]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/usb/wlan/if_ural.c
Merge ^/head r311460 through r311545.
[FreeBSD/FreeBSD.git] / sys / dev / usb / wlan / if_ural.c
1 /*      $FreeBSD$       */
2
3 /*-
4  * Copyright (c) 2005, 2006
5  *      Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Copyright (c) 2006, 2008
8  *      Hans Petter Selasky <hselasky@FreeBSD.org>
9  *
10  * Permission to use, copy, modify, and distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22
23 #include <sys/cdefs.h>
24 __FBSDID("$FreeBSD$");
25
26 /*-
27  * Ralink Technology RT2500USB chipset driver
28  * http://www.ralinktech.com/
29  */
30
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/lock.h>
35 #include <sys/mutex.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/module.h>
42 #include <sys/bus.h>
43 #include <sys/endian.h>
44 #include <sys/kdb.h>
45
46 #include <machine/bus.h>
47 #include <machine/resource.h>
48 #include <sys/rman.h>
49
50 #include <net/bpf.h>
51 #include <net/if.h>
52 #include <net/if_var.h>
53 #include <net/if_arp.h>
54 #include <net/ethernet.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58
59 #ifdef INET
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/in_var.h>
63 #include <netinet/if_ether.h>
64 #include <netinet/ip.h>
65 #endif
66
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_regdomain.h>
69 #include <net80211/ieee80211_radiotap.h>
70 #include <net80211/ieee80211_ratectl.h>
71
72 #include <dev/usb/usb.h>
73 #include <dev/usb/usbdi.h>
74 #include "usbdevs.h"
75
76 #define USB_DEBUG_VAR ural_debug
77 #include <dev/usb/usb_debug.h>
78
79 #include <dev/usb/wlan/if_uralreg.h>
80 #include <dev/usb/wlan/if_uralvar.h>
81
82 #ifdef USB_DEBUG
83 static int ural_debug = 0;
84
85 static SYSCTL_NODE(_hw_usb, OID_AUTO, ural, CTLFLAG_RW, 0, "USB ural");
86 SYSCTL_INT(_hw_usb_ural, OID_AUTO, debug, CTLFLAG_RWTUN, &ural_debug, 0,
87     "Debug level");
88 #endif
89
90 #define URAL_RSSI(rssi)                                 \
91         ((rssi) > (RAL_NOISE_FLOOR + RAL_RSSI_CORR) ?   \
92          ((rssi) - (RAL_NOISE_FLOOR + RAL_RSSI_CORR)) : 0)
93
94 /* various supported device vendors/products */
95 static const STRUCT_USB_HOST_ID ural_devs[] = {
96 #define URAL_DEV(v,p)  { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
97         URAL_DEV(ASUS, WL167G),
98         URAL_DEV(ASUS, RT2570),
99         URAL_DEV(BELKIN, F5D7050),
100         URAL_DEV(BELKIN, F5D7051),
101         URAL_DEV(CISCOLINKSYS, HU200TS),
102         URAL_DEV(CISCOLINKSYS, WUSB54G),
103         URAL_DEV(CISCOLINKSYS, WUSB54GP),
104         URAL_DEV(CONCEPTRONIC2, C54RU),
105         URAL_DEV(DLINK, DWLG122),
106         URAL_DEV(GIGABYTE, GN54G),
107         URAL_DEV(GIGABYTE, GNWBKG),
108         URAL_DEV(GUILLEMOT, HWGUSB254),
109         URAL_DEV(MELCO, KG54),
110         URAL_DEV(MELCO, KG54AI),
111         URAL_DEV(MELCO, KG54YB),
112         URAL_DEV(MELCO, NINWIFI),
113         URAL_DEV(MSI, RT2570),
114         URAL_DEV(MSI, RT2570_2),
115         URAL_DEV(MSI, RT2570_3),
116         URAL_DEV(NOVATECH, NV902),
117         URAL_DEV(RALINK, RT2570),
118         URAL_DEV(RALINK, RT2570_2),
119         URAL_DEV(RALINK, RT2570_3),
120         URAL_DEV(SIEMENS2, WL54G),
121         URAL_DEV(SMC, 2862WG),
122         URAL_DEV(SPHAIRON, UB801R),
123         URAL_DEV(SURECOM, RT2570),
124         URAL_DEV(VTECH, RT2570),
125         URAL_DEV(ZINWELL, RT2570),
126 #undef URAL_DEV
127 };
128
129 static usb_callback_t ural_bulk_read_callback;
130 static usb_callback_t ural_bulk_write_callback;
131
132 static usb_error_t      ural_do_request(struct ural_softc *sc,
133                             struct usb_device_request *req, void *data);
134 static struct ieee80211vap *ural_vap_create(struct ieee80211com *,
135                             const char [IFNAMSIZ], int, enum ieee80211_opmode,
136                             int, const uint8_t [IEEE80211_ADDR_LEN],
137                             const uint8_t [IEEE80211_ADDR_LEN]);
138 static void             ural_vap_delete(struct ieee80211vap *);
139 static void             ural_tx_free(struct ural_tx_data *, int);
140 static void             ural_setup_tx_list(struct ural_softc *);
141 static void             ural_unsetup_tx_list(struct ural_softc *);
142 static int              ural_newstate(struct ieee80211vap *,
143                             enum ieee80211_state, int);
144 static void             ural_setup_tx_desc(struct ural_softc *,
145                             struct ural_tx_desc *, uint32_t, int, int);
146 static int              ural_tx_bcn(struct ural_softc *, struct mbuf *,
147                             struct ieee80211_node *);
148 static int              ural_tx_mgt(struct ural_softc *, struct mbuf *,
149                             struct ieee80211_node *);
150 static int              ural_tx_data(struct ural_softc *, struct mbuf *,
151                             struct ieee80211_node *);
152 static int              ural_transmit(struct ieee80211com *, struct mbuf *);
153 static void             ural_start(struct ural_softc *);
154 static void             ural_parent(struct ieee80211com *);
155 static void             ural_set_testmode(struct ural_softc *);
156 static void             ural_eeprom_read(struct ural_softc *, uint16_t, void *,
157                             int);
158 static uint16_t         ural_read(struct ural_softc *, uint16_t);
159 static void             ural_read_multi(struct ural_softc *, uint16_t, void *,
160                             int);
161 static void             ural_write(struct ural_softc *, uint16_t, uint16_t);
162 static void             ural_write_multi(struct ural_softc *, uint16_t, void *,
163                             int) __unused;
164 static void             ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
165 static uint8_t          ural_bbp_read(struct ural_softc *, uint8_t);
