]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/usb/if_rum.c
This commit was generated by cvs2svn to compensate for changes in r173403,
[FreeBSD/FreeBSD.git] / sys / dev / usb / if_rum.c
1 /*      $FreeBSD$       */
2
3 /*-
4  * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
5  * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19
20 #include <sys/cdefs.h>
21 __FBSDID("$FreeBSD$");
22
23 /*-
24  * Ralink Technology RT2501USB/RT2601USB chipset driver
25  * http://www.ralinktech.com.tw/
26  */
27
28 #include <sys/param.h>
29 #include <sys/sysctl.h>
30 #include <sys/sockio.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/module.h>
37 #include <sys/bus.h>
38 #include <sys/endian.h>
39
40 #include <machine/bus.h>
41 #include <machine/resource.h>
42 #include <sys/rman.h>
43
44 #include <net/bpf.h>
45 #include <net/if.h>
46 #include <net/if_arp.h>
47 #include <net/ethernet.h>
48 #include <net/if_dl.h>
49 #include <net/if_media.h>
50 #include <net/if_types.h>
51
52 #include <net80211/ieee80211_var.h>
53 #include <net80211/ieee80211_amrr.h>
54 #include <net80211/ieee80211_radiotap.h>
55 #include <net80211/ieee80211_regdomain.h>
56
57 #include <dev/usb/usb.h>
58 #include <dev/usb/usbdi.h>
59 #include <dev/usb/usbdi_util.h>
60 #include "usbdevs.h"
61
62 #include <dev/usb/if_rumreg.h>
63 #include <dev/usb/if_rumvar.h>
64 #include <dev/usb/rt2573_ucode.h>
65
66 #ifdef USB_DEBUG
67 #define DPRINTF(x)      do { if (rumdebug > 0) printf x; } while (0)
68 #define DPRINTFN(n, x)  do { if (rumdebug >= (n)) printf x; } while (0)
69 int rumdebug = 0;
70 SYSCTL_NODE(_hw_usb, OID_AUTO, rum, CTLFLAG_RW, 0, "USB rum");
71 SYSCTL_INT(_hw_usb_rum, OID_AUTO, debug, CTLFLAG_RW, &rumdebug, 0,
72     "rum debug level");
73 #else
74 #define DPRINTF(x)
75 #define DPRINTFN(n, x)
76 #endif
77
78 /* various supported device vendors/products */
79 static const struct usb_devno rum_devs[] = {
80         { USB_VENDOR_ABOCOM,            USB_PRODUCT_ABOCOM_HWU54DM },
81         { USB_VENDOR_ABOCOM,            USB_PRODUCT_ABOCOM_RT2573_2 },
82         { USB_VENDOR_ABOCOM,            USB_PRODUCT_ABOCOM_RT2573_3 },
83         { USB_VENDOR_ABOCOM,            USB_PRODUCT_ABOCOM_RT2573_4 },
84         { USB_VENDOR_ABOCOM,            USB_PRODUCT_ABOCOM_WUG2700 },
85         { USB_VENDOR_AMIT,              USB_PRODUCT_AMIT_CGWLUSB2GO },
86         { USB_VENDOR_ASUS,              USB_PRODUCT_ASUS_RT2573_1 },
87         { USB_VENDOR_ASUS,              USB_PRODUCT_ASUS_RT2573_2 },
88         { USB_VENDOR_BELKIN,            USB_PRODUCT_BELKIN_F5D7050A },
89         { USB_VENDOR_BELKIN,            USB_PRODUCT_BELKIN_F5D9050V3 },
90         { USB_VENDOR_CISCOLINKSYS,      USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
91         { USB_VENDOR_CISCOLINKSYS,      USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
92         { USB_VENDOR_CONCEPTRONIC2,     USB_PRODUCT_CONCEPTRONIC2_C54RU2 },
93         { USB_VENDOR_DICKSMITH,         USB_PRODUCT_DICKSMITH_CWD854F },
94         { USB_VENDOR_DICKSMITH,         USB_PRODUCT_DICKSMITH_RT2573 },
95         { USB_VENDOR_DLINK2,            USB_PRODUCT_DLINK2_DWLG122C1 },
96         { USB_VENDOR_DLINK2,            USB_PRODUCT_DLINK2_WUA1340 },
97         { USB_VENDOR_GIGABYTE,          USB_PRODUCT_GIGABYTE_GNWB01GS },
98         { USB_VENDOR_GIGABYTE,          USB_PRODUCT_GIGABYTE_GNWI05GS },
99         { USB_VENDOR_GIGASET,           USB_PRODUCT_GIGASET_RT2573 },
100         { USB_VENDOR_GOODWAY,           USB_PRODUCT_GOODWAY_RT2573 },
101         { USB_VENDOR_GUILLEMOT,         USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
102         { USB_VENDOR_GUILLEMOT,         USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
103         { USB_VENDOR_HUAWEI3COM,        USB_PRODUCT_HUAWEI3COM_WUB320G },
104         { USB_VENDOR_MELCO,             USB_PRODUCT_MELCO_G54HP },
105         { USB_VENDOR_MELCO,             USB_PRODUCT_MELCO_SG54HP },
106         { USB_VENDOR_MSI,               USB_PRODUCT_MSI_RT2573_1 },
107         { USB_VENDOR_MSI,               USB_PRODUCT_MSI_RT2573_2 },
108         { USB_VENDOR_MSI,               USB_PRODUCT_MSI_RT2573_3 },
109         { USB_VENDOR_MSI,               USB_PRODUCT_MSI_RT2573_4 },
110         { USB_VENDOR_NOVATECH,          USB_PRODUCT_NOVATECH_RT2573 },
111         { USB_VENDOR_PLANEX2,           USB_PRODUCT_PLANEX2_GWUS54HP },
112         { USB_VENDOR_PLANEX2,           USB_PRODUCT_PLANEX2_GWUS54MINI2 },
113         { USB_VENDOR_PLANEX2,           USB_PRODUCT_PLANEX2_GWUSMM },
114         { USB_VENDOR_QCOM,              USB_PRODUCT_QCOM_RT2573 },
115         { USB_VENDOR_QCOM,              USB_PRODUCT_QCOM_RT2573_2 },
116         { USB_VENDOR_RALINK,            USB_PRODUCT_RALINK_RT2573 },
117         { USB_VENDOR_RALINK,            USB_PRODUCT_RALINK_RT2573_2 },
118         { USB_VENDOR_RALINK,            USB_PRODUCT_RALINK_RT2671 },
119         { USB_VENDOR_SITECOMEU,         USB_PRODUCT_SITECOMEU_WL113R2 },
120         { USB_VENDOR_SITECOMEU,         USB_PRODUCT_SITECOMEU_WL172 },
121         { USB_VENDOR_SURECOM,           USB_PRODUCT_SURECOM_RT2573 }
122 };
123
124 MODULE_DEPEND(rum, wlan, 1, 1, 1);
125 MODULE_DEPEND(rum, wlan_amrr, 1, 1, 1);
126 MODULE_DEPEND(rum, usb, 1, 1, 1);
127
128 static int              rum_alloc_tx_list(struct rum_softc *);
129 static void             rum_free_tx_list(struct rum_softc *);
130 static int              rum_alloc_rx_list(struct rum_softc *);
131 static void             rum_free_rx_list(struct rum_softc *);
132 static int              rum_media_change(struct ifnet *);
133 static void             rum_task(void *);
134 static void             rum_scantask(void *);
135 static int              rum_newstate(struct ieee80211com *,
136                             enum ieee80211_state, int);
137 static void             rum_txeof(usbd_xfer_handle, usbd_private_handle,
138                             usbd_status);
139 static void             rum_rxeof(usbd_xfer_handle, usbd_private_handle,
140                             usbd_status);
141 static int              rum_rxrate(struct rum_rx_desc *);
142 static int              rum_ack_rate(struct ieee80211com *, int);
143 static uint16_t         rum_txtime(int, int, uint32_t);
144 static uint8_t          rum_plcp_signal(int);
145 static void             rum_setup_tx_desc(struct rum_softc *,
146                             struct rum_tx_desc *, uint32_t, uint16_t, int,
147                             int);
148 static int              rum_tx_mgt(struct rum_softc *, struct mbuf *,
149                             struct ieee80211_node *);
150 static int              rum_tx_raw(struct rum_softc *, struct mbuf *,
151                             struct ieee80211_node *, 
152                             const struct ieee80211_bpf_params *);
153 static int              rum_tx_data(struct rum_softc *, struct mbuf *,
154                             struct ieee80211_node *);
155 static void             rum_start(struct ifnet *);
156 static void             rum_watchdog(void *);
157 static int              rum_ioctl(struct ifnet *, u_long, caddr_t);
158 static void             rum_eeprom_read(struct rum_softc *, uint16_t, void *,
159                             int);
160 static uint32_t         rum_read(struct rum_softc *, uint16_t);
161 static void             rum_read_multi(struct rum_softc *, uint16_t, void *,
162                             int);
163 static void             rum_write(struct rum_softc *, uint16_t, uint32_t);
164 static void             rum_write_multi(struct rum_softc *, uint16_t, void *,
165                             size_t);
166 static void             rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
167 static uint8_t          rum_bbp_read(struct rum_softc *, uint8_t);
168 static void             rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
169 static void             rum_select_antenna(struct rum_softc *);
170 static void             rum_enable_mrr(struct rum_softc *);
171 static void             rum_set_txpreamble(struct rum_softc *);
172 static void             rum_set_basicrates(struct rum_softc *);
173 static void             rum_select_band(struct rum_softc *,
174                             struct ieee80211_channel *);
175 static void             rum_set_chan(struct rum_softc *,
176                             struct ieee80211_channel *);
177 static void             rum_enable_tsf_sync(struct rum_softc *);
178 static void             rum_update_slot(struct ifnet *);
179 static void             rum_set_bssid(struct rum_softc *, const uint8_t *);
180 static void             rum_set_macaddr(struct rum_softc *, const uint8_t *);
181 static void             rum_update_promisc(struct rum_softc *);
182 static const char       *rum_get_rf(int);
183 static void             rum_read_eeprom(struct rum_softc *);
184 static int              rum_bbp_init(struct rum_softc *);
185 static void             rum_init(void *);
186 static void             rum_stop(void *);
187 static int              rum_load_microcode(struct rum_softc *, const u_char *,
188                             size_t);
189 static int              rum_prepare_beacon(struct rum_softc *);
190 static int              rum_raw_xmit(struct ieee80211_node *, struct mbuf *,
191                             const struct ieee80211_bpf_params *);
192 static void             rum_scan_start(struct ieee80211com *);
193 static void             rum_scan_end(struct ieee80211com *);
