]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/sound/pcm/feeder_volume.c
MFV: file 5.33
[FreeBSD/FreeBSD.git] / sys / dev / sound / pcm / feeder_volume.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2005-2009 Ariff Abdullah <ariff@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 /* feeder_volume, a long 'Lost Technology' rather than a new feature. */
30
31 #ifdef _KERNEL
32 #ifdef HAVE_KERNEL_OPTION_HEADERS
33 #include "opt_snd.h"
34 #endif
35 #include <dev/sound/pcm/sound.h>
36 #include <dev/sound/pcm/pcm.h>
37 #include "feeder_if.h"
38
39 #define SND_USE_FXDIV
40 #include "snd_fxdiv_gen.h"
41
42 SND_DECLARE_FILE("$FreeBSD$");
43 #endif
44
45 typedef void (*feed_volume_t)(int *, int *, uint32_t, uint8_t *, uint32_t);
46
47 #define FEEDVOLUME_CALC8(s, v)  (SND_VOL_CALC_SAMPLE((intpcm_t)         \
48                                  (s) << 8, v) >> 8)
49 #define FEEDVOLUME_CALC16(s, v) SND_VOL_CALC_SAMPLE((intpcm_t)(s), v)
50 #define FEEDVOLUME_CALC24(s, v) SND_VOL_CALC_SAMPLE((intpcm64_t)(s), v)
51 #define FEEDVOLUME_CALC32(s, v) SND_VOL_CALC_SAMPLE((intpcm64_t)(s), v)
52
53 #define FEEDVOLUME_DECLARE(SIGN, BIT, ENDIAN)                           \
54 static void                                                             \
55 feed_volume_##SIGN##BIT##ENDIAN(int *vol, int *matrix,                  \
56     uint32_t channels, uint8_t *dst, uint32_t count)                    \
57 {                                                                       \
58         intpcm##BIT##_t v;                                              \
59         intpcm_t x;                                                     \
60         uint32_t i;                                                     \
61                                                                         \
62         dst += count * PCM_##BIT##_BPS * channels;                      \
63         do {                                                            \
64                 i = channels;                                           \
65                 do {                                                    \
66                         dst -= PCM_##BIT##_BPS;                         \
67                         i--;                                            \
68                         x = PCM_READ_##SIGN##BIT##_##ENDIAN(dst);       \
69                         v = FEEDVOLUME_CALC##BIT(x, vol[matrix[i]]);    \
70                         x = PCM_CLAMP_##SIGN##BIT(v);                   \
71                         _PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, x);      \
72                 } while (i != 0);                                       \
73         } while (--count != 0);                                         \
74 }
75
76 #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
77 FEEDVOLUME_DECLARE(S, 16, LE)
78 FEEDVOLUME_DECLARE(S, 32, LE)
79 #endif
80 #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
81 FEEDVOLUME_DECLARE(S, 16, BE)
82 FEEDVOLUME_DECLARE(S, 32, BE)
83 #endif
84 #ifdef SND_FEEDER_MULTIFORMAT
85 FEEDVOLUME_DECLARE(S,  8, NE)
86 FEEDVOLUME_DECLARE(S, 24, LE)
87 FEEDVOLUME_DECLARE(S, 24, BE)
88 FEEDVOLUME_DECLARE(U,  8, NE)
89 FEEDVOLUME_DECLARE(U, 16, LE)
90 FEEDVOLUME_DECLARE(U, 24, LE)
91 FEEDVOLUME_DECLARE(U, 32, LE)
92 FEEDVOLUME_DECLARE(U, 16, BE)
93 FEEDVOLUME_DECLARE(U, 24, BE)
94 FEEDVOLUME_DECLARE(U, 32, BE)
95 #endif
96
97 struct feed_volume_info {
98         uint32_t bps, channels;
99         feed_volume_t apply;
100         int volume_class;
101         int state;
102         int matrix[SND_CHN_MAX];
103 };
104
105 #define FEEDVOLUME_ENTRY(SIGN, BIT, ENDIAN)                             \
106         {                                                               \
107                 AFMT_##SIGN##BIT##_##ENDIAN,                            \
108                 feed_volume_##SIGN##BIT##ENDIAN                         \
109         }
110
111 static const struct {
112         uint32_t format;
113         feed_volume_t apply;
114 } feed_volume_info_tab[] = {
115 #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
116         FEEDVOLUME_ENTRY(S, 16, LE),
117         FEEDVOLUME_ENTRY(S, 32, LE),
118 #endif
119 #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
120         FEEDVOLUME_ENTRY(S, 16, BE),