166 static void             ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
167 static void             ural_scan_start(struct ieee80211com *);
168 static void             ural_scan_end(struct ieee80211com *);
169 static void             ural_getradiocaps(struct ieee80211com *, int, int *,
170                             struct ieee80211_channel[]);
171 static void             ural_set_channel(struct ieee80211com *);
172 static void             ural_set_chan(struct ural_softc *,
173                             struct ieee80211_channel *);
174 static void             ural_disable_rf_tune(struct ural_softc *);
175 static void             ural_enable_tsf_sync(struct ural_softc *);
176 static void             ural_enable_tsf(struct ural_softc *);
177 static void             ural_update_slot(struct ural_softc *);
178 static void             ural_set_txpreamble(struct ural_softc *);
179 static void             ural_set_basicrates(struct ural_softc *,
180                             const struct ieee80211_channel *);
181 static void             ural_set_bssid(struct ural_softc *, const uint8_t *);
182 static void             ural_set_macaddr(struct ural_softc *, const uint8_t *);
183 static void             ural_update_promisc(struct ieee80211com *);
184 static void             ural_setpromisc(struct ural_softc *);
185 static const char       *ural_get_rf(int);
186 static void             ural_read_eeprom(struct ural_softc *);
187 static int              ural_bbp_init(struct ural_softc *);
188 static void             ural_set_txantenna(struct ural_softc *, int);
189 static void             ural_set_rxantenna(struct ural_softc *, int);
190 static void             ural_init(struct ural_softc *);
191 static void             ural_stop(struct ural_softc *);
192 static int              ural_raw_xmit(struct ieee80211_node *, struct mbuf *,
193                             const struct ieee80211_bpf_params *);
194 static void             ural_ratectl_start(struct ural_softc *,
195                             struct ieee80211_node *);
196 static void             ural_ratectl_timeout(void *);
197 static void             ural_ratectl_task(void *, int);
198 static int              ural_pause(struct ural_softc *sc, int timeout);
199
200 /*
201  * Default values for MAC registers; values taken from the reference driver.
202  */
203 static const struct {
204         uint16_t        reg;
205         uint16_t        val;
206 } ural_def_mac[] = {
207         { RAL_TXRX_CSR5,  0x8c8d },
208         { RAL_TXRX_CSR6,  0x8b8a },
209         { RAL_TXRX_CSR7,  0x8687 },
210         { RAL_TXRX_CSR8,  0x0085 },
211         { RAL_MAC_CSR13,  0x1111 },
212         { RAL_MAC_CSR14,  0x1e11 },
213         { RAL_TXRX_CSR21, 0xe78f },
214         { RAL_MAC_CSR9,   0xff1d },
215         { RAL_MAC_CSR11,  0x0002 },
216         { RAL_MAC_CSR22,  0x0053 },
217         { RAL_MAC_CSR15,  0x0000 },
218         { RAL_MAC_CSR8,   RAL_FRAME_SIZE },
219         { RAL_TXRX_CSR19, 0x0000 },
220         { RAL_TXRX_CSR18, 0x005a },
221         { RAL_PHY_CSR2,   0x0000 },
222         { RAL_TXRX_CSR0,  0x1ec0 },
223         { RAL_PHY_CSR4,   0x000f }
224 };
225
226 /*
227  * Default values for BBP registers; values taken from the reference driver.
228  */
229 static const struct {
230         uint8_t reg;
231         uint8_t val;
232 } ural_def_bbp[] = {
233         {  3, 0x02 },
234         {  4, 0x19 },
235         { 14, 0x1c },
236         { 15, 0x30 },
237         { 16, 0xac },
238         { 17, 0x48 },
239         { 18, 0x18 },
240         { 19, 0xff },
241         { 20, 0x1e },
242         { 21, 0x08 },
243         { 22, 0x08 },
244         { 23, 0x08 },
245         { 24, 0x80 },
246         { 25, 0x50 },
247         { 26, 0x08 },
248         { 27, 0x23 },
249         { 30, 0x10 },
250         { 31, 0x2b },
251         { 32, 0xb9 },
252         { 34, 0x12 },
253         { 35, 0x50 },
254         { 39, 0xc4 },
255         { 40, 0x02 },
256         { 41, 0x60 },
257         { 53, 0x10 },
258         { 54, 0x18 },
259         { 56, 0x08 },
260         { 57, 0x10 },
261         { 58, 0x08 },
262         { 61, 0x60 },
263         { 62, 0x10 },
264         { 75, 0xff }
265 };
266
267 /*
268  * Default values for RF register R2 indexed by channel numbers.
269  */
270 static const uint32_t ural_rf2522_r2[] = {
271         0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
272         0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
273 };
274
275 static const uint32_t ural_rf2523_r2[] = {
276         0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
277         0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
278 };
279
280 static const uint32_t ural_rf2524_r2[] = {
281         0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
282         0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
283 };
284
285 static const uint32_t ural_rf2525_r2[] = {
286         0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
287         0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
288 };
289
290 static const uint32_t ural_rf2525_hi_r2[] = {
291         0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
292         0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
293 };
294
295 static const uint32_t ural_rf2525e_r2[] = {
296         0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
297         0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
298 };
299
300 static const uint32_t ural_rf2526_hi_r2[] = {
301         0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
302         0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
303 };
304
305 static const uint32_t ural_rf2526_r2[] = {
306         0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
307         0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
308 };
309
310 /*
311  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
312  * values taken from the reference driver.