194 static void             rum_set_channel(struct ieee80211com *);
195 static int              rum_get_rssi(struct rum_softc *, uint8_t);
196 static void             rum_amrr_start(struct rum_softc *,
197                             struct ieee80211_node *);
198 static void             rum_amrr_timeout(void *);
199 static void             rum_amrr_update(usbd_xfer_handle, usbd_private_handle,
200                             usbd_status);
201
202 static const struct {
203         uint32_t        reg;
204         uint32_t        val;
205 } rum_def_mac[] = {
206         { RT2573_TXRX_CSR0,  0x025fb032 },
207         { RT2573_TXRX_CSR1,  0x9eaa9eaf },
208         { RT2573_TXRX_CSR2,  0x8a8b8c8d }, 
209         { RT2573_TXRX_CSR3,  0x00858687 },
210         { RT2573_TXRX_CSR7,  0x2e31353b },
211         { RT2573_TXRX_CSR8,  0x2a2a2a2c },
212         { RT2573_TXRX_CSR15, 0x0000000f },
213         { RT2573_MAC_CSR6,   0x00000fff },
214         { RT2573_MAC_CSR8,   0x016c030a },
215         { RT2573_MAC_CSR10,  0x00000718 },
216         { RT2573_MAC_CSR12,  0x00000004 },
217         { RT2573_MAC_CSR13,  0x00007f00 },
218         { RT2573_SEC_CSR0,   0x00000000 },
219         { RT2573_SEC_CSR1,   0x00000000 },
220         { RT2573_SEC_CSR5,   0x00000000 },
221         { RT2573_PHY_CSR1,   0x000023b0 },
222         { RT2573_PHY_CSR5,   0x00040a06 },
223         { RT2573_PHY_CSR6,   0x00080606 },
224         { RT2573_PHY_CSR7,   0x00000408 },
225         { RT2573_AIFSN_CSR,  0x00002273 },
226         { RT2573_CWMIN_CSR,  0x00002344 },
227         { RT2573_CWMAX_CSR,  0x000034aa }
228 };
229
230 static const struct {
231         uint8_t reg;
232         uint8_t val;
233 } rum_def_bbp[] = {
234         {   3, 0x80 },
235         {  15, 0x30 },
236         {  17, 0x20 },
237         {  21, 0xc8 },
238         {  22, 0x38 },
239         {  23, 0x06 },
240         {  24, 0xfe },
241         {  25, 0x0a },
242         {  26, 0x0d },
243         {  32, 0x0b },
244         {  34, 0x12 },
245         {  37, 0x07 },
246         {  39, 0xf8 },
247         {  41, 0x60 },
248         {  53, 0x10 },
249         {  54, 0x18 },
250         {  60, 0x10 },
251         {  61, 0x04 },
252         {  62, 0x04 },
253         {  75, 0xfe },
254         {  86, 0xfe },
255         {  88, 0xfe },
256         {  90, 0x0f },
257         {  99, 0x00 },
258         { 102, 0x16 },
259         { 107, 0x04 }
260 };
261
262 static const struct rfprog {
263         uint8_t         chan;
264         uint32_t        r1, r2, r3, r4;
265 }  rum_rf5226[] = {
266         {   1, 0x00b03, 0x001e1, 0x1a014, 0x30282 },
267         {   2, 0x00b03, 0x001e1, 0x1a014, 0x30287 },
268         {   3, 0x00b03, 0x001e2, 0x1a014, 0x30282 },
269         {   4, 0x00b03, 0x001e2, 0x1a014, 0x30287 },
270         {   5, 0x00b03, 0x001e3, 0x1a014, 0x30282 },
271         {   6, 0x00b03, 0x001e3, 0x1a014, 0x30287 },
272         {   7, 0x00b03, 0x001e4, 0x1a014, 0x30282 },
273         {   8, 0x00b03, 0x001e4, 0x1a014, 0x30287 },
274         {   9, 0x00b03, 0x001e5, 0x1a014, 0x30282 },
275         {  10, 0x00b03, 0x001e5, 0x1a014, 0x30287 },
276         {  11, 0x00b03, 0x001e6, 0x1a014, 0x30282 },
277         {  12, 0x00b03, 0x001e6, 0x1a014, 0x30287 },
278         {  13, 0x00b03, 0x001e7, 0x1a014, 0x30282 },
279         {  14, 0x00b03, 0x001e8, 0x1a014, 0x30284 },
280
281         {  34, 0x00b03, 0x20266, 0x36014, 0x30282 },
282         {  38, 0x00b03, 0x20267, 0x36014, 0x30284 },
283         {  42, 0x00b03, 0x20268, 0x36014, 0x30286 },
284         {  46, 0x00b03, 0x20269, 0x36014, 0x30288 },
285
286         {  36, 0x00b03, 0x00266, 0x26014, 0x30288 },
287         {  40, 0x00b03, 0x00268, 0x26014, 0x30280 },
288         {  44, 0x00b03, 0x00269, 0x26014, 0x30282 },
289         {  48, 0x00b03, 0x0026a, 0x26014, 0x30284 },
290         {  52, 0x00b03, 0x0026b, 0x26014, 0x30286 },
291         {  56, 0x00b03, 0x0026c, 0x26014, 0x30288 },
292         {  60, 0x00b03, 0x0026e, 0x26014, 0x30280 },
293         {  64, 0x00b03, 0x0026f, 0x26014, 0x30282 },
294
295         { 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 },
296         { 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 },
297         { 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 },
298         { 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 },
299         { 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 },
300         { 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 },
301         { 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 },
302         { 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 },
303         { 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 },
304         { 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 },
305         { 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 },
306
307         { 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 },
308         { 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 },
309         { 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 },
310         { 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 },
311         { 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 }
312 }, rum_rf5225[] = {
313         {   1, 0x00b33, 0x011e1, 0x1a014, 0x30282 },
314         {   2, 0x00b33, 0x011e1, 0x1a014, 0x30287 },
315         {   3, 0x00b33, 0x011e2, 0x1a014, 0x30282 },
316         {   4, 0x00b33, 0x011e2, 0x1a014, 0x30287 },
317         {   5, 0x00b33, 0x011e3, 0x1a014, 0x30282 },
318         {   6, 0x00b33, 0x011e3, 0x1a014, 0x30287 },
319         {   7, 0x00b33, 0x011e4, 0x1a014, 0x30282 },
320         {   8, 0x00b33, 0x011e4, 0x1a014, 0x30287 },
321         {   9, 0x00b33, 0x011e5, 0x1a014, 0x30282 },
322         {  10, 0x00b33, 0x011e5, 0x1a014, 0x30287 },
323         {  11, 0x00b33, 0x011e6, 0x1a014, 0x30282 },
324         {  12, 0x00b33, 0x011e6, 0x1a014, 0x30287 },
325         {  13, 0x00b33, 0x011e7, 0x1a014, 0x30282 },
326         {  14, 0x00b33, 0x011e8, 0x1a014, 0x30284 },
327
328         {  34, 0x00b33, 0x01266, 0x26014, 0x30282 },
329         {  38, 0x00b33, 0x01267, 0x26014, 0x30284 },
330         {  42, 0x00b33, 0x01268, 0x26014, 0x30286 },
331         {  46, 0x00b33, 0x01269, 0x26014, 0x30288 },
332
333         {  36, 0x00b33, 0x01266, 0x26014, 0x30288 },
334         {  40, 0x00b33, 0x01268, 0x26014, 0x30280 },
335         {  44, 0x00b33, 0x01269, 0x26014, 0x30282 },
336         {  48, 0x00b33, 0x0126a, 0x26014, 0x30284 },
337         {  52, 0x00b33, 0x0126b, 0x26014, 0x30286 },
338         {  56, 0x00b33, 0x0126c, 0x26014, 0x30288 },
339         {  60, 0x00b33, 0x0126e, 0x26014, 0x30280 },
340         {  64, 0x00b33, 0x0126f, 0x26014, 0x30282 },
341
342         { 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 },
343         { 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 },
344         { 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 },
345         { 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 },
346         { 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 },
347         { 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 },
348         { 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 },
349         { 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 },
350         { 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 },
351         { 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 },
352         { 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 },
353
354         { 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 },
355         { 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 },
356         { 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 },
357         { 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 },
358         { 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 }
359 };
360
361 static int
362 rum_match(device_t self)
363 {
364         struct usb_attach_arg *uaa = device_get_ivars(self);
365
366         if (uaa->iface != NULL)
367                 return UMATCH_NONE;
368
369         return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
370             UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
371 }
372
373 static int
374 rum_attach(device_t self)
375 {
376         struct rum_softc *sc = device_get_softc(self);
377         struct usb_attach_arg *uaa = device_get_ivars(self);
378         struct ieee80211com *ic = &sc->sc_ic;
379         struct ifnet *ifp;
380         const uint8_t *ucode = NULL;
381         usb_interface_descriptor_t *id;
382         usb_endpoint_descriptor_t *ed;
383         usbd_status error;
384         int i, ntries, size, bands;
385         uint32_t tmp;
386
387         sc->sc_udev = uaa->device;
388         sc->sc_dev = self;
389
390         if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) {
391                 printf("%s: could not set configuration no\n",
392                     device_get_nameunit(sc->sc_dev));
393                 return ENXIO;
394         }
395
396         /* get the first interface handle */
397         error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
398             &sc->sc_iface);
399         if (error != 0) {
400                 printf("%s: could not get interface handle\n",
401                     device_get_nameunit(sc->sc_dev));
402                 return ENXIO;
403         }
404
405         /*
406          * Find endpoints.
