]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/twe/twe_freebsd.c
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / sys / dev / twe / twe_freebsd.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2000 Michael Smith
5  * Copyright (c) 2003 Paul Saab
6  * Copyright (c) 2003 Vinod Kashyap
7  * Copyright (c) 2000 BSDi
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 /*
36  * FreeBSD-specific code.
37  */
38
39 #include <dev/twe/twe_compat.h>
40 #include <dev/twe/twereg.h>
41 #include <dev/twe/tweio.h>
42 #include <dev/twe/twevar.h>
43 #include <dev/twe/twe_tables.h>
44
45 #include <vm/vm.h>
46
47 static devclass_t       twe_devclass;
48
49 #ifdef TWE_DEBUG
50 static u_int32_t        twed_bio_in;
51 #define TWED_BIO_IN     twed_bio_in++
52 static u_int32_t        twed_bio_out;
53 #define TWED_BIO_OUT    twed_bio_out++
54 #else
55 #define TWED_BIO_IN
56 #define TWED_BIO_OUT
57 #endif
58
59 static void     twe_setup_data_dmamap(void *arg, bus_dma_segment_t *segs, int nsegments, int error);
60 static void     twe_setup_request_dmamap(void *arg, bus_dma_segment_t *segs, int nsegments, int error);
61
62 /********************************************************************************
63  ********************************************************************************
64                                                          Control device interface
65  ********************************************************************************
66  ********************************************************************************/
67
68 static  d_open_t                twe_open;
69 static  d_close_t               twe_close;
70 static  d_ioctl_t               twe_ioctl_wrapper;
71
72 static struct cdevsw twe_cdevsw = {
73         .d_version =    D_VERSION,
74         .d_open =       twe_open,
75         .d_close =      twe_close,
76         .d_ioctl =      twe_ioctl_wrapper,
77         .d_name =       "twe",
78 };
79
80 /********************************************************************************
81  * Accept an open operation on the control device.
82  */
83 static int
84 twe_open(struct cdev *dev, int flags, int fmt, struct thread *td)
85 {
86     struct twe_softc            *sc = (struct twe_softc *)dev->si_drv1;
87
88     TWE_IO_LOCK(sc);
89     if (sc->twe_state & TWE_STATE_DETACHING) {
90         TWE_IO_UNLOCK(sc);
91         return (ENXIO);
92     }
93     sc->twe_state |= TWE_STATE_OPEN;
94     TWE_IO_UNLOCK(sc);
95     return(0);
96 }
97
98 /********************************************************************************
99  * Accept the last close on the control device.
100  */
101 static int
102 twe_close(struct cdev *dev, int flags, int fmt, struct thread *td)
103 {
104     struct twe_softc            *sc = (struct twe_softc *)dev->si_drv1;
105
106     TWE_IO_LOCK(sc);
107     sc->twe_state &= ~TWE_STATE_OPEN;
108     TWE_IO_UNLOCK(sc);
109     return (0);
110 }
111
112 /********************************************************************************
113  * Handle controller-specific control operations.
114  */
115 static int
116 twe_ioctl_wrapper(struct cdev *dev, u_long cmd, caddr_t addr, int32_t flag, struct thread *td)
117 {
118     struct twe_softc            *sc = (struct twe_softc *)dev->si_drv1;
119     
120     return(twe_ioctl(sc, cmd, addr));
121 }
122
123 /********************************************************************************
124  ********************************************************************************
125                                                              PCI device interface
126  ********************************************************************************
127  ********************************************************************************/
128
129 static int      twe_probe(device_t dev);
130 static int      twe_attach(device_t dev);
131 static void     twe_free(struct twe_softc *sc);
132 static int      twe_detach(device_t dev);
133 static int      twe_shutdown(device_t dev);
134 static int      twe_suspend(device_t dev);
135 static int      twe_resume(device_t dev);
136 static void     twe_pci_intr(void *arg);
137 static void     twe_intrhook(void *arg);
138
139 static device_method_t twe_methods[] = {
140     /* Device interface */
141     DEVMETHOD(device_probe,     twe_probe),
142     DEVMETHOD(device_attach,    twe_attach),
143     DEVMETHOD(device_detach,    twe_detach),
144     DEVMETHOD(device_shutdown,  twe_shutdown),
145     DEVMETHOD(device_suspend,   twe_suspend),
146     DEVMETHOD(device_resume,    twe_resume),
147
148     DEVMETHOD_END
149 };
150
151 static driver_t twe_pci_driver = {
152         "twe",
153         twe_methods,
154         sizeof(struct twe_softc)
155 };
156
157 DRIVER_MODULE(twe, pci, twe_pci_driver, twe_devclass, 0, 0);
158
159 /********************************************************************************
160  * Match a 3ware Escalade ATA RAID controller.
161  */
162 static int
163 twe_probe(device_t dev)
164 {
165
166     debug_called(4);
167
168     if ((pci_get_vendor(dev) == TWE_VENDOR_ID) &&
169         ((pci_get_device(dev) == TWE_DEVICE_ID) || 
170          (pci_get_device(dev) == TWE_DEVICE_ID_ASIC))) {
171         device_set_desc_copy(dev, TWE_DEVICE_NAME ". Driver version " TWE_DRIVER_VERSION_STRING);
172         return(BUS_PROBE_DEFAULT);
173     }
174     return(ENXIO);
175 }
176
177 /********************************************************************************
178  * Allocate resources, initialise the controller.