313  */
314 static const struct {
315         uint8_t         chan;
316         uint32_t        r1;
317         uint32_t        r2;
318         uint32_t        r4;
319 } ural_rf5222[] = {
320         {   1, 0x08808, 0x0044d, 0x00282 },
321         {   2, 0x08808, 0x0044e, 0x00282 },
322         {   3, 0x08808, 0x0044f, 0x00282 },
323         {   4, 0x08808, 0x00460, 0x00282 },
324         {   5, 0x08808, 0x00461, 0x00282 },
325         {   6, 0x08808, 0x00462, 0x00282 },
326         {   7, 0x08808, 0x00463, 0x00282 },
327         {   8, 0x08808, 0x00464, 0x00282 },
328         {   9, 0x08808, 0x00465, 0x00282 },
329         {  10, 0x08808, 0x00466, 0x00282 },
330         {  11, 0x08808, 0x00467, 0x00282 },
331         {  12, 0x08808, 0x00468, 0x00282 },
332         {  13, 0x08808, 0x00469, 0x00282 },
333         {  14, 0x08808, 0x0046b, 0x00286 },
334
335         {  36, 0x08804, 0x06225, 0x00287 },
336         {  40, 0x08804, 0x06226, 0x00287 },
337         {  44, 0x08804, 0x06227, 0x00287 },
338         {  48, 0x08804, 0x06228, 0x00287 },
339         {  52, 0x08804, 0x06229, 0x00287 },
340         {  56, 0x08804, 0x0622a, 0x00287 },
341         {  60, 0x08804, 0x0622b, 0x00287 },
342         {  64, 0x08804, 0x0622c, 0x00287 },
343
344         { 100, 0x08804, 0x02200, 0x00283 },
345         { 104, 0x08804, 0x02201, 0x00283 },
346         { 108, 0x08804, 0x02202, 0x00283 },
347         { 112, 0x08804, 0x02203, 0x00283 },
348         { 116, 0x08804, 0x02204, 0x00283 },
349         { 120, 0x08804, 0x02205, 0x00283 },
350         { 124, 0x08804, 0x02206, 0x00283 },
351         { 128, 0x08804, 0x02207, 0x00283 },
352         { 132, 0x08804, 0x02208, 0x00283 },
353         { 136, 0x08804, 0x02209, 0x00283 },
354         { 140, 0x08804, 0x0220a, 0x00283 },
355
356         { 149, 0x08808, 0x02429, 0x00281 },
357         { 153, 0x08808, 0x0242b, 0x00281 },
358         { 157, 0x08808, 0x0242d, 0x00281 },
359         { 161, 0x08808, 0x0242f, 0x00281 }
360 };
361
362 static const uint8_t ural_chan_2ghz[] =
363         { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 };
364
365 static const uint8_t ural_chan_5ghz[] =
366         { 36, 40, 44, 48, 52, 56, 60, 64,
367           100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140,
368           149, 153, 157, 161 };
369
370 static const struct usb_config ural_config[URAL_N_TRANSFER] = {
371         [URAL_BULK_WR] = {
372                 .type = UE_BULK,
373                 .endpoint = UE_ADDR_ANY,
374                 .direction = UE_DIR_OUT,
375                 .bufsize = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE + 4),
376                 .flags = {.pipe_bof = 1,.force_short_xfer = 1,},
377                 .callback = ural_bulk_write_callback,
378                 .timeout = 5000,        /* ms */
379         },
380         [URAL_BULK_RD] = {
381                 .type = UE_BULK,
382                 .endpoint = UE_ADDR_ANY,
383                 .direction = UE_DIR_IN,
384                 .bufsize = (RAL_FRAME_SIZE + RAL_RX_DESC_SIZE),
385                 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
386                 .callback = ural_bulk_read_callback,
387         },
388 };
389
390 static device_probe_t ural_match;
391 static device_attach_t ural_attach;
392 static device_detach_t ural_detach;
393
394 static device_method_t ural_methods[] = {
395         /* Device interface */
396         DEVMETHOD(device_probe,         ural_match),
397         DEVMETHOD(device_attach,        ural_attach),
398         DEVMETHOD(device_detach,        ural_detach),
399         DEVMETHOD_END
400 };
401
402 static driver_t ural_driver = {
403         .name = "ural",
404         .methods = ural_methods,
405         .size = sizeof(struct ural_softc),
406 };
407
408 static devclass_t ural_devclass;
409
410 DRIVER_MODULE(ural, uhub, ural_driver, ural_devclass, NULL, 0);
411 MODULE_DEPEND(ural, usb, 1, 1, 1);
412 MODULE_DEPEND(ural, wlan, 1, 1, 1);
413 MODULE_VERSION(ural, 1);
414 USB_PNP_HOST_INFO(ural_devs);
415
416 static int
417 ural_match(device_t self)
418 {
419         struct usb_attach_arg *uaa = device_get_ivars(self);
420
421         if (uaa->usb_mode != USB_MODE_HOST)
422                 return (ENXIO);
423         if (uaa->info.bConfigIndex != 0)
424                 return (ENXIO);
425         if (uaa->info.bIfaceIndex != RAL_IFACE_INDEX)
426                 return (ENXIO);
427
428         return (usbd_lookup_id_by_uaa(ural_devs, sizeof(ural_devs), uaa));
429 }
430
431 static int
432 ural_attach(device_t self)
433 {
434         struct usb_attach_arg *uaa = device_get_ivars(self);
435         struct ural_softc *sc = device_get_softc(self);
436         struct ieee80211com *ic = &sc->sc_ic;
437         uint8_t iface_index;
438         int error;
439
440         device_set_usb_desc(self);
441         sc->sc_udev = uaa->device;
442         sc->sc_dev = self;
443
444         mtx_init(&sc->sc_mtx, device_get_nameunit(self),
445             MTX_NETWORK_LOCK, MTX_DEF);
446         mbufq_init(&sc->sc_snd, ifqmaxlen);
447
448         iface_index = RAL_IFACE_INDEX;
449         error = usbd_transfer_setup(uaa->device,
450             &iface_index, sc->sc_xfer, ural_config,
451             URAL_N_TRANSFER, sc, &sc->sc_mtx);
452         if (error) {
453                 device_printf(self, "could not allocate USB transfers, "
454                     "err=%s\n", usbd_errstr(error));
455                 goto detach;
456         }
457
458         RAL_LOCK(sc);
459         /* retrieve RT2570 rev. no */
460         sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
461
462         /* retrieve MAC address and various other things from EEPROM */
463         ural_read_eeprom(sc);
464         RAL_UNLOCK(sc);
465
466         device_printf(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
467             sc->asic_rev, ural_get_rf(sc->rf_rev));
468
469         ic->ic_softc = sc;
470         ic->ic_name = device_get_nameunit(self);
471         ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
472
473         /* set device capabilities */
474         ic->ic_caps =
475               IEEE80211_C_STA           /* station mode supported */
476             | IEEE80211_C_IBSS          /* IBSS mode supported */
477             | IEEE80211_C_MONITOR       /* monitor mode supported */
478             | IEEE80211_C_HOSTAP        /* HostAp mode supported */
479             | IEEE80211_C_TXPMGT        /* tx power management */
480             | IEEE80211_C_SHPREAMBLE    /* short preamble supported */
481             | IEEE80211_C_SHSLOT        /* short slot time supported */
482             | IEEE80211_C_BGSCAN        /* bg scanning supported */
483             | IEEE80211_C_WPA           /* 802.11i */
484             ;
485
486         ural_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
