]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/usb/input/atp.c
Update to Zstandard 1.4.4
[FreeBSD/FreeBSD.git] / sys / dev / usb / input / atp.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2014 Rohit Grover
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 /*
30  * Some tables, structures, definitions and constant values for the
31  * touchpad protocol has been copied from Linux's
32  * "drivers/input/mouse/bcm5974.c" which has the following copyright
33  * holders under GPLv2. All device specific code in this driver has
34  * been written from scratch. The decoding algorithm is based on
35  * output from FreeBSD's usbdump.
36  *
37  * Copyright (C) 2008      Henrik Rydberg (rydberg@euromail.se)
38  * Copyright (C) 2008      Scott Shawcroft (scott.shawcroft@gmail.com)
39  * Copyright (C) 2001-2004 Greg Kroah-Hartman (greg@kroah.com)
40  * Copyright (C) 2005      Johannes Berg (johannes@sipsolutions.net)
41  * Copyright (C) 2005      Stelian Pop (stelian@popies.net)
42  * Copyright (C) 2005      Frank Arnold (frank@scirocco-5v-turbo.de)
43  * Copyright (C) 2005      Peter Osterlund (petero2@telia.com)
44  * Copyright (C) 2005      Michael Hanselmann (linux-kernel@hansmi.ch)
45  * Copyright (C) 2006      Nicolas Boichat (nicolas@boichat.ch)
46  */
47
48 /*
49  * Author's note: 'atp' supports two distinct families of Apple trackpad
50  * products: the older Fountain/Geyser and the latest Wellspring trackpads.
51  * The first version made its appearance with FreeBSD 8 and worked only with
52  * the Fountain/Geyser hardware. A fork of this driver for Wellspring was
53  * contributed by Huang Wen Hui. This driver unifies the Wellspring effort
54  * and also improves upon the original work.
55  *
56  * I'm grateful to Stephan Scheunig, Angela Naegele, and Nokia IT-support
57  * for helping me with access to hardware. Thanks also go to Nokia for
58  * giving me an opportunity to do this work.
59  */
60
61 #include <sys/cdefs.h>
62 __FBSDID("$FreeBSD$");
63
64 #include <sys/stdint.h>
65 #include <sys/stddef.h>
66 #include <sys/param.h>
67 #include <sys/types.h>
68 #include <sys/systm.h>
69 #include <sys/kernel.h>
70 #include <sys/bus.h>
71 #include <sys/module.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/sysctl.h>
75 #include <sys/malloc.h>
76 #include <sys/conf.h>
77 #include <sys/fcntl.h>
78 #include <sys/file.h>
79 #include <sys/selinfo.h>
80 #include <sys/poll.h>
81
82 #include <dev/usb/usb.h>
83 #include <dev/usb/usbdi.h>
84 #include <dev/usb/usbdi_util.h>
85 #include <dev/usb/usbhid.h>
86
87 #include "usbdevs.h"
88
89 #define USB_DEBUG_VAR atp_debug
90 #include <dev/usb/usb_debug.h>
91
92 #include <sys/mouse.h>
93
94 #define ATP_DRIVER_NAME "atp"
95
96 /*
97  * Driver specific options: the following options may be set by
98  * `options' statements in the kernel configuration file.
99  */
100
101 /* The divisor used to translate sensor reported positions to mickeys. */
102 #ifndef ATP_SCALE_FACTOR
103 #define ATP_SCALE_FACTOR                  16
104 #endif
105
106 /* Threshold for small movement noise (in mickeys) */
107 #ifndef ATP_SMALL_MOVEMENT_THRESHOLD
108 #define ATP_SMALL_MOVEMENT_THRESHOLD      30
109 #endif
110
111 /* Threshold of instantaneous deltas beyond which movement is considered fast.*/
112 #ifndef ATP_FAST_MOVEMENT_TRESHOLD
113 #define ATP_FAST_MOVEMENT_TRESHOLD        150
114 #endif
115
116 /*
117  * This is the age in microseconds beyond which a touch is considered
118  * to be a slide; and therefore a tap event isn't registered.
119  */
120 #ifndef ATP_TOUCH_TIMEOUT
121 #define ATP_TOUCH_TIMEOUT                 125000
122 #endif
123
124 #ifndef ATP_IDLENESS_THRESHOLD
125 #define ATP_IDLENESS_THRESHOLD 10
126 #endif
127
128 #ifndef FG_SENSOR_NOISE_THRESHOLD
129 #define FG_SENSOR_NOISE_THRESHOLD 2
130 #endif
131
132 /*
133  * A double-tap followed by a single-finger slide is treated as a
134  * special gesture. The driver responds to this gesture by assuming a
135  * virtual button-press for the lifetime of the slide. The following
136  * threshold is the maximum time gap (in microseconds) between the two
137  * tap events preceding the slide for such a gesture.
138  */
139 #ifndef ATP_DOUBLE_TAP_N_DRAG_THRESHOLD
140 #define ATP_DOUBLE_TAP_N_DRAG_THRESHOLD   200000
141 #endif
142
143 /*
144  * The wait duration in ticks after losing a touch contact before
145  * zombied strokes are reaped and turned into button events.
146  */
147 #define ATP_ZOMBIE_STROKE_REAP_INTERVAL   (hz / 20)     /* 50 ms */
148
149 /* The multiplier used to translate sensor reported positions to mickeys. */
150 #define FG_SCALE_FACTOR                   380
151
152 /*
153  * The movement threshold for a stroke; this is the maximum difference
154  * in position which will be resolved as a continuation of a stroke
155  * component.
156  */
157 #define FG_MAX_DELTA_MICKEYS             ((3 * (FG_SCALE_FACTOR)) >> 1)
158
159 /* Distance-squared threshold for matching a finger with a known stroke */
160 #ifndef WSP_MAX_ALLOWED_MATCH_DISTANCE_SQ
161 #define WSP_MAX_ALLOWED_MATCH_DISTANCE_SQ 1000000
162 #endif
163
164 /* Ignore pressure spans with cumulative press. below this value. */
165 #define FG_PSPAN_MIN_CUM_PRESSURE         10
166
167 /* Maximum allowed width for pressure-spans.*/
168 #define FG_PSPAN_MAX_WIDTH                4
169
170 /* end of driver specific options */
171
172 /* Tunables */
173 static SYSCTL_NODE(_hw_usb, OID_AUTO, atp, CTLFLAG_RW, 0, "USB ATP");
174
175 #ifdef USB_DEBUG
176 enum atp_log_level {
177         ATP_LLEVEL_DISABLED = 0,
178         ATP_LLEVEL_ERROR,
179         ATP_LLEVEL_DEBUG,       /* for troubleshooting */
180         ATP_LLEVEL_INFO,        /* for diagnostics */
181 };
182 static int atp_debug = ATP_LLEVEL_ERROR; /* the default is to only log errors */
183 SYSCTL_INT(_hw_usb_atp, OID_AUTO, debug, CTLFLAG_RWTUN,
184     &atp_debug, ATP_LLEVEL_ERROR, "ATP debug level");
185 #endif /* USB_DEBUG */
186
187 static u_int atp_touch_timeout = ATP_TOUCH_TIMEOUT;
188 SYSCTL_UINT(_hw_usb_atp, OID_AUTO, touch_timeout, CTLFLAG_RWTUN,
189     &atp_touch_timeout, 125000, "age threshold in microseconds for a touch");
190
191 static u_int atp_double_tap_threshold = ATP_DOUBLE_TAP_N_DRAG_THRESHOLD;
192 SYSCTL_UINT(_hw_usb_atp, OID_AUTO, double_tap_threshold, CTLFLAG_RWTUN,
193     &atp_double_tap_threshold, ATP_DOUBLE_TAP_N_DRAG_THRESHOLD,
194     "maximum time in microseconds to allow association between a double-tap and "
195     "drag gesture");
196
197 static u_int atp_mickeys_scale_factor = ATP_SCALE_FACTOR;
198 static int atp_sysctl_scale_factor_handler(SYSCTL_HANDLER_ARGS);
199 SYSCTL_PROC(_hw_usb_atp, OID_AUTO, scale_factor, CTLTYPE_UINT | CTLFLAG_RWTUN,
200     &atp_mickeys_scale_factor, sizeof(atp_mickeys_scale_factor),
201     atp_sysctl_scale_factor_handler, "IU", "movement scale factor");
202
203 static u_int atp_small_movement_threshold = ATP_SMALL_MOVEMENT_THRESHOLD;
204 SYSCTL_UINT(_hw_usb_atp, OID_AUTO, small_movement, CTLFLAG_RWTUN,
205     &atp_small_movement_threshold, ATP_SMALL_MOVEMENT_THRESHOLD,
206     "the small movement black-hole for filtering noise");
207
208 static u_int atp_tap_minimum = 1;
209 SYSCTL_UINT(_hw_usb_atp, OID_AUTO, tap_minimum, CTLFLAG_RWTUN,
210     &atp_tap_minimum, 1, "Minimum number of taps before detection");
211
212 /*
213  * Strokes which accumulate at least this amount of absolute movement
214  * from the aggregate of their components are considered as
215  * slides. Unit: mickeys.
216  */
217 static u_int atp_slide_min_movement = 2 * ATP_SMALL_MOVEMENT_THRESHOLD;
218 SYSCTL_UINT(_hw_usb_atp, OID_AUTO, slide_min_movement, CTLFLAG_RWTUN,
219     &atp_slide_min_movement, 2 * ATP_SMALL_MOVEMENT_THRESHOLD,
220     "strokes with at least this amt. of movement are considered slides");
221
222 /*
223  * The minimum age of a stroke for it to be considered mature; this
224  * helps filter movements (noise) from immature strokes. Units: interrupts.
225  */
226 static u_int atp_stroke_maturity_threshold = 4;
227 SYSCTL_UINT(_hw_usb_atp, OID_AUTO, stroke_maturity_threshold, CTLFLAG_RWTUN,
228     &atp_stroke_maturity_threshold, 4,
229     "the minimum age of a stroke for it to be considered mature");
230
231 typedef enum atp_trackpad_family {
232         TRACKPAD_FAMILY_FOUNTAIN_GEYSER,
233         TRACKPAD_FAMILY_WELLSPRING,
234         TRACKPAD_FAMILY_MAX /* keep this at the tail end of the enumeration */
235 } trackpad_family_t;
236
237 enum fountain_geyser_product {
238         FOUNTAIN,
239         GEYSER1,
240         GEYSER1_17inch,
241         GEYSER2,
242         GEYSER3,
243         GEYSER4,
244         FOUNTAIN_GEYSER_PRODUCT_MAX /* keep this at the end */
245 };
246
247 enum wellspring_product {
248         WELLSPRING1,
249         WELLSPRING2,
250         WELLSPRING3,
251         WELLSPRING4,
252         WELLSPRING4A,
253         WELLSPRING5,
254         WELLSPRING6A,
255         WELLSPRING6,
256         WELLSPRING5A,
257         WELLSPRING7,
258         WELLSPRING7A,
259         WELLSPRING8,
260         WELLSPRING_PRODUCT_MAX /* keep this at the end of the enumeration */
261 };
262
263 /* trackpad header types */
264 enum fountain_geyser_trackpad_type {
265         FG_TRACKPAD_TYPE_GEYSER1,
266         FG_TRACKPAD_TYPE_GEYSER2,
267         FG_TRACKPAD_TYPE_GEYSER3,
268         FG_TRACKPAD_TYPE_GEYSER4,
269 };
270 enum wellspring_trackpad_type {
271         WSP_TRACKPAD_TYPE1,      /* plain trackpad */
272         WSP_TRACKPAD_TYPE2,      /* button integrated in trackpad */
273         WSP_TRACKPAD_TYPE3       /* additional header fields since June 2013 */
274 };
275
276 /*
277  * Trackpad family and product and family are encoded together in the
278  * driver_info value associated with a trackpad product.
279  */
280 #define N_PROD_BITS 8  /* Number of bits used to encode product */
281 #define ENCODE_DRIVER_INFO(FAMILY, PROD)      \
282     (((FAMILY) << N_PROD_BITS) | (PROD))
283 #define DECODE_FAMILY_FROM_DRIVER_INFO(INFO)  ((INFO) >> N_PROD_BITS)
284 #define DECODE_PRODUCT_FROM_DRIVER_INFO(INFO) \
285     ((INFO) & ((1 << N_PROD_BITS) - 1))
286
287 #define FG_DRIVER_INFO(PRODUCT)               \
288     ENCODE_DRIVER_INFO(TRACKPAD_FAMILY_FOUNTAIN_GEYSER, PRODUCT)
289 #define WELLSPRING_DRIVER_INFO(PRODUCT)       \
290     ENCODE_DRIVER_INFO(TRACKPAD_FAMILY_WELLSPRING, PRODUCT)
291
292 /*
293  * The following structure captures the state of a pressure span along
294  * an axis. Each contact with the touchpad results in separate
295  * pressure spans along the two axes.