179  */
180 static int
181 twe_attach(device_t dev)
182 {
183     struct twe_softc    *sc;
184     struct sysctl_oid   *sysctl_tree;
185     int                 rid, error;
186
187     debug_called(4);
188
189     /*
190      * Initialise the softc structure.
191      */
192     sc = device_get_softc(dev);
193     sc->twe_dev = dev;
194     mtx_init(&sc->twe_io_lock, "twe I/O", NULL, MTX_DEF);
195     sx_init(&sc->twe_config_lock, "twe config");
196
197     /*
198      * XXX: This sysctl tree must stay at hw.tweX rather than using
199      * the device_get_sysctl_tree() created by new-bus because
200      * existing 3rd party binary tools such as tw_cli and 3dm2 use the
201      * existence of this sysctl node to discover controllers.
202      */
203     sysctl_tree = SYSCTL_ADD_NODE(device_get_sysctl_ctx(dev),
204         SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
205         device_get_nameunit(dev), CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "");
206     if (sysctl_tree == NULL) {
207         twe_printf(sc, "cannot add sysctl tree node\n");
208         return (ENXIO);
209     }
210     SYSCTL_ADD_STRING(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(sysctl_tree),
211         OID_AUTO, "driver_version", CTLFLAG_RD, TWE_DRIVER_VERSION_STRING, 0,
212         "TWE driver version");
213
214     /*
215      * Force the busmaster enable bit on, in case the BIOS forgot.
216      */
217     pci_enable_busmaster(dev);
218
219     /*
220      * Allocate the PCI register window.
221      */
222     rid = TWE_IO_CONFIG_REG;
223     if ((sc->twe_io = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid, 
224         RF_ACTIVE)) == NULL) {
225         twe_printf(sc, "can't allocate register window\n");
226         twe_free(sc);
227         return(ENXIO);
228     }
229
230     /*
231      * Allocate the parent bus DMA tag appropriate for PCI.
232      */
233     if (bus_dma_tag_create(bus_get_dma_tag(dev),                /* PCI parent */
234                            1, 0,                                /* alignment, boundary */
235                            BUS_SPACE_MAXADDR_32BIT,             /* lowaddr */
236                            BUS_SPACE_MAXADDR,                   /* highaddr */
237                            NULL, NULL,                          /* filter, filterarg */
238                            BUS_SPACE_MAXSIZE_32BIT,             /* maxsize */
239                            BUS_SPACE_UNRESTRICTED,              /* nsegments */
240                            BUS_SPACE_MAXSIZE_32BIT,             /* maxsegsize */
241                            0,                                   /* flags */
242                            NULL,                                /* lockfunc */
243                            NULL,                                /* lockarg */
244                            &sc->twe_parent_dmat)) {
245         twe_printf(sc, "can't allocate parent DMA tag\n");
246         twe_free(sc);
247         return(ENOMEM);
248     }
249
250     /* 
251      * Allocate and connect our interrupt.
252      */
253     rid = 0;
254     if ((sc->twe_irq = bus_alloc_resource_any(sc->twe_dev, SYS_RES_IRQ,
255         &rid, RF_SHAREABLE | RF_ACTIVE)) == NULL) {
256         twe_printf(sc, "can't allocate interrupt\n");
257         twe_free(sc);
258         return(ENXIO);
259     }
260     if (bus_setup_intr(sc->twe_dev, sc->twe_irq, INTR_TYPE_BIO | INTR_ENTROPY | INTR_MPSAFE,  
261                        NULL, twe_pci_intr, sc, &sc->twe_intr)) {
262         twe_printf(sc, "can't set up interrupt\n");
263         twe_free(sc);
264         return(ENXIO);
265     }
266
267     /*
268      * Create DMA tag for mapping command's into controller-addressable space.
269      */
270     if (bus_dma_tag_create(sc->twe_parent_dmat,         /* parent */
271                            1, 0,                        /* alignment, boundary */
272                            BUS_SPACE_MAXADDR_32BIT,     /* lowaddr */
273                            BUS_SPACE_MAXADDR,           /* highaddr */
274                            NULL, NULL,                  /* filter, filterarg */
275                            sizeof(TWE_Command) *
276                            TWE_Q_LENGTH, 1,             /* maxsize, nsegments */
277                            BUS_SPACE_MAXSIZE_32BIT,     /* maxsegsize */
278                            0,                           /* flags */
279                            NULL,                        /* lockfunc */
280                            NULL,                        /* lockarg */
281                            &sc->twe_cmd_dmat)) {
282         twe_printf(sc, "can't allocate data buffer DMA tag\n");
283         twe_free(sc);
284         return(ENOMEM);
285     }
286     /*
287      * Allocate memory and make it available for DMA.
288      */
289     if (bus_dmamem_alloc(sc->twe_cmd_dmat, (void **)&sc->twe_cmd,
290                          BUS_DMA_NOWAIT, &sc->twe_cmdmap)) {
291         twe_printf(sc, "can't allocate command memory\n");
292         return(ENOMEM);
293     }
294     bus_dmamap_load(sc->twe_cmd_dmat, sc->twe_cmdmap, sc->twe_cmd,
295                     sizeof(TWE_Command) * TWE_Q_LENGTH,
296                     twe_setup_request_dmamap, sc, 0);
297     bzero(sc->twe_cmd, sizeof(TWE_Command) * TWE_Q_LENGTH);
298
299     /*
300      * Create DMA tag for mapping objects into controller-addressable space.
