]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/usb/wlan/if_ural.c
Merge OpenSSL 1.0.1i.
[FreeBSD/FreeBSD.git] / sys / dev / usb / wlan / if_ural.c
1 /*      $FreeBSD$       */
2
3 /*-
4  * Copyright (c) 2005, 2006
5  *      Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Copyright (c) 2006, 2008
8  *      Hans Petter Selasky <hselasky@FreeBSD.org>
9  *
10  * Permission to use, copy, modify, and distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22
23 #include <sys/cdefs.h>
24 __FBSDID("$FreeBSD$");
25
26 /*-
27  * Ralink Technology RT2500USB chipset driver
28  * http://www.ralinktech.com/
29  */
30
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/lock.h>
35 #include <sys/mutex.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/module.h>
42 #include <sys/bus.h>
43 #include <sys/endian.h>
44 #include <sys/kdb.h>
45
46 #include <machine/bus.h>
47 #include <machine/resource.h>
48 #include <sys/rman.h>
49
50 #include <net/bpf.h>
51 #include <net/if.h>
52 #include <net/if_var.h>
53 #include <net/if_arp.h>
54 #include <net/ethernet.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58
59 #ifdef INET
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/in_var.h>
63 #include <netinet/if_ether.h>
64 #include <netinet/ip.h>
65 #endif
66
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_regdomain.h>
69 #include <net80211/ieee80211_radiotap.h>
70 #include <net80211/ieee80211_ratectl.h>
71
72 #include <dev/usb/usb.h>
73 #include <dev/usb/usbdi.h>
74 #include "usbdevs.h"
75
76 #define USB_DEBUG_VAR ural_debug
77 #include <dev/usb/usb_debug.h>
78
79 #include <dev/usb/wlan/if_uralreg.h>
80 #include <dev/usb/wlan/if_uralvar.h>
81
82 #ifdef USB_DEBUG
83 static int ural_debug = 0;
84
85 static SYSCTL_NODE(_hw_usb, OID_AUTO, ural, CTLFLAG_RW, 0, "USB ural");
86 SYSCTL_INT(_hw_usb_ural, OID_AUTO, debug, CTLFLAG_RW, &ural_debug, 0,
87     "Debug level");
88 #endif
89
90 #define URAL_RSSI(rssi)                                 \
91         ((rssi) > (RAL_NOISE_FLOOR + RAL_RSSI_CORR) ?   \
92          ((rssi) - (RAL_NOISE_FLOOR + RAL_RSSI_CORR)) : 0)
93
94 /* various supported device vendors/products */
95 static const STRUCT_USB_HOST_ID ural_devs[] = {
96 #define URAL_DEV(v,p)  { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
97         URAL_DEV(ASUS, WL167G),
98         URAL_DEV(ASUS, RT2570),
99         URAL_DEV(BELKIN, F5D7050),
100         URAL_DEV(BELKIN, F5D7051),
101         URAL_DEV(CISCOLINKSYS, HU200TS),
102         URAL_DEV(CISCOLINKSYS, WUSB54G),
103         URAL_DEV(CISCOLINKSYS, WUSB54GP),
104         URAL_DEV(CONCEPTRONIC2, C54RU),
105         URAL_DEV(DLINK, DWLG122),
106         URAL_DEV(GIGABYTE, GN54G),
107         URAL_DEV(GIGABYTE, GNWBKG),
108         URAL_DEV(GUILLEMOT, HWGUSB254),
109         URAL_DEV(MELCO, KG54),
110         URAL_DEV(MELCO, KG54AI),
111         URAL_DEV(MELCO, KG54YB),
112         URAL_DEV(MELCO, NINWIFI),
113         URAL_DEV(MSI, RT2570),
114         URAL_DEV(MSI, RT2570_2),
115         URAL_DEV(MSI, RT2570_3),
116         URAL_DEV(NOVATECH, NV902),
117         URAL_DEV(RALINK, RT2570),
118         URAL_DEV(RALINK, RT2570_2),
119         URAL_DEV(RALINK, RT2570_3),
120         URAL_DEV(SIEMENS2, WL54G),
121         URAL_DEV(SMC, 2862WG),
122         URAL_DEV(SPHAIRON, UB801R),
123         URAL_DEV(SURECOM, RT2570),
124         URAL_DEV(VTECH, RT2570),
125         URAL_DEV(ZINWELL, RT2570),
126 #undef URAL_DEV
127 };
128
129 static usb_callback_t ural_bulk_read_callback;
130 static usb_callback_t ural_bulk_write_callback;
131
132 static usb_error_t      ural_do_request(struct ural_softc *sc,
133                             struct usb_device_request *req, void *data);
134 static struct ieee80211vap *ural_vap_create(struct ieee80211com *,
135                             const char [IFNAMSIZ], int, enum ieee80211_opmode,
136                             int, const uint8_t [IEEE80211_ADDR_LEN],
137                             const uint8_t [IEEE80211_ADDR_LEN]);
138 static void             ural_vap_delete(struct ieee80211vap *);
139 static void             ural_tx_free(struct ural_tx_data *, int);
140 static void             ural_setup_tx_list(struct ural_softc *);
141 static void             ural_unsetup_tx_list(struct ural_softc *);
142 static int              ural_newstate(struct ieee80211vap *,
143                             enum ieee80211_state, int);
144 static void             ural_setup_tx_desc(struct ural_softc *,
145                             struct ural_tx_desc *, uint32_t, int, int);
146 static int              ural_tx_bcn(struct ural_softc *, struct mbuf *,
147                             struct ieee80211_node *);
148 static int              ural_tx_mgt(struct ural_softc *, struct mbuf *,
149                             struct ieee80211_node *);
150 static int              ural_tx_data(struct ural_softc *, struct mbuf *,
151                             struct ieee80211_node *);
152 static void             ural_start(struct ifnet *);
153 static int              ural_ioctl(struct ifnet *, u_long, caddr_t);
154 static void             ural_set_testmode(struct ural_softc *);
155 static void             ural_eeprom_read(struct ural_softc *, uint16_t, void *,
156                             int);
157 static uint16_t         ural_read(struct ural_softc *, uint16_t);
158 static void             ural_read_multi(struct ural_softc *, uint16_t, void *,
159                             int);
160 static void             ural_write(struct ural_softc *, uint16_t, uint16_t);
161 static void             ural_write_multi(struct ural_softc *, uint16_t, void *,
162                             int) __unused;
163 static void             ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
164 static uint8_t          ural_bbp_read(struct ural_softc *, uint8_t);
165 static void             ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
166 static void             ural_scan_start(struct ieee80211com *);
167 static void             ural_scan_end(struct ieee80211com *);
168 static void             ural_set_channel(struct ieee80211com *);
169 static void             ural_set_chan(struct ural_softc *,
170                             struct ieee80211_channel *);
171 static void             ural_disable_rf_tune(struct ural_softc *);
172 static void             ural_enable_tsf_sync(struct ural_softc *);
173 static void             ural_enable_tsf(struct ural_softc *);
174 static void             ural_update_slot(struct ifnet *);
175 static void             ural_set_txpreamble(struct ural_softc *);
176 static void             ural_set_basicrates(struct ural_softc *,
177                             const struct ieee80211_channel *);
178 static void             ural_set_bssid(struct ural_softc *, const uint8_t *);
179 static void             ural_set_macaddr(struct ural_softc *, uint8_t *);
180 static void             ural_update_promisc(struct ifnet *);
181 static void             ural_setpromisc(struct ural_softc *);
182 static const char       *ural_get_rf(int);
183 static void             ural_read_eeprom(struct ural_softc *);
184 static int              ural_bbp_init(struct ural_softc *);
185 static void             ural_set_txantenna(struct ural_softc *, int);
186 static void             ural_set_rxantenna(struct ural_softc *, int);
187 static void             ural_init_locked(struct ural_softc *);
188 static void             ural_init(void *);
189 static void             ural_stop(struct ural_softc *);
190 static int              ural_raw_xmit(struct ieee80211_node *, struct mbuf *,
191                             const struct ieee80211_bpf_params *);
192 static void             ural_ratectl_start(struct ural_softc *,
193                             struct ieee80211_node *);
194 static void             ural_ratectl_timeout(void *);
195 static void             ural_ratectl_task(void *, int);
196 static int              ural_pause(struct ural_softc *sc, int timeout);
197
198 /*
199  * Default values for MAC registers; values taken from the reference driver.
200  */
201 static const struct {
202         uint16_t        reg;
203         uint16_t        val;
204 } ural_def_mac[] = {
205         { RAL_TXRX_CSR5,  0x8c8d },
206         { RAL_TXRX_CSR6,  0x8b8a },
207         { RAL_TXRX_CSR7,  0x8687 },
208         { RAL_TXRX_CSR8,  0x0085 },
209         { RAL_MAC_CSR13,  0x1111 },
210         { RAL_MAC_CSR14,  0x1e11 },
211         { RAL_TXRX_CSR21, 0xe78f },
212         { RAL_MAC_CSR9,   0xff1d },
213         { RAL_MAC_CSR11,  0x0002 },
214         { RAL_MAC_CSR22,  0x0053 },
215         { RAL_MAC_CSR15,  0x0000 },
216         { RAL_MAC_CSR8,   RAL_FRAME_SIZE },
217         { RAL_TXRX_CSR19, 0x0000 },
218         { RAL_TXRX_CSR18, 0x005a },
219         { RAL_PHY_CSR2,   0x0000 },
220         { RAL_TXRX_CSR0,  0x1ec0 },
221         { RAL_PHY_CSR4,   0x000f }
222 };
223
224 /*
225  * Default values for BBP registers; values taken from the reference driver.