296  */
297 typedef struct fg_pspan {
298         u_int width;       /* in units of sensors */
299         u_int cum;         /* cumulative compression (from all sensors) */
300         u_int cog;         /* center of gravity */
301         u_int loc;         /* location (scaled using the mickeys factor) */
302         boolean_t matched; /* to track pspans as they match against strokes. */
303 } fg_pspan;
304
305 #define FG_MAX_PSPANS_PER_AXIS 3
306 #define FG_MAX_STROKES         (2 * FG_MAX_PSPANS_PER_AXIS)
307
308 #define WELLSPRING_INTERFACE_INDEX 1
309
310 /* trackpad finger data offsets, le16-aligned */
311 #define WSP_TYPE1_FINGER_DATA_OFFSET  (13 * 2)
312 #define WSP_TYPE2_FINGER_DATA_OFFSET  (15 * 2)
313 #define WSP_TYPE3_FINGER_DATA_OFFSET  (19 * 2)
314
315 /* trackpad button data offsets */
316 #define WSP_TYPE2_BUTTON_DATA_OFFSET   15
317 #define WSP_TYPE3_BUTTON_DATA_OFFSET   23
318
319 /* list of device capability bits */
320 #define HAS_INTEGRATED_BUTTON   1
321
322 /* trackpad finger structure - little endian */
323 struct wsp_finger_sensor_data {
324         int16_t origin;       /* zero when switching track finger */
325         int16_t abs_x;        /* absolute x coordinate */
326         int16_t abs_y;        /* absolute y coordinate */
327         int16_t rel_x;        /* relative x coordinate */
328         int16_t rel_y;        /* relative y coordinate */
329         int16_t tool_major;   /* tool area, major axis */
330         int16_t tool_minor;   /* tool area, minor axis */
331         int16_t orientation;  /* 16384 when point, else 15 bit angle */
332         int16_t touch_major;  /* touch area, major axis */
333         int16_t touch_minor;  /* touch area, minor axis */
334         int16_t unused[3];    /* zeros */
335         int16_t multi;        /* one finger: varies, more fingers: constant */
336 } __packed;
337
338 typedef struct wsp_finger {
339         /* to track fingers as they match against strokes. */
340         boolean_t matched;
341
342         /* location (scaled using the mickeys factor) */
343         int x;
344         int y;
345 } wsp_finger_t;
346
347 #define WSP_MAX_FINGERS               16
348 #define WSP_SIZEOF_FINGER_SENSOR_DATA sizeof(struct wsp_finger_sensor_data)
349 #define WSP_SIZEOF_ALL_FINGER_DATA    (WSP_MAX_FINGERS * \
350                                        WSP_SIZEOF_FINGER_SENSOR_DATA)
351 #define WSP_MAX_FINGER_ORIENTATION    16384
352
353 #define ATP_SENSOR_DATA_BUF_MAX       1024
354 #if (ATP_SENSOR_DATA_BUF_MAX < ((WSP_MAX_FINGERS * 14 * 2) + \
355                                 WSP_TYPE3_FINGER_DATA_OFFSET))
356 /* note: 14 * 2 in the above is based on sizeof(struct wsp_finger_sensor_data)*/
357 #error "ATP_SENSOR_DATA_BUF_MAX is too small"
358 #endif
359
360 #define ATP_MAX_STROKES               MAX(WSP_MAX_FINGERS, FG_MAX_STROKES)
361
362 #define FG_MAX_XSENSORS 26
363 #define FG_MAX_YSENSORS 16
364
365 /* device-specific configuration */
366 struct fg_dev_params {
367         u_int                              data_len;   /* for sensor data */
368         u_int                              n_xsensors;
369         u_int                              n_ysensors;
370         enum fountain_geyser_trackpad_type prot;
371 };
372 struct wsp_dev_params {
373         uint8_t  caps;               /* device capability bitmask */
374         uint8_t  tp_type;            /* type of trackpad interface */
375         uint8_t  finger_data_offset; /* offset to trackpad finger data */
376 };
377
378 static const struct fg_dev_params fg_dev_params[FOUNTAIN_GEYSER_PRODUCT_MAX] = {
379         [FOUNTAIN] = {
380                 .data_len   = 81,
381                 .n_xsensors = 16,
382                 .n_ysensors = 16,
383                 .prot       = FG_TRACKPAD_TYPE_GEYSER1
384         },
385         [GEYSER1] = {
386                 .data_len   = 81,
387                 .n_xsensors = 16,
388                 .n_ysensors = 16,
389                 .prot       = FG_TRACKPAD_TYPE_GEYSER1
390         },
391         [GEYSER1_17inch] = {
392                 .data_len   = 81,
393                 .n_xsensors = 26,
394                 .n_ysensors = 16,
395                 .prot       = FG_TRACKPAD_TYPE_GEYSER1
396         },
397         [GEYSER2] = {
398                 .data_len   = 64,
399                 .n_xsensors = 15,
400                 .n_ysensors = 9,
401                 .prot       = FG_TRACKPAD_TYPE_GEYSER2
402         },
403         [GEYSER3] = {
404                 .data_len   = 64,
405                 .n_xsensors = 20,
406                 .n_ysensors = 10,
407                 .prot       = FG_TRACKPAD_TYPE_GEYSER3
408         },
409         [GEYSER4] = {
410                 .data_len   = 64,
411                 .n_xsensors = 20,
412                 .n_ysensors = 10,
413                 .prot       = FG_TRACKPAD_TYPE_GEYSER4
414         }
415 };
416
417 static const STRUCT_USB_HOST_ID fg_devs[] = {
418         /* PowerBooks Feb 2005, iBooks G4 */
419         { USB_VPI(USB_VENDOR_APPLE, 0x020e, FG_DRIVER_INFO(FOUNTAIN)) },
420         { USB_VPI(USB_VENDOR_APPLE, 0x020f, FG_DRIVER_INFO(FOUNTAIN)) },
421         { USB_VPI(USB_VENDOR_APPLE, 0x0210, FG_DRIVER_INFO(FOUNTAIN)) },
422         { USB_VPI(USB_VENDOR_APPLE, 0x030a, FG_DRIVER_INFO(FOUNTAIN)) },
423         { USB_VPI(USB_VENDOR_APPLE, 0x030b, FG_DRIVER_INFO(GEYSER1)) },
424
425         /* PowerBooks Oct 2005 */
426         { USB_VPI(USB_VENDOR_APPLE, 0x0214, FG_DRIVER_INFO(GEYSER2)) },
427         { USB_VPI(USB_VENDOR_APPLE, 0x0215, FG_DRIVER_INFO(GEYSER2)) },
428         { USB_VPI(USB_VENDOR_APPLE, 0x0216, FG_DRIVER_INFO(GEYSER2)) },
429
430         /* Core Duo MacBook & MacBook Pro */
431         { USB_VPI(USB_VENDOR_APPLE, 0x0217, FG_DRIVER_INFO(GEYSER3)) },
432         { USB_VPI(USB_VENDOR_APPLE, 0x0218, FG_DRIVER_INFO(GEYSER3)) },
433         { USB_VPI(USB_VENDOR_APPLE, 0x0219, FG_DRIVER_INFO(GEYSER3)) },
434
435         /* Core2 Duo MacBook & MacBook Pro */
436         { USB_VPI(USB_VENDOR_APPLE, 0x021a, FG_DRIVER_INFO(GEYSER4)) },
437         { USB_VPI(USB_VENDOR_APPLE, 0x021b, FG_DRIVER_INFO(GEYSER4)) },
438         { USB_VPI(USB_VENDOR_APPLE, 0x021c, FG_DRIVER_INFO(GEYSER4)) },
439
440         /* Core2 Duo MacBook3,1 */
441         { USB_VPI(USB_VENDOR_APPLE, 0x0229, FG_DRIVER_INFO(GEYSER4)) },
442         { USB_VPI(USB_VENDOR_APPLE, 0x022a, FG_DRIVER_INFO(GEYSER4)) },
443         { USB_VPI(USB_VENDOR_APPLE, 0x022b, FG_DRIVER_INFO(GEYSER4)) },
444
445         /* 17 inch PowerBook */
446         { USB_VPI(USB_VENDOR_APPLE, 0x020d, FG_DRIVER_INFO(GEYSER1_17inch)) },
447 };
448
449 static const struct wsp_dev_params wsp_dev_params[WELLSPRING_PRODUCT_MAX] = {
450         [WELLSPRING1] = {
451                 .caps       = 0,
452                 .tp_type    = WSP_TRACKPAD_TYPE1,
453                 .finger_data_offset  = WSP_TYPE1_FINGER_DATA_OFFSET,
454         },
455         [WELLSPRING2] = {
456                 .caps       = 0,
457                 .tp_type    = WSP_TRACKPAD_TYPE1,
458                 .finger_data_offset  = WSP_TYPE1_FINGER_DATA_OFFSET,
459         },
460         [WELLSPRING3] = {
461                 .caps       = HAS_INTEGRATED_BUTTON,
462                 .tp_type    = WSP_TRACKPAD_TYPE2,
463                 .finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
464         },
465         [WELLSPRING4] = {
466                 .caps       = HAS_INTEGRATED_BUTTON,
467                 .tp_type    = WSP_TRACKPAD_TYPE2,
468                 .finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
469         },
470         [WELLSPRING4A] = {
471                 .caps       = HAS_INTEGRATED_BUTTON,
472                 .tp_type    = WSP_TRACKPAD_TYPE2,
473                 .finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
474         },
475         [WELLSPRING5] = {
476                 .caps       = HAS_INTEGRATED_BUTTON,
477                 .tp_type    = WSP_TRACKPAD_TYPE2,
478                 .finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
479         },
480         [WELLSPRING6] = {
481                 .caps       = HAS_INTEGRATED_BUTTON,
482                 .tp_type    = WSP_TRACKPAD_TYPE2,
483                 .finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
484         },
485         [WELLSPRING5A] = {
486                 .caps       = HAS_INTEGRATED_BUTTON,
487                 .tp_type    = WSP_TRACKPAD_TYPE2,
488                 .finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
489         },
490         [WELLSPRING6A] = {
491                 .caps       = HAS_INTEGRATED_BUTTON,
492                 .tp_type    = WSP_TRACKPAD_TYPE2,
493                 .finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
494         },
495         [WELLSPRING7] = {
496                 .caps       = HAS_INTEGRATED_BUTTON,
497                 .tp_type    = WSP_TRACKPAD_TYPE2,
498                 .finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
499         },
500         [WELLSPRING7A] = {
501                 .caps       = HAS_INTEGRATED_BUTTON,
502                 .tp_type    = WSP_TRACKPAD_TYPE2,
503                 .finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
504         },
505         [WELLSPRING8] = {
506                 .caps       = HAS_INTEGRATED_BUTTON,
507                 .tp_type    = WSP_TRACKPAD_TYPE3,
508                 .finger_data_offset  = WSP_TYPE3_FINGER_DATA_OFFSET,
509         },
510 };
511
512 #define ATP_DEV(v,p,i) { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, i) }
513
514 /* TODO: STRUCT_USB_HOST_ID */
515 static const struct usb_device_id wsp_devs[] = {
516         /* MacbookAir1.1 */
517         ATP_DEV(APPLE, WELLSPRING_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING1)),
518         ATP_DEV(APPLE, WELLSPRING_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING1)),
519         ATP_DEV(APPLE, WELLSPRING_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING1)),
520
521         /* MacbookProPenryn, aka wellspring2 */
522         ATP_DEV(APPLE, WELLSPRING2_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING2)),
523         ATP_DEV(APPLE, WELLSPRING2_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING2)),
524         ATP_DEV(APPLE, WELLSPRING2_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING2)),
525
526         /* Macbook5,1 (unibody), aka wellspring3 */
527         ATP_DEV(APPLE, WELLSPRING3_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING3)),
528         ATP_DEV(APPLE, WELLSPRING3_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING3)),
529         ATP_DEV(APPLE, WELLSPRING3_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING3)),
530
531         /* MacbookAir3,2 (unibody), aka wellspring4 */
532         ATP_DEV(APPLE, WELLSPRING4_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING4)),
533         ATP_DEV(APPLE, WELLSPRING4_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING4)),
534         ATP_DEV(APPLE, WELLSPRING4_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING4)),
535
536         /* MacbookAir3,1 (unibody), aka wellspring4 */
537         ATP_DEV(APPLE, WELLSPRING4A_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING4A)),
538         ATP_DEV(APPLE, WELLSPRING4A_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING4A)),
539         ATP_DEV(APPLE, WELLSPRING4A_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING4A)),
540
541         /* Macbook8 (unibody, March 2011) */
542         ATP_DEV(APPLE, WELLSPRING5_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING5)),
543         ATP_DEV(APPLE, WELLSPRING5_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING5)),
544         ATP_DEV(APPLE, WELLSPRING5_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING5)),
545
546         /* MacbookAir4,1 (unibody, July 2011) */
547         ATP_DEV(APPLE, WELLSPRING6A_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING6A)),
548         ATP_DEV(APPLE, WELLSPRING6A_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING6A)),
549         ATP_DEV(APPLE, WELLSPRING6A_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING6A)),
550
551         /* MacbookAir4,2 (unibody, July 2011) */
552         ATP_DEV(APPLE, WELLSPRING6_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING6)),
553         ATP_DEV(APPLE, WELLSPRING6_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING6)),
554         ATP_DEV(APPLE, WELLSPRING6_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING6)),
555
556         /* Macbook8,2 (unibody) */
557         ATP_DEV(APPLE, WELLSPRING5A_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING5A)),
558         ATP_DEV(APPLE, WELLSPRING5A_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING5A)),
559         ATP_DEV(APPLE, WELLSPRING5A_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING5A)),
560
561         /* MacbookPro10,1 (unibody, June 2012) */
562         /* MacbookPro11,? (unibody, June 2013) */
563         ATP_DEV(APPLE, WELLSPRING7_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING7)),
564         ATP_DEV(APPLE, WELLSPRING7_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING7)),
565         ATP_DEV(APPLE, WELLSPRING7_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING7)),
566
567         /* MacbookPro10,2 (unibody, October 2012) */
568         ATP_DEV(APPLE, WELLSPRING7A_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING7A)),
569         ATP_DEV(APPLE, WELLSPRING7A_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING7A)),
570         ATP_DEV(APPLE, WELLSPRING7A_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING7A)),
571
572         /* MacbookAir6,2 (unibody, June 2013) */
573         ATP_DEV(APPLE, WELLSPRING8_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING8)),
574         ATP_DEV(APPLE, WELLSPRING8_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING8)),
575         ATP_DEV(APPLE, WELLSPRING8_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING8)),
576 };
577
578 typedef enum atp_stroke_type {
579         ATP_STROKE_TOUCH,
580         ATP_STROKE_SLIDE,
581 } atp_stroke_type;
582
583 typedef enum atp_axis {
584         X = 0,
585         Y = 1,
586         NUM_AXES
587 } atp_axis;
588
589 #define ATP_FIFO_BUF_SIZE        8 /* bytes */
590 #define ATP_FIFO_QUEUE_MAXLEN   50 /* units */
591
592 enum {
593         ATP_INTR_DT,
594         ATP_RESET,
595         ATP_N_TRANSFER,
596 };
597
598 typedef struct fg_stroke_component {
599         /* Fields encapsulating the pressure-span. */
600         u_int loc;              /* location (scaled) */
601         u_int cum_pressure;     /* cumulative compression */
602         u_int max_cum_pressure; /* max cumulative compression */
603         boolean_t matched; /*to track components as they match against pspans.*/
604
605         int   delta_mickeys;    /* change in location (un-smoothened movement)*/
606 } fg_stroke_component_t;
607
608 /*
609  * The following structure captures a finger contact with the
610  * touchpad. A stroke comprises two p-span components and some state.