487             ic->ic_channels);
488
489         ieee80211_ifattach(ic);
490         ic->ic_update_promisc = ural_update_promisc;
491         ic->ic_raw_xmit = ural_raw_xmit;
492         ic->ic_scan_start = ural_scan_start;
493         ic->ic_scan_end = ural_scan_end;
494         ic->ic_getradiocaps = ural_getradiocaps;
495         ic->ic_set_channel = ural_set_channel;
496         ic->ic_parent = ural_parent;
497         ic->ic_transmit = ural_transmit;
498         ic->ic_vap_create = ural_vap_create;
499         ic->ic_vap_delete = ural_vap_delete;
500
501         ieee80211_radiotap_attach(ic,
502             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
503                 RAL_TX_RADIOTAP_PRESENT,
504             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
505                 RAL_RX_RADIOTAP_PRESENT);
506
507         if (bootverbose)
508                 ieee80211_announce(ic);
509
510         return (0);
511
512 detach:
513         ural_detach(self);
514         return (ENXIO);                 /* failure */
515 }
516
517 static int
518 ural_detach(device_t self)
519 {
520         struct ural_softc *sc = device_get_softc(self);
521         struct ieee80211com *ic = &sc->sc_ic;
522
523         /* prevent further ioctls */
524         RAL_LOCK(sc);
525         sc->sc_detached = 1;
526         RAL_UNLOCK(sc);
527
528         /* stop all USB transfers */
529         usbd_transfer_unsetup(sc->sc_xfer, URAL_N_TRANSFER);
530
531         /* free TX list, if any */
532         RAL_LOCK(sc);
533         ural_unsetup_tx_list(sc);
534         RAL_UNLOCK(sc);
535
536         if (ic->ic_softc == sc)
537                 ieee80211_ifdetach(ic);
538         mbufq_drain(&sc->sc_snd);
539         mtx_destroy(&sc->sc_mtx);
540
541         return (0);
542 }
543
544 static usb_error_t
545 ural_do_request(struct ural_softc *sc,
546     struct usb_device_request *req, void *data)
547 {
548         usb_error_t err;
549         int ntries = 10;
550
551         while (ntries--) {
552                 err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
553                     req, data, 0, NULL, 250 /* ms */);
554                 if (err == 0)
555                         break;
556
557                 DPRINTFN(1, "Control request failed, %s (retrying)\n",
558                     usbd_errstr(err));
559                 if (ural_pause(sc, hz / 100))
560                         break;
561         }
562         return (err);
563 }
564
565 static struct ieee80211vap *
566 ural_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
567     enum ieee80211_opmode opmode, int flags,
568     const uint8_t bssid[IEEE80211_ADDR_LEN],
569     const uint8_t mac[IEEE80211_ADDR_LEN])
570 {
571         struct ural_softc *sc = ic->ic_softc;
572         struct ural_vap *uvp;
573         struct ieee80211vap *vap;
574
575         if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
576                 return NULL;
577         uvp = malloc(sizeof(struct ural_vap), M_80211_VAP, M_WAITOK | M_ZERO);
578         vap = &uvp->vap;
579         /* enable s/w bmiss handling for sta mode */
580
581         if (ieee80211_vap_setup(ic, vap, name, unit, opmode,
582             flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) {
583                 /* out of memory */
584                 free(uvp, M_80211_VAP);
585                 return (NULL);
586         }
587
588         /* override state transition machine */
589         uvp->newstate = vap->iv_newstate;
590         vap->iv_newstate = ural_newstate;
591
592         usb_callout_init_mtx(&uvp->ratectl_ch, &sc->sc_mtx, 0);
593         TASK_INIT(&uvp->ratectl_task, 0, ural_ratectl_task, uvp);
594         ieee80211_ratectl_init(vap);
595         ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
596
597         /* complete setup */
598         ieee80211_vap_attach(vap, ieee80211_media_change,
599             ieee80211_media_status, mac);
600         ic->ic_opmode = opmode;
601         return vap;
602 }
603
604 static void
605 ural_vap_delete(struct ieee80211vap *vap)
606 {
607         struct ural_vap *uvp = URAL_VAP(vap);
608         struct ieee80211com *ic = vap->iv_ic;
609
610         usb_callout_drain(&uvp->ratectl_ch);
611         ieee80211_draintask(ic, &uvp->ratectl_task);
612         ieee80211_ratectl_deinit(vap);
613         ieee80211_vap_detach(vap);
614         free(uvp, M_80211_VAP);
615 }
616
617 static void
618 ural_tx_free(struct ural_tx_data *data, int txerr)
619 {
620         struct ural_softc *sc = data->sc;
621
622         if (data->m != NULL) {
623                 ieee80211_tx_complete(data->ni, data->m, txerr);
624                 data->m = NULL;
625                 data->ni = NULL;
626         }
627         STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
628         sc->tx_nfree++;
629 }
630
631 static void
632 ural_setup_tx_list(struct ural_softc *sc)
633 {
634         struct ural_tx_data *data;
635         int i;
636
637         sc->tx_nfree = 0;
638         STAILQ_INIT(&sc->tx_q);
639         STAILQ_INIT(&sc->tx_free);
640
641         for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
642                 data = &sc->tx_data[i];
643
644                 data->sc = sc;
645                 STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
646                 sc->tx_nfree++;
647         }
648 }
649
650 static void
651 ural_unsetup_tx_list(struct ural_softc *sc)
652 {
653         struct ural_tx_data *data;
654         int i;
655
656         /* make sure any subsequent use of the queues will fail */
657         sc->tx_nfree = 0;
658         STAILQ_INIT(&sc->tx_q);
659         STAILQ_INIT(&sc->tx_free);
660
661         /* free up all node references and mbufs */
662         for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
663                 data = &sc->tx_data[i];
664
665                 if (data->m != NULL) {
666                         m_freem(data->m);
667                         data->m = NULL;
668                 }
669                 if (data->ni != NULL) {
670                         ieee80211_free_node(data->ni);
671                         data->ni = NULL;
672                 }
673         }
674 }
675
676 static int
677 ural_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
678 {
679         struct ural_vap *uvp = URAL_VAP(vap);
680         struct ieee80211com *ic = vap->iv_ic;
681         struct ural_softc *sc = ic->ic_softc;
682         const struct ieee80211_txparam *tp;
683         struct ieee80211_node *ni;
684         struct mbuf *m;
685
686         DPRINTF("%s -> %s\n",
687                 ieee80211_state_name[vap->iv_state],
688                 ieee80211_state_name[nstate]);
689
690         IEEE80211_UNLOCK(ic);
691         RAL_LOCK(sc);
692         usb_callout_stop(&uvp->ratectl_ch);
693
694         switch (nstate) {
695         case IEEE80211_S_INIT:
