]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/usb/if_rum.c
This commit was generated by cvs2svn to compensate for changes in r177576,
[FreeBSD/FreeBSD.git] / sys / dev / usb / if_rum.c
1 /*      $FreeBSD$       */
2
3 /*-
4  * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
5  * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19
20 #include <sys/cdefs.h>
21 __FBSDID("$FreeBSD$");
22
23 /*-
24  * Ralink Technology RT2501USB/RT2601USB chipset driver
25  * http://www.ralinktech.com.tw/
26  */
27
28 #include <sys/param.h>
29 #include <sys/sysctl.h>
30 #include <sys/sockio.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/module.h>
37 #include <sys/bus.h>
38 #include <sys/endian.h>
39
40 #include <machine/bus.h>
41 #include <machine/resource.h>
42 #include <sys/rman.h>
43
44 #include <net/bpf.h>
45 #include <net/if.h>
46 #include <net/if_arp.h>
47 #include <net/ethernet.h>
48 #include <net/if_dl.h>
49 #include <net/if_media.h>
50 #include <net/if_types.h>
51
52 #include <net80211/ieee80211_var.h>
53 #include <net80211/ieee80211_amrr.h>
54 #include <net80211/ieee80211_radiotap.h>
55 #include <net80211/ieee80211_regdomain.h>
56
57 #include <dev/usb/usb.h>
58 #include <dev/usb/usbdi.h>
59 #include <dev/usb/usbdi_util.h>
60 #include "usbdevs.h"
61
62 #include <dev/usb/if_rumreg.h>
63 #include <dev/usb/if_rumvar.h>
64 #include <dev/usb/rt2573_ucode.h>
65
66 #ifdef USB_DEBUG
67 #define DPRINTF(x)      do { if (rumdebug > 0) printf x; } while (0)
68 #define DPRINTFN(n, x)  do { if (rumdebug >= (n)) printf x; } while (0)
69 int rumdebug = 0;
70 SYSCTL_NODE(_hw_usb, OID_AUTO, rum, CTLFLAG_RW, 0, "USB rum");
71 SYSCTL_INT(_hw_usb_rum, OID_AUTO, debug, CTLFLAG_RW, &rumdebug, 0,
72     "rum debug level");
73 #else
74 #define DPRINTF(x)
75 #define DPRINTFN(n, x)
76 #endif
77
78 /* various supported device vendors/products */
79 static const struct usb_devno rum_devs[] = {
80         { USB_VENDOR_ABOCOM,            USB_PRODUCT_ABOCOM_HWU54DM },
81         { USB_VENDOR_ABOCOM,            USB_PRODUCT_ABOCOM_RT2573_2 },
82         { USB_VENDOR_ABOCOM,            USB_PRODUCT_ABOCOM_RT2573_3 },
83         { USB_VENDOR_ABOCOM,            USB_PRODUCT_ABOCOM_RT2573_4 },
84         { USB_VENDOR_ABOCOM,            USB_PRODUCT_ABOCOM_WUG2700 },
85         { USB_VENDOR_AMIT,              USB_PRODUCT_AMIT_CGWLUSB2GO },
86         { USB_VENDOR_ASUS,              USB_PRODUCT_ASUS_RT2573_1 },
87         { USB_VENDOR_ASUS,              USB_PRODUCT_ASUS_RT2573_2 },
88         { USB_VENDOR_BELKIN,            USB_PRODUCT_BELKIN_F5D7050A },
89         { USB_VENDOR_BELKIN,            USB_PRODUCT_BELKIN_F5D9050V3 },
90         { USB_VENDOR_CISCOLINKSYS,      USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
91         { USB_VENDOR_CISCOLINKSYS,      USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
92         { USB_VENDOR_CONCEPTRONIC2,     USB_PRODUCT_CONCEPTRONIC2_C54RU2 },
93         { USB_VENDOR_COREGA,            USB_PRODUCT_COREGA_CGWLUSB2GL },
94         { USB_VENDOR_COREGA,            USB_PRODUCT_COREGA_CGWLUSB2GPX },
95         { USB_VENDOR_DICKSMITH,         USB_PRODUCT_DICKSMITH_CWD854F },
96         { USB_VENDOR_DICKSMITH,         USB_PRODUCT_DICKSMITH_RT2573 },
97         { USB_VENDOR_DLINK2,            USB_PRODUCT_DLINK2_DWLG122C1 },
98         { USB_VENDOR_DLINK2,            USB_PRODUCT_DLINK2_WUA1340 },
99         { USB_VENDOR_GIGABYTE,          USB_PRODUCT_GIGABYTE_GNWB01GS },
100         { USB_VENDOR_GIGABYTE,          USB_PRODUCT_GIGABYTE_GNWI05GS },
101         { USB_VENDOR_GIGASET,           USB_PRODUCT_GIGASET_RT2573 },
102         { USB_VENDOR_GOODWAY,           USB_PRODUCT_GOODWAY_RT2573 },
103         { USB_VENDOR_GUILLEMOT,         USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
104         { USB_VENDOR_GUILLEMOT,         USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
105         { USB_VENDOR_HUAWEI3COM,        USB_PRODUCT_HUAWEI3COM_WUB320G },
106         { USB_VENDOR_MELCO,             USB_PRODUCT_MELCO_G54HP },
107         { USB_VENDOR_MELCO,             USB_PRODUCT_MELCO_SG54HP },
108         { USB_VENDOR_MSI,               USB_PRODUCT_MSI_RT2573_1 },
109         { USB_VENDOR_MSI,               USB_PRODUCT_MSI_RT2573_2 },
110         { USB_VENDOR_MSI,               USB_PRODUCT_MSI_RT2573_3 },
111         { USB_VENDOR_MSI,               USB_PRODUCT_MSI_RT2573_4 },
112         { USB_VENDOR_NOVATECH,          USB_PRODUCT_NOVATECH_RT2573 },
113         { USB_VENDOR_PLANEX2,           USB_PRODUCT_PLANEX2_GWUS54HP },
114         { USB_VENDOR_PLANEX2,           USB_PRODUCT_PLANEX2_GWUS54MINI2 },
115         { USB_VENDOR_PLANEX2,           USB_PRODUCT_PLANEX2_GWUSMM },
116         { USB_VENDOR_QCOM,              USB_PRODUCT_QCOM_RT2573 },
117         { USB_VENDOR_QCOM,              USB_PRODUCT_QCOM_RT2573_2 },
118         { USB_VENDOR_RALINK,            USB_PRODUCT_RALINK_RT2573 },
119         { USB_VENDOR_RALINK,            USB_PRODUCT_RALINK_RT2573_2 },
120         { USB_VENDOR_RALINK,            USB_PRODUCT_RALINK_RT2671 },
121         { USB_VENDOR_SITECOMEU,         USB_PRODUCT_SITECOMEU_WL113R2 },
122         { USB_VENDOR_SITECOMEU,         USB_PRODUCT_SITECOMEU_WL172 },
123         { USB_VENDOR_SPARKLAN,          USB_PRODUCT_SPARKLAN_RT2573 },
124         { USB_VENDOR_SURECOM,           USB_PRODUCT_SURECOM_RT2573 }
125 };
126
127 MODULE_DEPEND(rum, wlan, 1, 1, 1);
128 MODULE_DEPEND(rum, wlan_amrr, 1, 1, 1);
129 MODULE_DEPEND(rum, usb, 1, 1, 1);
130
131 static int              rum_alloc_tx_list(struct rum_softc *);
132 static void             rum_free_tx_list(struct rum_softc *);
133 static int              rum_alloc_rx_list(struct rum_softc *);
134 static void             rum_free_rx_list(struct rum_softc *);
135 static int              rum_media_change(struct ifnet *);
136 static void             rum_task(void *);
137 static void             rum_scantask(void *);
138 static int              rum_newstate(struct ieee80211com *,
139                             enum ieee80211_state, int);
140 static void             rum_txeof(usbd_xfer_handle, usbd_private_handle,
141                             usbd_status);
142 static void             rum_rxeof(usbd_xfer_handle, usbd_private_handle,
143                             usbd_status);
144 static int              rum_rxrate(struct rum_rx_desc *);
145 static int              rum_ack_rate(struct ieee80211com *, int);
146 static uint16_t         rum_txtime(int, int, uint32_t);
147 static uint8_t          rum_plcp_signal(int);
148 static void             rum_setup_tx_desc(struct rum_softc *,
149                             struct rum_tx_desc *, uint32_t, uint16_t, int,
150                             int);
151 static int              rum_tx_mgt(struct rum_softc *, struct mbuf *,
152                             struct ieee80211_node *);
153 static int              rum_tx_raw(struct rum_softc *, struct mbuf *,
154                             struct ieee80211_node *, 
155                             const struct ieee80211_bpf_params *);
156 static int              rum_tx_data(struct rum_softc *, struct mbuf *,
157                             struct ieee80211_node *);
158 static void             rum_start(struct ifnet *);
159 static void             rum_watchdog(void *);
160 static int              rum_ioctl(struct ifnet *, u_long, caddr_t);
161 static void             rum_eeprom_read(struct rum_softc *, uint16_t, void *,
162                             int);
163 static uint32_t         rum_read(struct rum_softc *, uint16_t);
164 static void             rum_read_multi(struct rum_softc *, uint16_t, void *,
165                             int);
166 static void             rum_write(struct rum_softc *, uint16_t, uint32_t);
167 static void             rum_write_multi(struct rum_softc *, uint16_t, void *,
168                             size_t);
169 static void             rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
170 static uint8_t          rum_bbp_read(struct rum_softc *, uint8_t);
171 static void             rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
172 static void             rum_select_antenna(struct rum_softc *);
173 static void             rum_enable_mrr(struct rum_softc *);
174 static void             rum_set_txpreamble(struct rum_softc *);
175 static void             rum_set_basicrates(struct rum_softc *);
176 static void             rum_select_band(struct rum_softc *,
177                             struct ieee80211_channel *);
178 static void             rum_set_chan(struct rum_softc *,
179                             struct ieee80211_channel *);
180 static void             rum_enable_tsf_sync(struct rum_softc *);
181 static void             rum_update_slot(struct ifnet *);
182 static void             rum_set_bssid(struct rum_softc *, const uint8_t *);
183 static void             rum_set_macaddr(struct rum_softc *, const uint8_t *);
184 static void             rum_update_promisc(struct rum_softc *);
185 static const char       *rum_get_rf(int);
186 static void             rum_read_eeprom(struct rum_softc *);
187 static int              rum_bbp_init(struct rum_softc *);
188 static void             rum_init(void *);
189 static void             rum_stop(void *);
190 static int              rum_load_microcode(struct rum_softc *, const u_char *,
191                             size_t);
192 static int              rum_prepare_beacon(struct rum_softc *);
193 static int              rum_raw_xmit(struct ieee80211_node *, struct mbuf *,
194                             const struct ieee80211_bpf_params *);