301      */
302     if (bus_dma_tag_create(sc->twe_parent_dmat,         /* parent */
303                            1, 0,                        /* alignment, boundary */
304                            BUS_SPACE_MAXADDR_32BIT,     /* lowaddr */
305                            BUS_SPACE_MAXADDR,           /* highaddr */
306                            NULL, NULL,                  /* filter, filterarg */
307                            (TWE_MAX_SGL_LENGTH - 1) * PAGE_SIZE,/* maxsize */
308                            TWE_MAX_SGL_LENGTH,          /* nsegments */
309                            BUS_SPACE_MAXSIZE_32BIT,     /* maxsegsize */
310                            BUS_DMA_ALLOCNOW,            /* flags */
311                            busdma_lock_mutex,           /* lockfunc */
312                            &sc->twe_io_lock,            /* lockarg */
313                            &sc->twe_buffer_dmat)) {
314         twe_printf(sc, "can't allocate data buffer DMA tag\n");
315         twe_free(sc);
316         return(ENOMEM);
317     }
318
319     /*
320      * Create DMA tag for mapping objects into controller-addressable space.
321      */
322     if (bus_dma_tag_create(sc->twe_parent_dmat,         /* parent */
323                            1, 0,                        /* alignment, boundary */
324                            BUS_SPACE_MAXADDR_32BIT,     /* lowaddr */
325                            BUS_SPACE_MAXADDR,           /* highaddr */
326                            NULL, NULL,                  /* filter, filterarg */
327                            DFLTPHYS, 1,                 /* maxsize, nsegments */
328                            BUS_SPACE_MAXSIZE_32BIT,     /* maxsegsize */
329                            0,                           /* flags */
330                            NULL,                        /* lockfunc */
331                            NULL,                        /* lockarg */
332                            &sc->twe_immediate_dmat)) {
333         twe_printf(sc, "can't allocate data buffer DMA tag\n");
334         twe_free(sc);
335         return(ENOMEM);
336     }
337     /*
338      * Allocate memory for requests which cannot sleep or support continuation.
339      */
340      if (bus_dmamem_alloc(sc->twe_immediate_dmat, (void **)&sc->twe_immediate,
341                           BUS_DMA_NOWAIT, &sc->twe_immediate_map)) {
342         twe_printf(sc, "can't allocate memory for immediate requests\n");
343         return(ENOMEM);
344      }
345
346     /*
347      * Initialise the controller and driver core.
348      */
349     if ((error = twe_setup(sc))) {
350         twe_free(sc);
351         return(error);
352     }
353
354     /*
355      * Print some information about the controller and configuration.
356      */
357     twe_describe_controller(sc);
358
359     /*
360      * Create the control device.
361      */
362     sc->twe_dev_t = make_dev(&twe_cdevsw, device_get_unit(sc->twe_dev), UID_ROOT, GID_OPERATOR,
363                              S_IRUSR | S_IWUSR, "twe%d", device_get_unit(sc->twe_dev));
364     sc->twe_dev_t->si_drv1 = sc;
365     /*
366      * Schedule ourselves to bring the controller up once interrupts are available.
367      * This isn't strictly necessary, since we disable interrupts while probing the
368      * controller, but it is more in keeping with common practice for other disk 
369      * devices.
370      */
371     sc->twe_ich.ich_func = twe_intrhook;
372     sc->twe_ich.ich_arg = sc;
373     if (config_intrhook_establish(&sc->twe_ich) != 0) {
374         twe_printf(sc, "can't establish configuration hook\n");
375         twe_free(sc);
376         return(ENXIO);
377     }
378
379     return(0);
380 }
381
382 /********************************************************************************
383  * Free all of the resources associated with (sc).
384  *
385  * Should not be called if the controller is active.
386  */
387 static void
388 twe_free(struct twe_softc *sc)
389 {
390     struct twe_request  *tr;
391
392     debug_called(4);
393
394     /* throw away any command buffers */
395     while ((tr = twe_dequeue_free(sc)) != NULL)
396         twe_free_request(tr);
397
398     if (sc->twe_cmd != NULL) {
399         bus_dmamap_unload(sc->twe_cmd_dmat, sc->twe_cmdmap);
400         bus_dmamem_free(sc->twe_cmd_dmat, sc->twe_cmd, sc->twe_cmdmap);
401     }
402
403     if (sc->twe_immediate != NULL) {
404         bus_dmamap_unload(sc->twe_immediate_dmat, sc->twe_immediate_map);
405         bus_dmamem_free(sc->twe_immediate_dmat, sc->twe_immediate,
406                         sc->twe_immediate_map);
407     }
408
409     if (sc->twe_immediate_dmat)
410         bus_dma_tag_destroy(sc->twe_immediate_dmat);
411
412     /* destroy the data-transfer DMA tag */
413     if (sc->twe_buffer_dmat)
414         bus_dma_tag_destroy(sc->twe_buffer_dmat);
415
416     /* disconnect the interrupt handler */
417     if (sc->twe_intr)
418         bus_teardown_intr(sc->twe_dev, sc->twe_irq, sc->twe_intr);
419     if (sc->twe_irq != NULL)
420         bus_release_resource(sc->twe_dev, SYS_RES_IRQ, 0, sc->twe_irq);
421
422     /* destroy the parent DMA tag */
423     if (sc->twe_parent_dmat)
424         bus_dma_tag_destroy(sc->twe_parent_dmat);
425
426     /* release the register window mapping */
427     if (sc->twe_io != NULL)
428         bus_release_resource(sc->twe_dev, SYS_RES_IOPORT, TWE_IO_CONFIG_REG, sc->twe_io);
429
430     /* destroy control device */
431     if (sc->twe_dev_t != (struct cdev *)NULL)
432         destroy_dev(sc->twe_dev_t);
433
434     sx_destroy(&sc->twe_config_lock);
435     mtx_destroy(&sc->twe_io_lock);
436 }
437
438 /********************************************************************************
439  * Disconnect from the controller completely, in preparation for unload.