226  */
227 static const struct {
228         uint8_t reg;
229         uint8_t val;
230 } ural_def_bbp[] = {
231         {  3, 0x02 },
232         {  4, 0x19 },
233         { 14, 0x1c },
234         { 15, 0x30 },
235         { 16, 0xac },
236         { 17, 0x48 },
237         { 18, 0x18 },
238         { 19, 0xff },
239         { 20, 0x1e },
240         { 21, 0x08 },
241         { 22, 0x08 },
242         { 23, 0x08 },
243         { 24, 0x80 },
244         { 25, 0x50 },
245         { 26, 0x08 },
246         { 27, 0x23 },
247         { 30, 0x10 },
248         { 31, 0x2b },
249         { 32, 0xb9 },
250         { 34, 0x12 },
251         { 35, 0x50 },
252         { 39, 0xc4 },
253         { 40, 0x02 },
254         { 41, 0x60 },
255         { 53, 0x10 },
256         { 54, 0x18 },
257         { 56, 0x08 },
258         { 57, 0x10 },
259         { 58, 0x08 },
260         { 61, 0x60 },
261         { 62, 0x10 },
262         { 75, 0xff }
263 };
264
265 /*
266  * Default values for RF register R2 indexed by channel numbers.
267  */
268 static const uint32_t ural_rf2522_r2[] = {
269         0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
270         0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
271 };
272
273 static const uint32_t ural_rf2523_r2[] = {
274         0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
275         0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
276 };
277
278 static const uint32_t ural_rf2524_r2[] = {
279         0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
280         0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
281 };
282
283 static const uint32_t ural_rf2525_r2[] = {
284         0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
285         0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
286 };
287
288 static const uint32_t ural_rf2525_hi_r2[] = {
289         0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
290         0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
291 };
292
293 static const uint32_t ural_rf2525e_r2[] = {
294         0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
295         0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
296 };
297
298 static const uint32_t ural_rf2526_hi_r2[] = {
299         0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
300         0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
301 };
302
303 static const uint32_t ural_rf2526_r2[] = {
304         0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
305         0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
306 };
307
308 /*
309  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
310  * values taken from the reference driver.
311  */
312 static const struct {
313         uint8_t         chan;
314         uint32_t        r1;
315         uint32_t        r2;
316         uint32_t        r4;
317 } ural_rf5222[] = {
318         {   1, 0x08808, 0x0044d, 0x00282 },
319         {   2, 0x08808, 0x0044e, 0x00282 },
320         {   3, 0x08808, 0x0044f, 0x00282 },
321         {   4, 0x08808, 0x00460, 0x00282 },
322         {   5, 0x08808, 0x00461, 0x00282 },
323         {   6, 0x08808, 0x00462, 0x00282 },
324         {   7, 0x08808, 0x00463, 0x00282 },
325         {   8, 0x08808, 0x00464, 0x00282 },
326         {   9, 0x08808, 0x00465, 0x00282 },
327         {  10, 0x08808, 0x00466, 0x00282 },
328         {  11, 0x08808, 0x00467, 0x00282 },
329         {  12, 0x08808, 0x00468, 0x00282 },
330         {  13, 0x08808, 0x00469, 0x00282 },
331         {  14, 0x08808, 0x0046b, 0x00286 },
332
333         {  36, 0x08804, 0x06225, 0x00287 },
334         {  40, 0x08804, 0x06226, 0x00287 },
335         {  44, 0x08804, 0x06227, 0x00287 },
336         {  48, 0x08804, 0x06228, 0x00287 },
337         {  52, 0x08804, 0x06229, 0x00287 },
338         {  56, 0x08804, 0x0622a, 0x00287 },
339         {  60, 0x08804, 0x0622b, 0x00287 },
340         {  64, 0x08804, 0x0622c, 0x00287 },
341
342         { 100, 0x08804, 0x02200, 0x00283 },
343         { 104, 0x08804, 0x02201, 0x00283 },
344         { 108, 0x08804, 0x02202, 0x00283 },
345         { 112, 0x08804, 0x02203, 0x00283 },
346         { 116, 0x08804, 0x02204, 0x00283 },
347         { 120, 0x08804, 0x02205, 0x00283 },
348         { 124, 0x08804, 0x02206, 0x00283 },
349         { 128, 0x08804, 0x02207, 0x00283 },
350         { 132, 0x08804, 0x02208, 0x00283 },
351         { 136, 0x08804, 0x02209, 0x00283 },
352         { 140, 0x08804, 0x0220a, 0x00283 },
353
354         { 149, 0x08808, 0x02429, 0x00281 },
355         { 153, 0x08808, 0x0242b, 0x00281 },
356         { 157, 0x08808, 0x0242d, 0x00281 },
357         { 161, 0x08808, 0x0242f, 0x00281 }
358 };
359
360 static const struct usb_config ural_config[URAL_N_TRANSFER] = {
361         [URAL_BULK_WR] = {
362                 .type = UE_BULK,
363                 .endpoint = UE_ADDR_ANY,
364                 .direction = UE_DIR_OUT,
365                 .bufsize = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE + 4),
366                 .flags = {.pipe_bof = 1,.force_short_xfer = 1,},
367                 .callback = ural_bulk_write_callback,
368                 .timeout = 5000,        /* ms */
369         },
370         [URAL_BULK_RD] = {
371                 .type = UE_BULK,
372                 .endpoint = UE_ADDR_ANY,
373                 .direction = UE_DIR_IN,
374                 .bufsize = (RAL_FRAME_SIZE + RAL_RX_DESC_SIZE),
375                 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
376                 .callback = ural_bulk_read_callback,
377         },
378 };
379
380 static device_probe_t ural_match;
381 static device_attach_t ural_attach;
382 static device_detach_t ural_detach;
383
384 static device_method_t ural_methods[] = {
385         /* Device interface */
386         DEVMETHOD(device_probe,         ural_match),
387         DEVMETHOD(device_attach,        ural_attach),
388         DEVMETHOD(device_detach,        ural_detach),
389         DEVMETHOD_END
390 };
391
392 static driver_t ural_driver = {
393         .name = "ural",
394         .methods = ural_methods,
395         .size = sizeof(struct ural_softc),
396 };
397
398 static devclass_t ural_devclass;
399
400 DRIVER_MODULE(ural, uhub, ural_driver, ural_devclass, NULL, 0);
401 MODULE_DEPEND(ural, usb, 1, 1, 1);
402 MODULE_DEPEND(ural, wlan, 1, 1, 1);
403 MODULE_VERSION(ural, 1);
404
405 static int
406 ural_match(device_t self)
407 {
408         struct usb_attach_arg *uaa = device_get_ivars(self);
409
410         if (uaa->usb_mode != USB_MODE_HOST)
411                 return (ENXIO);
412         if (uaa->info.bConfigIndex != 0)
413                 return (ENXIO);
414         if (uaa->info.bIfaceIndex != RAL_IFACE_INDEX)
415                 return (ENXIO);
416
417         return (usbd_lookup_id_by_uaa(ural_devs, sizeof(ural_devs), uaa));
418 }
419
420 static int
421 ural_attach(device_t self)
422 {
423         struct usb_attach_arg *uaa = device_get_ivars(self);
424         struct ural_softc *sc = device_get_softc(self);
425         struct ifnet *ifp;
426         struct ieee80211com *ic;
427         uint8_t iface_index, bands;
428         int error;
429
430         device_set_usb_desc(self);
431         sc->sc_udev = uaa->device;
432         sc->sc_dev = self;
433
434         mtx_init(&sc->sc_mtx, device_get_nameunit(self),
435             MTX_NETWORK_LOCK, MTX_DEF);
436
437         iface_index = RAL_IFACE_INDEX;
438         error = usbd_transfer_setup(uaa->device,
439             &iface_index, sc->sc_xfer, ural_config,
440             URAL_N_TRANSFER, sc, &sc->sc_mtx);
441         if (error) {
442                 device_printf(self, "could not allocate USB transfers, "
443                     "err=%s\n", usbd_errstr(error));
444                 goto detach;
445         }
446
447         RAL_LOCK(sc);
448         /* retrieve RT2570 rev. no */
449         sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
450
451         /* retrieve MAC address and various other things from EEPROM */
452         ural_read_eeprom(sc);
453         RAL_UNLOCK(sc);
454
455         device_printf(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
456             sc->asic_rev, ural_get_rf(sc->rf_rev));
457
458         ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
459         if (ifp == NULL) {
460                 device_printf(sc->sc_dev, "can not if_alloc()\n");
461                 goto detach;
462         }
463         ic = ifp->if_l2com;
464
465         ifp->if_softc = sc;
466         if_initname(ifp, "ural", device_get_unit(sc->sc_dev));
467         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
468         ifp->if_init = ural_init;
469         ifp->if_ioctl = ural_ioctl;
470         ifp->if_start = ural_start;
471         IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
472         ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
473         IFQ_SET_READY(&ifp->if_snd);
474
475         ic->ic_ifp = ifp;
476         ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
477
478         /* set device capabilities */
479         ic->ic_caps =
480               IEEE80211_C_STA           /* station mode supported */
481             | IEEE80211_C_IBSS          /* IBSS mode supported */
482             | IEEE80211_C_MONITOR       /* monitor mode supported */
483             | IEEE80211_C_HOSTAP        /* HostAp mode supported */
484             | IEEE80211_C_TXPMGT        /* tx power management */
485             | IEEE80211_C_SHPREAMBLE    /* short preamble supported */
486             | IEEE80211_C_SHSLOT        /* short slot time supported */
487             | IEEE80211_C_BGSCAN        /* bg scanning supported */
488             | IEEE80211_C_WPA           /* 802.11i */
489             ;
490
491         bands = 0;
492         setbit(&bands, IEEE80211_MODE_11B);
493         setbit(&bands, IEEE80211_MODE_11G);
494         if (sc->rf_rev == RAL_RF_5222)
495                 setbit(&bands, IEEE80211_MODE_11A);
496         ieee80211_init_channels(ic, NULL, &bands);
497
498         ieee80211_ifattach(ic, sc->sc_bssid);
499         ic->ic_update_promisc = ural_update_promisc;
500         ic->ic_raw_xmit = ural_raw_xmit;
501         ic->ic_scan_start = ural_scan_start;
502         ic->ic_scan_end = ural_scan_end;
503         ic->ic_set_channel = ural_set_channel;
504
505         ic->ic_vap_create = ural_vap_create;
506         ic->ic_vap_delete = ural_vap_delete;
507
508         ieee80211_radiotap_attach(ic,
509             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
510                 RAL_TX_RADIOTAP_PRESENT,
511             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
512                 RAL_RX_RADIOTAP_PRESENT);
513
514         if (bootverbose)
515                 ieee80211_announce(ic);
516
517         return (0);
518
519 detach:
520         ural_detach(self);
521         return (ENXIO);                 /* failure */
522 }
523
524 static int
525 ural_detach(device_t self)
526 {
527         struct ural_softc *sc = device_get_softc(self);
528         struct ifnet *ifp = sc->sc_ifp;
529         struct ieee80211com *ic;
530
531         /* prevent further ioctls */
532         RAL_LOCK(sc);
533         sc->sc_detached = 1;
534         RAL_UNLOCK(sc);
535
536         /* stop all USB transfers */
537         usbd_transfer_unsetup(sc->sc_xfer, URAL_N_TRANSFER);
538
539         /* free TX list, if any */
540         RAL_LOCK(sc);
541         ural_unsetup_tx_list(sc);
542         RAL_UNLOCK(sc);