195 static void             rum_scan_start(struct ieee80211com *);
196 static void             rum_scan_end(struct ieee80211com *);
197 static void             rum_set_channel(struct ieee80211com *);
198 static int              rum_get_rssi(struct rum_softc *, uint8_t);
199 static void             rum_amrr_start(struct rum_softc *,
200                             struct ieee80211_node *);
201 static void             rum_amrr_timeout(void *);
202 static void             rum_amrr_update(usbd_xfer_handle, usbd_private_handle,
203                             usbd_status);
204
205 static const struct {
206         uint32_t        reg;
207         uint32_t        val;
208 } rum_def_mac[] = {
209         { RT2573_TXRX_CSR0,  0x025fb032 },
210         { RT2573_TXRX_CSR1,  0x9eaa9eaf },
211         { RT2573_TXRX_CSR2,  0x8a8b8c8d }, 
212         { RT2573_TXRX_CSR3,  0x00858687 },
213         { RT2573_TXRX_CSR7,  0x2e31353b },
214         { RT2573_TXRX_CSR8,  0x2a2a2a2c },
215         { RT2573_TXRX_CSR15, 0x0000000f },
216         { RT2573_MAC_CSR6,   0x00000fff },
217         { RT2573_MAC_CSR8,   0x016c030a },
218         { RT2573_MAC_CSR10,  0x00000718 },
219         { RT2573_MAC_CSR12,  0x00000004 },
220         { RT2573_MAC_CSR13,  0x00007f00 },
221         { RT2573_SEC_CSR0,   0x00000000 },
222         { RT2573_SEC_CSR1,   0x00000000 },
223         { RT2573_SEC_CSR5,   0x00000000 },
224         { RT2573_PHY_CSR1,   0x000023b0 },
225         { RT2573_PHY_CSR5,   0x00040a06 },
226         { RT2573_PHY_CSR6,   0x00080606 },
227         { RT2573_PHY_CSR7,   0x00000408 },
228         { RT2573_AIFSN_CSR,  0x00002273 },
229         { RT2573_CWMIN_CSR,  0x00002344 },
230         { RT2573_CWMAX_CSR,  0x000034aa }
231 };
232
233 static const struct {
234         uint8_t reg;
235         uint8_t val;
236 } rum_def_bbp[] = {
237         {   3, 0x80 },
238         {  15, 0x30 },
239         {  17, 0x20 },
240         {  21, 0xc8 },
241         {  22, 0x38 },
242         {  23, 0x06 },
243         {  24, 0xfe },
244         {  25, 0x0a },
245         {  26, 0x0d },
246         {  32, 0x0b },
247         {  34, 0x12 },
248         {  37, 0x07 },
249         {  39, 0xf8 },
250         {  41, 0x60 },
251         {  53, 0x10 },
252         {  54, 0x18 },
253         {  60, 0x10 },
254         {  61, 0x04 },
255         {  62, 0x04 },
256         {  75, 0xfe },
257         {  86, 0xfe },
258         {  88, 0xfe },
259         {  90, 0x0f },
260         {  99, 0x00 },
261         { 102, 0x16 },
262         { 107, 0x04 }
263 };
264
265 static const struct rfprog {
266         uint8_t         chan;
267         uint32_t        r1, r2, r3, r4;
268 }  rum_rf5226[] = {
269         {   1, 0x00b03, 0x001e1, 0x1a014, 0x30282 },
270         {   2, 0x00b03, 0x001e1, 0x1a014, 0x30287 },
271         {   3, 0x00b03, 0x001e2, 0x1a014, 0x30282 },
272         {   4, 0x00b03, 0x001e2, 0x1a014, 0x30287 },
273         {   5, 0x00b03, 0x001e3, 0x1a014, 0x30282 },
274         {   6, 0x00b03, 0x001e3, 0x1a014, 0x30287 },
275         {   7, 0x00b03, 0x001e4, 0x1a014, 0x30282 },
276         {   8, 0x00b03, 0x001e4, 0x1a014, 0x30287 },
277         {   9, 0x00b03, 0x001e5, 0x1a014, 0x30282 },
278         {  10, 0x00b03, 0x001e5, 0x1a014, 0x30287 },
279         {  11, 0x00b03, 0x001e6, 0x1a014, 0x30282 },
280         {  12, 0x00b03, 0x001e6, 0x1a014, 0x30287 },
281         {  13, 0x00b03, 0x001e7, 0x1a014, 0x30282 },
282         {  14, 0x00b03, 0x001e8, 0x1a014, 0x30284 },
283
284         {  34, 0x00b03, 0x20266, 0x36014, 0x30282 },
285         {  38, 0x00b03, 0x20267, 0x36014, 0x30284 },
286         {  42, 0x00b03, 0x20268, 0x36014, 0x30286 },
287         {  46, 0x00b03, 0x20269, 0x36014, 0x30288 },
288
289         {  36, 0x00b03, 0x00266, 0x26014, 0x30288 },
290         {  40, 0x00b03, 0x00268, 0x26014, 0x30280 },
291         {  44, 0x00b03, 0x00269, 0x26014, 0x30282 },
292         {  48, 0x00b03, 0x0026a, 0x26014, 0x30284 },
293         {  52, 0x00b03, 0x0026b, 0x26014, 0x30286 },
294         {  56, 0x00b03, 0x0026c, 0x26014, 0x30288 },
295         {  60, 0x00b03, 0x0026e, 0x26014, 0x30280 },
296         {  64, 0x00b03, 0x0026f, 0x26014, 0x30282 },
297
298         { 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 },
299         { 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 },
300         { 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 },
301         { 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 },
302         { 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 },
303         { 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 },
304         { 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 },
305         { 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 },
306         { 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 },
307         { 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 },
308         { 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 },
309
310         { 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 },
311         { 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 },
312         { 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 },
313         { 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 },
314         { 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 }
315 }, rum_rf5225[] = {
316         {   1, 0x00b33, 0x011e1, 0x1a014, 0x30282 },
317         {   2, 0x00b33, 0x011e1, 0x1a014, 0x30287 },
318         {   3, 0x00b33, 0x011e2, 0x1a014, 0x30282 },
319         {   4, 0x00b33, 0x011e2, 0x1a014, 0x30287 },
320         {   5, 0x00b33, 0x011e3, 0x1a014, 0x30282 },
321         {   6, 0x00b33, 0x011e3, 0x1a014, 0x30287 },
322         {   7, 0x00b33, 0x011e4, 0x1a014, 0x30282 },
323         {   8, 0x00b33, 0x011e4, 0x1a014, 0x30287 },
324         {   9, 0x00b33, 0x011e5, 0x1a014, 0x30282 },
325         {  10, 0x00b33, 0x011e5, 0x1a014, 0x30287 },
326         {  11, 0x00b33, 0x011e6, 0x1a014, 0x30282 },
327         {  12, 0x00b33, 0x011e6, 0x1a014, 0x30287 },
328         {  13, 0x00b33, 0x011e7, 0x1a014, 0x30282 },
329         {  14, 0x00b33, 0x011e8, 0x1a014, 0x30284 },
330
331         {  34, 0x00b33, 0x01266, 0x26014, 0x30282 },
332         {  38, 0x00b33, 0x01267, 0x26014, 0x30284 },
333         {  42, 0x00b33, 0x01268, 0x26014, 0x30286 },
334         {  46, 0x00b33, 0x01269, 0x26014, 0x30288 },
335
336         {  36, 0x00b33, 0x01266, 0x26014, 0x30288 },
337         {  40, 0x00b33, 0x01268, 0x26014, 0x30280 },
338         {  44, 0x00b33, 0x01269, 0x26014, 0x30282 },
339         {  48, 0x00b33, 0x0126a, 0x26014, 0x30284 },
340         {  52, 0x00b33, 0x0126b, 0x26014, 0x30286 },
341         {  56, 0x00b33, 0x0126c, 0x26014, 0x30288 },
342         {  60, 0x00b33, 0x0126e, 0x26014, 0x30280 },
343         {  64, 0x00b33, 0x0126f, 0x26014, 0x30282 },
344
345         { 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 },
346         { 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 },
347         { 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 },
348         { 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 },
349         { 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 },
350         { 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 },
351         { 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 },
352         { 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 },
353         { 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 },
354         { 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 },
355         { 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 },
356
357         { 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 },
358         { 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 },
359         { 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 },
360         { 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 },
361         { 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 }
362 };
363
364 static int
365 rum_match(device_t self)
366 {
367         struct usb_attach_arg *uaa = device_get_ivars(self);
368
369         if (uaa->iface != NULL)
370                 return UMATCH_NONE;
371
372         return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
373             UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
374 }
375
376 static int
377 rum_attach(device_t self)
378 {
379         struct rum_softc *sc = device_get_softc(self);
380         struct usb_attach_arg *uaa = device_get_ivars(self);
381         struct ieee80211com *ic = &sc->sc_ic;
382         struct ifnet *ifp;
383         const uint8_t *ucode = NULL;
384         usb_interface_descriptor_t *id;
385         usb_endpoint_descriptor_t *ed;
386         usbd_status error;
387         int i, ntries, size, bands;
388         uint32_t tmp;
389
390         sc->sc_udev = uaa->device;
391         sc->sc_dev = self;
392
393         if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) {
394                 printf("%s: could not set configuration no\n",
395                     device_get_nameunit(sc->sc_dev));
396                 return ENXIO;
397         }
398
399         /* get the first interface handle */
400         error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
401             &sc->sc_iface);
402         if (error != 0) {
403                 printf("%s: could not get interface handle\n",
404                     device_get_nameunit(sc->sc_dev));
405                 return ENXIO;
406         }
407
408         /*
409          * Find endpoints.