611  */
612 typedef struct atp_stroke {
613         TAILQ_ENTRY(atp_stroke) entry;
614
615         atp_stroke_type type;
616         uint32_t        flags; /* the state of this stroke */
617 #define ATSF_ZOMBIE 0x1
618         boolean_t       matched;          /* to track match against fingers.*/
619
620         struct timeval  ctime; /* create time; for coincident siblings. */
621
622         /*
623          * Unit: interrupts; we maintain this value in
624          * addition to 'ctime' in order to avoid the
625          * expensive call to microtime() at every
626          * interrupt.
627          */
628         uint32_t age;
629
630         /* Location */
631         int x;
632         int y;
633
634         /* Fields containing information about movement. */
635         int   instantaneous_dx; /* curr. change in X location (un-smoothened) */
636         int   instantaneous_dy; /* curr. change in Y location (un-smoothened) */
637         int   pending_dx;       /* cum. of pending short movements */
638         int   pending_dy;       /* cum. of pending short movements */
639         int   movement_dx;      /* interpreted smoothened movement */
640         int   movement_dy;      /* interpreted smoothened movement */
641         int   cum_movement_x;   /* cum. horizontal movement */
642         int   cum_movement_y;   /* cum. vertical movement */
643
644         /*
645          * The following member is relevant only for fountain-geyser trackpads.
646          * For these, there is the need to track pressure-spans and cumulative
647          * pressures for stroke components.
648          */
649         fg_stroke_component_t components[NUM_AXES];
650 } atp_stroke_t;
651
652 struct atp_softc; /* forward declaration */
653 typedef void (*sensor_data_interpreter_t)(struct atp_softc *sc, u_int len);
654
655 struct atp_softc {
656         device_t            sc_dev;
657         struct usb_device  *sc_usb_device;
658         struct mtx          sc_mutex; /* for synchronization */
659         struct usb_fifo_sc  sc_fifo;
660
661 #define MODE_LENGTH 8
662         char                sc_mode_bytes[MODE_LENGTH]; /* device mode */
663
664         trackpad_family_t   sc_family;
665         const void         *sc_params; /* device configuration */
666         sensor_data_interpreter_t sensor_data_interpreter;
667
668         mousehw_t           sc_hw;
669         mousemode_t         sc_mode;
670         mousestatus_t       sc_status;
671
672         u_int               sc_state;
673 #define ATP_ENABLED          0x01
674 #define ATP_ZOMBIES_EXIST    0x02
675 #define ATP_DOUBLE_TAP_DRAG  0x04
676 #define ATP_VALID            0x08
677
678         struct usb_xfer    *sc_xfer[ATP_N_TRANSFER];
679
680         u_int               sc_pollrate;
681         int                 sc_fflags;
682
683         atp_stroke_t        sc_strokes_data[ATP_MAX_STROKES];
684         TAILQ_HEAD(,atp_stroke) sc_stroke_free;
685         TAILQ_HEAD(,atp_stroke) sc_stroke_used;
686         u_int               sc_n_strokes;
687
688         struct callout      sc_callout;
689
690         /*
691          * button status. Set to non-zero if the mouse-button is physically
692          * pressed. This state variable is exposed through softc to allow
693          * reap_sibling_zombies to avoid registering taps while the trackpad
694          * button is pressed.
695          */
696         uint8_t             sc_ibtn;
697
698         /*
699          * Time when touch zombies were last reaped; useful for detecting
700          * double-touch-n-drag.
701          */
702         struct timeval      sc_touch_reap_time;
703
704         u_int               sc_idlecount;
705
706         /* Regarding the data transferred from t-pad in USB INTR packets. */
707         u_int   sc_expected_sensor_data_len;
708         uint8_t sc_sensor_data[ATP_SENSOR_DATA_BUF_MAX] __aligned(4);
709
710         int      sc_cur_x[FG_MAX_XSENSORS];      /* current sensor readings */
711         int      sc_cur_y[FG_MAX_YSENSORS];
712         int      sc_base_x[FG_MAX_XSENSORS];     /* base sensor readings */
713         int      sc_base_y[FG_MAX_YSENSORS];
714         int      sc_pressure_x[FG_MAX_XSENSORS]; /* computed pressures */
715         int      sc_pressure_y[FG_MAX_YSENSORS];
716         fg_pspan sc_pspans_x[FG_MAX_PSPANS_PER_AXIS];
717         fg_pspan sc_pspans_y[FG_MAX_PSPANS_PER_AXIS];
718 };
719
720 /*
721  * The last byte of the fountain-geyser sensor data contains status bits; the
722  * following values define the meanings of these bits.
723  * (only Geyser 3/4)
724  */
725 enum geyser34_status_bits {
726         FG_STATUS_BUTTON      = (uint8_t)0x01, /* The button was pressed */
727         FG_STATUS_BASE_UPDATE = (uint8_t)0x04, /* Data from an untouched pad.*/
728 };
729
730 typedef enum interface_mode {
731         RAW_SENSOR_MODE = (uint8_t)0x01,
732         HID_MODE        = (uint8_t)0x08
733 } interface_mode;
734
735
736 /*
737  * function prototypes
738  */
739 static usb_fifo_cmd_t   atp_start_read;
740 static usb_fifo_cmd_t   atp_stop_read;
741 static usb_fifo_open_t  atp_open;
742 static usb_fifo_close_t atp_close;
743 static usb_fifo_ioctl_t atp_ioctl;
744
745 static struct usb_fifo_methods atp_fifo_methods = {
746         .f_open       = &atp_open,
747         .f_close      = &atp_close,
748         .f_ioctl      = &atp_ioctl,
749         .f_start_read = &atp_start_read,
750         .f_stop_read  = &atp_stop_read,
751         .basename[0]  = ATP_DRIVER_NAME,
752 };
753
754 /* device initialization and shutdown */
755 static usb_error_t   atp_set_device_mode(struct atp_softc *, interface_mode);
756 static void          atp_reset_callback(struct usb_xfer *, usb_error_t);
757 static int           atp_enable(struct atp_softc *);
758 static void          atp_disable(struct atp_softc *);
759
760 /* sensor interpretation */
761 static void          fg_interpret_sensor_data(struct atp_softc *, u_int);
762 static void          fg_extract_sensor_data(const int8_t *, u_int, atp_axis,
763     int *, enum fountain_geyser_trackpad_type);
764 static void          fg_get_pressures(int *, const int *, const int *, int);
765 static void          fg_detect_pspans(int *, u_int, u_int, fg_pspan *, u_int *);
766 static void          wsp_interpret_sensor_data(struct atp_softc *, u_int);
767
768 /* movement detection */
769 static boolean_t     fg_match_stroke_component(fg_stroke_component_t *,
770     const fg_pspan *, atp_stroke_type);
771 static void          fg_match_strokes_against_pspans(struct atp_softc *,
772     atp_axis, fg_pspan *, u_int, u_int);
773 static boolean_t     wsp_match_strokes_against_fingers(struct atp_softc *,
774     wsp_finger_t *, u_int);
775 static boolean_t     fg_update_strokes(struct atp_softc *, fg_pspan *, u_int,
776     fg_pspan *, u_int);
777 static boolean_t     wsp_update_strokes(struct atp_softc *,
778     wsp_finger_t [WSP_MAX_FINGERS], u_int);
779 static void fg_add_stroke(struct atp_softc *, const fg_pspan *, const fg_pspan *);
780 static void          fg_add_new_strokes(struct atp_softc *, fg_pspan *,
781     u_int, fg_pspan *, u_int);
782 static void wsp_add_stroke(struct atp_softc *, const wsp_finger_t *);
783 static void          atp_advance_stroke_state(struct atp_softc *,
784     atp_stroke_t *, boolean_t *);
785 static boolean_t atp_stroke_has_small_movement(const atp_stroke_t *);
786 static void          atp_update_pending_mickeys(atp_stroke_t *);
787 static boolean_t     atp_compute_stroke_movement(atp_stroke_t *);
788 static void          atp_terminate_stroke(struct atp_softc *, atp_stroke_t *);
789
790 /* tap detection */
791 static boolean_t atp_is_horizontal_scroll(const atp_stroke_t *);
792 static boolean_t atp_is_vertical_scroll(const atp_stroke_t *);
793 static void          atp_reap_sibling_zombies(void *);
794 static void          atp_convert_to_slide(struct atp_softc *, atp_stroke_t *);
795
796 /* updating fifo */
797 static void          atp_reset_buf(struct atp_softc *);
798 static void          atp_add_to_queue(struct atp_softc *, int, int, int, uint32_t);
799
800 /* Device methods. */
801 static device_probe_t  atp_probe;
802 static device_attach_t atp_attach;
803 static device_detach_t atp_detach;
804 static usb_callback_t  atp_intr;
805
806 static const struct usb_config atp_xfer_config[ATP_N_TRANSFER] = {
807         [ATP_INTR_DT] = {
808                 .type      = UE_INTERRUPT,
809                 .endpoint  = UE_ADDR_ANY,
810                 .direction = UE_DIR_IN,
811                 .flags = {
812                         .pipe_bof = 1, /* block pipe on failure */
813                         .short_xfer_ok = 1,
814                 },
815                 .bufsize   = ATP_SENSOR_DATA_BUF_MAX,
816                 .callback  = &atp_intr,
817         },
818         [ATP_RESET] = {
819                 .type      = UE_CONTROL,
820                 .endpoint  = 0, /* Control pipe */
821                 .direction = UE_DIR_ANY,
822                 .bufsize   = sizeof(struct usb_device_request) + MODE_LENGTH,
823                 .callback  = &atp_reset_callback,
824                 .interval  = 0,  /* no pre-delay */
825         },
826 };
827
828 static atp_stroke_t *
829 atp_alloc_stroke(struct atp_softc *sc)
830 {
831         atp_stroke_t *pstroke;
832
833         pstroke = TAILQ_FIRST(&sc->sc_stroke_free);
834         if (pstroke == NULL)
835                 goto done;
836
837         TAILQ_REMOVE(&sc->sc_stroke_free, pstroke, entry);
838         memset(pstroke, 0, sizeof(*pstroke));
839         TAILQ_INSERT_TAIL(&sc->sc_stroke_used, pstroke, entry);
840
841         sc->sc_n_strokes++;
842 done:
843         return (pstroke);
844 }
845
846 static void
847 atp_free_stroke(struct atp_softc *sc, atp_stroke_t *pstroke)
848 {
849         if (pstroke == NULL)
850                 return;
851
852         sc->sc_n_strokes--;
853
854         TAILQ_REMOVE(&sc->sc_stroke_used, pstroke, entry);
855         TAILQ_INSERT_TAIL(&sc->sc_stroke_free, pstroke, entry);
856 }
857
858 static void
859 atp_init_stroke_pool(struct atp_softc *sc)
860 {
861         u_int x;
862
863         TAILQ_INIT(&sc->sc_stroke_free);
864         TAILQ_INIT(&sc->sc_stroke_used);
865
866         sc->sc_n_strokes = 0;
867
868         memset(&sc->sc_strokes_data, 0, sizeof(sc->sc_strokes_data));
869
870         for (x = 0; x != ATP_MAX_STROKES; x++) {
871                 TAILQ_INSERT_TAIL(&sc->sc_stroke_free, &sc->sc_strokes_data[x],
872                     entry);
873         }
874 }
875
876 static usb_error_t
877 atp_set_device_mode(struct atp_softc *sc, interface_mode newMode)
878 {
879         uint8_t mode_value;
880         usb_error_t err;
881
882         if ((newMode != RAW_SENSOR_MODE) && (newMode != HID_MODE))
883                 return (USB_ERR_INVAL);
884
885         if ((newMode == RAW_SENSOR_MODE) &&
886             (sc->sc_family == TRACKPAD_FAMILY_FOUNTAIN_GEYSER))
887                 mode_value = (uint8_t)0x04;
888         else
889                 mode_value = newMode;
890
891         err = usbd_req_get_report(sc->sc_usb_device, NULL /* mutex */,
892             sc->sc_mode_bytes, sizeof(sc->sc_mode_bytes), 0 /* interface idx */,
893             0x03 /* type */, 0x00 /* id */);
894         if (err != USB_ERR_NORMAL_COMPLETION) {
895                 DPRINTF("Failed to read device mode (%d)\n", err);
896                 return (err);
897         }
898
899         if (sc->sc_mode_bytes[0] == mode_value)
900                 return (err);
901
902         /*
903          * XXX Need to wait at least 250ms for hardware to get
904          * ready. The device mode handling appears to be handled
905          * asynchronously and we should not issue these commands too
906          * quickly.