543
544         if (ifp) {
545                 ic = ifp->if_l2com;
546                 ieee80211_ifdetach(ic);
547                 if_free(ifp);
548         }
549         mtx_destroy(&sc->sc_mtx);
550
551         return (0);
552 }
553
554 static usb_error_t
555 ural_do_request(struct ural_softc *sc,
556     struct usb_device_request *req, void *data)
557 {
558         usb_error_t err;
559         int ntries = 10;
560
561         while (ntries--) {
562                 err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
563                     req, data, 0, NULL, 250 /* ms */);
564                 if (err == 0)
565                         break;
566
567                 DPRINTFN(1, "Control request failed, %s (retrying)\n",
568                     usbd_errstr(err));
569                 if (ural_pause(sc, hz / 100))
570                         break;
571         }
572         return (err);
573 }
574
575 static struct ieee80211vap *
576 ural_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
577     enum ieee80211_opmode opmode, int flags,
578     const uint8_t bssid[IEEE80211_ADDR_LEN],
579     const uint8_t mac[IEEE80211_ADDR_LEN])
580 {
581         struct ural_softc *sc = ic->ic_ifp->if_softc;
582         struct ural_vap *uvp;
583         struct ieee80211vap *vap;
584
585         if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
586                 return NULL;
587         uvp = (struct ural_vap *) malloc(sizeof(struct ural_vap),
588             M_80211_VAP, M_NOWAIT | M_ZERO);
589         if (uvp == NULL)
590                 return NULL;
591         vap = &uvp->vap;
592         /* enable s/w bmiss handling for sta mode */
593
594         if (ieee80211_vap_setup(ic, vap, name, unit, opmode,
595             flags | IEEE80211_CLONE_NOBEACONS, bssid, mac) != 0) {
596                 /* out of memory */
597                 free(uvp, M_80211_VAP);
598                 return (NULL);
599         }
600
601         /* override state transition machine */
602         uvp->newstate = vap->iv_newstate;
603         vap->iv_newstate = ural_newstate;
604
605         usb_callout_init_mtx(&uvp->ratectl_ch, &sc->sc_mtx, 0);
606         TASK_INIT(&uvp->ratectl_task, 0, ural_ratectl_task, uvp);
607         ieee80211_ratectl_init(vap);
608         ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
609
610         /* complete setup */
611         ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
612         ic->ic_opmode = opmode;
613         return vap;
614 }
615
616 static void
617 ural_vap_delete(struct ieee80211vap *vap)
618 {
619         struct ural_vap *uvp = URAL_VAP(vap);
620         struct ieee80211com *ic = vap->iv_ic;
621
622         usb_callout_drain(&uvp->ratectl_ch);
623         ieee80211_draintask(ic, &uvp->ratectl_task);
624         ieee80211_ratectl_deinit(vap);
625         ieee80211_vap_detach(vap);
626         free(uvp, M_80211_VAP);
627 }
628
629 static void
630 ural_tx_free(struct ural_tx_data *data, int txerr)
631 {
632         struct ural_softc *sc = data->sc;
633
634         if (data->m != NULL) {
635                 if (data->m->m_flags & M_TXCB)
636                         ieee80211_process_callback(data->ni, data->m,
637                             txerr ? ETIMEDOUT : 0);
638                 m_freem(data->m);
639                 data->m = NULL;
640
641                 ieee80211_free_node(data->ni);
642                 data->ni = NULL;
643         }
644         STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
645         sc->tx_nfree++;
646 }
647
648 static void
649 ural_setup_tx_list(struct ural_softc *sc)
650 {
651         struct ural_tx_data *data;
652         int i;
653
654         sc->tx_nfree = 0;
655         STAILQ_INIT(&sc->tx_q);
656         STAILQ_INIT(&sc->tx_free);
657
658         for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
659                 data = &sc->tx_data[i];
660
661                 data->sc = sc;
662                 STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
663                 sc->tx_nfree++;
664         }
665 }
666
667 static void
668 ural_unsetup_tx_list(struct ural_softc *sc)
669 {
670         struct ural_tx_data *data;
671         int i;
672
673         /* make sure any subsequent use of the queues will fail */
674         sc->tx_nfree = 0;
675         STAILQ_INIT(&sc->tx_q);
676         STAILQ_INIT(&sc->tx_free);
677
678         /* free up all node references and mbufs */
679         for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
680                 data = &sc->tx_data[i];
681
682                 if (data->m != NULL) {
683                         m_freem(data->m);
684                         data->m = NULL;
685                 }
686                 if (data->ni != NULL) {
687                         ieee80211_free_node(data->ni);
688                         data->ni = NULL;
689                 }
690         }
691 }
692
693 static int
694 ural_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
695 {
696         struct ural_vap *uvp = URAL_VAP(vap);
697         struct ieee80211com *ic = vap->iv_ic;
698         struct ural_softc *sc = ic->ic_ifp->if_softc;
699         const struct ieee80211_txparam *tp;
700         struct ieee80211_node *ni;
701         struct mbuf *m;
702
703         DPRINTF("%s -> %s\n",
704                 ieee80211_state_name[vap->iv_state],
705                 ieee80211_state_name[nstate]);
706
707         IEEE80211_UNLOCK(ic);
708         RAL_LOCK(sc);
709         usb_callout_stop(&uvp->ratectl_ch);
710
711         switch (nstate) {
712         case IEEE80211_S_INIT:
713                 if (vap->iv_state == IEEE80211_S_RUN) {
714                         /* abort TSF synchronization */
715                         ural_write(sc, RAL_TXRX_CSR19, 0);
716
717                         /* force tx led to stop blinking */
718                         ural_write(sc, RAL_MAC_CSR20, 0);
719                 }
720                 break;
721
722         case IEEE80211_S_RUN:
723                 ni = ieee80211_ref_node(vap->iv_bss);
724
725                 if (vap->iv_opmode != IEEE80211_M_MONITOR) {
726                         if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) {
727                                 RAL_UNLOCK(sc);
728                                 IEEE80211_LOCK(ic);
729                                 ieee80211_free_node(ni);
730                                 return (-1);
731                         }
732                         ural_update_slot(ic->ic_ifp);
733                         ural_set_txpreamble(sc);
734                         ural_set_basicrates(sc, ic->ic_bsschan);
735                         IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
736                         ural_set_bssid(sc, sc->sc_bssid);
737                 }
738
739                 if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
740                     vap->iv_opmode == IEEE80211_M_IBSS) {
741                         m = ieee80211_beacon_alloc(ni, &uvp->bo);
742                         if (m == NULL) {
743                                 device_printf(sc->sc_dev,
744                                     "could not allocate beacon\n");
745                                 RAL_UNLOCK(sc);
746                                 IEEE80211_LOCK(ic);
747                                 ieee80211_free_node(ni);
748                                 return (-1);
749                         }
750                         ieee80211_ref_node(ni);
751                         if (ural_tx_bcn(sc, m, ni) != 0) {
752                                 device_printf(sc->sc_dev,
753                                     "could not send beacon\n");
754                                 RAL_UNLOCK(sc);
755                                 IEEE80211_LOCK(ic);
756                                 ieee80211_free_node(ni);
757                                 return (-1);
758                         }
759                 }
760
761                 /* make tx led blink on tx (controlled by ASIC) */
762                 ural_write(sc, RAL_MAC_CSR20, 1);
763
764                 if (vap->iv_opmode != IEEE80211_M_MONITOR)
765                         ural_enable_tsf_sync(sc);
766                 else
767                         ural_enable_tsf(sc);
768
769                 /* enable automatic rate adaptation */
770                 /* XXX should use ic_bsschan but not valid until after newstate call below */
771                 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
772                 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
773                         ural_ratectl_start(sc, ni);
774                 ieee80211_free_node(ni);
775                 break;
776
777         default:
778                 break;
779         }
780         RAL_UNLOCK(sc);
781         IEEE80211_LOCK(ic);
782         return (uvp->newstate(vap, nstate, arg));
783 }
784
785
786 static void
787 ural_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
788 {
789         struct ural_softc *sc = usbd_xfer_softc(xfer);
790         struct ifnet *ifp = sc->sc_ifp;
791         struct ieee80211vap *vap;
792         struct ural_tx_data *data;
793         struct mbuf *m;
794         struct usb_page_cache *pc;
795         int len;
796
797         usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
798
799         switch (USB_GET_STATE(xfer)) {
800         case USB_ST_TRANSFERRED:
801                 DPRINTFN(11, "transfer complete, %d bytes\n", len);
802
803                 /* free resources */
804                 data = usbd_xfer_get_priv(xfer);
805                 ural_tx_free(data, 0);
806                 usbd_xfer_set_priv(xfer, NULL);
807
808                 ifp->if_opackets++;
809                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
810
811                 /* FALLTHROUGH */
812         case USB_ST_SETUP:
813 tr_setup:
814                 data = STAILQ_FIRST(&sc->tx_q);
815                 if (data) {
816                         STAILQ_REMOVE_HEAD(&sc->tx_q, next);
817                         m = data->m;
818
819                         if (m->m_pkthdr.len > (int)(RAL_FRAME_SIZE + RAL_TX_DESC_SIZE)) {
820                                 DPRINTFN(0, "data overflow, %u bytes\n",
821                                     m->m_pkthdr.len);
822                                 m->m_pkthdr.len = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE);
823                         }
824                         pc = usbd_xfer_get_frame(xfer, 0);
825                         usbd_copy_in(pc, 0, &data->desc, RAL_TX_DESC_SIZE);
826                         usbd_m_copy_in(pc, RAL_TX_DESC_SIZE, m, 0,
827                             m->m_pkthdr.len);
828
829                         vap = data->ni->ni_vap;
830                         if (ieee80211_radiotap_active_vap(vap)) {
831                                 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
832
833                                 tap->wt_flags = 0;
834                                 tap->wt_rate = data->rate;
835                                 tap->wt_antenna = sc->tx_ant;
836
837                                 ieee80211_radiotap_tx(vap, m);
838                         }
839
840                         /* xfer length needs to be a multiple of two! */
841                         len = (RAL_TX_DESC_SIZE + m->m_pkthdr.len + 1) & ~1;
842                         if ((len % 64) == 0)
843                                 len += 2;
844