440  */
441 static int
442 twe_detach(device_t dev)
443 {
444     struct twe_softc    *sc = device_get_softc(dev);
445
446     debug_called(4);
447
448     TWE_IO_LOCK(sc);
449     if (sc->twe_state & TWE_STATE_OPEN) {
450         TWE_IO_UNLOCK(sc);
451         return (EBUSY);
452     }
453     sc->twe_state |= TWE_STATE_DETACHING;
454     TWE_IO_UNLOCK(sc);
455
456     /*  
457      * Shut the controller down.
458      */
459     if (twe_shutdown(dev)) {
460         TWE_IO_LOCK(sc);
461         sc->twe_state &= ~TWE_STATE_DETACHING;
462         TWE_IO_UNLOCK(sc);
463         return (EBUSY);
464     }
465
466     twe_free(sc);
467
468     return(0);
469 }
470
471 /********************************************************************************
472  * Bring the controller down to a dormant state and detach all child devices.
473  *
474  * Note that we can assume that the bioq on the controller is empty, as we won't
475  * allow shutdown if any device is open.
476  */
477 static int
478 twe_shutdown(device_t dev)
479 {
480     struct twe_softc    *sc = device_get_softc(dev);
481     int                 i, error = 0;
482
483     debug_called(4);
484
485     /* 
486      * Delete all our child devices.
487      */
488     TWE_CONFIG_LOCK(sc);
489     for (i = 0; i < TWE_MAX_UNITS; i++) {
490         if (sc->twe_drive[i].td_disk != 0) {
491             if ((error = twe_detach_drive(sc, i)) != 0) {
492                 TWE_CONFIG_UNLOCK(sc);
493                 return (error);
494             }
495         }
496     }
497     TWE_CONFIG_UNLOCK(sc);
498
499     /*
500      * Bring the controller down.
501      */
502     TWE_IO_LOCK(sc);
503     twe_deinit(sc);
504     TWE_IO_UNLOCK(sc);
505
506     return(0);
507 }
508
509 /********************************************************************************
510  * Bring the controller to a quiescent state, ready for system suspend.
511  */
512 static int
513 twe_suspend(device_t dev)
514 {
515     struct twe_softc    *sc = device_get_softc(dev);
516
517     debug_called(4);
518
519     TWE_IO_LOCK(sc);
520     sc->twe_state |= TWE_STATE_SUSPEND;
521     
522     twe_disable_interrupts(sc);
523     TWE_IO_UNLOCK(sc);
524
525     return(0);
526 }
527
528 /********************************************************************************
529  * Bring the controller back to a state ready for operation.
530  */
531 static int
532 twe_resume(device_t dev)
533 {
534     struct twe_softc    *sc = device_get_softc(dev);
535
536     debug_called(4);
537
538     TWE_IO_LOCK(sc);
539     sc->twe_state &= ~TWE_STATE_SUSPEND;
540     twe_enable_interrupts(sc);
541     TWE_IO_UNLOCK(sc);
542
543     return(0);
544 }
545
546 /*******************************************************************************
547  * Take an interrupt, or be poked by other code to look for interrupt-worthy
548  * status.
549  */
550 static void
551 twe_pci_intr(void *arg)
552 {
553     struct twe_softc *sc = arg;
554
555     TWE_IO_LOCK(sc);
556     twe_intr(sc);
557     TWE_IO_UNLOCK(sc);
558 }
559
560 /********************************************************************************
561  * Delayed-startup hook
562  */
563 static void
564 twe_intrhook(void *arg)
565 {
566     struct twe_softc            *sc = (struct twe_softc *)arg;
567
568     /* pull ourselves off the intrhook chain */
569     config_intrhook_disestablish(&sc->twe_ich);
570
571     /* call core startup routine */
572     twe_init(sc);
573 }
574
575 /********************************************************************************
576  * Given a detected drive, attach it to the bio interface.
577  *
578  * This is called from twe_add_unit.
579  */
580 int
581 twe_attach_drive(struct twe_softc *sc, struct twe_drive *dr)
582 {
583     char        buf[80];
584     int         error;
585
586     mtx_lock(&Giant);
587     dr->td_disk =  device_add_child(sc->twe_dev, NULL, -1);
588     if (dr->td_disk == NULL) {
589         mtx_unlock(&Giant);
590         twe_printf(sc, "Cannot add unit\n");
591         return (EIO);
592     }
593     device_set_ivars(dr->td_disk, dr);
594
595     /* 
596      * XXX It would make sense to test the online/initialising bits, but they seem to be
597      * always set...
598      */
599     sprintf(buf, "Unit %d, %s, %s",
600             dr->td_twe_unit,
601             twe_describe_code(twe_table_unittype, dr->td_type),
602             twe_describe_code(twe_table_unitstate, dr->td_state & TWE_PARAM_UNITSTATUS_MASK));
603     device_set_desc_copy(dr->td_disk, buf);
604
605     error = device_probe_and_attach(dr->td_disk);
606     mtx_unlock(&Giant);
607     if (error != 0) {
608         twe_printf(sc, "Cannot attach unit to controller. error = %d\n", error);
609         return (EIO);
610     }
611     return (0);
612 }
613
614 /********************************************************************************
615  * Detach the specified unit if it exsists
616  *
617  * This is called from twe_del_unit.