410          */
411         id = usbd_get_interface_descriptor(sc->sc_iface);
412
413         sc->sc_rx_no = sc->sc_tx_no = -1;
414         for (i = 0; i < id->bNumEndpoints; i++) {
415                 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
416                 if (ed == NULL) {
417                         printf("%s: no endpoint descriptor for iface %d\n",
418                             device_get_nameunit(sc->sc_dev), i);
419                         return ENXIO;
420                 }
421
422                 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
423                     UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
424                         sc->sc_rx_no = ed->bEndpointAddress;
425                 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
426                     UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
427                         sc->sc_tx_no = ed->bEndpointAddress;
428         }
429         if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
430                 printf("%s: missing endpoint\n", 
431                     device_get_nameunit(sc->sc_dev));
432                 return ENXIO;
433         }
434
435         mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), MTX_NETWORK_LOCK,
436             MTX_DEF | MTX_RECURSE);
437
438         usb_init_task(&sc->sc_task, rum_task, sc);
439         usb_init_task(&sc->sc_scantask, rum_scantask, sc);
440         callout_init(&sc->watchdog_ch, 0);
441         callout_init(&sc->amrr_ch, 0);
442
443         /* retrieve RT2573 rev. no */
444         for (ntries = 0; ntries < 1000; ntries++) {
445                 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
446                         break;
447                 DELAY(1000);
448         }
449         if (ntries == 1000) {
450                 printf("%s: timeout waiting for chip to settle\n",
451                     device_get_nameunit(sc->sc_dev));
452                 return ENXIO;
453         }
454
455         /* retrieve MAC address and various other things from EEPROM */
456         rum_read_eeprom(sc);
457
458         printf("%s: MAC/BBP RT2573 (rev 0x%05x), RF %s\n",
459             device_get_nameunit(sc->sc_dev), tmp, rum_get_rf(sc->rf_rev));
460
461         ucode = rt2573_ucode;
462         size = sizeof rt2573_ucode;
463         error = rum_load_microcode(sc, ucode, size);
464         if (error != 0) {
465                 device_printf(sc->sc_dev, "could not load 8051 microcode\n");
466                 mtx_destroy(&sc->sc_mtx);
467                 return ENXIO;
468         }
469
470         ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
471         if (ifp == NULL) {
472                 printf("%s: can not if_alloc()\n", 
473                     device_get_nameunit(sc->sc_dev));
474                 mtx_destroy(&sc->sc_mtx);
475                 return ENXIO;
476         }
477
478         ifp->if_softc = sc;
479         if_initname(ifp, "rum", device_get_unit(sc->sc_dev));
480         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
481             IFF_NEEDSGIANT; /* USB stack is still under Giant lock */
482         ifp->if_init = rum_init;
483         ifp->if_ioctl = rum_ioctl;
484         ifp->if_start = rum_start;
485         IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
486         ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
487         IFQ_SET_READY(&ifp->if_snd);
488
489         ic->ic_ifp = ifp;
490         ic->ic_phytype = IEEE80211_T_OFDM;      /* not only, but not used */
491         ic->ic_opmode = IEEE80211_M_STA;        /* default to BSS mode */
492         ic->ic_state = IEEE80211_S_INIT;
493
494         /* set device capabilities */
495         ic->ic_caps =
496             IEEE80211_C_IBSS |          /* IBSS mode supported */
497             IEEE80211_C_MONITOR |       /* monitor mode supported */
498             IEEE80211_C_HOSTAP |        /* HostAp mode supported */
499             IEEE80211_C_TXPMGT |        /* tx power management */
500             IEEE80211_C_SHPREAMBLE |    /* short preamble supported */
501             IEEE80211_C_SHSLOT |        /* short slot time supported */
502             IEEE80211_C_BGSCAN |        /* bg scanning supported */
503             IEEE80211_C_WPA;            /* 802.11i */
504
505         bands = 0;
506         setbit(&bands, IEEE80211_MODE_11B);
507         setbit(&bands, IEEE80211_MODE_11G);
508         ieee80211_init_channels(ic, 0, CTRY_DEFAULT, bands, 0, 1);
509
510         if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
511                 struct ieee80211_channel *c;
512
513                 /* set supported .11a channels */
514                 for (i = 34; i <= 46; i += 4) {
515                         c = &ic->ic_channels[ic->ic_nchans++];
516                         c->ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
517                         c->ic_flags = IEEE80211_CHAN_A;
518                         c->ic_ieee = i;
519                 }
520                 for (i = 36; i <= 64; i += 4) {
521                         c = &ic->ic_channels[ic->ic_nchans++];
522                         c->ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
523                         c->ic_flags = IEEE80211_CHAN_A;
524                         c->ic_ieee = i;
525                 }
526                 for (i = 100; i <= 140; i += 4) {
527                         c = &ic->ic_channels[ic->ic_nchans++];
528                         c->ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
529                         c->ic_flags = IEEE80211_CHAN_A;
530                         c->ic_ieee = i;
531                 }
532                 for (i = 149; i <= 165; i += 4) {
533                         c = &ic->ic_channels[ic->ic_nchans++];
534                         c->ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
535                         c->ic_flags = IEEE80211_CHAN_A;
536                         c->ic_ieee = i;
537                 }
538         }
539
540         ieee80211_ifattach(ic);
541         ic->ic_scan_start = rum_scan_start;
542         ic->ic_scan_end = rum_scan_end;
543         ic->ic_set_channel = rum_set_channel;
544
545         /* enable s/w bmiss handling in sta mode */
546         ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS;
547
548         /* override state transition machine */
549         sc->sc_newstate = ic->ic_newstate;
550         ic->ic_newstate = rum_newstate;
551         ic->ic_raw_xmit = rum_raw_xmit;
552         ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
553
554         ieee80211_amrr_init(&sc->amrr, ic,
555             IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
556             IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD);
557
558         bpfattach2(ifp, DLT_IEEE802_11_RADIO,
559             sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 
560             &sc->sc_drvbpf);
561
562         sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
563         sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
564         sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
565
566         sc->sc_txtap_len = sizeof sc->sc_txtapu;
567         sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
568         sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
569
570         if (bootverbose)
571                 ieee80211_announce(ic);
572
573         return 0;
574 }
575
576 static int
577 rum_detach(device_t self)
578 {
579         struct rum_softc *sc = device_get_softc(self);
580         struct ieee80211com *ic = &sc->sc_ic;
581         struct ifnet *ifp = ic->ic_ifp;
582
583         rum_stop(sc);
584         usb_rem_task(sc->sc_udev, &sc->sc_task);
585         usb_rem_task(sc->sc_udev, &sc->sc_scantask);
586         callout_stop(&sc->watchdog_ch);
587         callout_stop(&sc->amrr_ch);
588
589         if (sc->amrr_xfer != NULL) {
590                 usbd_free_xfer(sc->amrr_xfer);
591                 sc->amrr_xfer = NULL;
592         }
593
594         if (sc->sc_rx_pipeh != NULL) {
595                 usbd_abort_pipe(sc->sc_rx_pipeh);
596                 usbd_close_pipe(sc->sc_rx_pipeh);
597         }
598         if (sc->sc_tx_pipeh != NULL) {
599                 usbd_abort_pipe(sc->sc_tx_pipeh);
600                 usbd_close_pipe(sc->sc_tx_pipeh);
601         }
602         
603         rum_free_rx_list(sc);
604         rum_free_tx_list(sc);
605
606         bpfdetach(ifp);
607         ieee80211_ifdetach(ic);
608         if_free(ifp);
609
610         mtx_destroy(&sc->sc_mtx);
611
612         return 0;
613 }
614
615 static int
616 rum_alloc_tx_list(struct rum_softc *sc)
617 {
618         struct rum_tx_data *data;
619         int i, error;
620
621         sc->tx_queued = 0;
622
623         for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
624                 data = &sc->tx_data[i];
625
626                 data->sc = sc;
627
628                 data->xfer = usbd_alloc_xfer(sc->sc_udev);
629                 if (data->xfer == NULL) {
630                         printf("%s: could not allocate tx xfer\n",
631                             device_get_nameunit(sc->sc_dev));
632                         error = ENOMEM;
633                         goto fail;
634                 }
635                 data->buf = usbd_alloc_buffer(data->xfer,
636                     RT2573_TX_DESC_SIZE + MCLBYTES);
637                 if (data->buf == NULL) {
638                         printf("%s: could not allocate tx buffer\n",
639                             device_get_nameunit(sc->sc_dev));
640                         error = ENOMEM;
641                         goto fail;
642                 }
643                 /* clean Tx descriptor */
644                 bzero(data->buf, RT2573_TX_DESC_SIZE);
645         }
646
647         return 0;
648
649 fail:   rum_free_tx_list(sc);
650         return error;
651 }
652
653 static void
654 rum_free_tx_list(struct rum_softc *sc)
655 {
656         struct rum_tx_data *data;
657         int i;
658
659         for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
660                 data = &sc->tx_data[i];
661
662                 if (data->xfer != NULL) {
663                         usbd_free_xfer(data->xfer);
664                         data->xfer = NULL;
665                 }
666
667                 if (data->ni != NULL) {
668                         ieee80211_free_node(data->ni);
669                         data->ni = NULL;
670                 }
671         }
672 }
673
674 static int
675 rum_alloc_rx_list(struct rum_softc *sc)
676 {
677         struct rum_rx_data *data;
678         int i, error;
679
680         for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
681                 data = &sc->rx_data[i];
682
683                 data->sc = sc;
684
685                 data->xfer = usbd_alloc_xfer(sc->sc_udev);
686                 if (data->xfer == NULL) {
687                         printf("%s: could not allocate rx xfer\n",
688                             device_get_nameunit(sc->sc_dev));
689                         error = ENOMEM;
690                         goto fail;
691                 }
692                 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
693                         printf("%s: could not allocate rx buffer\n",
694                             device_get_nameunit(sc->sc_dev));
695                         error = ENOMEM;
696                         goto fail;
697                 }
698
699                 data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
700                 if (data->m == NULL) {
701                         printf("%s: could not allocate rx mbuf\n",
702                             device_get_nameunit(sc->sc_dev));
703                         error = ENOMEM;
704                         goto fail;
705                 }
706
707                 data->buf = mtod(data->m, uint8_t *);
708         }
709
710         return 0;
711
712 fail:   rum_free_tx_list(sc);
713         return error;
714 }
715
716 static void
717 rum_free_rx_list(struct rum_softc *sc)
718 {
719         struct rum_rx_data *data;
720         int i;
721
722         for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
723                 data = &sc->rx_data[i];
724
725                 if (data->xfer != NULL) {
726                         usbd_free_xfer(data->xfer);
727                         data->xfer = NULL;
728                 }
729                 if (data->m != NULL) {
730                         m_freem(data->m);
731                         data->m = NULL;
732                 }
733         }
734 }
735
736 static int
737 rum_media_change(struct ifnet *ifp)
738 {
739         struct rum_softc *sc = ifp->if_softc;
740         int error;
741
742         RUM_LOCK(sc);
743
744         error = ieee80211_media_change(ifp);
745         if (error != ENETRESET) {
746                 RUM_UNLOCK(sc);
747                 return error;
748         }
749
750         if ((ifp->if_flags & IFF_UP) &&
751             (ifp->if_drv_flags & IFF_DRV_RUNNING))
752                 rum_init(sc);
753
754         RUM_UNLOCK(sc);
755
756         return 0;
757 }
758
759 static void
760 rum_task(void *arg)
761 {
762         struct rum_softc *sc = arg;
763         struct ieee80211com *ic = &sc->sc_ic;
764         enum ieee80211_state ostate;
765         struct ieee80211_node *ni;
766         uint32_t tmp;
767
768         ostate = ic->ic_state;
769
770         RUM_LOCK(sc);
771
772         switch (sc->sc_state) {
773         case IEEE80211_S_INIT:
774                 if (ostate == IEEE80211_S_RUN) {
775                         /* abort TSF synchronization */
776                         tmp = rum_read(sc, RT2573_TXRX_CSR9);
777                         rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
778                 }
779                 break;
780
781         case IEEE80211_S_RUN:
782                 ni = ic->ic_bss;
783
784                 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
785                         rum_update_slot(ic->ic_ifp);
786                         rum_enable_mrr(sc);
787                         rum_set_txpreamble(sc);
788                         rum_set_basicrates(sc);
789                         rum_set_bssid(sc, ni->ni_bssid);
790                 }
791
792                 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