696                 if (vap->iv_state == IEEE80211_S_RUN) {
697                         /* abort TSF synchronization */
698                         ural_write(sc, RAL_TXRX_CSR19, 0);
699
700                         /* force tx led to stop blinking */
701                         ural_write(sc, RAL_MAC_CSR20, 0);
702                 }
703                 break;
704
705         case IEEE80211_S_RUN:
706                 ni = ieee80211_ref_node(vap->iv_bss);
707
708                 if (vap->iv_opmode != IEEE80211_M_MONITOR) {
709                         if (ic->ic_bsschan == IEEE80211_CHAN_ANYC)
710                                 goto fail;
711
712                         ural_update_slot(sc);
713                         ural_set_txpreamble(sc);
714                         ural_set_basicrates(sc, ic->ic_bsschan);
715                         IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
716                         ural_set_bssid(sc, sc->sc_bssid);
717                 }
718
719                 if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
720                     vap->iv_opmode == IEEE80211_M_IBSS) {
721                         m = ieee80211_beacon_alloc(ni);
722                         if (m == NULL) {
723                                 device_printf(sc->sc_dev,
724                                     "could not allocate beacon\n");
725                                 goto fail;
726                         }
727                         ieee80211_ref_node(ni);
728                         if (ural_tx_bcn(sc, m, ni) != 0) {
729                                 device_printf(sc->sc_dev,
730                                     "could not send beacon\n");
731                                 goto fail;
732                         }
733                 }
734
735                 /* make tx led blink on tx (controlled by ASIC) */
736                 ural_write(sc, RAL_MAC_CSR20, 1);
737
738                 if (vap->iv_opmode != IEEE80211_M_MONITOR)
739                         ural_enable_tsf_sync(sc);
740                 else
741                         ural_enable_tsf(sc);
742
743                 /* enable automatic rate adaptation */
744                 /* XXX should use ic_bsschan but not valid until after newstate call below */
745                 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
746                 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
747                         ural_ratectl_start(sc, ni);
748                 ieee80211_free_node(ni);
749                 break;
750
751         default:
752                 break;
753         }
754         RAL_UNLOCK(sc);
755         IEEE80211_LOCK(ic);
756         return (uvp->newstate(vap, nstate, arg));
757
758 fail:
759         RAL_UNLOCK(sc);
760         IEEE80211_LOCK(ic);
761         ieee80211_free_node(ni);
762         return (-1);
763 }
764
765
766 static void
767 ural_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
768 {
769         struct ural_softc *sc = usbd_xfer_softc(xfer);
770         struct ieee80211vap *vap;
771         struct ural_tx_data *data;
772         struct mbuf *m;
773         struct usb_page_cache *pc;
774         int len;
775
776         usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
777
778         switch (USB_GET_STATE(xfer)) {
779         case USB_ST_TRANSFERRED:
780                 DPRINTFN(11, "transfer complete, %d bytes\n", len);
781
782                 /* free resources */
783                 data = usbd_xfer_get_priv(xfer);
784                 ural_tx_free(data, 0);
785                 usbd_xfer_set_priv(xfer, NULL);
786
787                 /* FALLTHROUGH */
788         case USB_ST_SETUP:
789 tr_setup:
790                 data = STAILQ_FIRST(&sc->tx_q);
791                 if (data) {
792                         STAILQ_REMOVE_HEAD(&sc->tx_q, next);
793                         m = data->m;
794
795                         if (m->m_pkthdr.len > (int)(RAL_FRAME_SIZE + RAL_TX_DESC_SIZE)) {
796                                 DPRINTFN(0, "data overflow, %u bytes\n",
797                                     m->m_pkthdr.len);
798                                 m->m_pkthdr.len = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE);
799                         }
800                         pc = usbd_xfer_get_frame(xfer, 0);
801                         usbd_copy_in(pc, 0, &data->desc, RAL_TX_DESC_SIZE);
802                         usbd_m_copy_in(pc, RAL_TX_DESC_SIZE, m, 0,
803                             m->m_pkthdr.len);
804
805                         vap = data->ni->ni_vap;
806                         if (ieee80211_radiotap_active_vap(vap)) {
807                                 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
808
809                                 tap->wt_flags = 0;
810                                 tap->wt_rate = data->rate;
811                                 tap->wt_antenna = sc->tx_ant;
812
813                                 ieee80211_radiotap_tx(vap, m);
814                         }
815
816                         /* xfer length needs to be a multiple of two! */
817                         len = (RAL_TX_DESC_SIZE + m->m_pkthdr.len + 1) & ~1;
818                         if ((len % 64) == 0)
819                                 len += 2;
820
821                         DPRINTFN(11, "sending frame len=%u xferlen=%u\n",
822                             m->m_pkthdr.len, len);
823
824                         usbd_xfer_set_frame_len(xfer, 0, len);
825                         usbd_xfer_set_priv(xfer, data);
826
827                         usbd_transfer_submit(xfer);
828                 }
829                 ural_start(sc);
830                 break;
831
832         default:                        /* Error */
833                 DPRINTFN(11, "transfer error, %s\n",
834                     usbd_errstr(error));
835
836                 data = usbd_xfer_get_priv(xfer);
837                 if (data != NULL) {
838                         ural_tx_free(data, error);
839                         usbd_xfer_set_priv(xfer, NULL);
840                 }
841
842                 if (error == USB_ERR_STALLED) {
843                         /* try to clear stall first */
844                         usbd_xfer_set_stall(xfer);
845                         goto tr_setup;
846                 }
847                 if (error == USB_ERR_TIMEOUT)
848                         device_printf(sc->sc_dev, "device timeout\n");
849                 break;
850         }
851 }
852
853 static void
854 ural_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
855 {
856         struct ural_softc *sc = usbd_xfer_softc(xfer);
857         struct ieee80211com *ic = &sc->sc_ic;
858         struct ieee80211_node *ni;
859         struct mbuf *m = NULL;
860         struct usb_page_cache *pc;
861         uint32_t flags;
862         int8_t rssi = 0, nf = 0;