407          */
408         id = usbd_get_interface_descriptor(sc->sc_iface);
409
410         sc->sc_rx_no = sc->sc_tx_no = -1;
411         for (i = 0; i < id->bNumEndpoints; i++) {
412                 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
413                 if (ed == NULL) {
414                         printf("%s: no endpoint descriptor for iface %d\n",
415                             device_get_nameunit(sc->sc_dev), i);
416                         return ENXIO;
417                 }
418
419                 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
420                     UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
421                         sc->sc_rx_no = ed->bEndpointAddress;
422                 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
423                     UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
424                         sc->sc_tx_no = ed->bEndpointAddress;
425         }
426         if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
427                 printf("%s: missing endpoint\n", 
428                     device_get_nameunit(sc->sc_dev));
429                 return ENXIO;
430         }
431
432         mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), MTX_NETWORK_LOCK,
433             MTX_DEF | MTX_RECURSE);
434
435         usb_init_task(&sc->sc_task, rum_task, sc);
436         usb_init_task(&sc->sc_scantask, rum_scantask, sc);
437         callout_init(&sc->watchdog_ch, 0);
438         callout_init(&sc->amrr_ch, 0);
439
440         /* retrieve RT2573 rev. no */
441         for (ntries = 0; ntries < 1000; ntries++) {
442                 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
443                         break;
444                 DELAY(1000);
445         }
446         if (ntries == 1000) {
447                 printf("%s: timeout waiting for chip to settle\n",
448                     device_get_nameunit(sc->sc_dev));
449                 return ENXIO;
450         }
451
452         /* retrieve MAC address and various other things from EEPROM */
453         rum_read_eeprom(sc);
454
455         printf("%s: MAC/BBP RT2573 (rev 0x%05x), RF %s\n",
456             device_get_nameunit(sc->sc_dev), tmp, rum_get_rf(sc->rf_rev));
457
458         ucode = rt2573_ucode;
459         size = sizeof rt2573_ucode;
460         error = rum_load_microcode(sc, ucode, size);
461         if (error != 0) {
462                 device_printf(sc->sc_dev, "could not load 8051 microcode\n");
463                 mtx_destroy(&sc->sc_mtx);
464                 return ENXIO;
465         }
466
467         ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
468         if (ifp == NULL) {
469                 printf("%s: can not if_alloc()\n", 
470                     device_get_nameunit(sc->sc_dev));
471                 mtx_destroy(&sc->sc_mtx);
472                 return ENXIO;
473         }
474
475         ifp->if_softc = sc;
476         if_initname(ifp, "rum", device_get_unit(sc->sc_dev));
477         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
478             IFF_NEEDSGIANT; /* USB stack is still under Giant lock */
479         ifp->if_init = rum_init;
480         ifp->if_ioctl = rum_ioctl;
481         ifp->if_start = rum_start;
482         IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
483         ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
484         IFQ_SET_READY(&ifp->if_snd);
485
486         ic->ic_ifp = ifp;
487         ic->ic_phytype = IEEE80211_T_OFDM;      /* not only, but not used */
488         ic->ic_opmode = IEEE80211_M_STA;        /* default to BSS mode */
489         ic->ic_state = IEEE80211_S_INIT;
490
491         /* set device capabilities */
492         ic->ic_caps =
493             IEEE80211_C_IBSS |          /* IBSS mode supported */
494             IEEE80211_C_MONITOR |       /* monitor mode supported */
495             IEEE80211_C_HOSTAP |        /* HostAp mode supported */
496             IEEE80211_C_TXPMGT |        /* tx power management */
497             IEEE80211_C_SHPREAMBLE |    /* short preamble supported */
498             IEEE80211_C_SHSLOT |        /* short slot time supported */
499             IEEE80211_C_BGSCAN |        /* bg scanning supported */
500             IEEE80211_C_WPA;            /* 802.11i */
501
502         bands = 0;
503         setbit(&bands, IEEE80211_MODE_11B);
504         setbit(&bands, IEEE80211_MODE_11G);
505         ieee80211_init_channels(ic, 0, CTRY_DEFAULT, bands, 0, 1);
506
507         if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
508                 struct ieee80211_channel *c;
509
510                 /* set supported .11a channels */
511                 for (i = 34; i <= 46; i += 4) {
512                         c = &ic->ic_channels[ic->ic_nchans++];
513                         c->ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
514                         c->ic_flags = IEEE80211_CHAN_A;
515                         c->ic_ieee = i;
516                 }
517                 for (i = 36; i <= 64; i += 4) {
518                         c = &ic->ic_channels[ic->ic_nchans++];
519                         c->ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
520                         c->ic_flags = IEEE80211_CHAN_A;
521                         c->ic_ieee = i;
522                 }
523                 for (i = 100; i <= 140; i += 4) {
524                         c = &ic->ic_channels[ic->ic_nchans++];
525                         c->ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
526                         c->ic_flags = IEEE80211_CHAN_A;
527                         c->ic_ieee = i;
528                 }
529                 for (i = 149; i <= 165; i += 4) {
530                         c = &ic->ic_channels[ic->ic_nchans++];
531                         c->ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
532                         c->ic_flags = IEEE80211_CHAN_A;
533                         c->ic_ieee = i;
534                 }
535         }
536
537         ieee80211_ifattach(ic);
538         ic->ic_scan_start = rum_scan_start;
539         ic->ic_scan_end = rum_scan_end;
540         ic->ic_set_channel = rum_set_channel;
541
542         /* enable s/w bmiss handling in sta mode */
543         ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS;
544
545         /* override state transition machine */
546         sc->sc_newstate = ic->ic_newstate;
547         ic->ic_newstate = rum_newstate;
548         ic->ic_raw_xmit = rum_raw_xmit;
549         ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
550
551         ieee80211_amrr_init(&sc->amrr, ic,
552             IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
553             IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD);
554
555         bpfattach2(ifp, DLT_IEEE802_11_RADIO,
556             sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 
557             &sc->sc_drvbpf);
558
559         sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
560         sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
561         sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
562
563         sc->sc_txtap_len = sizeof sc->sc_txtapu;
564         sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
565         sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
566
567         if (bootverbose)
568                 ieee80211_announce(ic);
569
570         return 0;
571 }
572
573 static int
574 rum_detach(device_t self)
575 {
576         struct rum_softc *sc = device_get_softc(self);
577         struct ieee80211com *ic = &sc->sc_ic;
578         struct ifnet *ifp = ic->ic_ifp;
579
580         rum_stop(sc);
581         usb_rem_task(sc->sc_udev, &sc->sc_task);
582         usb_rem_task(sc->sc_udev, &sc->sc_scantask);
583         callout_stop(&sc->watchdog_ch);
584         callout_stop(&sc->amrr_ch);
585
586         if (sc->amrr_xfer != NULL) {
587                 usbd_free_xfer(sc->amrr_xfer);
588                 sc->amrr_xfer = NULL;
589         }
590
591         if (sc->sc_rx_pipeh != NULL) {
592                 usbd_abort_pipe(sc->sc_rx_pipeh);
593                 usbd_close_pipe(sc->sc_rx_pipeh);
594         }
595         if (sc->sc_tx_pipeh != NULL) {
596                 usbd_abort_pipe(sc->sc_tx_pipeh);
597                 usbd_close_pipe(sc->sc_tx_pipeh);
598         }
599         
600         rum_free_rx_list(sc);
601         rum_free_tx_list(sc);
602
603         bpfdetach(ifp);
604         ieee80211_ifdetach(ic);
605         if_free(ifp);
606
607         mtx_destroy(&sc->sc_mtx);
608
609         return 0;
610 }
611
612 static int
613 rum_alloc_tx_list(struct rum_softc *sc)
614 {
615         struct rum_tx_data *data;
616         int i, error;
617
618         sc->tx_queued = 0;
619
620         for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
621                 data = &sc->tx_data[i];
622
623                 data->sc = sc;
624
625                 data->xfer = usbd_alloc_xfer(sc->sc_udev);
626                 if (data->xfer == NULL) {
627                         printf("%s: could not allocate tx xfer\n",
628                             device_get_nameunit(sc->sc_dev));
629                         error = ENOMEM;
630                         goto fail;
631                 }
632                 data->buf = usbd_alloc_buffer(data->xfer,
633                     RT2573_TX_DESC_SIZE + MCLBYTES);
634                 if (data->buf == NULL) {
635                         printf("%s: could not allocate tx buffer\n",
636                             device_get_nameunit(sc->sc_dev));
637                         error = ENOMEM;
638                         goto fail;
639                 }
640                 /* clean Tx descriptor */
641                 bzero(data->buf, RT2573_TX_DESC_SIZE);
642         }
643
644         return 0;
645
646 fail:   rum_free_tx_list(sc);
647         return error;
648 }
649
650 static void
651 rum_free_tx_list(struct rum_softc *sc)
652 {
653         struct rum_tx_data *data;
654         int i;
655
656         for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
657                 data = &sc->tx_data[i];
658
659                 if (data->xfer != NULL) {
660                         usbd_free_xfer(data->xfer);
661                         data->xfer = NULL;
662                 }
663
664                 if (data->ni != NULL) {
665                         ieee80211_free_node(data->ni);
666                         data->ni = NULL;
667                 }
668         }
669 }
670
671 static int
672 rum_alloc_rx_list(struct rum_softc *sc)
673 {
674         struct rum_rx_data *data;
675         int i, error;
676
677         for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
678                 data = &sc->rx_data[i];
679
680                 data->sc = sc;
681
682                 data->xfer = usbd_alloc_xfer(sc->sc_udev);
683                 if (data->xfer == NULL) {
684                         printf("%s: could not allocate rx xfer\n",
685                             device_get_nameunit(sc->sc_dev));
686                         error = ENOMEM;
687                         goto fail;
688                 }
689                 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
690                         printf("%s: could not allocate rx buffer\n",
691                             device_get_nameunit(sc->sc_dev));
692                         error = ENOMEM;
693                         goto fail;
694                 }
695
696                 data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
697                 if (data->m == NULL) {
698                         printf("%s: could not allocate rx mbuf\n",
699                             device_get_nameunit(sc->sc_dev));
700                         error = ENOMEM;
701                         goto fail;
702                 }
703
704                 data->buf = mtod(data->m, uint8_t *);
705         }
706
707         return 0;
708
709 fail:   rum_free_tx_list(sc);
710         return error;
711 }
712
713 static void
714 rum_free_rx_list(struct rum_softc *sc)
715 {
716         struct rum_rx_data *data;
717         int i;
718
719         for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
720                 data = &sc->rx_data[i];
721
722                 if (data->xfer != NULL) {
723                         usbd_free_xfer(data->xfer);
724                         data->xfer = NULL;
725                 }
726                 if (data->m != NULL) {
727                         m_freem(data->m);
728                         data->m = NULL;
729                 }
730         }
731 }
732
733 static int
734 rum_media_change(struct ifnet *ifp)
735 {
736         struct rum_softc *sc = ifp->if_softc;
737         int error;
738
739         RUM_LOCK(sc);
740
741         error = ieee80211_media_change(ifp);
742         if (error != ENETRESET) {
743                 RUM_UNLOCK(sc);
744                 return error;
745         }
746
747         if ((ifp->if_flags & IFF_UP) &&
748             (ifp->if_drv_flags & IFF_DRV_RUNNING))
749                 rum_init(sc);
750
751         RUM_UNLOCK(sc);
752
753         return 0;
754 }
755
756 static void
757 rum_task(void *arg)
758 {
759         struct rum_softc *sc = arg;
760         struct ieee80211com *ic = &sc->sc_ic;
761         enum ieee80211_state ostate;
762         struct ieee80211_node *ni;
763         uint32_t tmp;
764
765         ostate = ic->ic_state;
766
767         RUM_LOCK(sc);
768
769         switch (sc->sc_state) {
770         case IEEE80211_S_INIT:
771                 if (ostate == IEEE80211_S_RUN) {
772                         /* abort TSF synchronization */
773                         tmp = rum_read(sc, RT2573_TXRX_CSR9);
774                         rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
775                 }
776                 break;
777
778         case IEEE80211_S_RUN:
779                 ni = ic->ic_bss;
780
781                 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
782                         rum_update_slot(ic->ic_ifp);
783                         rum_enable_mrr(sc);
784                         rum_set_txpreamble(sc);
785                         rum_set_basicrates(sc);
786                         rum_set_bssid(sc, ni->ni_bssid);
787                 }
788
789                 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
790                     ic->ic_opmode == IEEE80211_M_IBSS)
791                         rum_prepare_beacon(sc);
792
793                 if (ic->ic_opmode != IEEE80211_M_MONITOR)
794                         rum_enable_tsf_sync(sc);
795
796                 /* enable automatic rate adaptation in STA mode */
797                 if (ic->ic_opmode == IEEE80211_M_STA &&
798                     ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
799                         rum_amrr_start(sc, ni);
800                 break;
801         default:
802                 break;
803         }
804
805         RUM_UNLOCK(sc);
806
807         sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
808 }
809
810 static int
811 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
812 {
813         struct rum_softc *sc = ic->ic_ifp->if_softc;
814
815         callout_stop(&sc->amrr_ch);
816
817         /* do it in a process context */
818         sc->sc_state = nstate;
819         sc->sc_arg = arg;
820
821         usb_rem_task(sc->sc_udev, &sc->sc_task);
822         if (nstate == IEEE80211_S_INIT)
823                 sc->sc_newstate(ic, nstate, arg);
824         else
825                 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
826         return 0;
827 }
828
829 /* quickly determine if a given rate is CCK or OFDM */
830 #define RUM_RATE_IS_OFDM(rate)  ((rate) >= 12 && (rate) != 22)
831
832 #define RUM_ACK_SIZE    14      /* 10 + 4(FCS) */
833 #define RUM_CTS_SIZE    14      /* 10 + 4(FCS) */
834
835 static void
836 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
837 {
838         struct rum_tx_data *data = priv;
839         struct rum_softc *sc = data->sc;
840         struct ifnet *ifp = sc->sc_ic.ic_ifp;
841
842         if (data->m->m_flags & M_TXCB)
843                 ieee80211_process_callback(data->ni, data->m,
844                         status == USBD_NORMAL_COMPLETION ? 0 : ETIMEDOUT);
845
846         if (status != USBD_NORMAL_COMPLETION) {
847                 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
848                         return;
849
850                 printf("%s: could not transmit buffer: %s\n",
851                     device_get_nameunit(sc->sc_dev), usbd_errstr(status));
852
853                 if (status == USBD_STALLED)
854                         usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
855
856                 ifp->if_oerrors++;
857                 return;
858         }
859
860         m_freem(data->m);
861         data->m = NULL;
862         ieee80211_free_node(data->ni);
863         data->ni = NULL;
864
865         sc->tx_queued--;
866         ifp->if_opackets++;
867
868         DPRINTFN(10, ("tx done\n"));
869
870         sc->sc_tx_timer = 0;
871         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
872         rum_start(ifp);
873 }
874
875 static void
876 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
877 {
878         struct rum_rx_data *data = priv;
879         struct rum_softc *sc = data->sc;
880         struct ieee80211com *ic = &sc->sc_ic;
881         struct ifnet *ifp = ic->ic_ifp;
882         struct rum_rx_desc *desc;
883         struct ieee80211_frame *wh;
884         struct ieee80211_node *ni;
885         struct mbuf *mnew, *m;
886         int len, rssi;
887
888         if (status != USBD_NORMAL_COMPLETION) {
889                 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
890                         return;
891
892                 if (status == USBD_STALLED)
893                         usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
894                 goto skip;
895         }
896
897         usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
898
899         if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) {
900                 DPRINTF(("%s: xfer too short %d\n", 
901                     device_get_nameunit(sc->sc_dev), len));
902                 ifp->if_ierrors++;
903                 goto skip;
904         }
905
906         desc = (struct rum_rx_desc *)data->buf;
907
908         if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
909                 /*
910                  * This should not happen since we did not request to receive
911                  * those frames when we filled RT2573_TXRX_CSR0.