907          */
908         pause("WHW", hz / 4);
909
910         sc->sc_mode_bytes[0] = mode_value;
911         return (usbd_req_set_report(sc->sc_usb_device, NULL /* mutex */,
912             sc->sc_mode_bytes, sizeof(sc->sc_mode_bytes), 0 /* interface idx */,
913             0x03 /* type */, 0x00 /* id */));
914 }
915
916 static void
917 atp_reset_callback(struct usb_xfer *xfer, usb_error_t error)
918 {
919         usb_device_request_t   req;
920         struct usb_page_cache *pc;
921         struct atp_softc      *sc = usbd_xfer_softc(xfer);
922
923         uint8_t mode_value;
924         if (sc->sc_family == TRACKPAD_FAMILY_FOUNTAIN_GEYSER)
925                 mode_value = 0x04;
926         else
927                 mode_value = RAW_SENSOR_MODE;
928
929         switch (USB_GET_STATE(xfer)) {
930         case USB_ST_SETUP:
931                 sc->sc_mode_bytes[0] = mode_value;
932                 req.bmRequestType = UT_WRITE_CLASS_INTERFACE;
933                 req.bRequest = UR_SET_REPORT;
934                 USETW2(req.wValue,
935                     (uint8_t)0x03 /* type */, (uint8_t)0x00 /* id */);
936                 USETW(req.wIndex, 0);
937                 USETW(req.wLength, MODE_LENGTH);
938
939                 pc = usbd_xfer_get_frame(xfer, 0);
940                 usbd_copy_in(pc, 0, &req, sizeof(req));
941                 pc = usbd_xfer_get_frame(xfer, 1);
942                 usbd_copy_in(pc, 0, sc->sc_mode_bytes, MODE_LENGTH);
943
944                 usbd_xfer_set_frame_len(xfer, 0, sizeof(req));
945                 usbd_xfer_set_frame_len(xfer, 1, MODE_LENGTH);
946                 usbd_xfer_set_frames(xfer, 2);
947                 usbd_transfer_submit(xfer);
948                 break;
949
950         case USB_ST_TRANSFERRED:
951         default:
952                 break;
953         }
954 }
955
956 static int
957 atp_enable(struct atp_softc *sc)
958 {
959         if (sc->sc_state & ATP_ENABLED)
960                 return (0);
961
962         /* reset status */
963         memset(&sc->sc_status, 0, sizeof(sc->sc_status));
964
965         atp_init_stroke_pool(sc);
966
967         sc->sc_state |= ATP_ENABLED;
968
969         DPRINTFN(ATP_LLEVEL_INFO, "enabled atp\n");
970         return (0);
971 }
972
973 static void
974 atp_disable(struct atp_softc *sc)
975 {
976         sc->sc_state &= ~(ATP_ENABLED | ATP_VALID);
977         DPRINTFN(ATP_LLEVEL_INFO, "disabled atp\n");
978 }
979
980 static void
981 fg_interpret_sensor_data(struct atp_softc *sc, u_int data_len)
982 {
983         u_int n_xpspans = 0;
984         u_int n_ypspans = 0;
985         uint8_t status_bits;
986
987         const struct fg_dev_params *params =
988             (const struct fg_dev_params *)sc->sc_params;
989
990         fg_extract_sensor_data(sc->sc_sensor_data, params->n_xsensors, X,
991             sc->sc_cur_x, params->prot);
992         fg_extract_sensor_data(sc->sc_sensor_data, params->n_ysensors, Y,
993             sc->sc_cur_y, params->prot);
994
995         /*
996          * If this is the initial update (from an untouched
997          * pad), we should set the base values for the sensor
998          * data; deltas with respect to these base values can
999          * be used as pressure readings subsequently.
1000          */
1001         status_bits = sc->sc_sensor_data[params->data_len - 1];
1002         if (((params->prot == FG_TRACKPAD_TYPE_GEYSER3) ||
1003              (params->prot == FG_TRACKPAD_TYPE_GEYSER4))  &&
1004             ((sc->sc_state & ATP_VALID) == 0)) {
1005                 if (status_bits & FG_STATUS_BASE_UPDATE) {
1006                         memcpy(sc->sc_base_x, sc->sc_cur_x,
1007                             params->n_xsensors * sizeof(*sc->sc_base_x));
1008                         memcpy(sc->sc_base_y, sc->sc_cur_y,
1009                             params->n_ysensors * sizeof(*sc->sc_base_y));
1010                         sc->sc_state |= ATP_VALID;
1011                         return;
1012                 }
1013         }
1014
1015         /* Get pressure readings and detect p-spans for both axes. */
1016         fg_get_pressures(sc->sc_pressure_x, sc->sc_cur_x, sc->sc_base_x,
1017             params->n_xsensors);
1018         fg_detect_pspans(sc->sc_pressure_x, params->n_xsensors,
1019             FG_MAX_PSPANS_PER_AXIS, sc->sc_pspans_x, &n_xpspans);
1020         fg_get_pressures(sc->sc_pressure_y, sc->sc_cur_y, sc->sc_base_y,
1021             params->n_ysensors);
1022         fg_detect_pspans(sc->sc_pressure_y, params->n_ysensors,
1023             FG_MAX_PSPANS_PER_AXIS, sc->sc_pspans_y, &n_ypspans);
1024
1025         /* Update strokes with new pspans to detect movements. */
1026         if (fg_update_strokes(sc, sc->sc_pspans_x, n_xpspans, sc->sc_pspans_y, n_ypspans))
1027                 sc->sc_status.flags |= MOUSE_POSCHANGED;
1028
1029         sc->sc_ibtn = (status_bits & FG_STATUS_BUTTON) ? MOUSE_BUTTON1DOWN : 0;
1030         sc->sc_status.button = sc->sc_ibtn;
1031
1032         /*
1033          * The Fountain/Geyser device continues to trigger interrupts
1034          * at a fast rate even after touchpad activity has
1035          * stopped. Upon detecting that the device has remained idle
1036          * beyond a threshold, we reinitialize it to silence the
1037          * interrupts.
1038          */
1039         if ((sc->sc_status.flags  == 0) && (sc->sc_n_strokes == 0)) {
1040                 sc->sc_idlecount++;
1041                 if (sc->sc_idlecount >= ATP_IDLENESS_THRESHOLD) {
1042                         /*
1043                          * Use the last frame before we go idle for
1044                          * calibration on pads which do not send
1045                          * calibration frames.
1046                          */
1047                         const struct fg_dev_params *params =
1048                             (const struct fg_dev_params *)sc->sc_params;
1049
1050                         DPRINTFN(ATP_LLEVEL_INFO, "idle\n");
1051
1052                         if (params->prot < FG_TRACKPAD_TYPE_GEYSER3) {
1053                                 memcpy(sc->sc_base_x, sc->sc_cur_x,
1054                                     params->n_xsensors * sizeof(*(sc->sc_base_x)));
1055                                 memcpy(sc->sc_base_y, sc->sc_cur_y,
1056                                     params->n_ysensors * sizeof(*(sc->sc_base_y)));
1057                         }
1058
1059                         sc->sc_idlecount = 0;
1060                         usbd_transfer_start(sc->sc_xfer[ATP_RESET]);
1061                 }
1062         } else {
1063                 sc->sc_idlecount = 0;
1064         }
1065 }
1066
1067 /*
1068  * Interpret the data from the X and Y pressure sensors. This function
1069  * is called separately for the X and Y sensor arrays. The data in the
1070  * USB packet is laid out in the following manner:
1071  *
1072  * sensor_data:
1073  *            --,--,Y1,Y2,--,Y3,Y4,--,Y5,...,Y10, ... X1,X2,--,X3,X4
1074  *  indices:   0  1  2  3  4  5  6  7  8 ...  15  ... 20 21 22 23 24
1075  *
1076  * '--' (in the above) indicates that the value is unimportant.
1077  *
1078  * Information about the above layout was obtained from the
1079  * implementation of the AppleTouch driver in Linux.
1080  *
1081  * parameters:
1082  *   sensor_data
1083  *       raw sensor data from the USB packet.
1084  *   num
1085  *       The number of elements in the array 'arr'.
1086  *   axis
1087  *       Axis of data to fetch
1088  *   arr
1089  *       The array to be initialized with the readings.
1090  *   prot
1091  *       The protocol to use to interpret the data
1092  */
1093 static void
1094 fg_extract_sensor_data(const int8_t *sensor_data, u_int num, atp_axis axis,
1095     int *arr, enum fountain_geyser_trackpad_type prot)
1096 {
1097         u_int i;
1098         u_int di;   /* index into sensor data */
1099
1100         switch (prot) {
1101         case FG_TRACKPAD_TYPE_GEYSER1:
1102                 /*
1103                  * For Geyser 1, the sensors are laid out in pairs
1104                  * every 5 bytes.
1105                  */
1106                 for (i = 0, di = (axis == Y) ? 1 : 2; i < 8; di += 5, i++) {
1107                         arr[i] = sensor_data[di];
1108                         arr[i+8] = sensor_data[di+2];
1109                         if ((axis == X) && (num > 16))
1110                                 arr[i+16] = sensor_data[di+40];
1111                 }
1112
1113                 break;
1114         case FG_TRACKPAD_TYPE_GEYSER2:
1115                 for (i = 0, di = (axis == Y) ? 1 : 19; i < num; /* empty */ ) {
1116                         arr[i++] = sensor_data[di++];
1117                         arr[i++] = sensor_data[di++];
1118                         di++;
1119                 }
1120                 break;
1121         case FG_TRACKPAD_TYPE_GEYSER3:
1122         case FG_TRACKPAD_TYPE_GEYSER4:
1123                 for (i = 0, di = (axis == Y) ? 2 : 20; i < num; /* empty */ ) {
1124                         arr[i++] = sensor_data[di++];
1125                         arr[i++] = sensor_data[di++];
1126                         di++;
1127                 }
1128                 break;
1129         default:
1130                 break;
1131         }
1132 }
1133
1134 static void
1135 fg_get_pressures(int *p, const int *cur, const int *base, int n)
1136 {
1137         int i;
1138
1139         for (i = 0; i < n; i++) {
1140                 p[i] = cur[i] - base[i];
1141                 if (p[i] > 127)
1142                         p[i] -= 256;
1143                 if (p[i] < -127)
1144                         p[i] += 256;
1145                 if (p[i] < 0)
1146                         p[i] = 0;
1147
1148                 /*
1149                  * Shave off pressures below the noise-pressure
1150                  * threshold; this will reduce the contribution from
1151                  * lower pressure readings.
1152                  */
1153                 if ((u_int)p[i] <= FG_SENSOR_NOISE_THRESHOLD)
1154                         p[i] = 0; /* filter away noise */
1155                 else
1156                         p[i] -= FG_SENSOR_NOISE_THRESHOLD;
1157         }
1158 }
1159
1160 static void
1161 fg_detect_pspans(int *p, u_int num_sensors,
1162     u_int      max_spans, /* max # of pspans permitted */
1163     fg_pspan  *spans,     /* finger spans */
1164     u_int     *nspans_p)  /* num spans detected */
1165 {
1166         u_int i;
1167         int   maxp;             /* max pressure seen within a span */
1168         u_int num_spans = 0;
1169
1170         enum fg_pspan_state {
1171                 ATP_PSPAN_INACTIVE,
1172                 ATP_PSPAN_INCREASING,
1173                 ATP_PSPAN_DECREASING,
1174         } state; /* state of the pressure span */
1175
1176         /*
1177          * The following is a simple state machine to track
1178          * the phase of the pressure span.
1179          */
1180         memset(spans, 0, max_spans * sizeof(fg_pspan));
1181         maxp = 0;
1182         state = ATP_PSPAN_INACTIVE;
1183         for (i = 0; i < num_sensors; i++) {
1184                 if (num_spans >= max_spans)
1185                         break;
1186
1187                 if (p[i] == 0) {
1188                         if (state == ATP_PSPAN_INACTIVE) {
1189                                 /*
1190                                  * There is no pressure information for this
1191                                  * sensor, and we aren't tracking a finger.
1192                                  */
1193                                 continue;
1194                         } else {
1195                                 state = ATP_PSPAN_INACTIVE;
1196                                 maxp = 0;
1197                                 num_spans++;
1198                         }
1199                 } else {
1200                         switch (state) {
1201                         case ATP_PSPAN_INACTIVE:
1202                                 state = ATP_PSPAN_INCREASING;
1203                                 maxp  = p[i];
1204                                 break;
1205
1206                         case ATP_PSPAN_INCREASING:
1207                                 if (p[i] > maxp)
1208                                         maxp = p[i];
1209                                 else if (p[i] <= (maxp >> 1))
1210                                         state = ATP_PSPAN_DECREASING;
1211                                 break;
1212
1213                         case ATP_PSPAN_DECREASING:
1214                                 if (p[i] > p[i - 1]) {
1215                                         /*
1216                                          * This is the beginning of
1217                                          * another span; change state
1218                                          * to give the appearance that
1219                                          * we're starting from an
1220                                          * inactive span, and then
1221                                          * re-process this reading in
1222                                          * the next iteration.