793                     ic->ic_opmode == IEEE80211_M_IBSS)
794                         rum_prepare_beacon(sc);
795
796                 if (ic->ic_opmode != IEEE80211_M_MONITOR)
797                         rum_enable_tsf_sync(sc);
798
799                 /* enable automatic rate adaptation in STA mode */
800                 if (ic->ic_opmode == IEEE80211_M_STA &&
801                     ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
802                         rum_amrr_start(sc, ni);
803                 break;
804         default:
805                 break;
806         }
807
808         RUM_UNLOCK(sc);
809
810         sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
811 }
812
813 static int
814 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
815 {
816         struct rum_softc *sc = ic->ic_ifp->if_softc;
817
818         callout_stop(&sc->amrr_ch);
819
820         /* do it in a process context */
821         sc->sc_state = nstate;
822         sc->sc_arg = arg;
823
824         usb_rem_task(sc->sc_udev, &sc->sc_task);
825         if (nstate == IEEE80211_S_INIT)
826                 sc->sc_newstate(ic, nstate, arg);
827         else
828                 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
829         return 0;
830 }
831
832 /* quickly determine if a given rate is CCK or OFDM */
833 #define RUM_RATE_IS_OFDM(rate)  ((rate) >= 12 && (rate) != 22)
834
835 #define RUM_ACK_SIZE    14      /* 10 + 4(FCS) */
836 #define RUM_CTS_SIZE    14      /* 10 + 4(FCS) */
837
838 static void
839 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
840 {
841         struct rum_tx_data *data = priv;
842         struct rum_softc *sc = data->sc;
843         struct ifnet *ifp = sc->sc_ic.ic_ifp;
844
845         if (data->m != NULL && data->m->m_flags & M_TXCB)
846                 ieee80211_process_callback(data->ni, data->m, 0/*XXX*/);
847
848         if (status != USBD_NORMAL_COMPLETION) {
849                 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
850                         return;
851
852                 printf("%s: could not transmit buffer: %s\n",
853                     device_get_nameunit(sc->sc_dev), usbd_errstr(status));
854
855                 if (status == USBD_STALLED)
856                         usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
857
858                 ifp->if_oerrors++;
859                 return;
860         }
861
862         m_freem(data->m);
863         data->m = NULL;
864         ieee80211_free_node(data->ni);
865         data->ni = NULL;
866
867         sc->tx_queued--;
868         ifp->if_opackets++;
869
870         DPRINTFN(10, ("tx done\n"));
871
872         sc->sc_tx_timer = 0;
873         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
874         rum_start(ifp);
875 }
876
877 static void
878 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
879 {
880         struct rum_rx_data *data = priv;
881         struct rum_softc *sc = data->sc;
882         struct ieee80211com *ic = &sc->sc_ic;
883         struct ifnet *ifp = ic->ic_ifp;
884         struct rum_rx_desc *desc;
885         struct ieee80211_frame *wh;
886         struct ieee80211_node *ni;
887         struct mbuf *mnew, *m;
888         int len, rssi;
889
890         if (status != USBD_NORMAL_COMPLETION) {
891                 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
892                         return;
893
894                 if (status == USBD_STALLED)
895                         usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
896                 goto skip;
897         }
898
899         usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
900
901         if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) {
902                 DPRINTF(("%s: xfer too short %d\n", 
903                     device_get_nameunit(sc->sc_dev), len));
904                 ifp->if_ierrors++;
905                 goto skip;
906         }
907
908         desc = (struct rum_rx_desc *)data->buf;
909
910         if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
911                 /*
912                  * This should not happen since we did not request to receive
913                  * those frames when we filled RT2573_TXRX_CSR0.
914                  */
915                 DPRINTFN(5, ("CRC error\n"));
916                 ifp->if_ierrors++;
917                 goto skip;
918         }
919
920         mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
921         if (mnew == NULL) {
922                 ifp->if_ierrors++;
923                 goto skip;
924         }
925
926         m = data->m;
927         data->m = mnew;
928         data->buf = mtod(data->m, uint8_t *);
929
930         /* finalize mbuf */
931         m->m_pkthdr.rcvif = ifp;
932         m->m_data = (caddr_t)(desc + 1); 
933         m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
934
935         rssi = rum_get_rssi(sc, desc->rssi);
936
937         wh = mtod(m, struct ieee80211_frame *);
938         ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
939
940         /* Error happened during RSSI conversion. */
941         if (rssi < 0)
942                 rssi = ni->ni_rssi;
943
944         if (bpf_peers_present(sc->sc_drvbpf)) {
945                 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
946
947                 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
948                 tap->wr_rate = rum_rxrate(desc);
949                 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
950                 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
951                 tap->wr_antenna = sc->rx_ant;
952                 tap->wr_antsignal = rssi;
953
954                 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
955         }
956
957         /* send the frame to the 802.11 layer */
958         ieee80211_input(ic, m, ni, rssi, RT2573_NOISE_FLOOR, 0);
959
960         /* node is no longer needed */
961         ieee80211_free_node(ni);
962
963         DPRINTFN(15, ("rx done\n"));
964
965 skip:   /* setup a new transfer */
966         usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
967             USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
968         usbd_transfer(xfer);
969 }
970
971 /*
972  * This function is only used by the Rx radiotap code. 
973  */
974 static int
975 rum_rxrate(struct rum_rx_desc *desc)
976 {
977         if (le32toh(desc->flags) & RT2573_RX_OFDM) {
978                 /* reverse function of rum_plcp_signal */
979                 switch (desc->rate) {
980                 case 0xb:       return 12;
981                 case 0xf:       return 18;
982                 case 0xa:       return 24;
983                 case 0xe:       return 36;
984                 case 0x9:       return 48;
985                 case 0xd:       return 72;
986                 case 0x8:       return 96;
987                 case 0xc:       return 108;
988                 }
989         } else {
990                 if (desc->rate == 10)
991                         return 2;
992                 if (desc->rate == 20)
993                         return 4;
994                 if (desc->rate == 55)
995                         return 11;
996                 if (desc->rate == 110)
997                         return 22;
998         }
999         return 2;       /* should not get there */
1000 }
1001
1002 /*
1003  * Return the expected ack rate for a frame transmitted at rate `rate'.
1004  */
1005 static int
1006 rum_ack_rate(struct ieee80211com *ic, int rate)
1007 {
1008         switch (rate) {
1009         /* CCK rates */
1010         case 2:
1011                 return 2;
1012         case 4:
1013         case 11:
1014         case 22:
1015                 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1016
1017         /* OFDM rates */
1018         case 12:
1019         case 18:
1020                 return 12;
1021         case 24:
1022         case 36:
1023                 return 24;
1024         case 48:
1025         case 72:
1026         case 96:
1027         case 108:
1028                 return 48;
1029         }
1030
1031         /* default to 1Mbps */
1032         return 2;
1033 }
1034
1035 /*
1036  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1037  * The function automatically determines the operating mode depending on the
1038  * given rate. `flags' indicates whether short preamble is in use or not.
1039  */
1040 static uint16_t
1041 rum_txtime(int len, int rate, uint32_t flags)
1042 {
1043         uint16_t txtime;
1044
1045         if (RUM_RATE_IS_OFDM(rate)) {
1046                 /* IEEE Std 802.11a-1999, pp. 37 */
1047                 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1048                 txtime = 16 + 4 + 4 * txtime + 6;
1049         } else {
1050                 /* IEEE Std 802.11b-1999, pp. 28 */
1051                 txtime = (16 * len + rate - 1) / rate;
1052                 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1053                         txtime +=  72 + 24;
1054                 else
1055                         txtime += 144 + 48;
1056         }
1057         return txtime;
1058 }
1059
1060 static uint8_t
1061 rum_plcp_signal(int rate)
1062 {
1063         switch (rate) {
1064         /* CCK rates (returned values are device-dependent) */
1065         case 2:         return 0x0;
1066         case 4:         return 0x1;
1067         case 11:        return 0x2;
1068         case 22:        return 0x3;
1069
1070         /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1071         case 12:        return 0xb;
1072         case 18:        return 0xf;
1073         case 24:        return 0xa;
1074         case 36:        return 0xe;
1075         case 48:        return 0x9;
1076         case 72:        return 0xd;
1077         case 96:        return 0x8;
1078         case 108:       return 0xc;
1079
1080         /* unsupported rates (should not get there) */
1081         default:        return 0xff;
1082         }
1083 }
1084
1085 static void
1086 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1087     uint32_t flags, uint16_t xflags, int len, int rate)
1088 {
1089         struct ieee80211com *ic = &sc->sc_ic;
1090         uint16_t plcp_length;
1091         int remainder;
1092
1093         desc->flags = htole32(flags);
1094         desc->flags |= htole32(RT2573_TX_VALID);
1095         desc->flags |= htole32(len << 16);
1096
1097         desc->xflags = htole16(xflags);
1098
1099         desc->wme = htole16(RT2573_QID(0) | RT2573_AIFSN(2) | 
1100             RT2573_LOGCWMIN(4) | RT2573_LOGCWMAX(10));
1101
1102         /* setup PLCP fields */
1103         desc->plcp_signal  = rum_plcp_signal(rate);
1104         desc->plcp_service = 4;
1105
1106         len += IEEE80211_CRC_LEN;
1107         if (RUM_RATE_IS_OFDM(rate)) {
1108                 desc->flags |= htole32(RT2573_TX_OFDM);
1109
1110                 plcp_length = len & 0xfff;
1111                 desc->plcp_length_hi = plcp_length >> 6;
1112                 desc->plcp_length_lo = plcp_length & 0x3f;
1113         } else {
1114                 plcp_length = (16 * len + rate - 1) / rate;
1115                 if (rate == 22) {
1116                         remainder = (16 * len) % 22;
1117                         if (remainder != 0 && remainder < 7)
1118                                 desc->plcp_service |= RT2573_PLCP_LENGEXT;
1119                 }
1120                 desc->plcp_length_hi = plcp_length >> 8;
1121                 desc->plcp_length_lo = plcp_length & 0xff;
1122
1123                 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1124                         desc->plcp_signal |= 0x08;
1125         }
1126 }
1127
1128 #define RUM_TX_TIMEOUT  5000
1129
1130 static int
1131 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1132 {
1133         struct ieee80211com *ic = &sc->sc_ic;
1134         struct rum_tx_desc *desc;
1135         struct rum_tx_data *data;
1136         struct ieee80211_frame *wh;
1137         struct ieee80211_key *k;
1138         uint32_t flags = 0;
1139         uint16_t dur;
1140         usbd_status error;
1141         int xferlen, rate;
1142
1143         data = &sc->tx_data[0];
1144         desc = (struct rum_tx_desc *)data->buf;
1145
1146         rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1147
1148         data->m = m0;
1149         data->ni = ni;
1150
1151         wh = mtod(m0, struct ieee80211_frame *);
1152
1153         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1154                 k = ieee80211_crypto_encap(ic, ni, m0);
1155                 if (k == NULL) {
1156                         m_freem(m0);
1157                         return ENOBUFS;
1158                 }
1159         }
1160
1161         wh = mtod(m0, struct ieee80211_frame *);
1162
1163         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1164                 flags |= RT2573_TX_NEED_ACK;
1165
1166                 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate), 
1167                     ic->ic_flags) + sc->sifs;
1168                 *(uint16_t *)wh->i_dur = htole16(dur);
1169
1170                 /* tell hardware to add timestamp for probe responses */
1171                 if ((wh->i_fc[0] &
1172                     (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1173                     (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1174                         flags |= RT2573_TX_TIMESTAMP;
1175         }
1176
1177         if (bpf_peers_present(sc->sc_drvbpf)) {
1178                 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1179
1180                 tap->wt_flags = 0;
1181                 tap->wt_rate = rate;
1182                 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1183                 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1184                 tap->wt_antenna = sc->tx_ant;
1185
1186                 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1187         }
1188
1189         m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1190         rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1191
1192         /* align end on a 4-bytes boundary */
1193         xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1194
1195         /*
1196          * No space left in the last URB to store the extra 4 bytes, force
1197          * sending of another URB.