863         int len;
864
865         usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
866
867         switch (USB_GET_STATE(xfer)) {
868         case USB_ST_TRANSFERRED:
869
870                 DPRINTFN(15, "rx done, actlen=%d\n", len);
871
872                 if (len < (int)(RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN)) {
873                         DPRINTF("%s: xfer too short %d\n",
874                             device_get_nameunit(sc->sc_dev), len);
875                         counter_u64_add(ic->ic_ierrors, 1);
876                         goto tr_setup;
877                 }
878
879                 len -= RAL_RX_DESC_SIZE;
880                 /* rx descriptor is located at the end */
881                 pc = usbd_xfer_get_frame(xfer, 0);
882                 usbd_copy_out(pc, len, &sc->sc_rx_desc, RAL_RX_DESC_SIZE);
883
884                 rssi = URAL_RSSI(sc->sc_rx_desc.rssi);
885                 nf = RAL_NOISE_FLOOR;
886                 flags = le32toh(sc->sc_rx_desc.flags);
887                 if (flags & (RAL_RX_PHY_ERROR | RAL_RX_CRC_ERROR)) {
888                         /*
889                          * This should not happen since we did not
890                          * request to receive those frames when we
891                          * filled RAL_TXRX_CSR2:
892                          */
893                         DPRINTFN(5, "PHY or CRC error\n");
894                         counter_u64_add(ic->ic_ierrors, 1);
895                         goto tr_setup;
896                 }
897
898                 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
899                 if (m == NULL) {
900                         DPRINTF("could not allocate mbuf\n");
901                         counter_u64_add(ic->ic_ierrors, 1);
902                         goto tr_setup;
903                 }
904                 usbd_copy_out(pc, 0, mtod(m, uint8_t *), len);
905
906                 /* finalize mbuf */
907                 m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff;
908
909                 if (ieee80211_radiotap_active(ic)) {
910                         struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
911
912                         /* XXX set once */
913                         tap->wr_flags = 0;
914                         tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate,
915                             (flags & RAL_RX_OFDM) ?
916                             IEEE80211_T_OFDM : IEEE80211_T_CCK);
917                         tap->wr_antenna = sc->rx_ant;
918                         tap->wr_antsignal = nf + rssi;
919                         tap->wr_antnoise = nf;
920                 }
921                 /* Strip trailing 802.11 MAC FCS. */
922                 m_adj(m, -IEEE80211_CRC_LEN);
923
924                 /* FALLTHROUGH */
925         case USB_ST_SETUP:
926 tr_setup:
927                 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
928                 usbd_transfer_submit(xfer);
929
930                 /*
931                  * At the end of a USB callback it is always safe to unlock
932                  * the private mutex of a device! That is why we do the
933                  * "ieee80211_input" here, and not some lines up!
934                  */
935                 RAL_UNLOCK(sc);
936                 if (m) {
937                         ni = ieee80211_find_rxnode(ic,
938                             mtod(m, struct ieee80211_frame_min *));
939                         if (ni != NULL) {
940                                 (void) ieee80211_input(ni, m, rssi, nf);
941                                 ieee80211_free_node(ni);
942                         } else
943                                 (void) ieee80211_input_all(ic, m, rssi, nf);
944                 }
945                 RAL_LOCK(sc);
946                 ural_start(sc);
947                 return;
948
949         default:                        /* Error */
950                 if (error != USB_ERR_CANCELLED) {
951                         /* try to clear stall first */
952                         usbd_xfer_set_stall(xfer);
953                         goto tr_setup;
954                 }
955                 return;
956         }
957 }
958
959 static uint8_t
960 ural_plcp_signal(int rate)
961 {
962         switch (rate) {
963         /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
964         case 12:        return 0xb;
965         case 18:        return 0xf;
966         case 24:        return 0xa;
967         case 36:        return 0xe;
968         case 48:        return 0x9;
969         case 72:        return 0xd;
970         case 96:        return 0x8;
971         case 108:       return 0xc;
972
973         /* CCK rates (NB: not IEEE std, device-specific) */
974         case 2:         return 0x0;
975         case 4:         return 0x1;
976         case 11:        return 0x2;
977         case 22:        return 0x3;
978         }
979         return 0xff;            /* XXX unsupported/unknown rate */
980 }
981
982 static void
983 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
984     uint32_t flags, int len, int rate)
985 {
986         struct ieee80211com *ic = &sc->sc_ic;
987         uint16_t plcp_length;
988         int remainder;
989
990         desc->flags = htole32(flags);
991         desc->flags |= htole32(RAL_TX_NEWSEQ);
992         desc->flags |= htole32(len << 16);
993
994         desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
995         desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
996
997         /* setup PLCP fields */
998         desc->plcp_signal  = ural_plcp_signal(rate);
999         desc->plcp_service = 4;
1000
1001         len += IEEE80211_CRC_LEN;
1002         if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) {
1003                 desc->flags |= htole32(RAL_TX_OFDM);
1004
1005                 plcp_length = len & 0xfff;
1006                 desc->plcp_length_hi = plcp_length >> 6;
1007                 desc->plcp_length_lo = plcp_length & 0x3f;
1008         } else {
1009                 if (rate == 0)
1010                         rate = 2;       /* avoid division by zero */
1011                 plcp_length = howmany(16 * len, rate);
1012                 if (rate == 22) {
1013                         remainder = (16 * len) % 22;
1014                         if (remainder != 0 && remainder < 7)
1015                                 desc->plcp_service |= RAL_PLCP_LENGEXT;
1016                 }
1017                 desc->plcp_length_hi = plcp_length >> 8;
1018                 desc->plcp_length_lo = plcp_length & 0xff;
1019
1020                 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1021                         desc->plcp_signal |= 0x08;
1022         }
1023
1024         desc->iv = 0;
1025         desc->eiv = 0;
1026 }
1027