1223                                          */
1224                                         num_spans++;
1225                                         state = ATP_PSPAN_INACTIVE;
1226                                         maxp  = 0;
1227                                         i--;
1228                                         continue;
1229                                 }
1230                                 break;
1231                         }
1232
1233                         /* Update the finger span with this reading. */
1234                         spans[num_spans].width++;
1235                         spans[num_spans].cum += p[i];
1236                         spans[num_spans].cog += p[i] * (i + 1);
1237                 }
1238         }
1239         if (state != ATP_PSPAN_INACTIVE)
1240                 num_spans++;    /* close the last finger span */
1241
1242         /* post-process the spans */
1243         for (i = 0; i < num_spans; i++) {
1244                 /* filter away unwanted pressure spans */
1245                 if ((spans[i].cum < FG_PSPAN_MIN_CUM_PRESSURE) ||
1246                     (spans[i].width > FG_PSPAN_MAX_WIDTH)) {
1247                         if ((i + 1) < num_spans) {
1248                                 memcpy(&spans[i], &spans[i + 1],
1249                                     (num_spans - i - 1) * sizeof(fg_pspan));
1250                                 i--;
1251                         }
1252                         num_spans--;
1253                         continue;
1254                 }
1255
1256                 /* compute this span's representative location */
1257                 spans[i].loc = spans[i].cog * FG_SCALE_FACTOR /
1258                         spans[i].cum;
1259
1260                 spans[i].matched = false; /* not yet matched against a stroke */
1261         }
1262
1263         *nspans_p = num_spans;
1264 }
1265
1266 static void
1267 wsp_interpret_sensor_data(struct atp_softc *sc, u_int data_len)
1268 {
1269         const struct wsp_dev_params *params = sc->sc_params;
1270         wsp_finger_t fingers[WSP_MAX_FINGERS];
1271         struct wsp_finger_sensor_data *source_fingerp;
1272         u_int n_source_fingers;
1273         u_int n_fingers;
1274         u_int i;
1275
1276         /* validate sensor data length */
1277         if ((data_len < params->finger_data_offset) ||
1278             ((data_len - params->finger_data_offset) %
1279              WSP_SIZEOF_FINGER_SENSOR_DATA) != 0)
1280                 return;
1281
1282         /* compute number of source fingers */
1283         n_source_fingers = (data_len - params->finger_data_offset) /
1284             WSP_SIZEOF_FINGER_SENSOR_DATA;
1285
1286         if (n_source_fingers > WSP_MAX_FINGERS)
1287                 n_source_fingers = WSP_MAX_FINGERS;
1288
1289         /* iterate over the source data collecting useful fingers */
1290         n_fingers = 0;
1291         source_fingerp = (struct wsp_finger_sensor_data *)(sc->sc_sensor_data +
1292              params->finger_data_offset);
1293
1294         for (i = 0; i < n_source_fingers; i++, source_fingerp++) {
1295                 /* swap endianness, if any */
1296                 if (le16toh(0x1234) != 0x1234) {
1297                         source_fingerp->origin      = le16toh((uint16_t)source_fingerp->origin);
1298                         source_fingerp->abs_x       = le16toh((uint16_t)source_fingerp->abs_x);
1299                         source_fingerp->abs_y       = le16toh((uint16_t)source_fingerp->abs_y);
1300                         source_fingerp->rel_x       = le16toh((uint16_t)source_fingerp->rel_x);
1301                         source_fingerp->rel_y       = le16toh((uint16_t)source_fingerp->rel_y);
1302                         source_fingerp->tool_major  = le16toh((uint16_t)source_fingerp->tool_major);
1303                         source_fingerp->tool_minor  = le16toh((uint16_t)source_fingerp->tool_minor);
1304                         source_fingerp->orientation = le16toh((uint16_t)source_fingerp->orientation);
1305                         source_fingerp->touch_major = le16toh((uint16_t)source_fingerp->touch_major);
1306                         source_fingerp->touch_minor = le16toh((uint16_t)source_fingerp->touch_minor);
1307                         source_fingerp->multi       = le16toh((uint16_t)source_fingerp->multi);
1308                 }
1309
1310                 /* check for minium threshold */
1311                 if (source_fingerp->touch_major == 0)
1312                         continue;
1313
1314                 fingers[n_fingers].matched = false;
1315                 fingers[n_fingers].x       = source_fingerp->abs_x;
1316                 fingers[n_fingers].y       = -source_fingerp->abs_y;
1317
1318                 n_fingers++;
1319         }
1320
1321         if ((sc->sc_n_strokes == 0) && (n_fingers == 0))
1322                 return;
1323
1324         if (wsp_update_strokes(sc, fingers, n_fingers))
1325                 sc->sc_status.flags |= MOUSE_POSCHANGED;
1326
1327         switch(params->tp_type) {
1328         case WSP_TRACKPAD_TYPE2:
1329                 sc->sc_ibtn = sc->sc_sensor_data[WSP_TYPE2_BUTTON_DATA_OFFSET];
1330                 break;
1331         case WSP_TRACKPAD_TYPE3:
1332                 sc->sc_ibtn = sc->sc_sensor_data[WSP_TYPE3_BUTTON_DATA_OFFSET];
1333                 break;
1334         default:
1335                 break;
1336         }
1337         sc->sc_status.button = sc->sc_ibtn ? MOUSE_BUTTON1DOWN : 0;
1338 }
1339
1340 /*
1341  * Match a pressure-span against a stroke-component. If there is a
1342  * match, update the component's state and return true.
1343  */
1344 static boolean_t
1345 fg_match_stroke_component(fg_stroke_component_t *component,
1346     const fg_pspan *pspan, atp_stroke_type stroke_type)
1347 {
1348         int   delta_mickeys;
1349         u_int min_pressure;
1350
1351         delta_mickeys = pspan->loc - component->loc;
1352
1353         if (abs(delta_mickeys) > (int)FG_MAX_DELTA_MICKEYS)
1354                 return (false); /* the finger span is too far out; no match */
1355
1356         component->loc = pspan->loc;
1357
1358         /*
1359          * A sudden and significant increase in a pspan's cumulative
1360          * pressure indicates the incidence of a new finger
1361          * contact. This usually revises the pspan's
1362          * centre-of-gravity, and hence the location of any/all
1363          * matching stroke component(s). But such a change should
1364          * *not* be interpreted as a movement.
1365          */
1366         if (pspan->cum > ((3 * component->cum_pressure) >> 1))
1367                 delta_mickeys = 0;
1368
1369         component->cum_pressure = pspan->cum;
1370         if (pspan->cum > component->max_cum_pressure)
1371                 component->max_cum_pressure = pspan->cum;
1372
1373         /*
1374          * Disregard the component's movement if its cumulative
1375          * pressure drops below a fraction of the maximum; this
1376          * fraction is determined based on the stroke's type.
1377          */
1378         if (stroke_type == ATP_STROKE_TOUCH)
1379                 min_pressure = (3 * component->max_cum_pressure) >> 2;
1380         else
1381                 min_pressure = component->max_cum_pressure >> 2;
1382         if (component->cum_pressure < min_pressure)
1383                 delta_mickeys = 0;
1384
1385         component->delta_mickeys = delta_mickeys;
1386         return (true);
1387 }
1388
1389 static void
1390 fg_match_strokes_against_pspans(struct atp_softc *sc, atp_axis axis,
1391     fg_pspan *pspans, u_int n_pspans, u_int repeat_count)
1392 {
1393         atp_stroke_t *strokep;
1394         u_int repeat_index = 0;
1395         u_int i;
1396
1397         /* Determine the index of the multi-span. */
1398         if (repeat_count) {
1399                 for (i = 0; i < n_pspans; i++) {
1400                         if (pspans[i].cum > pspans[repeat_index].cum)
1401                                 repeat_index = i;
1402                 }
1403         }
1404
1405         TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry) {
1406                 if (strokep->components[axis].matched)
1407                         continue; /* skip matched components */
1408
1409                 for (i = 0; i < n_pspans; i++) {
1410                         if (pspans[i].matched)
1411                                 continue; /* skip matched pspans */
1412
1413                         if (fg_match_stroke_component(
1414                             &strokep->components[axis], &pspans[i],
1415                             strokep->type)) {
1416
1417                                 /* There is a match. */
1418                                 strokep->components[axis].matched = true;
1419
1420                                 /* Take care to repeat at the multi-span. */
1421                                 if ((repeat_count > 0) && (i == repeat_index))
1422                                         repeat_count--;
1423                                 else
1424                                         pspans[i].matched = true;
1425
1426                                 break; /* skip to the next strokep */
1427                         }
1428                 } /* loop over pspans */
1429         } /* loop over strokes */
1430 }
1431
1432 static boolean_t
1433 wsp_match_strokes_against_fingers(struct atp_softc *sc,
1434     wsp_finger_t *fingers, u_int n_fingers)
1435 {
1436         boolean_t movement = false;
1437         atp_stroke_t *strokep;
1438         u_int i;
1439
1440         /* reset the matched status for all strokes */
1441         TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry)
1442                 strokep->matched = false;
1443
1444         for (i = 0; i != n_fingers; i++) {
1445                 u_int least_distance_sq = WSP_MAX_ALLOWED_MATCH_DISTANCE_SQ;
1446                 atp_stroke_t *strokep_best = NULL;
1447
1448                 TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry) {
1449                         int instantaneous_dx;
1450                         int instantaneous_dy;
1451                         u_int d_squared;
1452
1453                         if (strokep->matched)
1454                                 continue;
1455
1456                         instantaneous_dx = fingers[i].x - strokep->x;
1457                         instantaneous_dy = fingers[i].y - strokep->y;
1458
1459                         /* skip strokes which are far away */
1460                         d_squared =
1461                             (instantaneous_dx * instantaneous_dx) +
1462                             (instantaneous_dy * instantaneous_dy);
1463
1464                         if (d_squared < least_distance_sq) {
1465                                 least_distance_sq = d_squared;
1466                                 strokep_best = strokep;
1467                         }
1468                 }
1469
1470                 strokep = strokep_best;
1471
1472                 if (strokep != NULL) {
1473                         fingers[i].matched = true;
1474
1475                         strokep->matched          = true;
1476                         strokep->instantaneous_dx = fingers[i].x - strokep->x;
1477                         strokep->instantaneous_dy = fingers[i].y - strokep->y;
1478                         strokep->x                = fingers[i].x;
1479                         strokep->y                = fingers[i].y;
1480
1481                         atp_advance_stroke_state(sc, strokep, &movement);
1482                 }
1483         }
1484         return (movement);
1485 }
1486
1487 /*
1488  * Update strokes by matching against current pressure-spans.
1489  * Return true if any movement is detected.
1490  */
1491 static boolean_t
1492 fg_update_strokes(struct atp_softc *sc, fg_pspan *pspans_x,
1493     u_int n_xpspans, fg_pspan *pspans_y, u_int n_ypspans)
1494 {
1495         atp_stroke_t *strokep;
1496         atp_stroke_t *strokep_next;
1497         boolean_t movement = false;
1498         u_int repeat_count = 0;
1499         u_int i;
1500         u_int j;
1501
1502         /* Reset X and Y components of all strokes as unmatched. */
1503         TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry) {
1504                 strokep->components[X].matched = false;
1505                 strokep->components[Y].matched = false;
1506         }
1507
1508         /*
1509          * Usually, the X and Y pspans come in pairs (the common case
1510          * being a single pair). It is possible, however, that
1511          * multiple contacts resolve to a single pspan along an
1512          * axis, as illustrated in the following:
1513          *
1514          *   F = finger-contact
1515          *
1516          *                pspan  pspan
1517          *        +-----------------------+
1518          *        |         .      .      |
1519          *        |         .      .      |
1520          *        |         .      .      |
1521          *        |         .      .      |
1522          *  pspan |.........F......F      |
1523          *        |                       |
1524          *        |                       |
1525          *        |                       |
1526          *        +-----------------------+
1527          *
1528          *
1529          * The above case can be detected by a difference in the
1530          * number of X and Y pspans. When this happens, X and Y pspans
1531          * aren't easy to pair or match against strokes.
1532          *
1533          * When X and Y pspans differ in number, the axis with the
1534          * smaller number of pspans is regarded as having a repeating
1535          * pspan (or a multi-pspan)--in the above illustration, the
1536          * Y-axis has a repeating pspan. Our approach is to try to
1537          * match the multi-pspan repeatedly against strokes. The
1538          * difference between the number of X and Y pspans gives us a
1539          * crude repeat_count for matching multi-pspans--i.e. the
1540          * multi-pspan along the Y axis (above) has a repeat_count of 1.
1541          */
1542         repeat_count = abs(n_xpspans - n_ypspans);
1543
1544         fg_match_strokes_against_pspans(sc, X, pspans_x, n_xpspans,
1545             (((repeat_count != 0) && ((n_xpspans < n_ypspans))) ?
1546                 repeat_count : 0));
1547         fg_match_strokes_against_pspans(sc, Y, pspans_y, n_ypspans,
1548             (((repeat_count != 0) && (n_ypspans < n_xpspans)) ?
1549                 repeat_count : 0));
1550
1551         /* Update the state of strokes based on the above pspan matches. */
1552         TAILQ_FOREACH_SAFE(strokep, &sc->sc_stroke_used, entry, strokep_next) {
1553
1554                 if (strokep->components[X].matched &&
1555                     strokep->components[Y].matched) {
1556                         strokep->matched = true;
1557                         strokep->instantaneous_dx =
1558                             strokep->components[X].delta_mickeys;
1559                         strokep->instantaneous_dy =
1560                             strokep->components[Y].delta_mickeys;
1561                         atp_advance_stroke_state(sc, strokep, &movement);
1562                 } else {
1563                         /*
1564                          * At least one component of this stroke
1565                          * didn't match against current pspans;
1566                          * terminate it.
1567                          */
1568                         atp_terminate_stroke(sc, strokep);
1569                 }
1570         }
1571
1572         /* Add new strokes for pairs of unmatched pspans */
1573         for (i = 0; i < n_xpspans; i++) {
1574                 if (pspans_x[i].matched == false) break;
1575         }
1576         for (j = 0; j < n_ypspans; j++) {
1577                 if (pspans_y[j].matched == false) break;
1578         }
1579         if ((i < n_xpspans) && (j < n_ypspans)) {
1580 #ifdef USB_DEBUG
1581                 if (atp_debug >= ATP_LLEVEL_INFO) {
1582                         printf("unmatched pspans:");
1583                         for (; i < n_xpspans; i++) {
1584                                 if (pspans_x[i].matched)
1585                                         continue;
1586                                 printf(" X:[loc:%u,cum:%u]",
1587                                     pspans_x[i].loc, pspans_x[i].cum);
1588                         }
1589                         for (; j < n_ypspans; j++) {
1590                                 if (pspans_y[j].matched)
1591                                         continue;
1592                                 printf(" Y:[loc:%u,cum:%u]",
1593                                     pspans_y[j].loc, pspans_y[j].cum);
1594                         }
1595                         printf("\n");
1596                 }
1597 #endif /* USB_DEBUG */
1598                 if ((n_xpspans == 1) && (n_ypspans == 1))
1599                         /* The common case of a single pair of new pspans. */
1600                         fg_add_stroke(sc, &pspans_x[0], &pspans_y[0]);
1601                 else
1602                         fg_add_new_strokes(sc, pspans_x, n_xpspans,
1603                             pspans_y, n_ypspans);
1604         }
1605
1606 #ifdef USB_DEBUG
1607         if (atp_debug >= ATP_LLEVEL_INFO) {
1608                 TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry) {
1609                         printf(" %s%clc:%u,dm:%d,cum:%d,max:%d,%c"
1610                             ",%clc:%u,dm:%d,cum:%d,max:%d,%c",
1611                             (strokep->flags & ATSF_ZOMBIE) ? "zomb:" : "",
1612                             (strokep->type == ATP_STROKE_TOUCH) ? '[' : '<',
1613                             strokep->components[X].loc,
1614                             strokep->components[X].delta_mickeys,
1615                             strokep->components[X].cum_pressure,
1616                             strokep->components[X].max_cum_pressure,
1617                             (strokep->type == ATP_STROKE_TOUCH) ? ']' : '>',
1618                             (strokep->type == ATP_STROKE_TOUCH) ? '[' : '<',
1619                             strokep->components[Y].loc,
1620                             strokep->components[Y].delta_mickeys,
1621                             strokep->components[Y].cum_pressure,
1622                             strokep->components[Y].max_cum_pressure,
1623                             (strokep->type == ATP_STROKE_TOUCH) ? ']' : '>');
1624                 }
1625                 if (TAILQ_FIRST(&sc->sc_stroke_used) != NULL)
1626                         printf("\n");
1627         }
1628 #endif /* USB_DEBUG */
1629         return (movement);
1630 }
1631
1632 /*
1633  * Update strokes by matching against current pressure-spans.
1634  * Return true if any movement is detected.