1198          */
1199         if ((xferlen % 64) == 0)
1200                 xferlen += 4;
1201
1202         DPRINTFN(10, ("sending mgt frame len=%d rate=%d xfer len=%d\n",
1203             m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, rate, xferlen));
1204         
1205         usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1206             USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1207
1208         error = usbd_transfer(data->xfer);
1209         if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1210                 m_freem(m0);
1211                 data->m = NULL;
1212                 data->ni = NULL;
1213                 return error;
1214         }
1215
1216         sc->tx_queued++;
1217
1218         return 0;
1219 }
1220
1221 static int
1222 rum_tx_raw(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1223     const struct ieee80211_bpf_params *params)
1224 {
1225         struct ieee80211com *ic = &sc->sc_ic;
1226         struct rum_tx_desc *desc;
1227         struct rum_tx_data *data;
1228         uint32_t flags;
1229         usbd_status error;
1230         int xferlen, rate;
1231
1232         data = &sc->tx_data[0];
1233         desc = (struct rum_tx_desc *)data->buf;
1234
1235         rate = params->ibp_rate0 & IEEE80211_RATE_VAL;
1236         /* XXX validate */
1237         if (rate == 0) {
1238                 m_freem(m0);
1239                 return EINVAL;
1240         }
1241
1242         if (bpf_peers_present(sc->sc_drvbpf)) {
1243                 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1244
1245                 tap->wt_flags = 0;
1246                 tap->wt_rate = rate;
1247                 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1248                 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1249                 tap->wt_antenna = sc->tx_ant;
1250
1251                 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1252         }
1253
1254         data->m = m0;
1255         data->ni = ni;
1256
1257         flags = 0;
1258         if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
1259                 flags |= RT2573_TX_NEED_ACK;
1260
1261         m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1262         /* XXX need to setup descriptor ourself */
1263         rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1264
1265         /* align end on a 4-bytes boundary */
1266         xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1267
1268         /*
1269          * No space left in the last URB to store the extra 4 bytes, force
1270          * sending of another URB.
1271          */
1272         if ((xferlen % 64) == 0)
1273                 xferlen += 4;
1274
1275         DPRINTFN(10, ("sending raw frame len=%u rate=%u xfer len=%u\n",
1276             m0->m_pkthdr.len, rate, xferlen));
1277
1278         usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1279             xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT,
1280             rum_txeof);
1281
1282         error = usbd_transfer(data->xfer);
1283         if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1284                 return error;
1285
1286         sc->tx_queued++;
1287
1288         return 0;
1289 }
1290
1291 static int
1292 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1293 {
1294         struct ieee80211com *ic = &sc->sc_ic;
1295         struct rum_tx_desc *desc;
1296         struct rum_tx_data *data;
1297         struct ieee80211_frame *wh;
1298         struct ieee80211_key *k;
1299         uint32_t flags = 0;
1300         uint16_t dur;
1301         usbd_status error;
1302         int rate, xferlen;
1303
1304         wh = mtod(m0, struct ieee80211_frame *);
1305
1306         if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1307                 rate = ic->ic_fixed_rate;
1308         else
1309                 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1310
1311         rate &= IEEE80211_RATE_VAL;
1312
1313         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1314                 k = ieee80211_crypto_encap(ic, ni, m0);
1315                 if (k == NULL) {
1316                         m_freem(m0);
1317                         return ENOBUFS;
1318                 }
1319
1320                 /* packet header may have moved, reset our local pointer */
1321                 wh = mtod(m0, struct ieee80211_frame *);
1322         }
1323
1324         data = &sc->tx_data[0];
1325         desc = (struct rum_tx_desc *)data->buf;
1326
1327         data->m = m0;
1328         data->ni = ni;
1329
1330         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1331                 flags |= RT2573_TX_NEED_ACK;
1332                 flags |= RT2573_TX_MORE_FRAG;
1333
1334                 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1335                     ic->ic_flags) + sc->sifs;
1336                 *(uint16_t *)wh->i_dur = htole16(dur);
1337         }
1338
1339         if (bpf_peers_present(sc->sc_drvbpf)) {
1340                 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1341
1342                 tap->wt_flags = 0;
1343                 tap->wt_rate = rate;
1344                 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1345                 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1346                 tap->wt_antenna = sc->tx_ant;
1347
1348                 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1349         }
1350
1351         m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1352         rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1353
1354         /* align end on a 4-bytes boundary */
1355         xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1356
1357         /*
1358          * No space left in the last URB to store the extra 4 bytes, force
1359          * sending of another URB.
1360          */
1361         if ((xferlen % 64) == 0)
1362                 xferlen += 4;
1363
1364         DPRINTFN(10, ("sending frame len=%d rate=%d xfer len=%d\n",
1365             m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, rate, xferlen));
1366
1367         usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1368             USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1369
1370         error = usbd_transfer(data->xfer);
1371         if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1372                 m_freem(m0);
1373                 data->m = NULL;
1374                 data->ni = NULL;
1375                 return error;
1376         }
1377
1378         sc->tx_queued++;
1379
1380         return 0;
1381 }
1382
1383 static void
1384 rum_start(struct ifnet *ifp)
1385 {
1386         struct rum_softc *sc = ifp->if_softc;
1387         struct ieee80211com *ic = &sc->sc_ic;
1388         struct ieee80211_node *ni;
1389         struct mbuf *m0;
1390         struct ether_header *eh;
1391
1392         for (;;) {
1393                 IF_POLL(&ic->ic_mgtq, m0);
1394                 if (m0 != NULL) {
1395                         if (sc->tx_queued >= RUM_TX_LIST_COUNT) {
1396                                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1397                                 break;
1398                         }
1399                         IF_DEQUEUE(&ic->ic_mgtq, m0);
1400
1401                         ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1402                         m0->m_pkthdr.rcvif = NULL;
1403
1404                         if (bpf_peers_present(ic->ic_rawbpf))
1405                                 bpf_mtap(ic->ic_rawbpf, m0);
1406
1407                         if (rum_tx_mgt(sc, m0, ni) != 0) {
1408                                 ieee80211_free_node(ni);
1409                                 break;
1410                         }
1411                 } else {
1412                         if (ic->ic_state != IEEE80211_S_RUN)
1413                                 break;
1414                         IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
1415                         if (m0 == NULL)
1416                                 break;
1417                         if (sc->tx_queued >= RUM_TX_LIST_COUNT) {
1418                                 IFQ_DRV_PREPEND(&ifp->if_snd, m0);
1419                                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1420                                 break;
1421                         }
1422                         /*
1423                          * Cancel any background scan.
1424                          */
1425                         if (ic->ic_flags & IEEE80211_F_SCAN)
1426                                 ieee80211_cancel_scan(ic);
1427
1428                         if (m0->m_len < sizeof (struct ether_header) &&
1429                             !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1430                                 continue;
1431
1432                         eh = mtod(m0, struct ether_header *);
1433                         ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1434                         if (ni == NULL) {
1435                                 m_freem(m0);
1436                                 continue;
1437                         }
1438                         BPF_MTAP(ifp, m0);
1439
1440                         m0 = ieee80211_encap(ic, m0, ni);
1441                         if (m0 == NULL) {
1442                                 ieee80211_free_node(ni);
1443                                 continue;
1444                         }
1445
1446                         if (bpf_peers_present(ic->ic_rawbpf))
1447                                 bpf_mtap(ic->ic_rawbpf, m0);
1448
1449                         if (rum_tx_data(sc, m0, ni) != 0) {
1450                                 ieee80211_free_node(ni);
1451                                 ifp->if_oerrors++;
1452                                 break;
1453                         }
1454                 }
1455
1456                 sc->sc_tx_timer = 5;
1457                 ic->ic_lastdata = ticks;
1458                 callout_reset(&sc->watchdog_ch, hz, rum_watchdog, sc);
1459         }
1460 }
1461
1462 static void
1463 rum_watchdog(void *arg)
1464 {
1465         struct rum_softc *sc = arg;
1466
1467         RUM_LOCK(sc);
1468
1469         if (sc->sc_tx_timer > 0) {
1470                 if (--sc->sc_tx_timer == 0) {
1471                         device_printf(sc->sc_dev, "device timeout\n");
1472                         /*rum_init(ifp); XXX needs a process context! */
1473                         sc->sc_ifp->if_oerrors++;
1474                         RUM_UNLOCK(sc);
1475                         return;
1476                 }
1477                 callout_reset(&sc->watchdog_ch, hz, rum_watchdog, sc);
1478         }
1479
1480         RUM_UNLOCK(sc);
1481 }
1482
1483 static int
1484 rum_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1485 {
1486         struct rum_softc *sc = ifp->if_softc;
1487         struct ieee80211com *ic = &sc->sc_ic;
1488         int error = 0;
1489
1490         RUM_LOCK(sc);
1491
1492         switch (cmd) {
1493         case SIOCSIFFLAGS:
1494                 if (ifp->if_flags & IFF_UP) {
1495                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1496                                 rum_update_promisc(sc);
1497                         else
1498                                 rum_init(sc);
1499                 } else {
1500                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1501                                 rum_stop(sc);
1502                 }
1503                 break;
1504         default:
1505                 error = ieee80211_ioctl(ic, cmd, data);
1506         }
1507
1508         if (error == ENETRESET) {
1509                 if ((ifp->if_flags & IFF_UP) &&
1510                     (ifp->if_drv_flags & IFF_DRV_RUNNING) &&
1511                     (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1512                         rum_init(sc);
1513                 error = 0;
1514         }
1515
1516         RUM_UNLOCK(sc);
1517
1518         return error;
1519 }
1520
1521 static void
1522 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1523 {
1524         usb_device_request_t req;
1525         usbd_status error;
1526