121         FEEDVOLUME_ENTRY(S, 32, BE),
122 #endif
123 #ifdef SND_FEEDER_MULTIFORMAT
124         FEEDVOLUME_ENTRY(S,  8, NE),
125         FEEDVOLUME_ENTRY(S, 24, LE),
126         FEEDVOLUME_ENTRY(S, 24, BE),
127         FEEDVOLUME_ENTRY(U,  8, NE),
128         FEEDVOLUME_ENTRY(U, 16, LE),
129         FEEDVOLUME_ENTRY(U, 24, LE),
130         FEEDVOLUME_ENTRY(U, 32, LE),
131         FEEDVOLUME_ENTRY(U, 16, BE),
132         FEEDVOLUME_ENTRY(U, 24, BE),
133         FEEDVOLUME_ENTRY(U, 32, BE)
134 #endif
135 };
136
137 #define FEEDVOLUME_TAB_SIZE     ((int32_t)                              \
138                                  (sizeof(feed_volume_info_tab) /        \
139                                   sizeof(feed_volume_info_tab[0])))
140
141 static int
142 feed_volume_init(struct pcm_feeder *f)
143 {
144         struct feed_volume_info *info;
145         struct pcmchan_matrix *m;
146         uint32_t i;
147         int ret;
148
149         if (f->desc->in != f->desc->out ||
150             AFMT_CHANNEL(f->desc->in) > SND_CHN_MAX)
151                 return (EINVAL);
152
153         for (i = 0; i < FEEDVOLUME_TAB_SIZE; i++) {
154                 if (AFMT_ENCODING(f->desc->in) ==
155                     feed_volume_info_tab[i].format) {
156                         info = malloc(sizeof(*info), M_DEVBUF,
157                             M_NOWAIT | M_ZERO);
158                         if (info == NULL)
159                                 return (ENOMEM);
160
161                         info->bps = AFMT_BPS(f->desc->in);
162                         info->channels = AFMT_CHANNEL(f->desc->in);
163                         info->apply = feed_volume_info_tab[i].apply;
164                         info->volume_class = SND_VOL_C_PCM;
165                         info->state = FEEDVOLUME_ENABLE;
166
167                         f->data = info;
168                         m = feeder_matrix_default_channel_map(info->channels);
169                         if (m == NULL) {
170                                 free(info, M_DEVBUF);
171                                 return (EINVAL);
172                         }
173
174                         ret = feeder_volume_apply_matrix(f, m);
175                         if (ret != 0)
176                                 free(info, M_DEVBUF);
177
178                         return (ret);
179                 }
180         }
181
182         return (EINVAL);
183 }
184
185 static int
186 feed_volume_free(struct pcm_feeder *f)
187 {
188         struct feed_volume_info *info;
189
190         info = f->data;
191         if (info != NULL)
192                 free(info, M_DEVBUF);
193
194         f->data = NULL;
195
196         return (0);
197 }
198
199 static int
200 feed_volume_set(struct pcm_feeder *f, int what, int value)
201 {
202         struct feed_volume_info *info;
203         struct pcmchan_matrix *m;
204         int ret;
205
206         info = f->data;
207         ret = 0;
208
209         switch (what) {
210         case FEEDVOLUME_CLASS:
211                 if (value < SND_VOL_C_BEGIN || value > SND_VOL_C_END)
212                         return (EINVAL);
213                 info->volume_class = value;
214                 break;
215         case FEEDVOLUME_CHANNELS:
216                 if (value < SND_CHN_MIN || value > SND_CHN_MAX)
217                         return (EINVAL);
218                 m = feeder_matrix_default_channel_map(value);
219                 if (m == NULL)
220                         return (EINVAL);
221                 ret = feeder_volume_apply_matrix(f, m);
222                 break;
223         case FEEDVOLUME_STATE:
224                 if (!(value == FEEDVOLUME_ENABLE || value == FEEDVOLUME_BYPASS))
225                         return (EINVAL);
226                 info->state = value;
227                 break;
228         default:
229                 return (EINVAL);
230                 break;
231         }
232
233         return (ret);
234 }
235
236 static int
237 feed_volume_feed(struct pcm_feeder *f, struct pcm_channel *c, uint8_t *b,
238     uint32_t count, void *source)
239 {
240         struct feed_volume_info *info;
241         uint32_t j, align;
242         int i, *vol, *matrix;
243         uint8_t *dst;
244
245         /*
246          * Fetch filter data operation.