912                  */
913                 DPRINTFN(5, ("CRC error\n"));
914                 ifp->if_ierrors++;
915                 goto skip;
916         }
917
918         mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
919         if (mnew == NULL) {
920                 ifp->if_ierrors++;
921                 goto skip;
922         }
923
924         m = data->m;
925         data->m = mnew;
926         data->buf = mtod(data->m, uint8_t *);
927
928         /* finalize mbuf */
929         m->m_pkthdr.rcvif = ifp;
930         m->m_data = (caddr_t)(desc + 1); 
931         m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
932
933         rssi = rum_get_rssi(sc, desc->rssi);
934
935         wh = mtod(m, struct ieee80211_frame *);
936         ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
937
938         /* Error happened during RSSI conversion. */
939         if (rssi < 0)
940                 rssi = ni->ni_rssi;
941
942         if (bpf_peers_present(sc->sc_drvbpf)) {
943                 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
944
945                 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
946                 tap->wr_rate = rum_rxrate(desc);
947                 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
948                 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
949                 tap->wr_antenna = sc->rx_ant;
950                 tap->wr_antsignal = rssi;
951
952                 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
953         }
954
955         /* send the frame to the 802.11 layer */
956         ieee80211_input(ic, m, ni, rssi, RT2573_NOISE_FLOOR, 0);
957
958         /* node is no longer needed */
959         ieee80211_free_node(ni);
960
961         DPRINTFN(15, ("rx done\n"));
962
963 skip:   /* setup a new transfer */
964         usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
965             USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
966         usbd_transfer(xfer);
967 }
968
969 /*
970  * This function is only used by the Rx radiotap code. 
971  */
972 static int
973 rum_rxrate(struct rum_rx_desc *desc)
974 {
975         if (le32toh(desc->flags) & RT2573_RX_OFDM) {
976                 /* reverse function of rum_plcp_signal */
977                 switch (desc->rate) {
978                 case 0xb:       return 12;
979                 case 0xf:       return 18;
980                 case 0xa:       return 24;
981                 case 0xe:       return 36;
982                 case 0x9:       return 48;
983                 case 0xd:       return 72;
984                 case 0x8:       return 96;
985                 case 0xc:       return 108;
986                 }
987         } else {
988                 if (desc->rate == 10)
989                         return 2;
990                 if (desc->rate == 20)
991                         return 4;
992                 if (desc->rate == 55)
993                         return 11;
994                 if (desc->rate == 110)
995                         return 22;
996         }
997         return 2;       /* should not get there */
998 }
999
1000 /*
1001  * Return the expected ack rate for a frame transmitted at rate `rate'.
1002  */
1003 static int
1004 rum_ack_rate(struct ieee80211com *ic, int rate)
1005 {
1006         switch (rate) {
1007         /* CCK rates */
1008         case 2:
1009                 return 2;
1010         case 4:
1011         case 11:
1012         case 22:
1013                 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1014
1015         /* OFDM rates */
1016         case 12:
1017         case 18:
1018                 return 12;
1019         case 24:
1020         case 36:
1021                 return 24;
1022         case 48:
1023         case 72:
1024         case 96:
1025         case 108:
1026                 return 48;
1027         }
1028
1029         /* default to 1Mbps */
1030         return 2;
1031 }
1032
1033 /*
1034  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1035  * The function automatically determines the operating mode depending on the
1036  * given rate. `flags' indicates whether short preamble is in use or not.
1037  */
1038 static uint16_t
1039 rum_txtime(int len, int rate, uint32_t flags)
1040 {
1041         uint16_t txtime;
1042
1043         if (RUM_RATE_IS_OFDM(rate)) {
1044                 /* IEEE Std 802.11a-1999, pp. 37 */
1045                 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1046                 txtime = 16 + 4 + 4 * txtime + 6;
1047         } else {
1048                 /* IEEE Std 802.11b-1999, pp. 28 */
1049                 txtime = (16 * len + rate - 1) / rate;
1050                 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1051                         txtime +=  72 + 24;
1052                 else
1053                         txtime += 144 + 48;
1054         }
1055         return txtime;
1056 }
1057
1058 static uint8_t
1059 rum_plcp_signal(int rate)
1060 {
1061         switch (rate) {
1062         /* CCK rates (returned values are device-dependent) */
1063         case 2:         return 0x0;
1064         case 4:         return 0x1;
1065         case 11:        return 0x2;
1066         case 22:        return 0x3;
1067
1068         /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1069         case 12:        return 0xb;
1070         case 18:        return 0xf;
1071         case 24:        return 0xa;
1072         case 36:        return 0xe;
1073         case 48:        return 0x9;
1074         case 72:        return 0xd;
1075         case 96:        return 0x8;
1076         case 108:       return 0xc;
1077
1078         /* unsupported rates (should not get there) */
1079         default:        return 0xff;
1080         }
1081 }
1082
1083 static void
1084 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1085     uint32_t flags, uint16_t xflags, int len, int rate)
1086 {
1087         struct ieee80211com *ic = &sc->sc_ic;
1088         uint16_t plcp_length;
1089         int remainder;
1090
1091         desc->flags = htole32(flags);
1092         desc->flags |= htole32(RT2573_TX_VALID);
1093         desc->flags |= htole32(len << 16);
1094
1095         desc->xflags = htole16(xflags);
1096
1097         desc->wme = htole16(RT2573_QID(0) | RT2573_AIFSN(2) | 
1098             RT2573_LOGCWMIN(4) | RT2573_LOGCWMAX(10));
1099
1100         /* setup PLCP fields */
1101         desc->plcp_signal  = rum_plcp_signal(rate);
1102         desc->plcp_service = 4;
1103
1104         len += IEEE80211_CRC_LEN;
1105         if (RUM_RATE_IS_OFDM(rate)) {
1106                 desc->flags |= htole32(RT2573_TX_OFDM);
1107
1108                 plcp_length = len & 0xfff;
1109                 desc->plcp_length_hi = plcp_length >> 6;
1110                 desc->plcp_length_lo = plcp_length & 0x3f;
1111         } else {
1112                 plcp_length = (16 * len + rate - 1) / rate;
1113                 if (rate == 22) {
1114                         remainder = (16 * len) % 22;
1115                         if (remainder != 0 && remainder < 7)
1116                                 desc->plcp_service |= RT2573_PLCP_LENGEXT;
1117                 }
1118                 desc->plcp_length_hi = plcp_length >> 8;
1119                 desc->plcp_length_lo = plcp_length & 0xff;
1120
1121                 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1122                         desc->plcp_signal |= 0x08;
1123         }
1124 }
1125
1126 #define RUM_TX_TIMEOUT  5000
1127
1128 static int
1129 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1130 {
1131         struct ieee80211com *ic = &sc->sc_ic;
1132         struct rum_tx_desc *desc;
1133         struct rum_tx_data *data;
1134         struct ieee80211_frame *wh;
1135         struct ieee80211_key *k;
1136         uint32_t flags = 0;
1137         uint16_t dur;
1138         usbd_status error;
1139         int xferlen, rate;
1140
1141         data = &sc->tx_data[0];
1142         desc = (struct rum_tx_desc *)data->buf;
1143
1144         rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1145
1146         data->m = m0;
1147         data->ni = ni;
1148
1149         wh = mtod(m0, struct ieee80211_frame *);
1150
1151         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1152                 k = ieee80211_crypto_encap(ic, ni, m0);
1153                 if (k == NULL) {
1154                         m_freem(m0);
1155                         return ENOBUFS;
1156                 }
1157         }
1158
1159         wh = mtod(m0, struct ieee80211_frame *);
1160
1161         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1162                 flags |= RT2573_TX_NEED_ACK;
1163
1164                 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate), 
1165                     ic->ic_flags) + sc->sifs;
1166                 *(uint16_t *)wh->i_dur = htole16(dur);
1167
1168                 /* tell hardware to add timestamp for probe responses */
1169                 if ((wh->i_fc[0] &
1170                     (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1171                     (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1172                         flags |= RT2573_TX_TIMESTAMP;
1173         }
1174
1175         if (bpf_peers_present(sc->sc_drvbpf)) {
1176                 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1177
1178                 tap->wt_flags = 0;
1179                 tap->wt_rate = rate;
1180                 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1181                 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1182                 tap->wt_antenna = sc->tx_ant;
1183
1184                 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1185         }
1186
1187         m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1188         rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1189
1190         /* align end on a 4-bytes boundary */
1191         xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1192
1193         /*
1194          * No space left in the last URB to store the extra 4 bytes, force
1195          * sending of another URB.