845                         DPRINTFN(11, "sending frame len=%u xferlen=%u\n",
846                             m->m_pkthdr.len, len);
847
848                         usbd_xfer_set_frame_len(xfer, 0, len);
849                         usbd_xfer_set_priv(xfer, data);
850
851                         usbd_transfer_submit(xfer);
852                 }
853                 RAL_UNLOCK(sc);
854                 ural_start(ifp);
855                 RAL_LOCK(sc);
856                 break;
857
858         default:                        /* Error */
859                 DPRINTFN(11, "transfer error, %s\n",
860                     usbd_errstr(error));
861
862                 ifp->if_oerrors++;
863                 data = usbd_xfer_get_priv(xfer);
864                 if (data != NULL) {
865                         ural_tx_free(data, error);
866                         usbd_xfer_set_priv(xfer, NULL);
867                 }
868
869                 if (error == USB_ERR_STALLED) {
870                         /* try to clear stall first */
871                         usbd_xfer_set_stall(xfer);
872                         goto tr_setup;
873                 }
874                 if (error == USB_ERR_TIMEOUT)
875                         device_printf(sc->sc_dev, "device timeout\n");
876                 break;
877         }
878 }
879
880 static void
881 ural_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
882 {
883         struct ural_softc *sc = usbd_xfer_softc(xfer);
884         struct ifnet *ifp = sc->sc_ifp;
885         struct ieee80211com *ic = ifp->if_l2com;
886         struct ieee80211_node *ni;
887         struct mbuf *m = NULL;
888         struct usb_page_cache *pc;
889         uint32_t flags;
890         int8_t rssi = 0, nf = 0;
891         int len;
892
893         usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
894
895         switch (USB_GET_STATE(xfer)) {
896         case USB_ST_TRANSFERRED:
897
898                 DPRINTFN(15, "rx done, actlen=%d\n", len);
899
900                 if (len < (int)(RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN)) {
901                         DPRINTF("%s: xfer too short %d\n",
902                             device_get_nameunit(sc->sc_dev), len);
903                         ifp->if_ierrors++;
904                         goto tr_setup;
905                 }
906
907                 len -= RAL_RX_DESC_SIZE;
908                 /* rx descriptor is located at the end */
909                 pc = usbd_xfer_get_frame(xfer, 0);
910                 usbd_copy_out(pc, len, &sc->sc_rx_desc, RAL_RX_DESC_SIZE);
911
912                 rssi = URAL_RSSI(sc->sc_rx_desc.rssi);
913                 nf = RAL_NOISE_FLOOR;
914                 flags = le32toh(sc->sc_rx_desc.flags);
915                 if (flags & (RAL_RX_PHY_ERROR | RAL_RX_CRC_ERROR)) {
916                         /*
917                          * This should not happen since we did not
918                          * request to receive those frames when we
919                          * filled RAL_TXRX_CSR2:
920                          */
921                         DPRINTFN(5, "PHY or CRC error\n");
922                         ifp->if_ierrors++;
923                         goto tr_setup;
924                 }
925
926                 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
927                 if (m == NULL) {
928                         DPRINTF("could not allocate mbuf\n");
929                         ifp->if_ierrors++;
930                         goto tr_setup;
931                 }
932                 usbd_copy_out(pc, 0, mtod(m, uint8_t *), len);
933
934                 /* finalize mbuf */
935                 m->m_pkthdr.rcvif = ifp;
936                 m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff;
937
938                 if (ieee80211_radiotap_active(ic)) {
939                         struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
940
941                         /* XXX set once */
942                         tap->wr_flags = 0;
943                         tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate,
944                             (flags & RAL_RX_OFDM) ?
945                             IEEE80211_T_OFDM : IEEE80211_T_CCK);
946                         tap->wr_antenna = sc->rx_ant;
947                         tap->wr_antsignal = nf + rssi;
948                         tap->wr_antnoise = nf;
949                 }
950                 /* Strip trailing 802.11 MAC FCS. */
951                 m_adj(m, -IEEE80211_CRC_LEN);
952
953                 /* FALLTHROUGH */
954         case USB_ST_SETUP:
955 tr_setup:
956                 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
957                 usbd_transfer_submit(xfer);
958
959                 /*
960                  * At the end of a USB callback it is always safe to unlock
961                  * the private mutex of a device! That is why we do the
962                  * "ieee80211_input" here, and not some lines up!
963                  */
964                 RAL_UNLOCK(sc);
965                 if (m) {
966                         ni = ieee80211_find_rxnode(ic,
967                             mtod(m, struct ieee80211_frame_min *));
968                         if (ni != NULL) {
969                                 (void) ieee80211_input(ni, m, rssi, nf);
970                                 ieee80211_free_node(ni);
971                         } else
972                                 (void) ieee80211_input_all(ic, m, rssi, nf);
973                 }
974                 if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
975                     !IFQ_IS_EMPTY(&ifp->if_snd))
976                         ural_start(ifp);
977                 RAL_LOCK(sc);
978                 return;
979
980         default:                        /* Error */
981                 if (error != USB_ERR_CANCELLED) {
982                         /* try to clear stall first */
983                         usbd_xfer_set_stall(xfer);
984                         goto tr_setup;
985                 }
986                 return;
987         }
988 }
989
990 static uint8_t
991 ural_plcp_signal(int rate)
992 {
993         switch (rate) {
994         /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
995         case 12:        return 0xb;
996         case 18:        return 0xf;
997         case 24:        return 0xa;
998         case 36:        return 0xe;
999         case 48:        return 0x9;
1000         case 72:        return 0xd;
1001         case 96:        return 0x8;
1002         case 108:       return 0xc;
1003
1004         /* CCK rates (NB: not IEEE std, device-specific) */
1005         case 2:         return 0x0;
1006         case 4:         return 0x1;
1007         case 11:        return 0x2;
1008         case 22:        return 0x3;
1009         }
1010         return 0xff;            /* XXX unsupported/unknown rate */
1011 }
1012
1013 static void
1014 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1015     uint32_t flags, int len, int rate)
1016 {
1017         struct ifnet *ifp = sc->sc_ifp;
1018         struct ieee80211com *ic = ifp->if_l2com;
1019         uint16_t plcp_length;
1020         int remainder;
1021
1022         desc->flags = htole32(flags);
1023         desc->flags |= htole32(RAL_TX_NEWSEQ);
1024         desc->flags |= htole32(len << 16);
1025
1026         desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1027         desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
1028
1029         /* setup PLCP fields */
1030         desc->plcp_signal  = ural_plcp_signal(rate);
1031         desc->plcp_service = 4;
1032
1033         len += IEEE80211_CRC_LEN;
1034         if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) {
1035                 desc->flags |= htole32(RAL_TX_OFDM);
1036
1037                 plcp_length = len & 0xfff;
1038                 desc->plcp_length_hi = plcp_length >> 6;
1039                 desc->plcp_length_lo = plcp_length & 0x3f;
1040         } else {
1041                 if (rate == 0)
1042                         rate = 2;       /* avoid division by zero */
1043                 plcp_length = (16 * len + rate - 1) / rate;
1044                 if (rate == 22) {
1045                         remainder = (16 * len) % 22;
1046                         if (remainder != 0 && remainder < 7)
1047                                 desc->plcp_service |= RAL_PLCP_LENGEXT;
1048                 }
1049                 desc->plcp_length_hi = plcp_length >> 8;
1050                 desc->plcp_length_lo = plcp_length & 0xff;
1051
1052                 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1053                         desc->plcp_signal |= 0x08;
1054         }
1055
1056         desc->iv = 0;
1057         desc->eiv = 0;
1058 }
1059
1060 #define RAL_TX_TIMEOUT  5000
1061
1062 static int
1063 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1064 {
1065         struct ieee80211vap *vap = ni->ni_vap;
1066         struct ieee80211com *ic = ni->ni_ic;
1067         struct ifnet *ifp = sc->sc_ifp;
1068         const struct ieee80211_txparam *tp;
1069         struct ural_tx_data *data;
1070
1071         if (sc->tx_nfree == 0) {
1072                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1073                 m_freem(m0);
1074                 ieee80211_free_node(ni);
1075                 return (EIO);
1076         }
1077         if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) {
1078                 m_freem(m0);
1079                 ieee80211_free_node(ni);
1080                 return (ENXIO);
1081         }
1082         data = STAILQ_FIRST(&sc->tx_free);
1083         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1084         sc->tx_nfree--;
1085         tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)];
1086
1087         data->m = m0;
1088         data->ni = ni;
1089         data->rate = tp->mgmtrate;
1090
1091         ural_setup_tx_desc(sc, &data->desc,
1092             RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP, m0->m_pkthdr.len,
1093             tp->mgmtrate);
1094
1095         DPRINTFN(10, "sending beacon frame len=%u rate=%u\n",
1096             m0->m_pkthdr.len, tp->mgmtrate);
1097
1098         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1099         usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1100
1101         return (0);
1102 }
1103
1104 static int
1105 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1106 {
1107         struct ieee80211vap *vap = ni->ni_vap;
1108         struct ieee80211com *ic = ni->ni_ic;
1109         const struct ieee80211_txparam *tp;
1110         struct ural_tx_data *data;
1111         struct ieee80211_frame *wh;
1112         struct ieee80211_key *k;
1113         uint32_t flags;
1114         uint16_t dur;
1115
1116         RAL_LOCK_ASSERT(sc, MA_OWNED);
1117
1118         data = STAILQ_FIRST(&sc->tx_free);
1119         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1120         sc->tx_nfree--;
1121
1122         tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1123
1124         wh = mtod(m0, struct ieee80211_frame *);
1125         if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1126                 k = ieee80211_crypto_encap(ni, m0);
1127                 if (k == NULL) {
1128                         m_freem(m0);
1129                         return ENOBUFS;
1130                 }
1131                 wh = mtod(m0, struct ieee80211_frame *);
1132         }