618  */
619 int
620 twe_detach_drive(struct twe_softc *sc, int unit)
621 {
622     int error = 0;
623
624     TWE_CONFIG_ASSERT_LOCKED(sc);
625     mtx_lock(&Giant);
626     error = device_delete_child(sc->twe_dev, sc->twe_drive[unit].td_disk);
627     mtx_unlock(&Giant);
628     if (error != 0) {
629         twe_printf(sc, "failed to delete unit %d\n", unit);
630         return(error);
631     }
632     bzero(&sc->twe_drive[unit], sizeof(sc->twe_drive[unit]));
633     return(error);
634 }
635
636 /********************************************************************************
637  * Clear a PCI parity error.
638  */
639 void
640 twe_clear_pci_parity_error(struct twe_softc *sc)
641 {
642     TWE_CONTROL(sc, TWE_CONTROL_CLEAR_PARITY_ERROR);
643     pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PARITY_ERROR, 2);
644 }
645
646 /********************************************************************************
647  * Clear a PCI abort.
648  */
649 void
650 twe_clear_pci_abort(struct twe_softc *sc)
651 {
652     TWE_CONTROL(sc, TWE_CONTROL_CLEAR_PCI_ABORT);
653     pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PCI_ABORT, 2);
654 }
655
656 /********************************************************************************
657  ********************************************************************************
658                                                                       Disk device
659  ********************************************************************************
660  ********************************************************************************/
661
662 /*
663  * Disk device softc
664  */
665 struct twed_softc
666 {
667     device_t            twed_dev;
668     struct twe_softc    *twed_controller;       /* parent device softc */
669     struct twe_drive    *twed_drive;            /* drive data in parent softc */
670     struct disk         *twed_disk;             /* generic disk handle */
671 };
672
673 /*
674  * Disk device bus interface
675  */
676 static int twed_probe(device_t dev);
677 static int twed_attach(device_t dev);
678 static int twed_detach(device_t dev);
679
680 static device_method_t twed_methods[] = {
681     DEVMETHOD(device_probe,     twed_probe),
682     DEVMETHOD(device_attach,    twed_attach),
683     DEVMETHOD(device_detach,    twed_detach),
684     { 0, 0 }
685 };
686
687 static driver_t twed_driver = {
688     "twed",
689     twed_methods,
690     sizeof(struct twed_softc)
691 };
692
693 static devclass_t       twed_devclass;
694 DRIVER_MODULE(twed, twe, twed_driver, twed_devclass, 0, 0);
695
696 /*
697  * Disk device control interface.
698  */
699
700 /********************************************************************************
701  * Handle open from generic layer.
702  *
703  * Note that this is typically only called by the diskslice code, and not
704  * for opens on subdevices (eg. slices, partitions).
705  */
706 static int
707 twed_open(struct disk *dp)
708 {
709     struct twed_softc   *sc = (struct twed_softc *)dp->d_drv1;
710
711     debug_called(4);
712
713     if (sc == NULL)
714         return (ENXIO);
715
716     /* check that the controller is up and running */
717     if (sc->twed_controller->twe_state & TWE_STATE_SHUTDOWN)
718         return(ENXIO);
719
720     return (0);
721 }
722
723 /********************************************************************************
724  * Handle an I/O request.
725  */
726 static void
727 twed_strategy(struct bio *bp)
728 {
729     struct twed_softc   *sc = bp->bio_disk->d_drv1;
730
731     debug_called(4);
732
733     bp->bio_driver1 = &sc->twed_drive->td_twe_unit;
734     TWED_BIO_IN;
735
736     /* bogus disk? */
737     if (sc == NULL || sc->twed_drive->td_disk == NULL) {
738         bp->bio_error = EINVAL;
739         bp->bio_flags |= BIO_ERROR;
740         printf("twe: bio for invalid disk!\n");
741         biodone(bp);
742         TWED_BIO_OUT;
743         return;
744     }
745
746     /* queue the bio on the controller */
747     TWE_IO_LOCK(sc->twed_controller);
748     twe_enqueue_bio(sc->twed_controller, bp);
749
750     /* poke the controller to start I/O */
751     twe_startio(sc->twed_controller);
752     TWE_IO_UNLOCK(sc->twed_controller);
753     return;
754 }
755
756 /********************************************************************************
757  * System crashdump support
758  */
759 static int
760 twed_dump(void *arg, void *virtual, vm_offset_t physical, off_t offset, size_t length)
761 {
762     struct twed_softc   *twed_sc;
763     struct twe_softc    *twe_sc;
764     int                 error;
765     struct disk         *dp;
766
767     dp = arg;
768     twed_sc = (struct twed_softc *)dp->d_drv1;
769     if (twed_sc == NULL)
770         return(ENXIO);
771     twe_sc  = (struct twe_softc *)twed_sc->twed_controller;
772
773     if (length > 0) {
774         if ((error = twe_dump_blocks(twe_sc, twed_sc->twed_drive->td_twe_unit, offset / TWE_BLOCK_SIZE, virtual, length / TWE_BLOCK_SIZE)) != 0)
775             return(error);
776     }
777     return(0);
778 }
779
780 /********************************************************************************
781  * Handle completion of an I/O request.