1527         req.bmRequestType = UT_READ_VENDOR_DEVICE;
1528         req.bRequest = RT2573_READ_EEPROM;
1529         USETW(req.wValue, 0);
1530         USETW(req.wIndex, addr);
1531         USETW(req.wLength, len);
1532
1533         error = usbd_do_request(sc->sc_udev, &req, buf);
1534         if (error != 0) {
1535                 printf("%s: could not read EEPROM: %s\n",
1536                     device_get_nameunit(sc->sc_dev), usbd_errstr(error));
1537         }
1538 }
1539
1540 static uint32_t
1541 rum_read(struct rum_softc *sc, uint16_t reg)
1542 {
1543         uint32_t val;
1544
1545         rum_read_multi(sc, reg, &val, sizeof val);
1546
1547         return le32toh(val);
1548 }
1549
1550 static void
1551 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1552 {
1553         usb_device_request_t req;
1554         usbd_status error;
1555
1556         req.bmRequestType = UT_READ_VENDOR_DEVICE;
1557         req.bRequest = RT2573_READ_MULTI_MAC;
1558         USETW(req.wValue, 0);
1559         USETW(req.wIndex, reg);
1560         USETW(req.wLength, len);
1561
1562         error = usbd_do_request(sc->sc_udev, &req, buf);
1563         if (error != 0) {
1564                 printf("%s: could not multi read MAC register: %s\n",
1565                     device_get_nameunit(sc->sc_dev), usbd_errstr(error));
1566         }
1567 }
1568
1569 static void
1570 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1571 {
1572         uint32_t tmp = htole32(val);
1573
1574         rum_write_multi(sc, reg, &tmp, sizeof tmp);
1575 }
1576
1577 static void
1578 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1579 {
1580         usb_device_request_t req;
1581         usbd_status error;
1582
1583         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1584         req.bRequest = RT2573_WRITE_MULTI_MAC;
1585         USETW(req.wValue, 0);
1586         USETW(req.wIndex, reg);
1587         USETW(req.wLength, len);
1588
1589         error = usbd_do_request(sc->sc_udev, &req, buf);
1590         if (error != 0) {
1591                 printf("%s: could not multi write MAC register: %s\n",
1592                     device_get_nameunit(sc->sc_dev), usbd_errstr(error));
1593         }
1594 }
1595
1596 static void
1597 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1598 {
1599         uint32_t tmp;
1600         int ntries;
1601
1602         for (ntries = 0; ntries < 5; ntries++) {
1603                 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1604                         break;
1605         }
1606         if (ntries == 5) {
1607                 printf("%s: could not write to BBP\n", 
1608                     device_get_nameunit(sc->sc_dev));
1609                 return;
1610         }
1611
1612         tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1613         rum_write(sc, RT2573_PHY_CSR3, tmp);
1614 }
1615
1616 static uint8_t
1617 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1618 {
1619         uint32_t val;
1620         int ntries;
1621
1622         for (ntries = 0; ntries < 5; ntries++) {
1623                 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1624                         break;
1625         }
1626         if (ntries == 5) {
1627                 printf("%s: could not read BBP\n", 
1628                     device_get_nameunit(sc->sc_dev));
1629                 return 0;
1630         }
1631
1632         val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1633         rum_write(sc, RT2573_PHY_CSR3, val);
1634
1635         for (ntries = 0; ntries < 100; ntries++) {
1636                 val = rum_read(sc, RT2573_PHY_CSR3);
1637                 if (!(val & RT2573_BBP_BUSY))
1638                         return val & 0xff;
1639                 DELAY(1);
1640         }
1641
1642         printf("%s: could not read BBP\n", device_get_nameunit(sc->sc_dev));
1643         return 0;
1644 }
1645
1646 static void
1647 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1648 {
1649         uint32_t tmp;
1650         int ntries;
1651
1652         for (ntries = 0; ntries < 5; ntries++) {
1653                 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1654                         break;
1655         }
1656         if (ntries == 5) {
1657                 printf("%s: could not write to RF\n", 
1658                     device_get_nameunit(sc->sc_dev));
1659                 return;
1660         }
1661
1662         tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1663             (reg & 3);
1664         rum_write(sc, RT2573_PHY_CSR4, tmp);
1665
1666         /* remember last written value in sc */
1667         sc->rf_regs[reg] = val;
1668
1669         DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1670 }
1671
1672 static void
1673 rum_select_antenna(struct rum_softc *sc)
1674 {
1675         uint8_t bbp4, bbp77;
1676         uint32_t tmp;
1677
1678         bbp4  = rum_bbp_read(sc, 4);
1679         bbp77 = rum_bbp_read(sc, 77);
1680
1681         /* TBD */
1682
1683         /* make sure Rx is disabled before switching antenna */
1684         tmp = rum_read(sc, RT2573_TXRX_CSR0);
1685         rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1686
1687         rum_bbp_write(sc,  4, bbp4);
1688         rum_bbp_write(sc, 77, bbp77);
1689
1690         rum_write(sc, RT2573_TXRX_CSR0, tmp);
1691 }
1692
1693 /*
1694  * Enable multi-rate retries for frames sent at OFDM rates.
1695  * In 802.11b/g mode, allow fallback to CCK rates.
1696  */
1697 static void
1698 rum_enable_mrr(struct rum_softc *sc)
1699 {
1700         struct ieee80211com *ic = &sc->sc_ic;
1701         uint32_t tmp;
1702
1703         tmp = rum_read(sc, RT2573_TXRX_CSR4);
1704
1705         tmp &= ~RT2573_MRR_CCK_FALLBACK;
1706         if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1707                 tmp |= RT2573_MRR_CCK_FALLBACK;
1708         tmp |= RT2573_MRR_ENABLED;
1709
1710         rum_write(sc, RT2573_TXRX_CSR4, tmp);
1711 }
1712
1713 static void
1714 rum_set_txpreamble(struct rum_softc *sc)
1715 {
1716         uint32_t tmp;
1717
1718         tmp = rum_read(sc, RT2573_TXRX_CSR4);
1719
1720         tmp &= ~RT2573_SHORT_PREAMBLE;
1721         if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1722                 tmp |= RT2573_SHORT_PREAMBLE;
1723
1724         rum_write(sc, RT2573_TXRX_CSR4, tmp);
1725 }
1726
1727 static void
1728 rum_set_basicrates(struct rum_softc *sc)
1729 {
1730         struct ieee80211com *ic = &sc->sc_ic;
1731
1732         /* update basic rate set */
1733         if (ic->ic_curmode == IEEE80211_MODE_11B) {
1734                 /* 11b basic rates: 1, 2Mbps */
1735                 rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1736         } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1737                 /* 11a basic rates: 6, 12, 24Mbps */
1738                 rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1739         } else {
1740                 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1741                 rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1742         }
1743 }
1744
1745 /*
1746  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
1747  * driver.
1748  */
1749 static void
1750 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1751 {
1752         uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1753         uint32_t tmp;
1754
1755         /* update all BBP registers that depend on the band */
1756         bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1757         bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
1758         if (IEEE80211_IS_CHAN_5GHZ(c)) {
1759                 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1760                 bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
1761         }
1762         if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1763             (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1764                 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1765         }
1766
1767         sc->bbp17 = bbp17;
1768         rum_bbp_write(sc,  17, bbp17);
1769         rum_bbp_write(sc,  96, bbp96);
1770         rum_bbp_write(sc, 104, bbp104);
1771
1772         if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1773             (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1774                 rum_bbp_write(sc, 75, 0x80);
1775                 rum_bbp_write(sc, 86, 0x80);
1776                 rum_bbp_write(sc, 88, 0x80);
1777         }
1778
1779         rum_bbp_write(sc, 35, bbp35);
1780         rum_bbp_write(sc, 97, bbp97);
1781         rum_bbp_write(sc, 98, bbp98);
1782
1783         tmp = rum_read(sc, RT2573_PHY_CSR0);
1784         tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1785         if (IEEE80211_IS_CHAN_2GHZ(c))
1786                 tmp |= RT2573_PA_PE_2GHZ;
1787         else
1788                 tmp |= RT2573_PA_PE_5GHZ;
1789         rum_write(sc, RT2573_PHY_CSR0, tmp);
1790
1791         /* 802.11a uses a 16 microseconds short interframe space */
1792         sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1793 }
1794
1795 static void
1796 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1797 {
1798         struct ieee80211com *ic = &sc->sc_ic;
1799         const struct rfprog *rfprog;
1800         uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1801         int8_t power;
1802         u_int i, chan;
1803
1804         chan = ieee80211_chan2ieee(ic, c);
1805         if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1806                 return;
1807
1808         /* select the appropriate RF settings based on what EEPROM says */
1809         rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1810                   sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1811
1812         /* find the settings for this channel (we know it exists) */
1813         for (i = 0; rfprog[i].chan != chan; i++);
1814
1815         power = sc->txpow[i];
1816         if (power < 0) {
1817                 bbp94 += power;
1818                 power = 0;
1819         } else if (power > 31) {
1820                 bbp94 += power - 31;
1821                 power = 31;
1822         }
1823
1824         /*
1825          * If we are switching from the 2GHz band to the 5GHz band or
1826          * vice-versa, BBP registers need to be reprogrammed.
1827          */
1828         if (c->ic_flags != ic->ic_curchan->ic_flags) {
1829                 rum_select_band(sc, c);
1830                 rum_select_antenna(sc);
1831         }
1832         ic->ic_curchan = c;
1833
1834         rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1835         rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1836         rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1837         rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1838
1839         rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1840         rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1841         rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1842         rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1843
1844         rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1845         rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1846         rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1847         rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1848
1849         DELAY(10);
1850
1851         /* enable smart mode for MIMO-capable RFs */
1852         bbp3 = rum_bbp_read(sc, 3);
1853
1854         bbp3 &= ~RT2573_SMART_MODE;
1855         if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1856                 bbp3 |= RT2573_SMART_MODE;
1857
1858         rum_bbp_write(sc, 3, bbp3);
1859
1860         if (bbp94 != RT2573_BBPR94_DEFAULT)
1861                 rum_bbp_write(sc, 94, bbp94);
1862 }
1863
1864 /*
1865  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1866  * and HostAP operating modes.
1867  */
1868 static void
1869 rum_enable_tsf_sync(struct rum_softc *sc)
1870 {
1871         struct ieee80211com *ic = &sc->sc_ic;
1872         uint32_t tmp;
1873
1874         if (ic->ic_opmode != IEEE80211_M_STA) {
1875                 /*
1876                  * Change default 16ms TBTT adjustment to 8ms.
1877                  * Must be done before enabling beacon generation.