1133
1134         data->m = m0;
1135         data->ni = ni;
1136         data->rate = tp->mgmtrate;
1137
1138         flags = 0;
1139         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1140                 flags |= RAL_TX_ACK;
1141
1142                 dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate, 
1143                     ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1144                 USETW(wh->i_dur, dur);
1145
1146                 /* tell hardware to add timestamp for probe responses */
1147                 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1148                     IEEE80211_FC0_TYPE_MGT &&
1149                     (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1150                     IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1151                         flags |= RAL_TX_TIMESTAMP;
1152         }
1153
1154         ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, tp->mgmtrate);
1155
1156         DPRINTFN(10, "sending mgt frame len=%u rate=%u\n",
1157             m0->m_pkthdr.len, tp->mgmtrate);
1158
1159         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1160         usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1161
1162         return 0;
1163 }
1164
1165 static int
1166 ural_sendprot(struct ural_softc *sc,
1167     const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
1168 {
1169         struct ieee80211com *ic = ni->ni_ic;
1170         const struct ieee80211_frame *wh;
1171         struct ural_tx_data *data;
1172         struct mbuf *mprot;
1173         int protrate, ackrate, pktlen, flags, isshort;
1174         uint16_t dur;
1175
1176         KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY,
1177             ("protection %d", prot));
1178
1179         wh = mtod(m, const struct ieee80211_frame *);
1180         pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
1181
1182         protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
1183         ackrate = ieee80211_ack_rate(ic->ic_rt, rate);
1184
1185         isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
1186         dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
1187             + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1188         flags = RAL_TX_RETRY(7);
1189         if (prot == IEEE80211_PROT_RTSCTS) {
1190                 /* NB: CTS is the same size as an ACK */
1191                 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1192                 flags |= RAL_TX_ACK;
1193                 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
1194         } else {
1195                 mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
1196         }
1197         if (mprot == NULL) {
1198                 /* XXX stat + msg */
1199                 return ENOBUFS;
1200         }
1201         data = STAILQ_FIRST(&sc->tx_free);
1202         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1203         sc->tx_nfree--;
1204
1205         data->m = mprot;
1206         data->ni = ieee80211_ref_node(ni);
1207         data->rate = protrate;
1208         ural_setup_tx_desc(sc, &data->desc, flags, mprot->m_pkthdr.len, protrate);
1209
1210         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1211         usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1212
1213         return 0;
1214 }
1215
1216 static int
1217 ural_tx_raw(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1218     const struct ieee80211_bpf_params *params)
1219 {
1220         struct ieee80211com *ic = ni->ni_ic;
1221         struct ural_tx_data *data;
1222         uint32_t flags;
1223         int error;
1224         int rate;
1225
1226         RAL_LOCK_ASSERT(sc, MA_OWNED);
1227         KASSERT(params != NULL, ("no raw xmit params"));
1228
1229         rate = params->ibp_rate0;
1230         if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
1231                 m_freem(m0);
1232                 return EINVAL;
1233         }
1234         flags = 0;
1235         if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
1236                 flags |= RAL_TX_ACK;
1237         if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
1238                 error = ural_sendprot(sc, m0, ni,
1239                     params->ibp_flags & IEEE80211_BPF_RTS ?
1240                          IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
1241                     rate);
1242                 if (error || sc->tx_nfree == 0) {
1243                         m_freem(m0);
1244                         return ENOBUFS;
1245                 }
1246                 flags |= RAL_TX_IFS_SIFS;
1247         }
1248
1249         data = STAILQ_FIRST(&sc->tx_free);
1250         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1251         sc->tx_nfree--;
1252
1253         data->m = m0;
1254         data->ni = ni;
1255         data->rate = rate;
1256
1257         /* XXX need to setup descriptor ourself */
1258         ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate);
1259
1260         DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
1261             m0->m_pkthdr.len, rate);
1262
1263         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1264         usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1265
1266         return 0;
1267 }
1268
1269 static int
1270 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1271 {
1272         struct ieee80211vap *vap = ni->ni_vap;
1273         struct ieee80211com *ic = ni->ni_ic;
1274         struct ural_tx_data *data;
1275         struct ieee80211_frame *wh;
1276         const struct ieee80211_txparam *tp;
1277         struct ieee80211_key *k;
1278         uint32_t flags = 0;
1279         uint16_t dur;
1280         int error, rate;
1281
1282         RAL_LOCK_ASSERT(sc, MA_OWNED);
1283
1284         wh = mtod(m0, struct ieee80211_frame *);
1285
1286         tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1287         if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1288                 rate = tp->mcastrate;
1289         else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
1290                 rate = tp->ucastrate;
1291         else
1292                 rate = ni->ni_txrate;
1293
1294         if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1295                 k = ieee80211_crypto_encap(ni, m0);
1296                 if (k == NULL) {
1297                         m_freem(m0);
1298                         return ENOBUFS;
1299                 }
1300                 /* packet header may have moved, reset our local pointer */
1301                 wh = mtod(m0, struct ieee80211_frame *);
1302         }
1303
1304         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1305                 int prot = IEEE80211_PROT_NONE;
1306                 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
1307                         prot = IEEE80211_PROT_RTSCTS;
1308                 else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1309                     ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM)
1310                         prot = ic->ic_protmode;
1311                 if (prot != IEEE80211_PROT_NONE) {
1312                         error = ural_sendprot(sc, m0, ni, prot, rate);
1313                         if (error || sc->tx_nfree == 0) {
1314                                 m_freem(m0);
1315                                 return ENOBUFS;
1316                         }
1317                         flags |= RAL_TX_IFS_SIFS;
1318                 }
1319         }
1320
1321         data = STAILQ_FIRST(&sc->tx_free);
1322         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1323         sc->tx_nfree--;
1324
1325         data->m = m0;
1326         data->ni = ni;
1327         data->rate = rate;
1328
1329         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1330                 flags |= RAL_TX_ACK;
1331                 flags |= RAL_TX_RETRY(7);
1332
1333                 dur = ieee80211_ack_duration(ic->ic_rt, rate, 
1334                     ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1335                 USETW(wh->i_dur, dur);
1336         }
1337
1338         ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate);
1339
1340         DPRINTFN(10, "sending data frame len=%u rate=%u\n",
1341             m0->m_pkthdr.len, rate);
1342
1343         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1344         usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1345
1346         return 0;
1347 }
1348
1349 static void
1350 ural_start(struct ifnet *ifp)
1351 {
1352         struct ural_softc *sc = ifp->if_softc;
1353         struct ieee80211_node *ni;
1354         struct mbuf *m;
1355
1356         RAL_LOCK(sc);
1357         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1358                 RAL_UNLOCK(sc);
1359                 return;
1360         }
1361         for (;;) {
1362                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
1363                 if (m == NULL)
1364                         break;
1365                 if (sc->tx_nfree < RAL_TX_MINFREE) {
1366                         IFQ_DRV_PREPEND(&ifp->if_snd, m);
1367                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1368                         break;
1369                 }
1370                 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1371                 if (ural_tx_data(sc, m, ni) != 0) {
1372                         ieee80211_free_node(ni);
1373                         ifp->if_oerrors++;
1374                         break;
1375                 }
1376         }
1377         RAL_UNLOCK(sc);
1378 }
1379
1380 static int
1381 ural_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1382 {
1383         struct ural_softc *sc = ifp->if_softc;
1384         struct ieee80211com *ic = ifp->if_l2com;
1385         struct ifreq *ifr = (struct ifreq *) data;
1386         int error;
1387         int startall = 0;
1388
1389         RAL_LOCK(sc);
1390         error = sc->sc_detached ? ENXIO : 0;
1391         RAL_UNLOCK(sc);
1392         if (error)
1393                 return (error);
1394
1395         switch (cmd) {
1396         case SIOCSIFFLAGS:
1397                 RAL_LOCK(sc);
1398                 if (ifp->if_flags & IFF_UP) {
1399                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1400                                 ural_init_locked(sc);
1401                                 startall = 1;
1402                         } else
1403                                 ural_setpromisc(sc);
1404                 } else {
1405                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1406                                 ural_stop(sc);
1407                 }
1408                 RAL_UNLOCK(sc);
1409                 if (startall)
1410                         ieee80211_start_all(ic);
1411                 break;
1412         case SIOCGIFMEDIA:
1413         case SIOCSIFMEDIA:
1414                 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
1415                 break;
1416         default:
1417                 error = ether_ioctl(ifp, cmd, data);
1418                 break;
1419         }
1420         return error;
1421 }
1422
1423 static void
1424 ural_set_testmode(struct ural_softc *sc)
1425 {
1426         struct usb_device_request req;
1427         usb_error_t error;
1428
1429         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1430         req.bRequest = RAL_VENDOR_REQUEST;