782  */
783 void
784 twed_intr(struct bio *bp)
785 {
786     debug_called(4);
787
788     /* if no error, transfer completed */
789     if (!(bp->bio_flags & BIO_ERROR))
790         bp->bio_resid = 0;
791
792     biodone(bp);
793     TWED_BIO_OUT;
794 }
795
796 /********************************************************************************
797  * Default probe stub.
798  */
799 static int
800 twed_probe(device_t dev)
801 {
802     return (0);
803 }
804
805 /********************************************************************************
806  * Attach a unit to the controller.
807  */
808 static int
809 twed_attach(device_t dev)
810 {
811     struct twed_softc   *sc;
812     device_t            parent;
813     
814     debug_called(4);
815
816     /* initialise our softc */
817     sc = device_get_softc(dev);
818     parent = device_get_parent(dev);
819     sc->twed_controller = (struct twe_softc *)device_get_softc(parent);
820     sc->twed_drive = device_get_ivars(dev);
821     sc->twed_dev = dev;
822
823     /* report the drive */
824     twed_printf(sc, "%uMB (%u sectors)\n",
825                 sc->twed_drive->td_size / ((1024 * 1024) / TWE_BLOCK_SIZE),
826                 sc->twed_drive->td_size);
827     
828     /* attach a generic disk device to ourselves */
829
830     sc->twed_drive->td_sys_unit = device_get_unit(dev);
831
832     sc->twed_disk = disk_alloc();
833     sc->twed_disk->d_open = twed_open;
834     sc->twed_disk->d_strategy = twed_strategy;
835     sc->twed_disk->d_dump = (dumper_t *)twed_dump;
836     sc->twed_disk->d_name = "twed";
837     sc->twed_disk->d_drv1 = sc;
838     sc->twed_disk->d_maxsize = (TWE_MAX_SGL_LENGTH - 1) * PAGE_SIZE;
839     sc->twed_disk->d_sectorsize = TWE_BLOCK_SIZE;
840     sc->twed_disk->d_mediasize = TWE_BLOCK_SIZE * (off_t)sc->twed_drive->td_size;
841     if (sc->twed_drive->td_type == TWE_UD_CONFIG_RAID0 ||
842         sc->twed_drive->td_type == TWE_UD_CONFIG_RAID5 ||
843         sc->twed_drive->td_type == TWE_UD_CONFIG_RAID10) {
844             sc->twed_disk->d_stripesize =
845                 TWE_BLOCK_SIZE << sc->twed_drive->td_stripe;
846             sc->twed_disk->d_stripeoffset = 0;
847     }
848     sc->twed_disk->d_fwsectors = sc->twed_drive->td_sectors;
849     sc->twed_disk->d_fwheads = sc->twed_drive->td_heads;
850     sc->twed_disk->d_unit = sc->twed_drive->td_sys_unit;
851
852     disk_create(sc->twed_disk, DISK_VERSION);
853
854     /* set the maximum I/O size to the theoretical maximum allowed by the S/G list size */
855
856     return (0);
857 }
858
859 /********************************************************************************
860  * Disconnect ourselves from the system.
861  */
862 static int
863 twed_detach(device_t dev)
864 {
865     struct twed_softc *sc = (struct twed_softc *)device_get_softc(dev);
866
867     debug_called(4);
868
869     if (sc->twed_disk->d_flags & DISKFLAG_OPEN)
870         return(EBUSY);
871
872     disk_destroy(sc->twed_disk);
873
874     return(0);
875 }
876
877 /********************************************************************************
878  ********************************************************************************
879                                                                              Misc
880  ********************************************************************************
881  ********************************************************************************/
882
883 /********************************************************************************
884  * Allocate a command buffer
885  */
886 static MALLOC_DEFINE(TWE_MALLOC_CLASS, "twe_commands", "twe commands");
887
888 struct twe_request *
889 twe_allocate_request(struct twe_softc *sc, int tag)
890 {
891     struct twe_request  *tr;
892
893     tr = malloc(sizeof(struct twe_request), TWE_MALLOC_CLASS, M_WAITOK | M_ZERO);
894     tr->tr_sc = sc;
895     tr->tr_tag = tag;
896     if (bus_dmamap_create(sc->twe_buffer_dmat, 0, &tr->tr_dmamap)) {
897         twe_free_request(tr);
898         twe_printf(sc, "unable to allocate dmamap for tag %d\n", tag);
899         return(NULL);
900     }    
901     return(tr);
902 }
903
904 /********************************************************************************
905  * Permanently discard a command buffer.
906  */
907 void
908 twe_free_request(struct twe_request *tr) 
909 {
910     struct twe_softc    *sc = tr->tr_sc;
911     
912     debug_called(4);
913
914     bus_dmamap_destroy(sc->twe_buffer_dmat, tr->tr_dmamap);
915     free(tr, TWE_MALLOC_CLASS);
916 }
917
918 /********************************************************************************
919  * Map/unmap (tr)'s command and data in the controller's addressable space.
920  *
921  * These routines ensure that the data which the controller is going to try to
922  * access is actually visible to the controller, in a machine-independant 
923  * fashion.  Due to a hardware limitation, I/O buffers must be 512-byte aligned
924  * and we take care of that here as well.