1196          */
1197         if ((xferlen % 64) == 0)
1198                 xferlen += 4;
1199
1200         DPRINTFN(10, ("sending mgt frame len=%d rate=%d xfer len=%d\n",
1201             m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, rate, xferlen));
1202         
1203         usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1204             USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1205
1206         error = usbd_transfer(data->xfer);
1207         if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1208                 m_freem(m0);
1209                 data->m = NULL;
1210                 data->ni = NULL;
1211                 return error;
1212         }
1213
1214         sc->tx_queued++;
1215
1216         return 0;
1217 }
1218
1219 static int
1220 rum_tx_raw(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1221     const struct ieee80211_bpf_params *params)
1222 {
1223         struct ieee80211com *ic = &sc->sc_ic;
1224         struct rum_tx_desc *desc;
1225         struct rum_tx_data *data;
1226         uint32_t flags;
1227         usbd_status error;
1228         int xferlen, rate;
1229
1230         data = &sc->tx_data[0];
1231         desc = (struct rum_tx_desc *)data->buf;
1232
1233         rate = params->ibp_rate0 & IEEE80211_RATE_VAL;
1234         /* XXX validate */
1235         if (rate == 0) {
1236                 m_freem(m0);
1237                 return EINVAL;
1238         }
1239
1240         if (bpf_peers_present(sc->sc_drvbpf)) {
1241                 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1242
1243                 tap->wt_flags = 0;
1244                 tap->wt_rate = rate;
1245                 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1246                 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1247                 tap->wt_antenna = sc->tx_ant;
1248
1249                 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1250         }
1251
1252         data->m = m0;
1253         data->ni = ni;
1254
1255         flags = 0;
1256         if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
1257                 flags |= RT2573_TX_NEED_ACK;
1258
1259         m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1260         /* XXX need to setup descriptor ourself */
1261         rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1262
1263         /* align end on a 4-bytes boundary */
1264         xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1265
1266         /*
1267          * No space left in the last URB to store the extra 4 bytes, force
1268          * sending of another URB.
1269          */
1270         if ((xferlen % 64) == 0)
1271                 xferlen += 4;
1272
1273         DPRINTFN(10, ("sending raw frame len=%u rate=%u xfer len=%u\n",
1274             m0->m_pkthdr.len, rate, xferlen));
1275
1276         usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1277             xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT,
1278             rum_txeof);
1279
1280         error = usbd_transfer(data->xfer);
1281         if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1282                 return error;
1283
1284         sc->tx_queued++;
1285
1286         return 0;
1287 }
1288
1289 static int
1290 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1291 {
1292         struct ieee80211com *ic = &sc->sc_ic;
1293         struct rum_tx_desc *desc;
1294         struct rum_tx_data *data;
1295         struct ieee80211_frame *wh;
1296         struct ieee80211_key *k;
1297         uint32_t flags = 0;
1298         uint16_t dur;
1299         usbd_status error;
1300         int rate, xferlen;
1301
1302         wh = mtod(m0, struct ieee80211_frame *);
1303
1304         if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1305                 rate = ic->ic_fixed_rate;
1306         else
1307                 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1308
1309         rate &= IEEE80211_RATE_VAL;
1310
1311         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1312                 k = ieee80211_crypto_encap(ic, ni, m0);
1313                 if (k == NULL) {
1314                         m_freem(m0);
1315                         return ENOBUFS;
1316                 }
1317
1318                 /* packet header may have moved, reset our local pointer */
1319                 wh = mtod(m0, struct ieee80211_frame *);
1320         }
1321
1322         data = &sc->tx_data[0];
1323         desc = (struct rum_tx_desc *)data->buf;
1324
1325         data->m = m0;
1326         data->ni = ni;
1327
1328         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1329                 flags |= RT2573_TX_NEED_ACK;
1330                 flags |= RT2573_TX_MORE_FRAG;
1331
1332                 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1333                     ic->ic_flags) + sc->sifs;
1334                 *(uint16_t *)wh->i_dur = htole16(dur);
1335         }
1336
1337         if (bpf_peers_present(sc->sc_drvbpf)) {
1338                 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1339
1340                 tap->wt_flags = 0;
1341                 tap->wt_rate = rate;
1342                 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1343                 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1344                 tap->wt_antenna = sc->tx_ant;
1345
1346                 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1347         }
1348
1349         m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1350         rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1351
1352         /* align end on a 4-bytes boundary */
1353         xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1354
1355         /*
1356          * No space left in the last URB to store the extra 4 bytes, force
1357          * sending of another URB.
1358          */
1359         if ((xferlen % 64) == 0)
1360                 xferlen += 4;
1361
1362         DPRINTFN(10, ("sending frame len=%d rate=%d xfer len=%d\n",
1363             m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, rate, xferlen));
1364
1365         usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1366             USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1367
1368         error = usbd_transfer(data->xfer);
1369         if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1370                 m_freem(m0);
1371                 data->m = NULL;
1372                 data->ni = NULL;
1373                 return error;
1374         }
1375
1376         sc->tx_queued++;
1377
1378         return 0;
1379 }
1380
1381 static void
1382 rum_start(struct ifnet *ifp)
1383 {
1384         struct rum_softc *sc = ifp->if_softc;
1385         struct ieee80211com *ic = &sc->sc_ic;
1386         struct ieee80211_node *ni;
1387         struct mbuf *m0;
1388         struct ether_header *eh;
1389
1390         for (;;) {
1391                 IF_POLL(&ic->ic_mgtq, m0);
1392                 if (m0 != NULL) {
1393                         if (sc->tx_queued >= RUM_TX_LIST_COUNT) {
1394                                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1395                                 break;
1396                         }
1397                         IF_DEQUEUE(&ic->ic_mgtq, m0);
1398
1399                         ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1400                         m0->m_pkthdr.rcvif = NULL;
1401
1402                         if (bpf_peers_present(ic->ic_rawbpf))
1403                                 bpf_mtap(ic->ic_rawbpf, m0);
1404
1405                         if (rum_tx_mgt(sc, m0, ni) != 0) {
1406                                 ieee80211_free_node(ni);
1407                                 break;
1408                         }
1409                 } else {
1410                         if (ic->ic_state != IEEE80211_S_RUN)
1411                                 break;
1412                         IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
1413                         if (m0 == NULL)
1414                                 break;
1415                         if (sc->tx_queued >= RUM_TX_LIST_COUNT) {
1416                                 IFQ_DRV_PREPEND(&ifp->if_snd, m0);
1417                                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1418                                 break;
1419                         }
1420                         /*
1421                          * Cancel any background scan.
1422                          */
1423                         if (ic->ic_flags & IEEE80211_F_SCAN)
1424                                 ieee80211_cancel_scan(ic);
1425
1426                         if (m0->m_len < sizeof (struct ether_header) &&
1427                             !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1428                                 continue;
1429
1430                         eh = mtod(m0, struct ether_header *);
1431                         ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1432                         if (ni == NULL) {
1433                                 m_freem(m0);
1434                                 continue;
1435                         }
1436                         BPF_MTAP(ifp, m0);
1437
1438                         m0 = ieee80211_encap(ic, m0, ni);
1439                         if (m0 == NULL) {
1440                                 ieee80211_free_node(ni);
1441                                 continue;
1442                         }
1443
1444                         if (bpf_peers_present(ic->ic_rawbpf))
1445                                 bpf_mtap(ic->ic_rawbpf, m0);
1446
1447                         if (rum_tx_data(sc, m0, ni) != 0) {
1448                                 ieee80211_free_node(ni);
1449                                 ifp->if_oerrors++;
1450                                 break;
1451                         }
1452                 }
1453
1454                 sc->sc_tx_timer = 5;
1455                 ic->ic_lastdata = ticks;
1456                 callout_reset(&sc->watchdog_ch, hz, rum_watchdog, sc);
1457         }
1458 }
1459
1460 static void
1461 rum_watchdog(void *arg)
1462 {
1463         struct rum_softc *sc = arg;
1464
1465         RUM_LOCK(sc);
1466
1467         if (sc->sc_tx_timer > 0) {
1468                 if (--sc->sc_tx_timer == 0) {
1469                         device_printf(sc->sc_dev, "device timeout\n");
1470                         /*rum_init(ifp); XXX needs a process context! */
1471                         sc->sc_ifp->if_oerrors++;
1472                         RUM_UNLOCK(sc);
1473                         return;
1474                 }
1475                 callout_reset(&sc->watchdog_ch, hz, rum_watchdog, sc);
1476         }
1477
1478         RUM_UNLOCK(sc);
1479 }
1480
1481 static int
1482 rum_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1483 {
1484         struct rum_softc *sc = ifp->if_softc;
1485         struct ieee80211com *ic = &sc->sc_ic;
1486         int error = 0;
1487
1488         RUM_LOCK(sc);
1489
1490         switch (cmd) {
1491         case SIOCSIFFLAGS:
1492                 if (ifp->if_flags & IFF_UP) {
1493                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1494                                 rum_update_promisc(sc);
1495                         else
1496                                 rum_init(sc);
1497                 } else {
1498                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1499                                 rum_stop(sc);
1500                 }
1501                 break;
1502         default:
1503                 error = ieee80211_ioctl(ic, cmd, data);
1504         }
1505
1506         if (error == ENETRESET) {
1507                 if ((ifp->if_flags & IFF_UP) &&
1508                     (ifp->if_drv_flags & IFF_DRV_RUNNING) &&
1509                     (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1510                         rum_init(sc);
1511                 error = 0;
1512         }
1513
1514         RUM_UNLOCK(sc);
1515
1516         return error;
1517 }
1518
1519 static void
1520 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1521 {
1522         usb_device_request_t req;
1523         usbd_status error;
1524