1431         USETW(req.wValue, 4);
1432         USETW(req.wIndex, 1);
1433         USETW(req.wLength, 0);
1434
1435         error = ural_do_request(sc, &req, NULL);
1436         if (error != 0) {
1437                 device_printf(sc->sc_dev, "could not set test mode: %s\n",
1438                     usbd_errstr(error));
1439         }
1440 }
1441
1442 static void
1443 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1444 {
1445         struct usb_device_request req;
1446         usb_error_t error;
1447
1448         req.bmRequestType = UT_READ_VENDOR_DEVICE;
1449         req.bRequest = RAL_READ_EEPROM;
1450         USETW(req.wValue, 0);
1451         USETW(req.wIndex, addr);
1452         USETW(req.wLength, len);
1453
1454         error = ural_do_request(sc, &req, buf);
1455         if (error != 0) {
1456                 device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
1457                     usbd_errstr(error));
1458         }
1459 }
1460
1461 static uint16_t
1462 ural_read(struct ural_softc *sc, uint16_t reg)
1463 {
1464         struct usb_device_request req;
1465         usb_error_t error;
1466         uint16_t val;
1467
1468         req.bmRequestType = UT_READ_VENDOR_DEVICE;
1469         req.bRequest = RAL_READ_MAC;
1470         USETW(req.wValue, 0);
1471         USETW(req.wIndex, reg);
1472         USETW(req.wLength, sizeof (uint16_t));
1473
1474         error = ural_do_request(sc, &req, &val);
1475         if (error != 0) {
1476                 device_printf(sc->sc_dev, "could not read MAC register: %s\n",
1477                     usbd_errstr(error));
1478                 return 0;
1479         }
1480
1481         return le16toh(val);
1482 }
1483
1484 static void
1485 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1486 {
1487         struct usb_device_request req;
1488         usb_error_t error;
1489
1490         req.bmRequestType = UT_READ_VENDOR_DEVICE;
1491         req.bRequest = RAL_READ_MULTI_MAC;
1492         USETW(req.wValue, 0);
1493         USETW(req.wIndex, reg);
1494         USETW(req.wLength, len);
1495
1496         error = ural_do_request(sc, &req, buf);
1497         if (error != 0) {
1498                 device_printf(sc->sc_dev, "could not read MAC register: %s\n",
1499                     usbd_errstr(error));
1500         }
1501 }
1502
1503 static void
1504 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1505 {
1506         struct usb_device_request req;
1507         usb_error_t error;
1508
1509         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1510         req.bRequest = RAL_WRITE_MAC;
1511         USETW(req.wValue, val);
1512         USETW(req.wIndex, reg);
1513         USETW(req.wLength, 0);
1514
1515         error = ural_do_request(sc, &req, NULL);
1516         if (error != 0) {
1517                 device_printf(sc->sc_dev, "could not write MAC register: %s\n",
1518                     usbd_errstr(error));
1519         }
1520 }
1521
1522 static void
1523 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1524 {
1525         struct usb_device_request req;
1526         usb_error_t error;
1527
1528         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1529         req.bRequest = RAL_WRITE_MULTI_MAC;
1530         USETW(req.wValue, 0);
1531         USETW(req.wIndex, reg);
1532         USETW(req.wLength, len);
1533
1534         error = ural_do_request(sc, &req, buf);
1535         if (error != 0) {
1536                 device_printf(sc->sc_dev, "could not write MAC register: %s\n",
1537                     usbd_errstr(error));
1538         }
1539 }
1540
1541 static void
1542 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1543 {
1544         uint16_t tmp;
1545         int ntries;
1546
1547         for (ntries = 0; ntries < 100; ntries++) {
1548                 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1549                         break;
1550                 if (ural_pause(sc, hz / 100))
1551                         break;
1552         }
1553         if (ntries == 100) {
1554                 device_printf(sc->sc_dev, "could not write to BBP\n");
1555                 return;
1556         }
1557
1558         tmp = reg << 8 | val;
1559         ural_write(sc, RAL_PHY_CSR7, tmp);
1560 }
1561
1562 static uint8_t
1563 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1564 {
1565         uint16_t val;
1566         int ntries;
1567
1568         val = RAL_BBP_WRITE | reg << 8;
1569         ural_write(sc, RAL_PHY_CSR7, val);
1570
1571         for (ntries = 0; ntries < 100; ntries++) {
1572                 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1573                         break;
1574                 if (ural_pause(sc, hz / 100))
1575                         break;
1576         }
1577         if (ntries == 100) {
1578                 device_printf(sc->sc_dev, "could not read BBP\n");
1579                 return 0;
1580         }
1581
1582         return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1583 }
1584
1585 static void
1586 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1587 {
1588         uint32_t tmp;
1589         int ntries;
1590
1591         for (ntries = 0; ntries < 100; ntries++) {
1592                 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1593                         break;
1594                 if (ural_pause(sc, hz / 100))
1595                         break;
1596         }
1597         if (ntries == 100) {
1598                 device_printf(sc->sc_dev, "could not write to RF\n");
1599                 return;
1600         }
1601
1602         tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1603         ural_write(sc, RAL_PHY_CSR9,  tmp & 0xffff);
1604         ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1605
1606         /* remember last written value in sc */
1607         sc->rf_regs[reg] = val;
1608
1609         DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff);
1610 }
1611
1612 static void
1613 ural_scan_start(struct ieee80211com *ic)
1614 {
1615         struct ifnet *ifp = ic->ic_ifp;
1616         struct ural_softc *sc = ifp->if_softc;
1617
1618         RAL_LOCK(sc);
1619         ural_write(sc, RAL_TXRX_CSR19, 0);
1620         ural_set_bssid(sc, ifp->if_broadcastaddr);
1621         RAL_UNLOCK(sc);
1622 }
1623
1624 static void
1625 ural_scan_end(struct ieee80211com *ic)
1626 {
1627         struct ural_softc *sc = ic->ic_ifp->if_softc;
1628
1629         RAL_LOCK(sc);
1630         ural_enable_tsf_sync(sc);
1631         ural_set_bssid(sc, sc->sc_bssid);
1632         RAL_UNLOCK(sc);
1633
1634 }
1635
1636 static void
1637 ural_set_channel(struct ieee80211com *ic)
1638 {
1639         struct ural_softc *sc = ic->ic_ifp->if_softc;
1640
1641         RAL_LOCK(sc);
1642         ural_set_chan(sc, ic->ic_curchan);
1643         RAL_UNLOCK(sc);
1644 }
1645
1646 static void
1647 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1648 {
1649         struct ifnet *ifp = sc->sc_ifp;
1650         struct ieee80211com *ic = ifp->if_l2com;
1651         uint8_t power, tmp;
1652         int i, chan;
1653
1654         chan = ieee80211_chan2ieee(ic, c);
1655         if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1656                 return;
1657
1658         if (IEEE80211_IS_CHAN_2GHZ(c))
1659                 power = min(sc->txpow[chan - 1], 31);
1660         else
1661                 power = 31;
1662
1663         /* adjust txpower using ifconfig settings */
1664         power -= (100 - ic->ic_txpowlimit) / 8;
1665
1666         DPRINTFN(2, "setting channel to %u, txpower to %u\n", chan, power);
1667
1668         switch (sc->rf_rev) {
1669         case RAL_RF_2522:
1670                 ural_rf_write(sc, RAL_RF1, 0x00814);
1671                 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1672                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1673                 break;
1674
1675         case RAL_RF_2523:
1676                 ural_rf_write(sc, RAL_RF1, 0x08804);
1677                 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1678                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1679                 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1680                 break;
1681
1682         case RAL_RF_2524:
1683                 ural_rf_write(sc, RAL_RF1, 0x0c808);
1684                 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1685                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1686                 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1687                 break;
1688
1689         case RAL_RF_2525:
1690                 ural_rf_write(sc, RAL_RF1, 0x08808);
1691                 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1692                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1693                 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1694
1695                 ural_rf_write(sc, RAL_RF1, 0x08808);
1696                 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1697                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1698                 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1699                 break;
1700
1701         case RAL_RF_2525E:
1702                 ural_rf_write(sc, RAL_RF1, 0x08808);
1703                 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1704                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1705                 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1706                 break;
1707
1708         case RAL_RF_2526:
1709                 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1710                 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1711                 ural_rf_write(sc, RAL_RF1, 0x08804);
1712
1713                 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1714                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1715                 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1716                 break;
1717
1718         /* dual-band RF */
1719         case RAL_RF_5222:
1720                 for (i = 0; ural_rf5222[i].chan != chan; i++);
1721
1722                 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1723                 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1724                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1725                 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1726                 break;
1727         }
1728
1729         if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1730             (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1731                 /* set Japan filter bit for channel 14 */
1732                 tmp = ural_bbp_read(sc, 70);
1733
1734                 tmp &= ~RAL_JAPAN_FILTER;
1735                 if (chan == 14)
1736                         tmp |= RAL_JAPAN_FILTER;
1737
1738                 ural_bbp_write(sc, 70, tmp);
1739
1740                 /* clear CRC errors */
1741                 ural_read(sc, RAL_STA_CSR0);
1742
1743                 ural_pause(sc, hz / 100);
1744                 ural_disable_rf_tune(sc);
1745         }
1746
1747         /* XXX doesn't belong here */
1748         /* update basic rate set */
1749         ural_set_basicrates(sc, c);
1750
1751         /* give the hardware some time to do the switchover */
1752         ural_pause(sc, hz / 100);
1753 }
1754
1755 /*
1756  * Disable RF auto-tuning.