925  */
926 static void
927 twe_fillin_sgl(TWE_SG_Entry *sgl, bus_dma_segment_t *segs, int nsegments, int max_sgl)
928 {
929     int i;
930
931     for (i = 0; i < nsegments; i++) {
932         sgl[i].address = segs[i].ds_addr;
933         sgl[i].length = segs[i].ds_len;
934     }
935     for (; i < max_sgl; i++) {                          /* XXX necessary? */
936         sgl[i].address = 0;
937         sgl[i].length = 0;
938     }
939 }
940                 
941 static void
942 twe_setup_data_dmamap(void *arg, bus_dma_segment_t *segs, int nsegments, int error)
943 {
944     struct twe_request  *tr = (struct twe_request *)arg;
945     struct twe_softc    *sc = tr->tr_sc;
946     TWE_Command         *cmd = TWE_FIND_COMMAND(tr);
947
948     debug_called(4);
949
950     if (tr->tr_flags & TWE_CMD_MAPPED)
951         panic("already mapped command");
952
953     tr->tr_flags |= TWE_CMD_MAPPED;
954
955     if (tr->tr_flags & TWE_CMD_IN_PROGRESS)
956         sc->twe_state &= ~TWE_STATE_FRZN;
957     /* save base of first segment in command (applicable if there only one segment) */
958     tr->tr_dataphys = segs[0].ds_addr;
959
960     /* correct command size for s/g list size */
961     cmd->generic.size += 2 * nsegments;
962
963     /*
964      * Due to the fact that parameter and I/O commands have the scatter/gather list in
965      * different places, we need to determine which sort of command this actually is
966      * before we can populate it correctly.
967      */
968     switch(cmd->generic.opcode) {
969     case TWE_OP_GET_PARAM:
970     case TWE_OP_SET_PARAM:
971         cmd->generic.sgl_offset = 2;
972         twe_fillin_sgl(&cmd->param.sgl[0], segs, nsegments, TWE_MAX_SGL_LENGTH);
973         break;
974     case TWE_OP_READ:
975     case TWE_OP_WRITE:
976         cmd->generic.sgl_offset = 3;
977         twe_fillin_sgl(&cmd->io.sgl[0], segs, nsegments, TWE_MAX_SGL_LENGTH);
978         break;
979     case TWE_OP_ATA_PASSTHROUGH:
980         cmd->generic.sgl_offset = 5;
981         twe_fillin_sgl(&cmd->ata.sgl[0], segs, nsegments, TWE_MAX_ATA_SGL_LENGTH);
982         break;
983     default:
984         /*
985          * Fall back to what the linux driver does.
986          * Do this because the API may send an opcode
987          * the driver knows nothing about and this will
988          * at least stop PCIABRT's from hosing us.
989          */
990         switch (cmd->generic.sgl_offset) {
991         case 2:
992             twe_fillin_sgl(&cmd->param.sgl[0], segs, nsegments, TWE_MAX_SGL_LENGTH);
993             break;
994         case 3:
995             twe_fillin_sgl(&cmd->io.sgl[0], segs, nsegments, TWE_MAX_SGL_LENGTH);
996             break;
997         case 5:
998             twe_fillin_sgl(&cmd->ata.sgl[0], segs, nsegments, TWE_MAX_ATA_SGL_LENGTH);
999             break;
1000         }
1001     }
1002
1003     if (tr->tr_flags & TWE_CMD_DATAIN) {
1004         if (tr->tr_flags & TWE_CMD_IMMEDIATE) {
1005             bus_dmamap_sync(sc->twe_immediate_dmat, sc->twe_immediate_map,
1006                             BUS_DMASYNC_PREREAD);
1007         } else {
1008             bus_dmamap_sync(sc->twe_buffer_dmat, tr->tr_dmamap,
1009                             BUS_DMASYNC_PREREAD);
1010         }
1011     }
1012
1013     if (tr->tr_flags & TWE_CMD_DATAOUT) {
1014         /*
1015          * if we're using an alignment buffer, and we're writing data
1016          * copy the real data out
1017          */
1018         if (tr->tr_flags & TWE_CMD_ALIGNBUF)
1019             bcopy(tr->tr_realdata, tr->tr_data, tr->tr_length);
1020
1021         if (tr->tr_flags & TWE_CMD_IMMEDIATE) {
1022             bus_dmamap_sync(sc->twe_immediate_dmat, sc->twe_immediate_map,
1023                             BUS_DMASYNC_PREWRITE);
1024         } else {
1025             bus_dmamap_sync(sc->twe_buffer_dmat, tr->tr_dmamap,
1026                             BUS_DMASYNC_PREWRITE);
1027         }
1028     }
1029
1030     if (twe_start(tr) == EBUSY) {
1031         tr->tr_sc->twe_state |= TWE_STATE_CTLR_BUSY;
1032         twe_requeue_ready(tr);
1033     }
1034 }
1035
1036 static void
1037 twe_setup_request_dmamap(void *arg, bus_dma_segment_t *segs, int nsegments, int error)
1038 {
1039     struct twe_softc    *sc = (struct twe_softc *)arg;
1040
1041     debug_called(4);
1042
1043     /* command can't cross a page boundary */
1044     sc->twe_cmdphys = segs[0].ds_addr;
1045 }
1046
1047 int
1048 twe_map_request(struct twe_request *tr)
1049 {
1050     struct twe_softc    *sc = tr->tr_sc;
1051     int                 error = 0;
1052
1053     debug_called(4);
1054
1055     if (!dumping)
1056         TWE_IO_ASSERT_LOCKED(sc);
1057     if (sc->twe_state & (TWE_STATE_CTLR_BUSY | TWE_STATE_FRZN)) {
1058         twe_requeue_ready(tr);
1059         return (EBUSY);
1060     }
1061
1062     bus_dmamap_sync(sc->twe_cmd_dmat, sc->twe_cmdmap, BUS_DMASYNC_PREWRITE);
1063
1064     /*
1065      * If the command involves data, map that too.