1525         req.bmRequestType = UT_READ_VENDOR_DEVICE;
1526         req.bRequest = RT2573_READ_EEPROM;
1527         USETW(req.wValue, 0);
1528         USETW(req.wIndex, addr);
1529         USETW(req.wLength, len);
1530
1531         error = usbd_do_request(sc->sc_udev, &req, buf);
1532         if (error != 0) {
1533                 printf("%s: could not read EEPROM: %s\n",
1534                     device_get_nameunit(sc->sc_dev), usbd_errstr(error));
1535         }
1536 }
1537
1538 static uint32_t
1539 rum_read(struct rum_softc *sc, uint16_t reg)
1540 {
1541         uint32_t val;
1542
1543         rum_read_multi(sc, reg, &val, sizeof val);
1544
1545         return le32toh(val);
1546 }
1547
1548 static void
1549 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1550 {
1551         usb_device_request_t req;
1552         usbd_status error;
1553
1554         req.bmRequestType = UT_READ_VENDOR_DEVICE;
1555         req.bRequest = RT2573_READ_MULTI_MAC;
1556         USETW(req.wValue, 0);
1557         USETW(req.wIndex, reg);
1558         USETW(req.wLength, len);
1559
1560         error = usbd_do_request(sc->sc_udev, &req, buf);
1561         if (error != 0) {
1562                 printf("%s: could not multi read MAC register: %s\n",
1563                     device_get_nameunit(sc->sc_dev), usbd_errstr(error));
1564         }
1565 }
1566
1567 static void
1568 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1569 {
1570         uint32_t tmp = htole32(val);
1571
1572         rum_write_multi(sc, reg, &tmp, sizeof tmp);
1573 }
1574
1575 static void
1576 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1577 {
1578         usb_device_request_t req;
1579         usbd_status error;
1580
1581         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1582         req.bRequest = RT2573_WRITE_MULTI_MAC;
1583         USETW(req.wValue, 0);
1584         USETW(req.wIndex, reg);
1585         USETW(req.wLength, len);
1586
1587         error = usbd_do_request(sc->sc_udev, &req, buf);
1588         if (error != 0) {
1589                 printf("%s: could not multi write MAC register: %s\n",
1590                     device_get_nameunit(sc->sc_dev), usbd_errstr(error));
1591         }
1592 }
1593
1594 static void
1595 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1596 {
1597         uint32_t tmp;
1598         int ntries;
1599
1600         for (ntries = 0; ntries < 5; ntries++) {
1601                 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1602                         break;
1603         }
1604         if (ntries == 5) {
1605                 printf("%s: could not write to BBP\n", 
1606                     device_get_nameunit(sc->sc_dev));
1607                 return;
1608         }
1609
1610         tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1611         rum_write(sc, RT2573_PHY_CSR3, tmp);
1612 }
1613
1614 static uint8_t
1615 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1616 {
1617         uint32_t val;
1618         int ntries;
1619
1620         for (ntries = 0; ntries < 5; ntries++) {
1621                 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1622                         break;
1623         }
1624         if (ntries == 5) {
1625                 printf("%s: could not read BBP\n", 
1626                     device_get_nameunit(sc->sc_dev));
1627                 return 0;
1628         }
1629
1630         val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1631         rum_write(sc, RT2573_PHY_CSR3, val);
1632
1633         for (ntries = 0; ntries < 100; ntries++) {
1634                 val = rum_read(sc, RT2573_PHY_CSR3);
1635                 if (!(val & RT2573_BBP_BUSY))
1636                         return val & 0xff;
1637                 DELAY(1);
1638         }
1639
1640         printf("%s: could not read BBP\n", device_get_nameunit(sc->sc_dev));
1641         return 0;
1642 }
1643
1644 static void
1645 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1646 {
1647         uint32_t tmp;
1648         int ntries;
1649
1650         for (ntries = 0; ntries < 5; ntries++) {
1651                 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1652                         break;
1653         }
1654         if (ntries == 5) {
1655                 printf("%s: could not write to RF\n", 
1656                     device_get_nameunit(sc->sc_dev));
1657                 return;
1658         }
1659
1660         tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1661             (reg & 3);
1662         rum_write(sc, RT2573_PHY_CSR4, tmp);
1663
1664         /* remember last written value in sc */
1665         sc->rf_regs[reg] = val;
1666
1667         DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1668 }
1669
1670 static void
1671 rum_select_antenna(struct rum_softc *sc)
1672 {
1673         uint8_t bbp4, bbp77;
1674         uint32_t tmp;
1675
1676         bbp4  = rum_bbp_read(sc, 4);
1677         bbp77 = rum_bbp_read(sc, 77);
1678
1679         /* TBD */
1680
1681         /* make sure Rx is disabled before switching antenna */
1682         tmp = rum_read(sc, RT2573_TXRX_CSR0);
1683         rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1684
1685         rum_bbp_write(sc,  4, bbp4);
1686         rum_bbp_write(sc, 77, bbp77);
1687
1688         rum_write(sc, RT2573_TXRX_CSR0, tmp);
1689 }
1690
1691 /*
1692  * Enable multi-rate retries for frames sent at OFDM rates.
1693  * In 802.11b/g mode, allow fallback to CCK rates.
1694  */
1695 static void
1696 rum_enable_mrr(struct rum_softc *sc)
1697 {
1698         struct ieee80211com *ic = &sc->sc_ic;
1699         uint32_t tmp;
1700
1701         tmp = rum_read(sc, RT2573_TXRX_CSR4);
1702
1703         tmp &= ~RT2573_MRR_CCK_FALLBACK;
1704         if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1705                 tmp |= RT2573_MRR_CCK_FALLBACK;
1706         tmp |= RT2573_MRR_ENABLED;
1707
1708         rum_write(sc, RT2573_TXRX_CSR4, tmp);
1709 }
1710
1711 static void
1712 rum_set_txpreamble(struct rum_softc *sc)
1713 {
1714         uint32_t tmp;
1715
1716         tmp = rum_read(sc, RT2573_TXRX_CSR4);
1717
1718         tmp &= ~RT2573_SHORT_PREAMBLE;
1719         if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1720                 tmp |= RT2573_SHORT_PREAMBLE;
1721
1722         rum_write(sc, RT2573_TXRX_CSR4, tmp);
1723 }
1724
1725 static void
1726 rum_set_basicrates(struct rum_softc *sc)
1727 {
1728         struct ieee80211com *ic = &sc->sc_ic;
1729
1730         /* update basic rate set */
1731         if (ic->ic_curmode == IEEE80211_MODE_11B) {
1732                 /* 11b basic rates: 1, 2Mbps */
1733                 rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1734         } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1735                 /* 11a basic rates: 6, 12, 24Mbps */
1736                 rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1737         } else {
1738                 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1739                 rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1740         }
1741 }
1742
1743 /*
1744  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
1745  * driver.
1746  */
1747 static void
1748 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1749 {
1750         uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1751         uint32_t tmp;
1752
1753         /* update all BBP registers that depend on the band */
1754         bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1755         bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
1756         if (IEEE80211_IS_CHAN_5GHZ(c)) {
1757                 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1758                 bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
1759         }
1760         if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1761             (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1762                 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1763         }
1764
1765         sc->bbp17 = bbp17;
1766         rum_bbp_write(sc,  17, bbp17);
1767         rum_bbp_write(sc,  96, bbp96);
1768         rum_bbp_write(sc, 104, bbp104);
1769
1770         if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1771             (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1772                 rum_bbp_write(sc, 75, 0x80);
1773                 rum_bbp_write(sc, 86, 0x80);
1774                 rum_bbp_write(sc, 88, 0x80);
1775         }
1776
1777         rum_bbp_write(sc, 35, bbp35);
1778         rum_bbp_write(sc, 97, bbp97);
1779         rum_bbp_write(sc, 98, bbp98);
1780
1781         tmp = rum_read(sc, RT2573_PHY_CSR0);
1782         tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1783         if (IEEE80211_IS_CHAN_2GHZ(c))
1784                 tmp |= RT2573_PA_PE_2GHZ;
1785         else
1786                 tmp |= RT2573_PA_PE_5GHZ;
1787         rum_write(sc, RT2573_PHY_CSR0, tmp);
1788
1789         /* 802.11a uses a 16 microseconds short interframe space */
1790         sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1791 }
1792
1793 static void
1794 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1795 {
1796         struct ieee80211com *ic = &sc->sc_ic;
1797         const struct rfprog *rfprog;
1798         uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1799         int8_t power;
1800         u_int i, chan;
1801
1802         chan = ieee80211_chan2ieee(ic, c);
1803         if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1804                 return;
1805
1806         /* select the appropriate RF settings based on what EEPROM says */
1807         rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1808                   sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1809
1810         /* find the settings for this channel (we know it exists) */
1811         for (i = 0; rfprog[i].chan != chan; i++);
1812
1813         power = sc->txpow[i];
1814         if (power < 0) {
1815                 bbp94 += power;
1816                 power = 0;
1817         } else if (power > 31) {
1818                 bbp94 += power - 31;
1819                 power = 31;
1820         }
1821
1822         /*
1823          * If we are switching from the 2GHz band to the 5GHz band or
1824          * vice-versa, BBP registers need to be reprogrammed.
1825          */
1826         if (c->ic_flags != ic->ic_curchan->ic_flags) {
1827                 rum_select_band(sc, c);
1828                 rum_select_antenna(sc);
1829         }
1830         ic->ic_curchan = c;
1831
1832         rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1833         rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1834         rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1835         rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1836
1837         rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1838         rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1839         rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1840         rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1841
1842         rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1843         rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1844         rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1845         rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1846
1847         DELAY(10);
1848
1849         /* enable smart mode for MIMO-capable RFs */
1850         bbp3 = rum_bbp_read(sc, 3);
1851
1852         bbp3 &= ~RT2573_SMART_MODE;
1853         if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1854                 bbp3 |= RT2573_SMART_MODE;
1855
1856         rum_bbp_write(sc, 3, bbp3);
1857
1858         if (bbp94 != RT2573_BBPR94_DEFAULT)
1859                 rum_bbp_write(sc, 94, bbp94);
1860 }
1861
1862 /*
1863  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1864  * and HostAP operating modes.
1865  */
1866 static void
1867 rum_enable_tsf_sync(struct rum_softc *sc)
1868 {
1869         struct ieee80211com *ic = &sc->sc_ic;
1870         uint32_t tmp;
1871
1872         if (ic->ic_opmode != IEEE80211_M_STA) {
1873                 /*
1874                  * Change default 16ms TBTT adjustment to 8ms.
1875                  * Must be done before enabling beacon generation.