1757  */
1758 static void
1759 ural_disable_rf_tune(struct ural_softc *sc)
1760 {
1761         uint32_t tmp;
1762
1763         if (sc->rf_rev != RAL_RF_2523) {
1764                 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1765                 ural_rf_write(sc, RAL_RF1, tmp);
1766         }
1767
1768         tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1769         ural_rf_write(sc, RAL_RF3, tmp);
1770
1771         DPRINTFN(2, "disabling RF autotune\n");
1772 }
1773
1774 /*
1775  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1776  * synchronization.
1777  */
1778 static void
1779 ural_enable_tsf_sync(struct ural_softc *sc)
1780 {
1781         struct ifnet *ifp = sc->sc_ifp;
1782         struct ieee80211com *ic = ifp->if_l2com;
1783         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1784         uint16_t logcwmin, preload, tmp;
1785
1786         /* first, disable TSF synchronization */
1787         ural_write(sc, RAL_TXRX_CSR19, 0);
1788
1789         tmp = (16 * vap->iv_bss->ni_intval) << 4;
1790         ural_write(sc, RAL_TXRX_CSR18, tmp);
1791
1792         logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1793         preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1794         tmp = logcwmin << 12 | preload;
1795         ural_write(sc, RAL_TXRX_CSR20, tmp);
1796
1797         /* finally, enable TSF synchronization */
1798         tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1799         if (ic->ic_opmode == IEEE80211_M_STA)
1800                 tmp |= RAL_ENABLE_TSF_SYNC(1);
1801         else
1802                 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1803         ural_write(sc, RAL_TXRX_CSR19, tmp);
1804
1805         DPRINTF("enabling TSF synchronization\n");
1806 }
1807
1808 static void
1809 ural_enable_tsf(struct ural_softc *sc)
1810 {
1811         /* first, disable TSF synchronization */
1812         ural_write(sc, RAL_TXRX_CSR19, 0);
1813         ural_write(sc, RAL_TXRX_CSR19, RAL_ENABLE_TSF | RAL_ENABLE_TSF_SYNC(2));
1814 }
1815
1816 #define RAL_RXTX_TURNAROUND     5       /* us */
1817 static void
1818 ural_update_slot(struct ifnet *ifp)
1819 {
1820         struct ural_softc *sc = ifp->if_softc;
1821         struct ieee80211com *ic = ifp->if_l2com;
1822         uint16_t slottime, sifs, eifs;
1823
1824         slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1825
1826         /*
1827          * These settings may sound a bit inconsistent but this is what the
1828          * reference driver does.
1829          */
1830         if (ic->ic_curmode == IEEE80211_MODE_11B) {
1831                 sifs = 16 - RAL_RXTX_TURNAROUND;
1832                 eifs = 364;
1833         } else {
1834                 sifs = 10 - RAL_RXTX_TURNAROUND;
1835                 eifs = 64;
1836         }
1837
1838         ural_write(sc, RAL_MAC_CSR10, slottime);
1839         ural_write(sc, RAL_MAC_CSR11, sifs);
1840         ural_write(sc, RAL_MAC_CSR12, eifs);
1841 }
1842
1843 static void
1844 ural_set_txpreamble(struct ural_softc *sc)
1845 {
1846         struct ifnet *ifp = sc->sc_ifp;
1847         struct ieee80211com *ic = ifp->if_l2com;
1848         uint16_t tmp;
1849
1850         tmp = ural_read(sc, RAL_TXRX_CSR10);
1851
1852         tmp &= ~RAL_SHORT_PREAMBLE;
1853         if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1854                 tmp |= RAL_SHORT_PREAMBLE;
1855
1856         ural_write(sc, RAL_TXRX_CSR10, tmp);
1857 }
1858
1859 static void
1860 ural_set_basicrates(struct ural_softc *sc, const struct ieee80211_channel *c)
1861 {
1862         /* XXX wrong, take from rate set */
1863         /* update basic rate set */
1864         if (IEEE80211_IS_CHAN_5GHZ(c)) {
1865                 /* 11a basic rates: 6, 12, 24Mbps */
1866                 ural_write(sc, RAL_TXRX_CSR11, 0x150);
1867         } else if (IEEE80211_IS_CHAN_ANYG(c)) {
1868                 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1869                 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1870         } else {
1871                 /* 11b basic rates: 1, 2Mbps */
1872                 ural_write(sc, RAL_TXRX_CSR11, 0x3);
1873         }
1874 }
1875
1876 static void
1877 ural_set_bssid(struct ural_softc *sc, const uint8_t *bssid)
1878 {
1879         uint16_t tmp;
1880
1881         tmp = bssid[0] | bssid[1] << 8;
1882         ural_write(sc, RAL_MAC_CSR5, tmp);
1883
1884         tmp = bssid[2] | bssid[3] << 8;
1885         ural_write(sc, RAL_MAC_CSR6, tmp);
1886
1887         tmp = bssid[4] | bssid[5] << 8;
1888         ural_write(sc, RAL_MAC_CSR7, tmp);
1889
1890         DPRINTF("setting BSSID to %6D\n", bssid, ":");
1891 }
1892
1893 static void
1894 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1895 {
1896         uint16_t tmp;
1897
1898         tmp = addr[0] | addr[1] << 8;
1899         ural_write(sc, RAL_MAC_CSR2, tmp);
1900
1901         tmp = addr[2] | addr[3] << 8;
1902         ural_write(sc, RAL_MAC_CSR3, tmp);
1903
1904         tmp = addr[4] | addr[5] << 8;
1905         ural_write(sc, RAL_MAC_CSR4, tmp);
1906
1907         DPRINTF("setting MAC address to %6D\n", addr, ":");
1908 }
1909
1910 static void
1911 ural_setpromisc(struct ural_softc *sc)
1912 {
1913         struct ifnet *ifp = sc->sc_ifp;
1914         uint32_t tmp;
1915
1916         tmp = ural_read(sc, RAL_TXRX_CSR2);
1917
1918         tmp &= ~RAL_DROP_NOT_TO_ME;
1919         if (!(ifp->if_flags & IFF_PROMISC))
1920                 tmp |= RAL_DROP_NOT_TO_ME;
1921
1922         ural_write(sc, RAL_TXRX_CSR2, tmp);
1923
1924         DPRINTF("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1925             "entering" : "leaving");
1926 }
1927
1928 static void
1929 ural_update_promisc(struct ifnet *ifp)
1930 {
1931         struct ural_softc *sc = ifp->if_softc;
1932
1933         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1934                 return;
1935
1936         RAL_LOCK(sc);
1937         ural_setpromisc(sc);
1938         RAL_UNLOCK(sc);
1939 }
1940
1941 static const char *
1942 ural_get_rf(int rev)
1943 {
1944         switch (rev) {
1945         case RAL_RF_2522:       return "RT2522";
1946         case RAL_RF_2523:       return "RT2523";
1947         case RAL_RF_2524:       return "RT2524";
1948         case RAL_RF_2525:       return "RT2525";
1949         case RAL_RF_2525E:      return "RT2525e";
1950         case RAL_RF_2526:       return "RT2526";
1951         case RAL_RF_5222:       return "RT5222";
1952         default:                return "unknown";
1953         }
1954 }
1955
1956 static void
1957 ural_read_eeprom(struct ural_softc *sc)
1958 {
1959         uint16_t val;
1960
1961         ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1962         val = le16toh(val);
1963         sc->rf_rev =   (val >> 11) & 0x7;
1964         sc->hw_radio = (val >> 10) & 0x1;
1965         sc->led_mode = (val >> 6)  & 0x7;
1966         sc->rx_ant =   (val >> 4)  & 0x3;
1967         sc->tx_ant =   (val >> 2)  & 0x3;
1968         sc->nb_ant =   val & 0x3;
1969
1970         /* read MAC address */
1971         ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, sc->sc_bssid, 6);
1972
1973         /* read default values for BBP registers */
1974         ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1975
1976         /* read Tx power for all b/g channels */
1977         ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
1978 }
1979
1980 static int
1981 ural_bbp_init(struct ural_softc *sc)
1982 {
1983 #define N(a)    ((int)(sizeof (a) / sizeof ((a)[0])))
1984         int i, ntries;
1985
1986         /* wait for BBP to be ready */
1987         for (ntries = 0; ntries < 100; ntries++) {
1988                 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
1989                         break;
1990                 if (ural_pause(sc, hz / 100))
1991                         break;
1992         }
1993         if (ntries == 100) {
1994                 device_printf(sc->sc_dev, "timeout waiting for BBP\n");
1995                 return EIO;
1996         }
1997
1998         /* initialize BBP registers to default values */
1999         for (i = 0; i < N(ural_def_bbp); i++)
2000                 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2001
2002 #if 0
2003         /* initialize BBP registers to values stored in EEPROM */
2004         for (i = 0; i < 16; i++) {
2005                 if (sc->bbp_prom[i].reg == 0xff)
2006                         continue;
2007                 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2008         }
2009 #endif
2010
2011         return 0;
2012 #undef N
2013 }
2014
2015 static void
2016 ural_set_txantenna(struct ural_softc *sc, int antenna)
2017 {
2018         uint16_t tmp;
2019         uint8_t tx;
2020
2021         tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2022         if (antenna == 1)
2023                 tx |= RAL_BBP_ANTA;
2024         else if (antenna == 2)
2025                 tx |= RAL_BBP_ANTB;
2026         else
2027                 tx |= RAL_BBP_DIVERSITY;
2028
2029         /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2030         if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2031             sc->rf_rev == RAL_RF_5222)
2032                 tx |= RAL_BBP_FLIPIQ;
2033
2034         ural_bbp_write(sc, RAL_BBP_TX, tx);
2035