1028 #define RAL_TX_TIMEOUT  5000
1029
1030 static int
1031 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1032 {
1033         struct ieee80211vap *vap = ni->ni_vap;
1034         struct ieee80211com *ic = ni->ni_ic;
1035         const struct ieee80211_txparam *tp;
1036         struct ural_tx_data *data;
1037
1038         if (sc->tx_nfree == 0) {
1039                 m_freem(m0);
1040                 ieee80211_free_node(ni);
1041                 return (EIO);
1042         }
1043         if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) {
1044                 m_freem(m0);
1045                 ieee80211_free_node(ni);
1046                 return (ENXIO);
1047         }
1048         data = STAILQ_FIRST(&sc->tx_free);
1049         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1050         sc->tx_nfree--;
1051         tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)];
1052
1053         data->m = m0;
1054         data->ni = ni;
1055         data->rate = tp->mgmtrate;
1056
1057         ural_setup_tx_desc(sc, &data->desc,
1058             RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP, m0->m_pkthdr.len,
1059             tp->mgmtrate);
1060
1061         DPRINTFN(10, "sending beacon frame len=%u rate=%u\n",
1062             m0->m_pkthdr.len, tp->mgmtrate);
1063
1064         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1065         usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1066
1067         return (0);
1068 }
1069
1070 static int
1071 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1072 {
1073         struct ieee80211vap *vap = ni->ni_vap;
1074         struct ieee80211com *ic = ni->ni_ic;
1075         const struct ieee80211_txparam *tp;
1076         struct ural_tx_data *data;
1077         struct ieee80211_frame *wh;
1078         struct ieee80211_key *k;
1079         uint32_t flags;
1080         uint16_t dur;
1081
1082         RAL_LOCK_ASSERT(sc, MA_OWNED);
1083
1084         data = STAILQ_FIRST(&sc->tx_free);
1085         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1086         sc->tx_nfree--;
1087
1088         tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1089
1090         wh = mtod(m0, struct ieee80211_frame *);
1091         if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1092                 k = ieee80211_crypto_encap(ni, m0);
1093                 if (k == NULL) {
1094                         m_freem(m0);
1095                         return ENOBUFS;
1096                 }
1097                 wh = mtod(m0, struct ieee80211_frame *);
1098         }
1099
1100         data->m = m0;
1101         data->ni = ni;
1102         data->rate = tp->mgmtrate;
1103
1104         flags = 0;
1105         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1106                 flags |= RAL_TX_ACK;
1107
1108                 dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate, 
1109                     ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1110                 USETW(wh->i_dur, dur);
1111
1112                 /* tell hardware to add timestamp for probe responses */
1113                 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1114                     IEEE80211_FC0_TYPE_MGT &&
1115                     (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1116                     IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1117                         flags |= RAL_TX_TIMESTAMP;
1118         }
1119
1120         ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, tp->mgmtrate);
1121
1122         DPRINTFN(10, "sending mgt frame len=%u rate=%u\n",
1123             m0->m_pkthdr.len, tp->mgmtrate);
1124
1125         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1126         usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1127
1128         return 0;
1129 }
1130
1131 static int
1132 ural_sendprot(struct ural_softc *sc,
1133     const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
1134 {
1135         struct ieee80211com *ic = ni->ni_ic;
1136         const struct ieee80211_frame *wh;
1137         struct ural_tx_data *data;
1138         struct mbuf *mprot;
1139         int protrate, ackrate, pktlen, flags, isshort;
1140         uint16_t dur;
1141
1142         KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY,
1143             ("protection %d", prot));
1144
1145         wh = mtod(m, const struct ieee80211_frame *);
1146         pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
1147
1148         protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
1149         ackrate = ieee80211_ack_rate(ic->ic_rt, rate);
1150
1151         isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
1152         dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
1153             + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1154         flags = RAL_TX_RETRY(7);
1155         if (prot == IEEE80211_PROT_RTSCTS) {
1156                 /* NB: CTS is the same size as an ACK */
1157                 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1158                 flags |= RAL_TX_ACK;
1159                 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
1160         } else {
1161                 mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
1162         }
1163         if (mprot == NULL) {
1164                 /* XXX stat + msg */
1165                 return ENOBUFS;
1166         }
1167         data = STAILQ_FIRST(&sc->tx_free);
1168         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1169         sc->tx_nfree--;
1170
1171         data->m = mprot;
1172         data->ni = ieee80211_ref_node(ni);
1173         data->rate = protrate;
1174         ural_setup_tx_desc(sc, &data->desc, flags, mprot->m_pkthdr.len, protrate);
1175
1176         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1177         usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1178
1179         return 0;
1180 }
1181
1182 static int
1183 ural_tx_raw(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1184     const struct ieee80211_bpf_params *params)
1185 {
1186         struct ieee80211com *ic = ni->ni_ic;
1187         struct ural_tx_data *data;
1188         uint32_t flags;
1189         int error;
1190         int rate;
1191
1192         RAL_LOCK_ASSERT(sc, MA_OWNED);
1193         KASSERT(params != NULL, ("no raw xmit params"));
1194
1195         rate = params->ibp_rate0;
1196         if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
1197                 m_freem(m0);
1198                 return EINVAL;
1199         }
1200         flags = 0;
1201         if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
1202                 flags |= RAL_TX_ACK;
1203         if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
1204                 error = ural_sendprot(sc, m0, ni,
1205                     params->ibp_flags & IEEE80211_BPF_RTS ?