247          */
248         info = f->data;
249
250         if (info->state == FEEDVOLUME_BYPASS)
251                 return (FEEDER_FEED(f->source, c, b, count, source));
252
253         vol = c->volume[SND_VOL_C_VAL(info->volume_class)];
254         matrix = info->matrix;
255
256         /*
257          * First, let see if we really need to apply gain at all.
258          */
259         j = 0;
260         i = info->channels;
261         do {
262                 if (vol[matrix[--i]] != SND_VOL_FLAT) {
263                         j = 1;
264                         break;
265                 }
266         } while (i != 0);
267
268         /* Nope, just bypass entirely. */
269         if (j == 0)
270                 return (FEEDER_FEED(f->source, c, b, count, source));
271
272         dst = b;
273         align = info->bps * info->channels;
274
275         do {
276                 if (count < align)
277                         break;
278
279                 j = SND_FXDIV(FEEDER_FEED(f->source, c, dst, count, source),
280                     align);
281                 if (j == 0)
282                         break;
283
284                 info->apply(vol, matrix, info->channels, dst, j);
285
286                 j *= align;
287                 dst += j;
288                 count -= j;
289
290         } while (count != 0);
291
292         return (dst - b);
293 }
294
295 static struct pcm_feederdesc feeder_volume_desc[] = {
296         { FEEDER_VOLUME, 0, 0, 0, 0 },
297         { 0, 0, 0, 0, 0 }
298 };
299
300 static kobj_method_t feeder_volume_methods[] = {
301         KOBJMETHOD(feeder_init,         feed_volume_init),
302         KOBJMETHOD(feeder_free,         feed_volume_free),
303         KOBJMETHOD(feeder_set,          feed_volume_set),
304         KOBJMETHOD(feeder_feed,         feed_volume_feed),
305         KOBJMETHOD_END
306 };
307
308 FEEDER_DECLARE(feeder_volume, NULL);
309
310 /* Extern */
311
312 /*
313  * feeder_volume_apply_matrix(): For given matrix map, apply its configuration
314  *                               to feeder_volume matrix structure. There are
315  *                               possibilites that feeder_volume be inserted
316  *                               before or after feeder_matrix, which in this
317  *                               case feeder_volume must be in a good terms
318  *                               with _current_ matrix.
319  */
320 int
321 feeder_volume_apply_matrix(struct pcm_feeder *f, struct pcmchan_matrix *m)
322 {
323         struct feed_volume_info *info;
324         uint32_t i;
325
326         if (f == NULL || f->desc == NULL || f->desc->type != FEEDER_VOLUME ||
327             f->data == NULL || m == NULL || m->channels < SND_CHN_MIN ||
328             m->channels > SND_CHN_MAX)
329                 return (EINVAL);
330
331         info = f->data;
332
333         for (i = 0; i < (sizeof(info->matrix) / sizeof(info->matrix[0])); i++) {
334                 if (i < m->channels)
335                         info->matrix[i] = m->map[i].type;
336                 else
337                         info->matrix[i] = SND_CHN_T_FL;
338         }
339
340         info->channels = m->channels;
341
342         return (0);
343 }