler_free),
1732         KOBJMETHOD(feeder_set,          z_resampler_set),
1733         KOBJMETHOD(feeder_get,          z_resampler_get),
1734         KOBJMETHOD(feeder_feed,         z_resampler_feed),
1735         KOBJMETHOD_END
1736 };
1737
1738 FEEDER_DECLARE(feeder_rate, NULL);