1876                  */
1877                 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1878         }
1879
1880         tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1881
1882         /* set beacon interval (in 1/16ms unit) */
1883         tmp |= ic->ic_bss->ni_intval * 16;
1884
1885         tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1886         if (ic->ic_opmode == IEEE80211_M_STA)
1887                 tmp |= RT2573_TSF_MODE(1);
1888         else
1889                 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1890
1891         rum_write(sc, RT2573_TXRX_CSR9, tmp);
1892 }
1893
1894 static void
1895 rum_update_slot(struct ifnet *ifp)
1896 {
1897         struct rum_softc *sc = ifp->if_softc;
1898         struct ieee80211com *ic = &sc->sc_ic;
1899         uint8_t slottime;
1900         uint32_t tmp;
1901
1902         slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1903
1904         tmp = rum_read(sc, RT2573_MAC_CSR9);
1905         tmp = (tmp & ~0xff) | slottime;
1906         rum_write(sc, RT2573_MAC_CSR9, tmp);
1907
1908         DPRINTF(("setting slot time to %uus\n", slottime));
1909 }
1910
1911 static void
1912 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1913 {
1914         uint32_t tmp;
1915
1916         tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1917         rum_write(sc, RT2573_MAC_CSR4, tmp);
1918
1919         tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1920         rum_write(sc, RT2573_MAC_CSR5, tmp);
1921 }
1922
1923 static void
1924 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1925 {
1926         uint32_t tmp;
1927
1928         tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1929         rum_write(sc, RT2573_MAC_CSR2, tmp);
1930
1931         tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1932         rum_write(sc, RT2573_MAC_CSR3, tmp);
1933 }
1934
1935 static void
1936 rum_update_promisc(struct rum_softc *sc)
1937 {
1938         struct ifnet *ifp = sc->sc_ic.ic_ifp;
1939         uint32_t tmp;
1940
1941         tmp = rum_read(sc, RT2573_TXRX_CSR0);
1942
1943         tmp &= ~RT2573_DROP_NOT_TO_ME;
1944         if (!(ifp->if_flags & IFF_PROMISC))
1945                 tmp |= RT2573_DROP_NOT_TO_ME;
1946
1947         rum_write(sc, RT2573_TXRX_CSR0, tmp);
1948
1949         DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1950             "entering" : "leaving"));
1951 }
1952
1953 static const char *
1954 rum_get_rf(int rev)
1955 {
1956         switch (rev) {
1957         case RT2573_RF_2527:    return "RT2527 (MIMO XR)";
1958         case RT2573_RF_2528:    return "RT2528";
1959         case RT2573_RF_5225:    return "RT5225 (MIMO XR)";
1960         case RT2573_RF_5226:    return "RT5226";
1961         default:                return "unknown";
1962         }
1963 }
1964
1965 static void
1966 rum_read_eeprom(struct rum_softc *sc)
1967 {
1968         struct ieee80211com *ic = &sc->sc_ic;
1969         uint16_t val;
1970 #ifdef RUM_DEBUG
1971         int i;
1972 #endif
1973
1974         /* read MAC address */
1975         rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1976
1977         rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1978         val = le16toh(val);
1979         sc->rf_rev =   (val >> 11) & 0x1f;
1980         sc->hw_radio = (val >> 10) & 0x1;
1981         sc->rx_ant =   (val >> 4)  & 0x3;
1982         sc->tx_ant =   (val >> 2)  & 0x3;
1983         sc->nb_ant =   val & 0x3;
1984
1985         DPRINTF(("RF revision=%d\n", sc->rf_rev));
1986
1987         rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1988         val = le16toh(val);
1989         sc->ext_5ghz_lna = (val >> 6) & 0x1;
1990         sc->ext_2ghz_lna = (val >> 4) & 0x1;
1991
1992         DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1993             sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1994
1995         rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1996         val = le16toh(val);
1997         if ((val & 0xff) != 0xff)
1998                 sc->rssi_2ghz_corr = (int8_t)(val & 0xff);      /* signed */
1999
2000         /* Only [-10, 10] is valid */
2001         if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10)
2002                 sc->rssi_2ghz_corr = 0;
2003
2004         rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
2005         val = le16toh(val);
2006         if ((val & 0xff) != 0xff)
2007                 sc->rssi_5ghz_corr = (int8_t)(val & 0xff);      /* signed */
2008
2009         /* Only [-10, 10] is valid */
2010         if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10)
2011                 sc->rssi_5ghz_corr = 0;
2012
2013         if (sc->ext_2ghz_lna)
2014                 sc->rssi_2ghz_corr -= 14;
2015         if (sc->ext_5ghz_lna)
2016                 sc->rssi_5ghz_corr -= 14;
2017
2018         DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
2019             sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
2020
2021         rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
2022         val = le16toh(val);
2023         if ((val & 0xff) != 0xff)
2024                 sc->rffreq = val & 0xff;
2025
2026         DPRINTF(("RF freq=%d\n", sc->rffreq));
2027
2028         /* read Tx power for all a/b/g channels */
2029         rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
2030         /* XXX default Tx power for 802.11a channels */
2031         memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
2032 #ifdef RUM_DEBUG
2033         for (i = 0; i < 14; i++)
2034                 DPRINTF(("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]));
2035 #endif
2036
2037         /* read default values for BBP registers */
2038         rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
2039 #ifdef RUM_DEBUG
2040         for (i = 0; i < 14; i++) {
2041                 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
2042                         continue;
2043                 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
2044                     sc->bbp_prom[i].val));
2045         }
2046 #endif
2047 }
2048
2049 static int
2050 rum_bbp_init(struct rum_softc *sc)
2051 {
2052 #define N(a)    (sizeof (a) / sizeof ((a)[0]))
2053         int i, ntries;
2054
2055         /* wait for BBP to be ready */
2056         for (ntries = 0; ntries < 100; ntries++) {
2057                 const uint8_t val = rum_bbp_read(sc, 0);
2058                 if (val != 0 && val != 0xff)
2059                         break;
2060                 DELAY(1000);
2061         }
2062         if (ntries == 100) {
2063                 device_printf(sc->sc_dev, "timeout waiting for BBP\n");
2064                 return EIO;
2065         }
2066
2067         /* initialize BBP registers to default values */
2068         for (i = 0; i < N(rum_def_bbp); i++)
2069                 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
2070
2071         /* write vendor-specific BBP values (from EEPROM) */
2072         for (i = 0; i < 16; i++) {
2073                 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
2074                         continue;
2075                 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2076         }
2077
2078         return 0;
2079 #undef N
2080 }
2081
2082 static void
2083 rum_init(void *priv)
2084 {
2085 #define N(a)    (sizeof (a) / sizeof ((a)[0]))
2086         struct rum_softc *sc = priv;
2087         struct ieee80211com *ic = &sc->sc_ic;
2088         struct ifnet *ifp = ic->ic_ifp;
2089         struct rum_rx_data *data;
2090         uint32_t tmp;
2091         usbd_status error;
2092         int i, ntries;
2093
2094         rum_stop(sc);
2095
2096         /* initialize MAC registers to default values */
2097         for (i = 0; i < N(rum_def_mac); i++)
2098                 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
2099
2100         /* set host ready */
2101         rum_write(sc, RT2573_MAC_CSR1, 3);
2102         rum_write(sc, RT2573_MAC_CSR1, 0);
2103
2104         /* wait for BBP/RF to wakeup */
2105         for (ntries = 0; ntries < 1000; ntries++) {
2106                 if (rum_read(sc, RT2573_MAC_CSR12) & 8)
2107                         break;
2108                 rum_write(sc, RT2573_MAC_CSR12, 4);     /* force wakeup */
2109                 DELAY(1000);
2110         }
2111         if (ntries == 1000) {
2112                 printf("%s: timeout waiting for BBP/RF to wakeup\n",
2113                     device_get_nameunit(sc->sc_dev));
2114                 goto fail;
2115         }
2116
2117         if ((error = rum_bbp_init(sc)) != 0)
2118                 goto fail;
2119
2120         /* select default channel */
2121         rum_select_band(sc, ic->ic_curchan);
2122         rum_select_antenna(sc);
2123         rum_set_chan(sc, ic->ic_curchan);
2124
2125         /* clear STA registers */
2126         rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2127
2128         IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
2129         rum_set_macaddr(sc, ic->ic_myaddr);
2130
2131         /* initialize ASIC */
2132         rum_write(sc, RT2573_MAC_CSR1, 4);
2133
2134         /*
2135          * Allocate xfer for AMRR statistics requests.
2136          */
2137         sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2138         if (sc->amrr_xfer == NULL) {
2139                 printf("%s: could not allocate AMRR xfer\n",
2140                     device_get_nameunit(sc->sc_dev));
2141                 goto fail;
2142         }
2143
2144         /*
2145          * Open Tx and Rx USB bulk pipes.
2146          */
2147         error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2148             &sc->sc_tx_pipeh);
2149         if (error != 0) {
2150                 printf("%s: could not open Tx pipe: %s\n",
2151                     device_get_nameunit(sc->sc_dev), usbd_errstr(error));
2152                 goto fail;
2153         }
2154         error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2155             &sc->sc_rx_pipeh);
2156         if (error != 0) {
2157                 printf("%s: could not open Rx pipe: %s\n",
2158                     device_get_nameunit(sc->sc_dev), usbd_errstr(error));
2159                 goto fail;
2160         }
2161
2162         /*
2163          * Allocate Tx and Rx xfer queues.
2164          */
2165         error = rum_alloc_tx_list(sc);
2166         if (error != 0) {
2167                 printf("%s: could not allocate Tx list\n",
2168                     device_get_nameunit(sc->sc_dev));
2169                 goto fail;
2170         }
2171         error = rum_alloc_rx_list(sc);
2172         if (error != 0) {
2173                 printf("%s: could not allocate Rx list\n",
2174                     device_get_nameunit(sc->sc_dev));
2175                 goto fail;
2176         }
2177
2178         /*
2179          * Start up the receive pipe.