1635  */
1636 static boolean_t
1637 wsp_update_strokes(struct atp_softc *sc, wsp_finger_t *fingers, u_int n_fingers)
1638 {
1639         boolean_t movement = false;
1640         atp_stroke_t *strokep_next;
1641         atp_stroke_t *strokep;
1642         u_int i;
1643
1644         if (sc->sc_n_strokes > 0) {
1645                 movement = wsp_match_strokes_against_fingers(
1646                     sc, fingers, n_fingers);
1647
1648                 /* handle zombie strokes */
1649                 TAILQ_FOREACH_SAFE(strokep, &sc->sc_stroke_used, entry, strokep_next) {
1650                         if (strokep->matched)
1651                                 continue;
1652                         atp_terminate_stroke(sc, strokep);
1653                 }
1654         }
1655
1656         /* initialize unmatched fingers as strokes */
1657         for (i = 0; i != n_fingers; i++) {
1658                 if (fingers[i].matched)
1659                         continue;
1660
1661                 wsp_add_stroke(sc, fingers + i);
1662         }
1663         return (movement);
1664 }
1665
1666 /* Initialize a stroke using a pressure-span. */
1667 static void
1668 fg_add_stroke(struct atp_softc *sc, const fg_pspan *pspan_x,
1669     const fg_pspan *pspan_y)
1670 {
1671         atp_stroke_t *strokep;
1672
1673         strokep = atp_alloc_stroke(sc);
1674         if (strokep == NULL)
1675                 return;
1676
1677         /*
1678          * Strokes begin as potential touches. If a stroke survives
1679          * longer than a threshold, or if it records significant
1680          * cumulative movement, then it is considered a 'slide'.
1681          */
1682         strokep->type    = ATP_STROKE_TOUCH;
1683         strokep->matched = false;
1684         microtime(&strokep->ctime);
1685         strokep->age     = 1;           /* number of interrupts */
1686         strokep->x       = pspan_x->loc;
1687         strokep->y       = pspan_y->loc;
1688
1689         strokep->components[X].loc              = pspan_x->loc;
1690         strokep->components[X].cum_pressure     = pspan_x->cum;
1691         strokep->components[X].max_cum_pressure = pspan_x->cum;
1692         strokep->components[X].matched          = true;
1693
1694         strokep->components[Y].loc              = pspan_y->loc;
1695         strokep->components[Y].cum_pressure     = pspan_y->cum;
1696         strokep->components[Y].max_cum_pressure = pspan_y->cum;
1697         strokep->components[Y].matched          = true;
1698
1699         if (sc->sc_n_strokes > 1) {
1700                 /* Reset double-tap-n-drag if we have more than one strokes. */
1701                 sc->sc_state &= ~ATP_DOUBLE_TAP_DRAG;
1702         }
1703
1704         DPRINTFN(ATP_LLEVEL_INFO, "[%u,%u], time: %u,%ld\n",
1705             strokep->components[X].loc,
1706             strokep->components[Y].loc,
1707             (u_int)strokep->ctime.tv_sec,
1708             (unsigned long int)strokep->ctime.tv_usec);
1709 }
1710
1711 static void
1712 fg_add_new_strokes(struct atp_softc *sc, fg_pspan *pspans_x,
1713     u_int n_xpspans, fg_pspan *pspans_y, u_int n_ypspans)
1714 {
1715         fg_pspan spans[2][FG_MAX_PSPANS_PER_AXIS];
1716         u_int nspans[2];
1717         u_int i;
1718         u_int j;
1719
1720         /* Copy unmatched pspans into the local arrays. */
1721         for (i = 0, nspans[X] = 0; i < n_xpspans; i++) {
1722                 if (pspans_x[i].matched == false) {
1723                         spans[X][nspans[X]] = pspans_x[i];
1724                         nspans[X]++;
1725                 }
1726         }
1727         for (j = 0, nspans[Y] = 0; j < n_ypspans; j++) {
1728                 if (pspans_y[j].matched == false) {
1729                         spans[Y][nspans[Y]] = pspans_y[j];
1730                         nspans[Y]++;
1731                 }
1732         }
1733
1734         if (nspans[X] == nspans[Y]) {
1735                 /* Create new strokes from pairs of unmatched pspans */
1736                 for (i = 0, j = 0; (i < nspans[X]) && (j < nspans[Y]); i++, j++)
1737                         fg_add_stroke(sc, &spans[X][i], &spans[Y][j]);
1738         } else {
1739                 u_int    cum = 0;
1740                 atp_axis repeat_axis;      /* axis with multi-pspans */
1741                 u_int    repeat_count;     /* repeat count for the multi-pspan*/
1742                 u_int    repeat_index = 0; /* index of the multi-span */
1743
1744                 repeat_axis  = (nspans[X] > nspans[Y]) ? Y : X;
1745                 repeat_count = abs(nspans[X] - nspans[Y]);
1746                 for (i = 0; i < nspans[repeat_axis]; i++) {
1747                         if (spans[repeat_axis][i].cum > cum) {
1748                                 repeat_index = i;
1749                                 cum = spans[repeat_axis][i].cum;
1750                         }
1751                 }
1752
1753                 /* Create new strokes from pairs of unmatched pspans */
1754                 i = 0, j = 0;
1755                 for (; (i < nspans[X]) && (j < nspans[Y]); i++, j++) {
1756                         fg_add_stroke(sc, &spans[X][i], &spans[Y][j]);
1757
1758                         /* Take care to repeat at the multi-pspan. */
1759                         if (repeat_count > 0) {
1760                                 if ((repeat_axis == X) &&
1761                                     (repeat_index == i)) {
1762                                         i--; /* counter loop increment */
1763                                         repeat_count--;
1764                                 } else if ((repeat_axis == Y) &&
1765                                     (repeat_index == j)) {
1766                                         j--; /* counter loop increment */
1767                                         repeat_count--;
1768                                 }
1769                         }
1770                 }
1771         }
1772 }
1773
1774 /* Initialize a stroke from an unmatched finger. */
1775 static void
1776 wsp_add_stroke(struct atp_softc *sc, const wsp_finger_t *fingerp)
1777 {
1778         atp_stroke_t *strokep;
1779
1780         strokep = atp_alloc_stroke(sc);
1781         if (strokep == NULL)
1782                 return;
1783
1784         /*
1785          * Strokes begin as potential touches. If a stroke survives
1786          * longer than a threshold, or if it records significant
1787          * cumulative movement, then it is considered a 'slide'.
1788          */
1789         strokep->type    = ATP_STROKE_TOUCH;
1790         strokep->matched = true;
1791         microtime(&strokep->ctime);
1792         strokep->age = 1;       /* number of interrupts */
1793         strokep->x = fingerp->x;
1794         strokep->y = fingerp->y;
1795
1796         /* Reset double-tap-n-drag if we have more than one strokes. */
1797         if (sc->sc_n_strokes > 1)
1798                 sc->sc_state &= ~ATP_DOUBLE_TAP_DRAG;
1799
1800         DPRINTFN(ATP_LLEVEL_INFO, "[%d,%d]\n", strokep->x, strokep->y);
1801 }
1802
1803 static void
1804 atp_advance_stroke_state(struct atp_softc *sc, atp_stroke_t *strokep,
1805     boolean_t *movementp)
1806 {
1807         /* Revitalize stroke if it had previously been marked as a zombie. */
1808         if (strokep->flags & ATSF_ZOMBIE)
1809                 strokep->flags &= ~ATSF_ZOMBIE;
1810
1811         strokep->age++;
1812         if (strokep->age <= atp_stroke_maturity_threshold) {
1813                 /* Avoid noise from immature strokes. */
1814                 strokep->instantaneous_dx = 0;
1815                 strokep->instantaneous_dy = 0;
1816         }
1817
1818         if (atp_compute_stroke_movement(strokep))
1819                 *movementp = true;
1820
1821         if (strokep->type != ATP_STROKE_TOUCH)
1822                 return;
1823
1824         /* Convert touch strokes to slides upon detecting movement or age. */
1825         if ((abs(strokep->cum_movement_x) > atp_slide_min_movement) ||
1826             (abs(strokep->cum_movement_y) > atp_slide_min_movement))
1827                 atp_convert_to_slide(sc, strokep);
1828         else {
1829                 /* Compute the stroke's age. */
1830                 struct timeval tdiff;
1831                 getmicrotime(&tdiff);
1832                 if (timevalcmp(&tdiff, &strokep->ctime, >)) {
1833                         timevalsub(&tdiff, &strokep->ctime);
1834
1835                         if ((tdiff.tv_sec > (atp_touch_timeout / 1000000)) ||
1836                             ((tdiff.tv_sec == (atp_touch_timeout / 1000000)) &&
1837                              (tdiff.tv_usec >= (atp_touch_timeout % 1000000))))
1838                                 atp_convert_to_slide(sc, strokep);
1839                 }
1840         }
1841 }
1842
1843 static boolean_t
1844 atp_stroke_has_small_movement(const atp_stroke_t *strokep)
1845 {
1846         return (((u_int)abs(strokep->instantaneous_dx) <=
1847                  atp_small_movement_threshold) &&
1848                 ((u_int)abs(strokep->instantaneous_dy) <=
1849                  atp_small_movement_threshold));
1850 }
1851
1852 /*
1853  * Accumulate instantaneous changes into the stroke's 'pending' bucket; if
1854  * the aggregate exceeds the small_movement_threshold, then retain
1855  * instantaneous changes for later.
1856  */
1857 static void
1858 atp_update_pending_mickeys(atp_stroke_t *strokep)
1859 {
1860         /* accumulate instantaneous movement */
1861         strokep->pending_dx += strokep->instantaneous_dx;
1862         strokep->pending_dy += strokep->instantaneous_dy;
1863
1864 #define UPDATE_INSTANTANEOUS_AND_PENDING(I, P)                          \
1865         if (abs((P)) <= atp_small_movement_threshold)                   \
1866                 (I) = 0; /* clobber small movement */                   \
1867         else {                                                          \
1868                 if ((I) > 0) {                                          \
1869                         /*                                              \
1870                          * Round up instantaneous movement to the nearest \
1871                          * ceiling. This helps preserve small mickey    \
1872                          * movements from being lost in following scaling \
1873                          * operation.                                   \
1874                          */                                             \
1875                         (I) = (((I) + (atp_mickeys_scale_factor - 1)) / \
1876                                atp_mickeys_scale_factor) *              \
1877                               atp_mickeys_scale_factor;                 \
1878                                                                         \
1879                         /*                                              \
1880                          * Deduct the rounded mickeys from pending mickeys. \
1881                          * Note: we multiply by 2 to offset the previous \
1882                          * accumulation of instantaneous movement into  \
1883                          * pending.                                     \
1884                          */                                             \
1885                         (P) -= ((I) << 1);                              \
1886                                                                         \
1887                         /* truncate pending to 0 if it becomes negative. */ \
1888                         (P) = imax((P), 0);                             \
1889                 } else {                                                \
1890                         /*                                              \
1891                          * Round down instantaneous movement to the nearest \
1892                          * ceiling. This helps preserve small mickey    \
1893                          * movements from being lost in following scaling \
1894                          * operation.                                   \
1895                          */                                             \
1896                         (I) = (((I) - (atp_mickeys_scale_factor - 1)) / \
1897                                atp_mickeys_scale_factor) *              \
1898                               atp_mickeys_scale_factor;                 \
1899                                                                         \
1900                         /*                                              \
1901                          * Deduct the rounded mickeys from pending mickeys. \
1902                          * Note: we multiply by 2 to offset the previous \
1903                          * accumulation of instantaneous movement into  \
1904                          * pending.                                     \
1905                          */                                             \
1906                         (P) -= ((I) << 1);                              \
1907                                                                         \
1908                         /* truncate pending to 0 if it becomes positive. */ \
1909                         (P) = imin((P), 0);                             \
1910                 }                                                       \
1911         }
1912
1913         UPDATE_INSTANTANEOUS_AND_PENDING(strokep->instantaneous_dx,
1914             strokep->pending_dx);
1915         UPDATE_INSTANTANEOUS_AND_PENDING(strokep->instantaneous_dy,
1916             strokep->pending_dy);
1917 }
1918
1919 /*
1920  * Compute a smoothened value for the stroke's movement from
1921  * instantaneous changes in the X and Y components.
1922  */
1923 static boolean_t
1924 atp_compute_stroke_movement(atp_stroke_t *strokep)
1925 {
1926         /*
1927          * Short movements are added first to the 'pending' bucket,
1928          * and then acted upon only when their aggregate exceeds a
1929          * threshold. This has the effect of filtering away movement
1930          * noise.
1931          */
1932         if (atp_stroke_has_small_movement(strokep))
1933                 atp_update_pending_mickeys(strokep);
1934         else {                /* large movement */
1935                 /* clear away any pending mickeys if there are large movements*/
1936                 strokep->pending_dx = 0;
1937                 strokep->pending_dy = 0;
1938         }
1939
1940         /* scale movement */
1941         strokep->movement_dx = (strokep->instantaneous_dx) /
1942             (int)atp_mickeys_scale_factor;
1943         strokep->movement_dy = (strokep->instantaneous_dy) /
1944             (int)atp_mickeys_scale_factor;
1945
1946         if ((abs(strokep->instantaneous_dx) >= ATP_FAST_MOVEMENT_TRESHOLD) ||
1947             (abs(strokep->instantaneous_dy) >= ATP_FAST_MOVEMENT_TRESHOLD)) {
1948                 strokep->movement_dx <<= 1;
1949                 strokep->movement_dy <<= 1;
1950         }
1951
1952         strokep->cum_movement_x += strokep->movement_dx;
1953         strokep->cum_movement_y += strokep->movement_dy;
1954
1955         return ((strokep->movement_dx != 0) || (strokep->movement_dy != 0));
1956 }
1957
1958 /*
1959  * Terminate a stroke. Aside from immature strokes, a slide or touch is
1960  * retained as a zombies so as to reap all their termination siblings
1961  * together; this helps establish the number of fingers involved at the
1962  * end of a multi-touch gesture.