1878                  */
1879                 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1880         }
1881
1882         tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1883
1884         /* set beacon interval (in 1/16ms unit) */
1885         tmp |= ic->ic_bss->ni_intval * 16;
1886
1887         tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1888         if (ic->ic_opmode == IEEE80211_M_STA)
1889                 tmp |= RT2573_TSF_MODE(1);
1890         else
1891                 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1892
1893         rum_write(sc, RT2573_TXRX_CSR9, tmp);
1894 }
1895
1896 static void
1897 rum_update_slot(struct ifnet *ifp)
1898 {
1899         struct rum_softc *sc = ifp->if_softc;
1900         struct ieee80211com *ic = &sc->sc_ic;
1901         uint8_t slottime;
1902         uint32_t tmp;
1903
1904         slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1905
1906         tmp = rum_read(sc, RT2573_MAC_CSR9);
1907         tmp = (tmp & ~0xff) | slottime;
1908         rum_write(sc, RT2573_MAC_CSR9, tmp);
1909
1910         DPRINTF(("setting slot time to %uus\n", slottime));
1911 }
1912
1913 static void
1914 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1915 {
1916         uint32_t tmp;
1917
1918         tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1919         rum_write(sc, RT2573_MAC_CSR4, tmp);
1920
1921         tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1922         rum_write(sc, RT2573_MAC_CSR5, tmp);
1923 }
1924
1925 static void
1926 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1927 {
1928         uint32_t tmp;
1929
1930         tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1931         rum_write(sc, RT2573_MAC_CSR2, tmp);
1932
1933         tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1934         rum_write(sc, RT2573_MAC_CSR3, tmp);
1935 }
1936
1937 static void
1938 rum_update_promisc(struct rum_softc *sc)
1939 {
1940         struct ifnet *ifp = sc->sc_ic.ic_ifp;
1941         uint32_t tmp;
1942
1943         tmp = rum_read(sc, RT2573_TXRX_CSR0);
1944
1945         tmp &= ~RT2573_DROP_NOT_TO_ME;
1946         if (!(ifp->if_flags & IFF_PROMISC))
1947                 tmp |= RT2573_DROP_NOT_TO_ME;
1948
1949         rum_write(sc, RT2573_TXRX_CSR0, tmp);
1950
1951         DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1952             "entering" : "leaving"));
1953 }
1954
1955 static const char *
1956 rum_get_rf(int rev)
1957 {
1958         switch (rev) {
1959         case RT2573_RF_2527:    return "RT2527 (MIMO XR)";
1960         case RT2573_RF_2528:    return "RT2528";
1961         case RT2573_RF_5225:    return "RT5225 (MIMO XR)";
1962         case RT2573_RF_5226:    return "RT5226";
1963         default:                return "unknown";
1964         }
1965 }
1966
1967 static void
1968 rum_read_eeprom(struct rum_softc *sc)
1969 {
1970         struct ieee80211com *ic = &sc->sc_ic;
1971         uint16_t val;
1972 #ifdef RUM_DEBUG
1973         int i;
1974 #endif
1975
1976         /* read MAC address */
1977         rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1978
1979         rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1980         val = le16toh(val);
1981         sc->rf_rev =   (val >> 11) & 0x1f;
1982         sc->hw_radio = (val >> 10) & 0x1;
1983         sc->rx_ant =   (val >> 4)  & 0x3;
1984         sc->tx_ant =   (val >> 2)  & 0x3;
1985         sc->nb_ant =   val & 0x3;
1986
1987         DPRINTF(("RF revision=%d\n", sc->rf_rev));
1988
1989         rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1990         val = le16toh(val);
1991         sc->ext_5ghz_lna = (val >> 6) & 0x1;
1992         sc->ext_2ghz_lna = (val >> 4) & 0x1;
1993
1994         DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1995             sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1996
1997         rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1998         val = le16toh(val);
1999         if ((val & 0xff) != 0xff)
2000                 sc->rssi_2ghz_corr = (int8_t)(val & 0xff);      /* signed */
2001
2002         /* Only [-10, 10] is valid */
2003         if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10)
2004                 sc->rssi_2ghz_corr = 0;
2005
2006         rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
2007         val = le16toh(val);
2008         if ((val & 0xff) != 0xff)
2009                 sc->rssi_5ghz_corr = (int8_t)(val & 0xff);      /* signed */
2010
2011         /* Only [-10, 10] is valid */
2012         if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10)
2013                 sc->rssi_5ghz_corr = 0;
2014
2015         if (sc->ext_2ghz_lna)
2016                 sc->rssi_2ghz_corr -= 14;
2017         if (sc->ext_5ghz_lna)
2018                 sc->rssi_5ghz_corr -= 14;
2019
2020         DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
2021             sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
2022
2023         rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
2024         val = le16toh(val);
2025         if ((val & 0xff) != 0xff)
2026                 sc->rffreq = val & 0xff;
2027
2028         DPRINTF(("RF freq=%d\n", sc->rffreq));
2029
2030         /* read Tx power for all a/b/g channels */
2031         rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
2032         /* XXX default Tx power for 802.11a channels */
2033         memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
2034 #ifdef RUM_DEBUG
2035         for (i = 0; i < 14; i++)
2036                 DPRINTF(("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]));
2037 #endif
2038
2039         /* read default values for BBP registers */
2040         rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
2041 #ifdef RUM_DEBUG
2042         for (i = 0; i < 14; i++) {
2043                 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
2044                         continue;
2045                 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
2046                     sc->bbp_prom[i].val));
2047         }
2048 #endif
2049 }
2050
2051 static int
2052 rum_bbp_init(struct rum_softc *sc)
2053 {
2054 #define N(a)    (sizeof (a) / sizeof ((a)[0]))
2055         int i, ntries;
2056
2057         /* wait for BBP to be ready */
2058         for (ntries = 0; ntries < 100; ntries++) {
2059                 const uint8_t val = rum_bbp_read(sc, 0);
2060                 if (val != 0 && val != 0xff)
2061                         break;
2062                 DELAY(1000);
2063         }
2064         if (ntries == 100) {
2065                 device_printf(sc->sc_dev, "timeout waiting for BBP\n");
2066                 return EIO;
2067         }
2068
2069         /* initialize BBP registers to default values */
2070         for (i = 0; i < N(rum_def_bbp); i++)
2071                 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
2072
2073         /* write vendor-specific BBP values (from EEPROM) */
2074         for (i = 0; i < 16; i++) {
2075                 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
2076                         continue;
2077                 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2078         }
2079
2080         return 0;
2081 #undef N
2082 }
2083
2084 static void
2085 rum_init(void *priv)
2086 {
2087 #define N(a)    (sizeof (a) / sizeof ((a)[0]))
2088         struct rum_softc *sc = priv;
2089         struct ieee80211com *ic = &sc->sc_ic;
2090         struct ifnet *ifp = ic->ic_ifp;
2091         struct rum_rx_data *data;
2092         uint32_t tmp;
2093         usbd_status error;
2094         int i, ntries;
2095
2096         rum_stop(sc);
2097
2098         /* initialize MAC registers to default values */
2099         for (i = 0; i < N(rum_def_mac); i++)
2100                 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
2101
2102         /* set host ready */
2103         rum_write(sc, RT2573_MAC_CSR1, 3);
2104         rum_write(sc, RT2573_MAC_CSR1, 0);
2105
2106         /* wait for BBP/RF to wakeup */
2107         for (ntries = 0; ntries < 1000; ntries++) {
2108                 if (rum_read(sc, RT2573_MAC_CSR12) & 8)
2109                         break;
2110                 rum_write(sc, RT2573_MAC_CSR12, 4);     /* force wakeup */
2111                 DELAY(1000);
2112         }
2113         if (ntries == 1000) {
2114                 printf("%s: timeout waiting for BBP/RF to wakeup\n",
2115                     device_get_nameunit(sc->sc_dev));
2116                 goto fail;
2117         }
2118
2119         if ((error = rum_bbp_init(sc)) != 0)
2120                 goto fail;
2121
2122         /* select default channel */
2123         rum_select_band(sc, ic->ic_curchan);
2124         rum_select_antenna(sc);
2125         rum_set_chan(sc, ic->ic_curchan);
2126
2127         /* clear STA registers */
2128         rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2129
2130         IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
2131         rum_set_macaddr(sc, ic->ic_myaddr);
2132
2133         /* initialize ASIC */
2134         rum_write(sc, RT2573_MAC_CSR1, 4);
2135
2136         /*
2137          * Allocate xfer for AMRR statistics requests.
2138          */
2139         sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2140         if (sc->amrr_xfer == NULL) {
2141                 printf("%s: could not allocate AMRR xfer\n",
2142                     device_get_nameunit(sc->sc_dev));
2143                 goto fail;
2144         }
2145
2146         /*
2147          * Open Tx and Rx USB bulk pipes.
2148          */
2149         error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2150             &sc->sc_tx_pipeh);
2151         if (error != 0) {
2152                 printf("%s: could not open Tx pipe: %s\n",
2153                     device_get_nameunit(sc->sc_dev), usbd_errstr(error));
2154                 goto fail;
2155         }
2156         error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2157             &sc->sc_rx_pipeh);
2158         if (error != 0) {
2159                 printf("%s: could not open Rx pipe: %s\n",
2160                     device_get_nameunit(sc->sc_dev), usbd_errstr(error));
2161                 goto fail;
2162         }
2163
2164         /*
2165          * Allocate Tx and Rx xfer queues.
2166          */
2167         error = rum_alloc_tx_list(sc);
2168         if (error != 0) {
2169                 printf("%s: could not allocate Tx list\n",
2170                     device_get_nameunit(sc->sc_dev));
2171                 goto fail;
2172         }
2173         error = rum_alloc_rx_list(sc);
2174         if (error != 0) {
2175                 printf("%s: could not allocate Rx list\n",
2176                     device_get_nameunit(sc->sc_dev));
2177                 goto fail;
2178         }
2179
2180         /*
2181          * Start up the receive pipe.