2180          */
2181         for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
2182                 data = &sc->rx_data[i];
2183
2184                 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2185                     MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2186                 usbd_transfer(data->xfer);
2187         }
2188
2189         /* update Rx filter */
2190         tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2191
2192         tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2193         if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2194                 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2195                        RT2573_DROP_ACKCTS;
2196                 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2197                         tmp |= RT2573_DROP_TODS;
2198                 if (!(ifp->if_flags & IFF_PROMISC))
2199                         tmp |= RT2573_DROP_NOT_TO_ME;
2200         }
2201         rum_write(sc, RT2573_TXRX_CSR0, tmp);
2202
2203         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2204         ifp->if_drv_flags |= IFF_DRV_RUNNING;
2205
2206         if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2207                 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2208                         ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2209         } else
2210                 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2211
2212         return;
2213
2214 fail:   rum_stop(sc);
2215 #undef N
2216 }
2217
2218 static void
2219 rum_stop(void *priv)
2220 {
2221         struct rum_softc *sc = priv;
2222         struct ieee80211com *ic = &sc->sc_ic;
2223         struct ifnet *ifp = ic->ic_ifp;
2224         uint32_t tmp;
2225
2226         sc->sc_tx_timer = 0;
2227         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2228
2229         ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2230
2231         /* disable Rx */
2232         tmp = rum_read(sc, RT2573_TXRX_CSR0);
2233         rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2234
2235         /* reset ASIC */
2236         rum_write(sc, RT2573_MAC_CSR1, 3);
2237         rum_write(sc, RT2573_MAC_CSR1, 0);
2238
2239         if (sc->amrr_xfer != NULL) {
2240                 usbd_free_xfer(sc->amrr_xfer);
2241                 sc->amrr_xfer = NULL;
2242         }
2243
2244         if (sc->sc_rx_pipeh != NULL) {
2245                 usbd_abort_pipe(sc->sc_rx_pipeh);
2246                 usbd_close_pipe(sc->sc_rx_pipeh);
2247                 sc->sc_rx_pipeh = NULL;
2248         }
2249         if (sc->sc_tx_pipeh != NULL) {
2250                 usbd_abort_pipe(sc->sc_tx_pipeh);
2251                 usbd_close_pipe(sc->sc_tx_pipeh);
2252                 sc->sc_tx_pipeh = NULL;
2253         }
2254
2255         rum_free_rx_list(sc);
2256         rum_free_tx_list(sc);
2257 }
2258
2259 static int
2260 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2261 {
2262         usb_device_request_t req;
2263         uint16_t reg = RT2573_MCU_CODE_BASE;
2264         usbd_status error;
2265
2266         /* copy firmware image into NIC */
2267         for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2268                 rum_write(sc, reg, UGETDW(ucode));
2269
2270         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2271         req.bRequest = RT2573_MCU_CNTL;
2272         USETW(req.wValue, RT2573_MCU_RUN);
2273         USETW(req.wIndex, 0);
2274         USETW(req.wLength, 0);
2275
2276         error = usbd_do_request(sc->sc_udev, &req, NULL);
2277         if (error != 0) {
2278                 printf("%s: could not run firmware: %s\n",
2279                     device_get_nameunit(sc->sc_dev), usbd_errstr(error));
2280         }
2281         return error;
2282 }
2283
2284 static int
2285 rum_prepare_beacon(struct rum_softc *sc)
2286 {
2287         struct ieee80211com *ic = &sc->sc_ic;
2288         struct rum_tx_desc desc;
2289         struct mbuf *m0;
2290         int rate;
2291
2292         m0 = ieee80211_beacon_alloc(ic->ic_bss, &sc->sc_bo);
2293         if (m0 == NULL) {
2294                 return ENOBUFS;
2295         }
2296
2297         /* send beacons at the lowest available rate */
2298         rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2299
2300         rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2301             m0->m_pkthdr.len, rate);
2302
2303         /* copy the first 24 bytes of Tx descriptor into NIC memory */
2304         rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2305
2306         /* copy beacon header and payload into NIC memory */
2307         rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2308             m0->m_pkthdr.len);
2309
2310         m_freem(m0);
2311
2312         return 0;
2313 }
2314
2315 static int
2316 rum_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2317     const struct ieee80211_bpf_params *params)
2318 {
2319         struct ieee80211com *ic = ni->ni_ic;
2320         struct ifnet *ifp = ic->ic_ifp;
2321         struct rum_softc *sc = ifp->if_softc;
2322
2323         /* prevent management frames from being sent if we're not ready */
2324         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2325                 m_freem(m);
2326                 ieee80211_free_node(ni);
2327                 return ENETDOWN;
2328         }
2329         if (sc->tx_queued >= RUM_TX_LIST_COUNT) {
2330                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2331                 m_freem(m);
2332                 ieee80211_free_node(ni);
2333                 return EIO;
2334         }
2335
2336         if (bpf_peers_present(ic->ic_rawbpf))
2337                 bpf_mtap(ic->ic_rawbpf, m);
2338
2339         ifp->if_opackets++;
2340
2341         if (params == NULL) {
2342                 /*
2343                  * Legacy path; interpret frame contents to decide
2344                  * precisely how to send the frame.
2345                  */
2346                 if (rum_tx_mgt(sc, m, ni) != 0)
2347                         goto bad;
2348         } else {
2349                 /*
2350                  * Caller supplied explicit parameters to use in
2351                  * sending the frame.
2352                  */
2353                 if (rum_tx_raw(sc, m, ni, params) != 0)
2354                         goto bad;
2355         }
2356         sc->sc_tx_timer = 5;
2357         callout_reset(&sc->watchdog_ch, hz, rum_watchdog, sc);
2358
2359         return 0;
2360 bad:
2361         ifp->if_oerrors++;
2362         ieee80211_free_node(ni);
2363         return EIO;
2364 }
2365
2366 static void
2367 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2368 {
2369         int i;
2370
2371         /* clear statistic registers (STA_CSR0 to STA_CSR5) */
2372         rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2373
2374         ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2375
2376         /* set rate to some reasonable initial value */
2377         for (i = ni->ni_rates.rs_nrates - 1;
2378              i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2379              i--);
2380         ni->ni_txrate = i;
2381
2382         callout_reset(&sc->amrr_ch, hz, rum_amrr_timeout, sc);
2383 }
2384
2385 static void
2386 rum_amrr_timeout(void *arg)
2387 {
2388         struct rum_softc *sc = (struct rum_softc *)arg;
2389         usb_device_request_t req;
2390
2391         /*
2392          * Asynchronously read statistic registers (cleared by read).
2393          */
2394         req.bmRequestType = UT_READ_VENDOR_DEVICE;
2395         req.bRequest = RT2573_READ_MULTI_MAC;
2396         USETW(req.wValue, 0);
2397         USETW(req.wIndex, RT2573_STA_CSR0);
2398         USETW(req.wLength, sizeof sc->sta);
2399
2400         usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2401             USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2402             rum_amrr_update);
2403         (void)usbd_transfer(sc->amrr_xfer);
2404 }
2405
2406 static void
2407 rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2408     usbd_status status)
2409 {
2410         struct rum_softc *sc = (struct rum_softc *)priv;
2411         struct ifnet *ifp = sc->sc_ic.ic_ifp;
2412
2413         if (status != USBD_NORMAL_COMPLETION) {
2414                 device_printf(sc->sc_dev, "could not retrieve Tx statistics - "
2415                     "cancelling automatic rate control\n");
2416                 return;
2417         }
2418
2419         /* count TX retry-fail as Tx errors */
2420         ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2421
2422         sc->amn.amn_retrycnt =
2423             (le32toh(sc->sta[4]) >> 16) +       /* TX one-retry ok count */
2424             (le32toh(sc->sta[5]) & 0xffff) +    /* TX more-retry ok count */
2425             (le32toh(sc->sta[5]) >> 16);        /* TX retry-fail count */
2426
2427         sc->amn.amn_txcnt =
2428             sc->amn.amn_retrycnt +
2429             (le32toh(sc->sta[4]) & 0xffff);     /* TX no-retry ok count */
2430
2431         ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2432
2433         callout_reset(&sc->amrr_ch, hz, rum_amrr_timeout, sc);
2434 }
2435
2436 static void
2437 rum_scan_start(struct ieee80211com *ic)
2438 {
2439         struct rum_softc *sc = ic->ic_ifp->if_softc;
2440
2441         usb_rem_task(sc->sc_udev, &sc->sc_scantask);
2442
2443         /* do it in a process context */
2444         sc->sc_scan_action = RUM_SCAN_START;
2445         usb_add_task(sc->sc_udev, &sc->sc_scantask, USB_TASKQ_DRIVER);
2446 }
2447
2448 static void
2449 rum_scan_end(struct ieee80211com *ic)
2450 {
2451         struct rum_softc *sc = ic->ic_ifp->if_softc;
2452
2453         usb_rem_task(sc->sc_udev, &sc->sc_scantask);
2454
2455         /* do it in a process context */
2456         sc->sc_scan_action = RUM_SCAN_END;
2457         usb_add_task(sc->sc_udev, &sc->sc_scantask, USB_TASKQ_DRIVER);
2458 }
2459
2460 static void
2461 rum_set_channel(struct ieee80211com *ic)
2462 {
2463         struct rum_softc *sc = ic->ic_ifp->if_softc;
2464
2465         usb_rem_task(sc->sc_udev, &sc->sc_scantask);
2466
2467         /* do it in a process context */
2468         sc->sc_scan_action = RUM_SET_CHANNEL;
2469         usb_add_task(sc->sc_udev, &sc->sc_scantask, USB_TASKQ_DRIVER);
2470 }
2471
2472 static void
2473 rum_scantask(void *arg)
2474 {
2475         struct rum_softc *sc = arg;
2476         struct ieee80211com *ic = &sc->sc_ic;
2477         struct ifnet *ifp = ic->ic_ifp;
2478         uint32_t tmp;
2479
2480         RUM_LOCK(sc);
2481
2482         switch (sc->sc_scan_action) {
2483         case RUM_SCAN_START:
2484                 /* abort TSF synchronization */
2485                 tmp = rum_read(sc, RT2573_TXRX_CSR9);
2486                 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
2487                 rum_set_bssid(sc, ifp->if_broadcastaddr);
2488                 break;
2489
2490         case RUM_SCAN_END:
2491                 rum_enable_tsf_sync(sc);
2492                 /* XXX keep local copy */
2493                 rum_set_bssid(sc, ic->ic_bss->ni_bssid);
2494                 break;
2495
2496         case RUM_SET_CHANNEL:
2497                 mtx_lock(&Giant);
2498                 rum_set_chan(sc, ic->ic_curchan);
2499                 mtx_unlock(&Giant);
2500                 break;
2501
2502         default:
2503                 panic("unknown scan action %d\n", sc->sc_scan_action);
2504                 /* NEVER REACHED */
2505                 break;
2506         }
2507
2508         RUM_UNLOCK(sc);
2509 }
2510
2511 static int
2512 rum_get_rssi(struct rum_softc *sc, uint8_t raw)
2513 {
2514         int lna, agc, rssi;
2515
2516         lna = (raw >> 5) & 0x3;
2517         agc = raw & 0x1f;
2518
2519         if (lna == 0) {
2520                 /*
2521                  * No RSSI mapping
2522                  *
2523                  * NB: Since RSSI is relative to noise floor, -1 is
2524                  *     adequate for caller to know error happened.
2525                  */
2526                 return -1;
2527         }
2528
2529         rssi = (2 * agc) - RT2573_NOISE_FLOOR;
2530
2531         if (IEEE80211_IS_CHAN_2GHZ(sc->sc_ic.ic_curchan)) {
2532                 rssi += sc->rssi_2ghz_corr;
2533
2534                 if (lna == 1)
2535                         rssi -= 64;
2536                 else if (lna == 2)
2537                         rssi -= 74;
2538                 else if (lna == 3)
2539                         rssi -= 90;
2540         } else {
2541                 rssi += sc->rssi_5ghz_corr;
2542
2543                 if (!sc->ext_5ghz_lna && lna != 1)
2544                         rssi += 4;
2545
2546                 if (lna == 1)
2547                         rssi -= 64;
2548                 else if (lna == 2)
2549                         rssi -= 86;
2550                 else if (lna == 3)
2551                         rssi -= 100;
2552         }
2553         return rssi;
2554 }
2555
2556 static device_method_t rum_methods[] = {
2557         /* Device interface */
2558         DEVMETHOD(device_probe,         rum_match),
2559         DEVMETHOD(device_attach,        rum_attach),
2560         DEVMETHOD(device_detach,        rum_detach),
2561
2562         { 0, 0 }
2563 };
2564
2565 static driver_t rum_driver = {
2566         "rum",
2567         rum_methods,
2568         sizeof(struct rum_softc)
2569 };
2570
2571 static devclass_t rum_devclass;
2572
2573 DRIVER_MODULE(rum, uhub, rum_driver, rum_devclass, usbd_driver_load, 0);