1963  */
1964 static void
1965 atp_terminate_stroke(struct atp_softc *sc, atp_stroke_t *strokep)
1966 {
1967         if (strokep->flags & ATSF_ZOMBIE)
1968                 return;
1969
1970         /* Drop immature strokes rightaway. */
1971         if (strokep->age <= atp_stroke_maturity_threshold) {
1972                 atp_free_stroke(sc, strokep);
1973                 return;
1974         }
1975
1976         strokep->flags |= ATSF_ZOMBIE;
1977         sc->sc_state |= ATP_ZOMBIES_EXIST;
1978
1979         callout_reset(&sc->sc_callout, ATP_ZOMBIE_STROKE_REAP_INTERVAL,
1980             atp_reap_sibling_zombies, sc);
1981
1982         /*
1983          * Reset the double-click-n-drag at the termination of any
1984          * slide stroke.
1985          */
1986         if (strokep->type == ATP_STROKE_SLIDE)
1987                 sc->sc_state &= ~ATP_DOUBLE_TAP_DRAG;
1988 }
1989
1990 static boolean_t
1991 atp_is_horizontal_scroll(const atp_stroke_t *strokep)
1992 {
1993         if (abs(strokep->cum_movement_x) < atp_slide_min_movement)
1994                 return (false);
1995         if (strokep->cum_movement_y == 0)
1996                 return (true);
1997         return (abs(strokep->cum_movement_x / strokep->cum_movement_y) >= 4);
1998 }
1999
2000 static boolean_t
2001 atp_is_vertical_scroll(const atp_stroke_t *strokep)
2002 {
2003         if (abs(strokep->cum_movement_y) < atp_slide_min_movement)
2004                 return (false);
2005         if (strokep->cum_movement_x == 0)
2006                 return (true);
2007         return (abs(strokep->cum_movement_y / strokep->cum_movement_x) >= 4);
2008 }
2009
2010 static void
2011 atp_reap_sibling_zombies(void *arg)
2012 {
2013         struct atp_softc *sc = (struct atp_softc *)arg;
2014         u_int8_t n_touches_reaped = 0;
2015         u_int8_t n_slides_reaped = 0;
2016         u_int8_t n_horizontal_scrolls = 0;
2017         u_int8_t n_vertical_scrolls = 0;
2018         int horizontal_scroll = 0;
2019         int vertical_scroll = 0;
2020         atp_stroke_t *strokep;
2021         atp_stroke_t *strokep_next;
2022
2023         DPRINTFN(ATP_LLEVEL_INFO, "\n");
2024
2025         TAILQ_FOREACH_SAFE(strokep, &sc->sc_stroke_used, entry, strokep_next) {
2026                 if ((strokep->flags & ATSF_ZOMBIE) == 0)
2027                         continue;
2028
2029                 if (strokep->type == ATP_STROKE_TOUCH) {
2030                         n_touches_reaped++;
2031                 } else {
2032                         n_slides_reaped++;
2033
2034                         if (atp_is_horizontal_scroll(strokep)) {
2035                                 n_horizontal_scrolls++;
2036                                 horizontal_scroll += strokep->cum_movement_x;
2037                         } else if (atp_is_vertical_scroll(strokep)) {
2038                                 n_vertical_scrolls++;
2039                                 vertical_scroll +=  strokep->cum_movement_y;
2040                         }
2041                 }
2042
2043                 atp_free_stroke(sc, strokep);
2044         }
2045
2046         DPRINTFN(ATP_LLEVEL_INFO, "reaped %u zombies\n",
2047             n_touches_reaped + n_slides_reaped);
2048         sc->sc_state &= ~ATP_ZOMBIES_EXIST;
2049
2050         /* No further processing necessary if physical button is depressed. */
2051         if (sc->sc_ibtn != 0)
2052                 return;
2053
2054         if ((n_touches_reaped == 0) && (n_slides_reaped == 0))
2055                 return;
2056
2057         /* Add a pair of virtual button events (button-down and button-up) if
2058          * the physical button isn't pressed. */
2059         if (n_touches_reaped != 0) {
2060                 if (n_touches_reaped < atp_tap_minimum)
2061                         return;
2062
2063                 switch (n_touches_reaped) {
2064                 case 1:
2065                         atp_add_to_queue(sc, 0, 0, 0, MOUSE_BUTTON1DOWN);
2066                         microtime(&sc->sc_touch_reap_time); /* remember this time */
2067                         break;
2068                 case 2:
2069                         atp_add_to_queue(sc, 0, 0, 0, MOUSE_BUTTON3DOWN);
2070                         break;
2071                 case 3:
2072                         atp_add_to_queue(sc, 0, 0, 0, MOUSE_BUTTON2DOWN);
2073                         break;
2074                 default:
2075                         /* we handle taps of only up to 3 fingers */
2076                         return;
2077                 }
2078                 atp_add_to_queue(sc, 0, 0, 0, 0); /* button release */
2079
2080         } else if ((n_slides_reaped == 2) && (n_horizontal_scrolls == 2)) {
2081                 if (horizontal_scroll < 0)
2082                         atp_add_to_queue(sc, 0, 0, 0, MOUSE_BUTTON4DOWN);
2083                 else
2084                         atp_add_to_queue(sc, 0, 0, 0, MOUSE_BUTTON5DOWN);
2085                 atp_add_to_queue(sc, 0, 0, 0, 0); /* button release */
2086         }
2087 }
2088
2089 /* Switch a given touch stroke to being a slide. */
2090 static void
2091 atp_convert_to_slide(struct atp_softc *sc, atp_stroke_t *strokep)
2092 {
2093         strokep->type = ATP_STROKE_SLIDE;
2094
2095         /* Are we at the beginning of a double-click-n-drag? */
2096         if ((sc->sc_n_strokes == 1) &&
2097             ((sc->sc_state & ATP_ZOMBIES_EXIST) == 0) &&
2098             timevalcmp(&strokep->ctime, &sc->sc_touch_reap_time, >)) {
2099                 struct timeval delta;
2100                 struct timeval window = {
2101                         atp_double_tap_threshold / 1000000,
2102                         atp_double_tap_threshold % 1000000
2103                 };
2104
2105                 delta = strokep->ctime;
2106                 timevalsub(&delta, &sc->sc_touch_reap_time);
2107                 if (timevalcmp(&delta, &window, <=))
2108                         sc->sc_state |= ATP_DOUBLE_TAP_DRAG;
2109         }
2110 }
2111
2112 static void
2113 atp_reset_buf(struct atp_softc *sc)
2114 {
2115         /* reset read queue */
2116         usb_fifo_reset(sc->sc_fifo.fp[USB_FIFO_RX]);
2117 }
2118
2119 static void
2120 atp_add_to_queue(struct atp_softc *sc, int dx, int dy, int dz,
2121     uint32_t buttons_in)
2122 {
2123         uint32_t buttons_out;
2124         uint8_t  buf[8];
2125
2126         dx = imin(dx,  254); dx = imax(dx, -256);
2127         dy = imin(dy,  254); dy = imax(dy, -256);
2128         dz = imin(dz,  126); dz = imax(dz, -128);
2129
2130         buttons_out = MOUSE_MSC_BUTTONS;
2131         if (buttons_in & MOUSE_BUTTON1DOWN)
2132                 buttons_out &= ~MOUSE_MSC_BUTTON1UP;
2133         else if (buttons_in & MOUSE_BUTTON2DOWN)
2134                 buttons_out &= ~MOUSE_MSC_BUTTON2UP;
2135         else if (buttons_in & MOUSE_BUTTON3DOWN)
2136                 buttons_out &= ~MOUSE_MSC_BUTTON3UP;
2137
2138         DPRINTFN(ATP_LLEVEL_INFO, "dx=%d, dy=%d, buttons=%x\n",
2139             dx, dy, buttons_out);
2140
2141         /* Encode the mouse data in standard format; refer to mouse(4) */
2142         buf[0] = sc->sc_mode.syncmask[1];
2143         buf[0] |= buttons_out;
2144         buf[1] = dx >> 1;
2145         buf[2] = dy >> 1;
2146         buf[3] = dx - (dx >> 1);
2147         buf[4] = dy - (dy >> 1);
2148         /* Encode extra bytes for level 1 */
2149         if (sc->sc_mode.level == 1) {
2150                 buf[5] = dz >> 1;
2151                 buf[6] = dz - (dz >> 1);
2152                 buf[7] = (((~buttons_in) >> 3) & MOUSE_SYS_EXTBUTTONS);
2153         }
2154
2155         usb_fifo_put_data_linear(sc->sc_fifo.fp[USB_FIFO_RX], buf,
2156             sc->sc_mode.packetsize, 1);
2157 }
2158
2159 static int
2160 atp_probe(device_t self)
2161 {
2162         struct usb_attach_arg *uaa = device_get_ivars(self);
2163
2164         if (uaa->usb_mode != USB_MODE_HOST)
2165                 return (ENXIO);
2166
2167         if (uaa->info.bInterfaceClass != UICLASS_HID)
2168                 return (ENXIO);
2169         /*
2170          * Note: for some reason, the check
2171          * (uaa->info.bInterfaceProtocol == UIPROTO_MOUSE) doesn't hold true
2172          * for wellspring trackpads, so we've removed it from the common path.
2173          */
2174
2175         if ((usbd_lookup_id_by_uaa(fg_devs, sizeof(fg_devs), uaa)) == 0)
2176                 return ((uaa->info.bInterfaceProtocol == UIPROTO_MOUSE) ?
2177                         0 : ENXIO);
2178
2179         if ((usbd_lookup_id_by_uaa(wsp_devs, sizeof(wsp_devs), uaa)) == 0)
2180                 if (uaa->info.bIfaceIndex == WELLSPRING_INTERFACE_INDEX)
2181                         return (0);
2182
2183         return (ENXIO);
2184 }
2185
2186 static int
2187 atp_attach(device_t dev)
2188 {
2189         struct atp_softc      *sc  = device_get_softc(dev);
2190         struct usb_attach_arg *uaa = device_get_ivars(dev);
2191         usb_error_t            err;
2192         void *descriptor_ptr = NULL;
2193         uint16_t descriptor_len;
2194         unsigned long di;
2195
2196         DPRINTFN(ATP_LLEVEL_INFO, "sc=%p\n", sc);
2197
2198         sc->sc_dev        = dev;
2199         sc->sc_usb_device = uaa->device;
2200
2201         /* Get HID descriptor */
2202         if (usbd_req_get_hid_desc(uaa->device, NULL, &descriptor_ptr,
2203             &descriptor_len, M_TEMP, uaa->info.bIfaceIndex) !=
2204             USB_ERR_NORMAL_COMPLETION)
2205                 return (ENXIO);
2206
2207         /* Get HID report descriptor length */
2208         sc->sc_expected_sensor_data_len = hid_report_size(descriptor_ptr,
2209             descriptor_len, hid_input, NULL);
2210         free(descriptor_ptr, M_TEMP);
2211
2212         if ((sc->sc_expected_sensor_data_len <= 0) ||
2213             (sc->sc_expected_sensor_data_len > ATP_SENSOR_DATA_BUF_MAX)) {
2214                 DPRINTF("atp_attach: datalength invalid or too large: %d\n",
2215                         sc->sc_expected_sensor_data_len);
2216                 return (ENXIO);
2217         }
2218
2219         /*
2220          * By default the touchpad behaves like an HID device, sending
2221          * packets with reportID = 2. Such reports contain only
2222          * limited information--they encode movement deltas and button
2223          * events,--but do not include data from the pressure
2224          * sensors. The device input mode can be switched from HID
2225          * reports to raw sensor data using vendor-specific USB
2226          * control commands.