2036         /* update values in PHY_CSR5 and PHY_CSR6 */
2037         tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2038         ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2039
2040         tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2041         ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2042 }
2043
2044 static void
2045 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2046 {
2047         uint8_t rx;
2048
2049         rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2050         if (antenna == 1)
2051                 rx |= RAL_BBP_ANTA;
2052         else if (antenna == 2)
2053                 rx |= RAL_BBP_ANTB;
2054         else
2055                 rx |= RAL_BBP_DIVERSITY;
2056
2057         /* need to force no I/Q flip for RF 2525e and 2526 */
2058         if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2059                 rx &= ~RAL_BBP_FLIPIQ;
2060
2061         ural_bbp_write(sc, RAL_BBP_RX, rx);
2062 }
2063
2064 static void
2065 ural_init_locked(struct ural_softc *sc)
2066 {
2067 #define N(a)    ((int)(sizeof (a) / sizeof ((a)[0])))
2068         struct ifnet *ifp = sc->sc_ifp;
2069         struct ieee80211com *ic = ifp->if_l2com;
2070         uint16_t tmp;
2071         int i, ntries;
2072
2073         RAL_LOCK_ASSERT(sc, MA_OWNED);
2074
2075         ural_set_testmode(sc);
2076         ural_write(sc, 0x308, 0x00f0);  /* XXX magic */
2077
2078         ural_stop(sc);
2079
2080         /* initialize MAC registers to default values */
2081         for (i = 0; i < N(ural_def_mac); i++)
2082                 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2083
2084         /* wait for BBP and RF to wake up (this can take a long time!) */
2085         for (ntries = 0; ntries < 100; ntries++) {
2086                 tmp = ural_read(sc, RAL_MAC_CSR17);
2087                 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2088                     (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2089                         break;
2090                 if (ural_pause(sc, hz / 100))
2091                         break;
2092         }
2093         if (ntries == 100) {
2094                 device_printf(sc->sc_dev,
2095                     "timeout waiting for BBP/RF to wakeup\n");
2096                 goto fail;
2097         }
2098
2099         /* we're ready! */
2100         ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2101
2102         /* set basic rate set (will be updated later) */
2103         ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2104
2105         if (ural_bbp_init(sc) != 0)
2106                 goto fail;
2107
2108         ural_set_chan(sc, ic->ic_curchan);
2109
2110         /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2111         ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2112
2113         ural_set_txantenna(sc, sc->tx_ant);
2114         ural_set_rxantenna(sc, sc->rx_ant);
2115
2116         ural_set_macaddr(sc, IF_LLADDR(ifp));
2117
2118         /*
2119          * Allocate Tx and Rx xfer queues.
2120          */
2121         ural_setup_tx_list(sc);
2122
2123         /* kick Rx */
2124         tmp = RAL_DROP_PHY | RAL_DROP_CRC;
2125         if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2126                 tmp |= RAL_DROP_CTL | RAL_DROP_BAD_VERSION;
2127                 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2128                         tmp |= RAL_DROP_TODS;
2129                 if (!(ifp->if_flags & IFF_PROMISC))
2130                         tmp |= RAL_DROP_NOT_TO_ME;
2131         }
2132         ural_write(sc, RAL_TXRX_CSR2, tmp);
2133
2134         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2135         ifp->if_drv_flags |= IFF_DRV_RUNNING;
2136         usbd_xfer_set_stall(sc->sc_xfer[URAL_BULK_WR]);
2137         usbd_transfer_start(sc->sc_xfer[URAL_BULK_RD]);
2138         return;
2139
2140 fail:   ural_stop(sc);
2141 #undef N
2142 }
2143
2144 static void
2145 ural_init(void *priv)
2146 {
2147         struct ural_softc *sc = priv;
2148         struct ifnet *ifp = sc->sc_ifp;
2149         struct ieee80211com *ic = ifp->if_l2com;
2150
2151         RAL_LOCK(sc);
2152         ural_init_locked(sc);
2153         RAL_UNLOCK(sc);
2154
2155         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2156                 ieee80211_start_all(ic);                /* start all vap's */
2157 }
2158
2159 static void
2160 ural_stop(struct ural_softc *sc)
2161 {
2162         struct ifnet *ifp = sc->sc_ifp;
2163
2164         RAL_LOCK_ASSERT(sc, MA_OWNED);
2165
2166         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2167
2168         /*
2169          * Drain all the transfers, if not already drained:
2170          */
2171         RAL_UNLOCK(sc);
2172         usbd_transfer_drain(sc->sc_xfer[URAL_BULK_WR]);
2173         usbd_transfer_drain(sc->sc_xfer[URAL_BULK_RD]);
2174         RAL_LOCK(sc);
2175
2176         ural_unsetup_tx_list(sc);
2177
2178         /* disable Rx */
2179         ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2180         /* reset ASIC and BBP (but won't reset MAC registers!) */
2181         ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2182         /* wait a little */
2183         ural_pause(sc, hz / 10);
2184         ural_write(sc, RAL_MAC_CSR1, 0);
2185         /* wait a little */
2186         ural_pause(sc, hz / 10);
2187 }
2188
2189 static int
2190 ural_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2191         const struct ieee80211_bpf_params *params)
2192 {
2193         struct ieee80211com *ic = ni->ni_ic;
2194         struct ifnet *ifp = ic->ic_ifp;
2195         struct ural_softc *sc = ifp->if_softc;
2196
2197         RAL_LOCK(sc);
2198         /* prevent management frames from being sent if we're not ready */
2199         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2200                 RAL_UNLOCK(sc);
2201                 m_freem(m);
2202                 ieee80211_free_node(ni);
2203                 return ENETDOWN;
2204         }
2205         if (sc->tx_nfree < RAL_TX_MINFREE) {
2206                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2207                 RAL_UNLOCK(sc);
2208                 m_freem(m);
2209                 ieee80211_free_node(ni);
2210                 return EIO;
2211         }
2212
2213         ifp->if_opackets++;
2214
2215         if (params == NULL) {
2216                 /*
2217                  * Legacy path; interpret frame contents to decide
2218                  * precisely how to send the frame.
2219                  */
2220                 if (ural_tx_mgt(sc, m, ni) != 0)
2221                         goto bad;
2222         } else {
2223                 /*
2224                  * Caller supplied explicit parameters to use in
2225                  * sending the frame.
2226                  */
2227                 if (ural_tx_raw(sc, m, ni, params) != 0)
2228                         goto bad;
2229         }
2230         RAL_UNLOCK(sc);
2231         return 0;
2232 bad:
2233         ifp->if_oerrors++;
2234         RAL_UNLOCK(sc);
2235         ieee80211_free_node(ni);
2236         return EIO;             /* XXX */
2237 }
2238
2239 static void
2240 ural_ratectl_start(struct ural_softc *sc, struct ieee80211_node *ni)
2241 {
2242         struct ieee80211vap *vap = ni->ni_vap;
2243         struct ural_vap *uvp = URAL_VAP(vap);
2244
2245         /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2246         ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2247
2248         usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp);
2249 }
2250
2251 static void
2252 ural_ratectl_timeout(void *arg)
2253 {
2254         struct ural_vap *uvp = arg;
2255         struct ieee80211vap *vap = &uvp->vap;
2256         struct ieee80211com *ic = vap->iv_ic;
2257
2258         ieee80211_runtask(ic, &uvp->ratectl_task);
2259 }
2260
2261 static void
2262 ural_ratectl_task(void *arg, int pending)
2263 {
2264         struct ural_vap *uvp = arg;
2265         struct ieee80211vap *vap = &uvp->vap;
2266         struct ieee80211com *ic = vap->iv_ic;
2267         struct ifnet *ifp = ic->ic_ifp;
2268         struct ural_softc *sc = ifp->if_softc;
2269         struct ieee80211_node *ni;
2270         int ok, fail;
2271         int sum, retrycnt;
2272
2273         ni = ieee80211_ref_node(vap->iv_bss);
2274         RAL_LOCK(sc);
2275         /* read and clear statistic registers (STA_CSR0 to STA_CSR10) */
2276         ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2277
2278         ok = sc->sta[7] +               /* TX ok w/o retry */
2279              sc->sta[8];                /* TX ok w/ retry */
2280         fail = sc->sta[9];              /* TX retry-fail count */
2281         sum = ok+fail;
2282         retrycnt = sc->sta[8] + fail;
2283
2284         ieee80211_ratectl_tx_update(vap, ni, &sum, &ok, &retrycnt);
2285         (void) ieee80211_ratectl_rate(ni, NULL, 0);
2286
2287         ifp->if_oerrors += fail;        /* count TX retry-fail as Tx errors */
2288
2289         usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp);
2290         RAL_UNLOCK(sc);
2291         ieee80211_free_node(ni);
2292 }
2293
2294 static int
2295 ural_pause(struct ural_softc *sc, int timeout)
2296 {
2297
2298         usb_pause_mtx(&sc->sc_mtx, timeout);
2299         return (0);
2300 }