1066      */
1067     if (tr->tr_data != NULL && ((tr->tr_flags & TWE_CMD_MAPPED) == 0)) {
1068         /* 
1069          * Data must be 64-byte aligned; allocate a fixup buffer if it's not.
1070          */
1071         if (((vm_offset_t)tr->tr_data % TWE_ALIGNMENT) != 0) {
1072             tr->tr_realdata = tr->tr_data;                              /* save pointer to 'real' data */
1073             tr->tr_flags |= TWE_CMD_ALIGNBUF;
1074             tr->tr_data = malloc(tr->tr_length, TWE_MALLOC_CLASS, M_NOWAIT);
1075             if (tr->tr_data == NULL) {
1076                 twe_printf(sc, "%s: malloc failed\n", __func__);
1077                 tr->tr_data = tr->tr_realdata; /* restore original data pointer */
1078                 return(ENOMEM);
1079             }
1080         }
1081
1082         /*
1083          * Map the data buffer into bus space and build the s/g list.
1084          */
1085         if (tr->tr_flags & TWE_CMD_IMMEDIATE) {
1086             error = bus_dmamap_load(sc->twe_immediate_dmat, sc->twe_immediate_map, sc->twe_immediate,
1087                             tr->tr_length, twe_setup_data_dmamap, tr, BUS_DMA_NOWAIT);
1088         } else {
1089             error = bus_dmamap_load(sc->twe_buffer_dmat, tr->tr_dmamap, tr->tr_data, tr->tr_length, 
1090                                     twe_setup_data_dmamap, tr, 0);
1091         }
1092         if (error == EINPROGRESS) {
1093             tr->tr_flags |= TWE_CMD_IN_PROGRESS;
1094             sc->twe_state |= TWE_STATE_FRZN;
1095             error = 0;
1096         }
1097     } else
1098         if ((error = twe_start(tr)) == EBUSY) {
1099             sc->twe_state |= TWE_STATE_CTLR_BUSY;
1100             twe_requeue_ready(tr);
1101         }
1102
1103     return(error);
1104 }
1105
1106 void
1107 twe_unmap_request(struct twe_request *tr)
1108 {
1109     struct twe_softc    *sc = tr->tr_sc;
1110
1111     debug_called(4);
1112
1113     if (!dumping)
1114         TWE_IO_ASSERT_LOCKED(sc);
1115     bus_dmamap_sync(sc->twe_cmd_dmat, sc->twe_cmdmap, BUS_DMASYNC_POSTWRITE);
1116
1117     /*
1118      * If the command involved data, unmap that too.
1119      */
1120     if (tr->tr_data != NULL) {
1121         if (tr->tr_flags & TWE_CMD_DATAIN) {
1122             if (tr->tr_flags & TWE_CMD_IMMEDIATE) {
1123                 bus_dmamap_sync(sc->twe_immediate_dmat, sc->twe_immediate_map,
1124                                 BUS_DMASYNC_POSTREAD);
1125             } else {
1126                 bus_dmamap_sync(sc->twe_buffer_dmat, tr->tr_dmamap,
1127                                 BUS_DMASYNC_POSTREAD);
1128             }
1129
1130             /* if we're using an alignment buffer, and we're reading data, copy the real data in */
1131             if (tr->tr_flags & TWE_CMD_ALIGNBUF)
1132                 bcopy(tr->tr_data, tr->tr_realdata, tr->tr_length);
1133         }
1134         if (tr->tr_flags & TWE_CMD_DATAOUT) {
1135             if (tr->tr_flags & TWE_CMD_IMMEDIATE) {
1136                 bus_dmamap_sync(sc->twe_immediate_dmat, sc->twe_immediate_map,
1137                                 BUS_DMASYNC_POSTWRITE);
1138             } else {
1139                 bus_dmamap_sync(sc->twe_buffer_dmat, tr->tr_dmamap,
1140                                 BUS_DMASYNC_POSTWRITE);
1141             }
1142         }
1143
1144         if (tr->tr_flags & TWE_CMD_IMMEDIATE) {
1145             bus_dmamap_unload(sc->twe_immediate_dmat, sc->twe_immediate_map);
1146         } else {
1147             bus_dmamap_unload(sc->twe_buffer_dmat, tr->tr_dmamap); 
1148         }
1149     }
1150
1151     /* free alignment buffer if it was used */
1152     if (tr->tr_flags & TWE_CMD_ALIGNBUF) {
1153         free(tr->tr_data, TWE_MALLOC_CLASS);
1154         tr->tr_data = tr->tr_realdata;          /* restore 'real' data pointer */
1155     }
1156 }
1157
1158 #ifdef TWE_DEBUG
1159 void twe_report(void);
1160 /********************************************************************************
1161  * Print current controller status, call from DDB.
1162  */
1163 void
1164 twe_report(void)
1165 {
1166     struct twe_softc    *sc;
1167     int                 i;
1168
1169     for (i = 0; (sc = devclass_get_softc(twe_devclass, i)) != NULL; i++)
1170         twe_print_controller(sc);
1171     printf("twed: total bio count in %u  out %u\n", twed_bio_in, twed_bio_out);
1172 }
1173 #endif