2227          */
2228         if ((err = atp_set_device_mode(sc, RAW_SENSOR_MODE)) != 0) {
2229                 DPRINTF("failed to set mode to 'RAW_SENSOR' (%d)\n", err);
2230                 return (ENXIO);
2231         }
2232
2233         mtx_init(&sc->sc_mutex, "atpmtx", NULL, MTX_DEF | MTX_RECURSE);
2234
2235         di = USB_GET_DRIVER_INFO(uaa);
2236
2237         sc->sc_family = DECODE_FAMILY_FROM_DRIVER_INFO(di);
2238
2239         switch(sc->sc_family) {
2240         case TRACKPAD_FAMILY_FOUNTAIN_GEYSER:
2241                 sc->sc_params =
2242                     &fg_dev_params[DECODE_PRODUCT_FROM_DRIVER_INFO(di)];
2243                 sc->sensor_data_interpreter = fg_interpret_sensor_data;
2244                 break;
2245         case TRACKPAD_FAMILY_WELLSPRING:
2246                 sc->sc_params =
2247                     &wsp_dev_params[DECODE_PRODUCT_FROM_DRIVER_INFO(di)];
2248                 sc->sensor_data_interpreter = wsp_interpret_sensor_data;
2249                 break;
2250         default:
2251                 goto detach;
2252         }
2253
2254         err = usbd_transfer_setup(uaa->device,
2255             &uaa->info.bIfaceIndex, sc->sc_xfer, atp_xfer_config,
2256             ATP_N_TRANSFER, sc, &sc->sc_mutex);
2257         if (err) {
2258                 DPRINTF("error=%s\n", usbd_errstr(err));
2259                 goto detach;
2260         }
2261
2262         if (usb_fifo_attach(sc->sc_usb_device, sc, &sc->sc_mutex,
2263             &atp_fifo_methods, &sc->sc_fifo,
2264             device_get_unit(dev), -1, uaa->info.bIfaceIndex,
2265             UID_ROOT, GID_OPERATOR, 0644)) {
2266                 goto detach;
2267         }
2268
2269         device_set_usb_desc(dev);
2270
2271         sc->sc_hw.buttons       = 3;
2272         sc->sc_hw.iftype        = MOUSE_IF_USB;
2273         sc->sc_hw.type          = MOUSE_PAD;
2274         sc->sc_hw.model         = MOUSE_MODEL_GENERIC;
2275         sc->sc_hw.hwid          = 0;
2276         sc->sc_mode.protocol    = MOUSE_PROTO_MSC;
2277         sc->sc_mode.rate        = -1;
2278         sc->sc_mode.resolution  = MOUSE_RES_UNKNOWN;
2279         sc->sc_mode.packetsize  = MOUSE_MSC_PACKETSIZE;
2280         sc->sc_mode.syncmask[0] = MOUSE_MSC_SYNCMASK;
2281         sc->sc_mode.syncmask[1] = MOUSE_MSC_SYNC;
2282         sc->sc_mode.accelfactor = 0;
2283         sc->sc_mode.level       = 0;
2284
2285         sc->sc_state            = 0;
2286         sc->sc_ibtn             = 0;
2287
2288         callout_init_mtx(&sc->sc_callout, &sc->sc_mutex, 0);
2289
2290         return (0);
2291
2292 detach:
2293         atp_detach(dev);
2294         return (ENOMEM);
2295 }
2296
2297 static int
2298 atp_detach(device_t dev)
2299 {
2300         struct atp_softc *sc;
2301
2302         sc = device_get_softc(dev);
2303         atp_set_device_mode(sc, HID_MODE);
2304
2305         mtx_lock(&sc->sc_mutex);
2306         callout_drain(&sc->sc_callout);
2307         if (sc->sc_state & ATP_ENABLED)
2308                 atp_disable(sc);
2309         mtx_unlock(&sc->sc_mutex);
2310
2311         usb_fifo_detach(&sc->sc_fifo);
2312
2313         usbd_transfer_unsetup(sc->sc_xfer, ATP_N_TRANSFER);
2314
2315         mtx_destroy(&sc->sc_mutex);
2316
2317         return (0);
2318 }
2319
2320 static void
2321 atp_intr(struct usb_xfer *xfer, usb_error_t error)
2322 {
2323         struct atp_softc      *sc = usbd_xfer_softc(xfer);
2324         struct usb_page_cache *pc;
2325         int len;
2326
2327         usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
2328
2329         switch (USB_GET_STATE(xfer)) {
2330         case USB_ST_TRANSFERRED:
2331                 pc = usbd_xfer_get_frame(xfer, 0);
2332                 usbd_copy_out(pc, 0, sc->sc_sensor_data, len);
2333                 if (len < sc->sc_expected_sensor_data_len) {
2334                         /* make sure we don't process old data */
2335                         memset(sc->sc_sensor_data + len, 0,
2336                             sc->sc_expected_sensor_data_len - len);
2337                 }
2338
2339                 sc->sc_status.flags &= ~(MOUSE_STDBUTTONSCHANGED |
2340                     MOUSE_POSCHANGED);
2341                 sc->sc_status.obutton = sc->sc_status.button;
2342
2343                 (sc->sensor_data_interpreter)(sc, len);
2344
2345                 if (sc->sc_status.button != 0) {
2346                         /* Reset DOUBLE_TAP_N_DRAG if the button is pressed. */
2347                         sc->sc_state &= ~ATP_DOUBLE_TAP_DRAG;
2348                 } else if (sc->sc_state & ATP_DOUBLE_TAP_DRAG) {
2349                         /* Assume a button-press with DOUBLE_TAP_N_DRAG. */
2350                         sc->sc_status.button = MOUSE_BUTTON1DOWN;
2351                 }
2352
2353                 sc->sc_status.flags |=
2354                     sc->sc_status.button ^ sc->sc_status.obutton;
2355                 if (sc->sc_status.flags & MOUSE_STDBUTTONSCHANGED) {
2356                     DPRINTFN(ATP_LLEVEL_INFO, "button %s\n",
2357                         ((sc->sc_status.button & MOUSE_BUTTON1DOWN) ?
2358                         "pressed" : "released"));
2359                 }
2360
2361                 if (sc->sc_status.flags & (MOUSE_POSCHANGED |
2362                     MOUSE_STDBUTTONSCHANGED)) {
2363
2364                         atp_stroke_t *strokep;
2365                         u_int8_t n_movements = 0;
2366                         int dx = 0;
2367                         int dy = 0;
2368                         int dz = 0;
2369
2370                         TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry) {
2371                                 if (strokep->flags & ATSF_ZOMBIE)
2372                                         continue;
2373
2374                                 dx += strokep->movement_dx;
2375                                 dy += strokep->movement_dy;
2376                                 if (strokep->movement_dx ||
2377                                     strokep->movement_dy)
2378                                         n_movements++;
2379                         }
2380
2381                         /* average movement if multiple strokes record motion.*/
2382                         if (n_movements > 1) {
2383                                 dx /= (int)n_movements;
2384                                 dy /= (int)n_movements;
2385                         }
2386
2387                         /* detect multi-finger vertical scrolls */
2388                         if (n_movements >= 2) {
2389                                 boolean_t all_vertical_scrolls = true;
2390                                 TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry) {
2391                                         if (strokep->flags & ATSF_ZOMBIE)
2392                                                 continue;
2393
2394                                         if (!atp_is_vertical_scroll(strokep))
2395                                                 all_vertical_scrolls = false;
2396                                 }
2397                                 if (all_vertical_scrolls) {
2398                                         dz = dy;
2399                                         dy = dx = 0;
2400                                 }
2401                         }
2402
2403                         sc->sc_status.dx += dx;
2404                         sc->sc_status.dy += dy;
2405                         sc->sc_status.dz += dz;
2406                         atp_add_to_queue(sc, dx, -dy, -dz, sc->sc_status.button);
2407                 }
2408
2409         case USB_ST_SETUP:
2410         tr_setup:
2411                 /* check if we can put more data into the FIFO */
2412                 if (usb_fifo_put_bytes_max(sc->sc_fifo.fp[USB_FIFO_RX]) != 0) {
2413                         usbd_xfer_set_frame_len(xfer, 0,
2414                             sc->sc_expected_sensor_data_len);
2415                         usbd_transfer_submit(xfer);
2416                 }
2417                 break;
2418
2419         default:                        /* Error */
2420                 if (error != USB_ERR_CANCELLED) {
2421                         /* try clear stall first */
2422                         usbd_xfer_set_stall(xfer);
2423                         goto tr_setup;
2424                 }
2425                 break;
2426         }
2427 }
2428
2429 static void
2430 atp_start_read(struct usb_fifo *fifo)
2431 {
2432         struct atp_softc *sc = usb_fifo_softc(fifo);
2433         int rate;
2434
2435         /* Check if we should override the default polling interval */
2436         rate = sc->sc_pollrate;
2437         /* Range check rate */
2438         if (rate > 1000)
2439                 rate = 1000;
2440         /* Check for set rate */
2441         if ((rate > 0) && (sc->sc_xfer[ATP_INTR_DT] != NULL)) {
2442                 /* Stop current transfer, if any */
2443                 usbd_transfer_stop(sc->sc_xfer[ATP_INTR_DT]);
2444                 /* Set new interval */
2445                 usbd_xfer_set_interval(sc->sc_xfer[ATP_INTR_DT], 1000 / rate);
2446                 /* Only set pollrate once */
2447                 sc->sc_pollrate = 0;
2448         }
2449
2450         usbd_transfer_start(sc->sc_xfer[ATP_INTR_DT]);
2451 }
2452
2453 static void
2454 atp_stop_read(struct usb_fifo *fifo)
2455 {
2456         struct atp_softc *sc = usb_fifo_softc(fifo);
2457         usbd_transfer_stop(sc->sc_xfer[ATP_INTR_DT]);
2458 }
2459
2460 static int
2461 atp_open(struct usb_fifo *fifo, int fflags)
2462 {
2463         struct atp_softc *sc = usb_fifo_softc(fifo);
2464
2465         /* check for duplicate open, should not happen */
2466         if (sc->sc_fflags & fflags)
2467                 return (EBUSY);
2468
2469         /* check for first open */
2470         if (sc->sc_fflags == 0) {
2471                 int rc;
2472                 if ((rc = atp_enable(sc)) != 0)
2473                         return (rc);
2474         }
2475
2476         if (fflags & FREAD) {
2477                 if (usb_fifo_alloc_buffer(fifo,
2478                     ATP_FIFO_BUF_SIZE, ATP_FIFO_QUEUE_MAXLEN)) {
2479                         return (ENOMEM);
2480                 }
2481         }
2482
2483         sc->sc_fflags |= (fflags & (FREAD | FWRITE));
2484         return (0);
2485 }
2486
2487 static void
2488 atp_close(struct usb_fifo *fifo, int fflags)
2489 {
2490         struct atp_softc *sc = usb_fifo_softc(fifo);
2491         if (fflags & FREAD)
2492                 usb_fifo_free_buffer(fifo);
2493
2494         sc->sc_fflags &= ~(fflags & (FREAD | FWRITE));
2495         if (sc->sc_fflags == 0) {
2496                 atp_disable(sc);
2497         }
2498 }
2499
2500 static int
2501 atp_ioctl(struct usb_fifo *fifo, u_long cmd, void *addr, int fflags)
2502 {
2503         struct atp_softc *sc = usb_fifo_softc(fifo);
2504         mousemode_t mode;
2505         int error = 0;
2506
2507         mtx_lock(&sc->sc_mutex);
2508
2509         switch(cmd) {
2510         case MOUSE_GETHWINFO:
2511                 *(mousehw_t *)addr = sc->sc_hw;
2512                 break;
2513         case MOUSE_GETMODE:
2514                 *(mousemode_t *)addr = sc->sc_mode;
2515                 break;
2516         case MOUSE_SETMODE:
2517                 mode = *(mousemode_t *)addr;
2518
2519                 if (mode.level == -1)
2520                         /* Don't change the current setting */
2521                         ;
2522                 else if ((mode.level < 0) || (mode.level > 1)) {
2523                         error = EINVAL;
2524                         break;
2525                 }
2526                 sc->sc_mode.level = mode.level;
2527                 sc->sc_pollrate   = mode.rate;
2528                 sc->sc_hw.buttons = 3;
2529
2530                 if (sc->sc_mode.level == 0) {
2531                         sc->sc_mode.protocol    = MOUSE_PROTO_MSC;
2532                         sc->sc_mode.packetsize  = MOUSE_MSC_PACKETSIZE;
2533                         sc->sc_mode.syncmask[0] = MOUSE_MSC_SYNCMASK;
2534                         sc->sc_mode.syncmask[1] = MOUSE_MSC_SYNC;
2535                 } else if (sc->sc_mode.level == 1) {
2536                         sc->sc_mode.protocol    = MOUSE_PROTO_SYSMOUSE;
2537                         sc->sc_mode.packetsize  = MOUSE_SYS_PACKETSIZE;
2538                         sc->sc_mode.syncmask[0] = MOUSE_SYS_SYNCMASK;
2539                         sc->sc_mode.syncmask[1] = MOUSE_SYS_SYNC;
2540                 }
2541                 atp_reset_buf(sc);
2542                 break;
2543         case MOUSE_GETLEVEL:
2544                 *(int *)addr = sc->sc_mode.level;
2545                 break;
2546         case MOUSE_SETLEVEL:
2547                 if ((*(int *)addr < 0) || (*(int *)addr > 1)) {
2548                         error = EINVAL;
2549                         break;
2550                 }
2551                 sc->sc_mode.level = *(int *)addr;
2552                 sc->sc_hw.buttons = 3;
2553
2554                 if (sc->sc_mode.level == 0) {
2555                         sc->sc_mode.protocol    = MOUSE_PROTO_MSC;
2556                         sc->sc_mode.packetsize  = MOUSE_MSC_PACKETSIZE;
2557                         sc->sc_mode.syncmask[0] = MOUSE_MSC_SYNCMASK;
2558                         sc->sc_mode.syncmask[1] = MOUSE_MSC_SYNC;
2559                 } else if (sc->sc_mode.level == 1) {
2560                         sc->sc_mode.protocol    = MOUSE_PROTO_SYSMOUSE;
2561                         sc->sc_mode.packetsize  = MOUSE_SYS_PACKETSIZE;
2562                         sc->sc_mode.syncmask[0] = MOUSE_SYS_SYNCMASK;
2563                         sc->sc_mode.syncmask[1] = MOUSE_SYS_SYNC;
2564                 }
2565                 atp_reset_buf(sc);
2566                 break;
2567         case MOUSE_GETSTATUS: {
2568                 mousestatus_t *status = (mousestatus_t *)addr;
2569
2570                 *status = sc->sc_status;
2571                 sc->sc_status.obutton = sc->sc_status.button;
2572                 sc->sc_status.button  = 0;
2573                 sc->sc_status.dx      = 0;
2574                 sc->sc_status.dy      = 0;
2575                 sc->sc_status.dz      = 0;
2576
2577                 if (status->dx || status->dy || status->dz)
2578                         status->flags |= MOUSE_POSCHANGED;
2579                 if (status->button != status->obutton)
2580                         status->flags |= MOUSE_BUTTONSCHANGED;
2581                 break;
2582         }
2583
2584         default:
2585                 error = ENOTTY;
2586                 break;
2587         }
2588
2589         mtx_unlock(&sc->sc_mutex);
2590         return (error);
2591 }
2592
2593 static int
2594 atp_sysctl_scale_factor_handler(SYSCTL_HANDLER_ARGS)
2595 {
2596         int error;
2597         u_int tmp;
2598
2599         tmp = atp_mickeys_scale_factor;
2600         error = sysctl_handle_int(oidp, &tmp, 0, req);
2601         if (error != 0 || req->newptr == NULL)
2602                 return (error);
2603
2604         if (tmp == atp_mickeys_scale_factor)
2605                 return (0);     /* no change */
2606         if ((tmp == 0) || (tmp > (10 * ATP_SCALE_FACTOR)))
2607                 return (EINVAL);
2608
2609         atp_mickeys_scale_factor = tmp;
2610         DPRINTFN(ATP_LLEVEL_INFO, "%s: resetting mickeys_scale_factor to %u\n",
2611             ATP_DRIVER_NAME, tmp);
2612
2613         return (0);
2614 }
2615
2616 static devclass_t atp_devclass;
2617
2618 static device_method_t atp_methods[] = {
2619         DEVMETHOD(device_probe,  atp_probe),
2620         DEVMETHOD(device_attach, atp_attach),
2621         DEVMETHOD(device_detach, atp_detach),
2622
2623         DEVMETHOD_END
2624 };
2625
2626 static driver_t atp_driver = {
2627         .name    = ATP_DRIVER_NAME,
2628         .methods = atp_methods,
2629         .size    = sizeof(struct atp_softc)
2630 };
2631
2632 DRIVER_MODULE(atp, uhub, atp_driver, atp_devclass, NULL, 0);
2633 MODULE_DEPEND(atp, usb, 1, 1, 1);
2634 MODULE_VERSION(atp, 1);
2635 USB_PNP_HOST_INFO(fg_devs);
2636 USB_PNP_HOST_INFO(wsp_devs);