2182          */
2183         for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
2184                 data = &sc->rx_data[i];
2185
2186                 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2187                     MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2188                 usbd_transfer(data->xfer);
2189         }
2190
2191         /* update Rx filter */
2192         tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2193
2194         tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2195         if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2196                 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2197                        RT2573_DROP_ACKCTS;
2198                 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2199                         tmp |= RT2573_DROP_TODS;
2200                 if (!(ifp->if_flags & IFF_PROMISC))
2201                         tmp |= RT2573_DROP_NOT_TO_ME;
2202         }
2203         rum_write(sc, RT2573_TXRX_CSR0, tmp);
2204
2205         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2206         ifp->if_drv_flags |= IFF_DRV_RUNNING;
2207
2208         if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2209                 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2210                         ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2211         } else
2212                 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2213
2214         return;
2215
2216 fail:   rum_stop(sc);
2217 #undef N
2218 }
2219
2220 static void
2221 rum_stop(void *priv)
2222 {
2223         struct rum_softc *sc = priv;
2224         struct ieee80211com *ic = &sc->sc_ic;
2225         struct ifnet *ifp = ic->ic_ifp;
2226         uint32_t tmp;
2227
2228         sc->sc_tx_timer = 0;
2229         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2230
2231         ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2232
2233         /* disable Rx */
2234         tmp = rum_read(sc, RT2573_TXRX_CSR0);
2235         rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2236
2237         /* reset ASIC */
2238         rum_write(sc, RT2573_MAC_CSR1, 3);
2239         rum_write(sc, RT2573_MAC_CSR1, 0);
2240
2241         if (sc->amrr_xfer != NULL) {
2242                 usbd_free_xfer(sc->amrr_xfer);
2243                 sc->amrr_xfer = NULL;
2244         }
2245
2246         if (sc->sc_rx_pipeh != NULL) {
2247                 usbd_abort_pipe(sc->sc_rx_pipeh);
2248                 usbd_close_pipe(sc->sc_rx_pipeh);
2249                 sc->sc_rx_pipeh = NULL;
2250         }
2251         if (sc->sc_tx_pipeh != NULL) {
2252                 usbd_abort_pipe(sc->sc_tx_pipeh);
2253                 usbd_close_pipe(sc->sc_tx_pipeh);
2254                 sc->sc_tx_pipeh = NULL;
2255         }
2256
2257         rum_free_rx_list(sc);
2258         rum_free_tx_list(sc);
2259 }
2260
2261 static int
2262 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2263 {
2264         usb_device_request_t req;
2265         uint16_t reg = RT2573_MCU_CODE_BASE;
2266         usbd_status error;
2267
2268         /* copy firmware image into NIC */
2269         for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2270                 rum_write(sc, reg, UGETDW(ucode));
2271
2272         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2273         req.bRequest = RT2573_MCU_CNTL;
2274         USETW(req.wValue, RT2573_MCU_RUN);
2275         USETW(req.wIndex, 0);
2276         USETW(req.wLength, 0);
2277
2278         error = usbd_do_request(sc->sc_udev, &req, NULL);
2279         if (error != 0) {
2280                 printf("%s: could not run firmware: %s\n",
2281                     device_get_nameunit(sc->sc_dev), usbd_errstr(error));
2282         }
2283         return error;
2284 }
2285
2286 static int
2287 rum_prepare_beacon(struct rum_softc *sc)
2288 {
2289         struct ieee80211com *ic = &sc->sc_ic;
2290         struct rum_tx_desc desc;
2291         struct mbuf *m0;
2292         int rate;
2293
2294         m0 = ieee80211_beacon_alloc(ic->ic_bss, &sc->sc_bo);
2295         if (m0 == NULL) {
2296                 return ENOBUFS;
2297         }
2298
2299         /* send beacons at the lowest available rate */
2300         rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2301
2302         rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2303             m0->m_pkthdr.len, rate);
2304
2305         /* copy the first 24 bytes of Tx descriptor into NIC memory */
2306         rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2307
2308         /* copy beacon header and payload into NIC memory */
2309         rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2310             m0->m_pkthdr.len);
2311
2312         m_freem(m0);
2313
2314         return 0;
2315 }
2316
2317 static int
2318 rum_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2319     const struct ieee80211_bpf_params *params)
2320 {
2321         struct ieee80211com *ic = ni->ni_ic;
2322         struct ifnet *ifp = ic->ic_ifp;
2323         struct rum_softc *sc = ifp->if_softc;
2324
2325         /* prevent management frames from being sent if we're not ready */
2326         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2327                 m_freem(m);
2328                 ieee80211_free_node(ni);
2329                 return ENETDOWN;
2330         }
2331         if (sc->tx_queued >= RUM_TX_LIST_COUNT) {
2332                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2333                 m_freem(m);
2334                 ieee80211_free_node(ni);
2335                 return EIO;
2336         }
2337
2338         if (bpf_peers_present(ic->ic_rawbpf))
2339                 bpf_mtap(ic->ic_rawbpf, m);
2340
2341         ifp->if_opackets++;
2342
2343         if (params == NULL) {
2344                 /*
2345                  * Legacy path; interpret frame contents to decide
2346                  * precisely how to send the frame.
2347                  */
2348                 if (rum_tx_mgt(sc, m, ni) != 0)
2349                         goto bad;
2350         } else {
2351                 /*
2352                  * Caller supplied explicit parameters to use in
2353                  * sending the frame.
2354                  */
2355                 if (rum_tx_raw(sc, m, ni, params) != 0)
2356                         goto bad;
2357         }
2358         sc->sc_tx_timer = 5;
2359         callout_reset(&sc->watchdog_ch, hz, rum_watchdog, sc);
2360
2361         return 0;
2362 bad:
2363         ifp->if_oerrors++;
2364         ieee80211_free_node(ni);
2365         return EIO;
2366 }
2367
2368 static void
2369 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2370 {
2371         int i;
2372
2373         /* clear statistic registers (STA_CSR0 to STA_CSR5) */
2374         rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2375
2376         ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2377
2378         /* set rate to some reasonable initial value */
2379         for (i = ni->ni_rates.rs_nrates - 1;
2380              i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2381              i--);
2382         ni->ni_txrate = i;
2383
2384         callout_reset(&sc->amrr_ch, hz, rum_amrr_timeout, sc);
2385 }
2386
2387 static void
2388 rum_amrr_timeout(void *arg)
2389 {
2390         struct rum_softc *sc = (struct rum_softc *)arg;
2391         usb_device_request_t req;
2392
2393         /*
2394          * Asynchronously read statistic registers (cleared by read).
2395          */
2396         req.bmRequestType = UT_READ_VENDOR_DEVICE;
2397         req.bRequest = RT2573_READ_MULTI_MAC;
2398         USETW(req.wValue, 0);
2399         USETW(req.wIndex, RT2573_STA_CSR0);
2400         USETW(req.wLength, sizeof sc->sta);
2401
2402         usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2403             USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2404             rum_amrr_update);
2405         (void)usbd_transfer(sc->amrr_xfer);
2406 }
2407
2408 static void
2409 rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2410     usbd_status status)
2411 {
2412         struct rum_softc *sc = (struct rum_softc *)priv;
2413         struct ifnet *ifp = sc->sc_ic.ic_ifp;
2414
2415         if (status != USBD_NORMAL_COMPLETION) {
2416                 device_printf(sc->sc_dev, "could not retrieve Tx statistics - "
2417                     "cancelling automatic rate control\n");
2418                 return;
2419         }
2420
2421         /* count TX retry-fail as Tx errors */
2422         ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2423
2424         sc->amn.amn_retrycnt =
2425             (le32toh(sc->sta[4]) >> 16) +       /* TX one-retry ok count */
2426             (le32toh(sc->sta[5]) & 0xffff) +    /* TX more-retry ok count */
2427             (le32toh(sc->sta[5]) >> 16);        /* TX retry-fail count */
2428
2429         sc->amn.amn_txcnt =
2430             sc->amn.amn_retrycnt +
2431             (le32toh(sc->sta[4]) & 0xffff);     /* TX no-retry ok count */
2432
2433         ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2434
2435         callout_reset(&sc->amrr_ch, hz, rum_amrr_timeout, sc);
2436 }
2437
2438 static void
2439 rum_scan_start(struct ieee80211com *ic)
2440 {
2441         struct rum_softc *sc = ic->ic_ifp->if_softc;
2442
2443         usb_rem_task(sc->sc_udev, &sc->sc_scantask);
2444
2445         /* do it in a process context */
2446         sc->sc_scan_action = RUM_SCAN_START;
2447         usb_add_task(sc->sc_udev, &sc->sc_scantask, USB_TASKQ_DRIVER);
2448 }
2449
2450 static void
2451 rum_scan_end(struct ieee80211com *ic)
2452 {
2453         struct rum_softc *sc = ic->ic_ifp->if_softc;
2454
2455         usb_rem_task(sc->sc_udev, &sc->sc_scantask);
2456
2457         /* do it in a process context */
2458         sc->sc_scan_action = RUM_SCAN_END;
2459         usb_add_task(sc->sc_udev, &sc->sc_scantask, USB_TASKQ_DRIVER);
2460 }
2461
2462 static void
2463 rum_set_channel(struct ieee80211com *ic)
2464 {
2465         struct rum_softc *sc = ic->ic_ifp->if_softc;
2466
2467         usb_rem_task(sc->sc_udev, &sc->sc_scantask);
2468
2469         /* do it in a process context */
2470         sc->sc_scan_action = RUM_SET_CHANNEL;
2471         usb_add_task(sc->sc_udev, &sc->sc_scantask, USB_TASKQ_DRIVER);
2472 }
2473
2474 static void
2475 rum_scantask(void *arg)
2476 {
2477         struct rum_softc *sc = arg;
2478         struct ieee80211com *ic = &sc->sc_ic;
2479         struct ifnet *ifp = ic->ic_ifp;
2480         uint32_t tmp;
2481
2482         RUM_LOCK(sc);
2483
2484         switch (sc->sc_scan_action) {
2485         case RUM_SCAN_START:
2486                 /* abort TSF synchronization */
2487                 tmp = rum_read(sc, RT2573_TXRX_CSR9);
2488                 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
2489                 rum_set_bssid(sc, ifp->if_broadcastaddr);
2490                 break;
2491
2492         case RUM_SCAN_END:
2493                 rum_enable_tsf_sync(sc);
2494                 /* XXX keep local copy */
2495                 rum_set_bssid(sc, ic->ic_bss->ni_bssid);
2496                 break;
2497
2498         case RUM_SET_CHANNEL:
2499                 mtx_lock(&Giant);
2500                 rum_set_chan(sc, ic->ic_curchan);
2501                 mtx_unlock(&Giant);
2502                 break;
2503
2504         default:
2505                 panic("unknown scan action %d\n", sc->sc_scan_action);
2506                 /* NEVER REACHED */
2507                 break;
2508         }
2509
2510         RUM_UNLOCK(sc);
2511 }
2512
2513 static int
2514 rum_get_rssi(struct rum_softc *sc, uint8_t raw)
2515 {
2516         int lna, agc, rssi;
2517
2518         lna = (raw >> 5) & 0x3;
2519         agc = raw & 0x1f;
2520
2521         if (lna == 0) {
2522                 /*
2523                  * No RSSI mapping
2524                  *
2525                  * NB: Since RSSI is relative to noise floor, -1 is
2526                  *     adequate for caller to know error happened.
2527                  */
2528                 return -1;
2529         }
2530
2531         rssi = (2 * agc) - RT2573_NOISE_FLOOR;
2532
2533         if (IEEE80211_IS_CHAN_2GHZ(sc->sc_ic.ic_curchan)) {
2534                 rssi += sc->rssi_2ghz_corr;
2535
2536                 if (lna == 1)
2537                         rssi -= 64;
2538                 else if (lna == 2)
2539                         rssi -= 74;
2540                 else if (lna == 3)
2541                         rssi -= 90;
2542         } else {
2543                 rssi += sc->rssi_5ghz_corr;
2544
2545                 if (!sc->ext_5ghz_lna && lna != 1)
2546                         rssi += 4;
2547
2548                 if (lna == 1)
2549                         rssi -= 64;
2550                 else if (lna == 2)
2551                         rssi -= 86;
2552                 else if (lna == 3)
2553                         rssi -= 100;
2554         }
2555         return rssi;
2556 }
2557
2558 static device_method_t rum_methods[] = {
2559         /* Device interface */
2560         DEVMETHOD(device_probe,         rum_match),
2561         DEVMETHOD(device_attach,        rum_attach),
2562         DEVMETHOD(device_detach,        rum_detach),
2563
2564         { 0, 0 }
2565 };
2566
2567 static driver_t rum_driver = {
2568         "rum",
2569         rum_methods,
2570         sizeof(struct rum_softc)
2571 };
2572
2573 static devclass_t rum_devclass;
2574
2575 DRIVER_MODULE(rum, uhub, rum_driver, rum_devclass, usbd_driver_load, 0);