1206                          IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
1207                     rate);
1208                 if (error || sc->tx_nfree == 0) {
1209                         m_freem(m0);
1210                         return ENOBUFS;
1211                 }
1212                 flags |= RAL_TX_IFS_SIFS;
1213         }
1214
1215         data = STAILQ_FIRST(&sc->tx_free);
1216         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1217         sc->tx_nfree--;
1218
1219         data->m = m0;
1220         data->ni = ni;
1221         data->rate = rate;
1222
1223         /* XXX need to setup descriptor ourself */
1224         ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate);
1225
1226         DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
1227             m0->m_pkthdr.len, rate);
1228
1229         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1230         usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1231
1232         return 0;
1233 }
1234
1235 static int
1236 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1237 {
1238         struct ieee80211vap *vap = ni->ni_vap;
1239         struct ieee80211com *ic = ni->ni_ic;
1240         struct ural_tx_data *data;
1241         struct ieee80211_frame *wh;
1242         const struct ieee80211_txparam *tp;
1243         struct ieee80211_key *k;
1244         uint32_t flags = 0;
1245         uint16_t dur;
1246         int error, rate;
1247
1248         RAL_LOCK_ASSERT(sc, MA_OWNED);
1249
1250         wh = mtod(m0, struct ieee80211_frame *);
1251
1252         tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1253         if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1254                 rate = tp->mcastrate;
1255         else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
1256                 rate = tp->ucastrate;
1257         else {
1258                 (void) ieee80211_ratectl_rate(ni, NULL, 0);
1259                 rate = ni->ni_txrate;
1260         }
1261
1262         if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1263                 k = ieee80211_crypto_encap(ni, m0);
1264                 if (k == NULL) {
1265                         m_freem(m0);
1266                         return ENOBUFS;
1267                 }
1268                 /* packet header may have moved, reset our local pointer */
1269                 wh = mtod(m0, struct ieee80211_frame *);
1270         }
1271
1272         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1273                 int prot = IEEE80211_PROT_NONE;
1274                 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
1275                         prot = IEEE80211_PROT_RTSCTS;
1276                 else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1277                     ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM)
1278                         prot = ic->ic_protmode;
1279                 if (prot != IEEE80211_PROT_NONE) {
1280                         error = ural_sendprot(sc, m0, ni, prot, rate);
1281                         if (error || sc->tx_nfree == 0) {
1282                                 m_freem(m0);
1283                                 return ENOBUFS;
1284                         }
1285                         flags |= RAL_TX_IFS_SIFS;
1286                 }
1287         }
1288
1289         data = STAILQ_FIRST(&sc->tx_free);
1290         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1291         sc->tx_nfree--;
1292
1293         data->m = m0;
1294         data->ni = ni;
1295         data->rate = rate;
1296
1297         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1298                 flags |= RAL_TX_ACK;
1299                 flags |= RAL_TX_RETRY(7);
1300
1301                 dur = ieee80211_ack_duration(ic->ic_rt, rate, 
1302                     ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1303                 USETW(wh->i_dur, dur);
1304         }
1305
1306         ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate);
1307
1308         DPRINTFN(10, "sending data frame len=%u rate=%u\n",
1309             m0->m_pkthdr.len, rate);
1310
1311         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1312         usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1313
1314         return 0;
1315 }
1316
1317 static int
1318 ural_transmit(struct ieee80211com *ic, struct mbuf *m)
1319 {
1320         struct ural_softc *sc = ic->ic_softc;
1321         int error;
1322
1323         RAL_LOCK(sc);
1324         if (!sc->sc_running) {
1325                 RAL_UNLOCK(sc);
1326                 return (ENXIO);
1327         }
1328         error = mbufq_enqueue(&sc->sc_snd, m);
1329         if (error) {
1330                 RAL_UNLOCK(sc);
1331                 return (error);
1332         }
1333         ural_start(sc);
1334         RAL_UNLOCK(sc);
1335
1336         return (0);
1337 }
1338
1339 static void
1340 ural_start(struct ural_softc *sc)
1341 {
1342         struct ieee80211_node *ni;
1343         struct mbuf *m;
1344
1345         RAL_LOCK_ASSERT(sc, MA_OWNED);
1346
1347         if (sc->sc_running == 0)
1348                 return;
1349
1350         while (sc->tx_nfree >= RAL_TX_MINFREE &&
1351             (m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
1352                 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1353                 if (ural_tx_data(sc, m, ni) != 0) {
1354                         if_inc_counter(ni->ni_vap->iv_ifp,
1355                              IFCOUNTER_OERRORS, 1);
1356                         ieee80211_free_node(ni);
1357                         break;
1358                 }
1359         }
1360 }
1361
1362 static void
1363 ural_parent(struct ieee80211com *ic)
1364 {
1365         struct ural_softc *sc = ic->ic_softc;
1366         int startall = 0;
1367
1368         RAL_LOCK(sc);
1369         if (sc->sc_detached) {
1370                 RAL_UNLOCK(sc);
1371                 return;
1372         }
1373         if (ic->ic_nrunning > 0) {
1374                 if (sc->sc_running == 0) {
1375                         ural_init(sc);
1376                         startall = 1;
1377                 } else
1378                         ural_setpromisc(sc);
1379         } else if (sc->sc_running)
1380                 ural_stop(sc);
1381         RAL_UNLOCK(sc);
1382         if (startall)
1383                 ieee80211_start_all(ic);
1384 }
1385
1386 static void
1387 ural_set_testmode(struct ural_softc *sc)
1388 {
1389         struct usb_device_request req;
1390         usb_error_t error;
1391
1392         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1393         req.bRequest = RAL_VENDOR_REQUEST;
1394         USETW(req.wValue, 4);
1395         USETW(req.wIndex, 1);
1396         USETW(req.wLength, 0);
1397
1398         error = ural_do_request(sc, &req, NULL);
1399         if (error != 0) {
1400                 device_printf(sc->sc_dev, "could not set test mode: %s\n",
1401                     usbd_errstr(error));
1402         }
1403 }
1404
1405 static void
1406 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1407 {
1408         struct usb_device_request req;
1409         usb_error_t error;
1410
1411         req.bmRequestType = UT_READ_VENDOR_DEVICE;
1412         req.bRequest = RAL_READ_EEPROM;
1413         USETW(req.wValue, 0);
1414         USETW(req.wIndex, addr);
1415         USETW(req.wLength, len);
1416
1417         error = ural_do_request(sc, &req, buf);
1418         if (error != 0) {
1419                 device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
1420                     usbd_errstr(error));
1421         }
1422 }
1423
1424 static uint16_t
1425 ural_read(struct ural_softc *sc, uint16_t reg)
1426 {
1427         struct usb_device_request req;
1428         usb_error_t error;
1429         uint16_t val;
1430
1431         req.bmRequestType = UT_READ_VENDOR_DEVICE;
1432         req.bRequest = RAL_READ_MAC;
1433         USETW(req.wValue, 0);
1434         USETW(req.wIndex, reg);
1435         USETW(req.wLength, sizeof (uint16_t));
1436
1437         error = ural_do_request(sc, &req, &val);
1438         if (error != 0) {
1439                 device_printf(sc->sc_dev, "could not read MAC register: %s\n",
1440                     usbd_errstr(error));
1441                 return 0;
1442         }
1443
1444         return le16toh(val);
1445 }
1446
1447 static void
1448 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1449 {
1450         struct usb_device_request req;
1451         usb_error_t error;
1452
1453         req.bmRequestType = UT_READ_VENDOR_DEVICE;
1454         req.bRequest = RAL_READ_MULTI_MAC;
1455         USETW(req.wValue, 0);
1456         USETW(req.wIndex, reg);
1457         USETW(req.wLength, len);
1458
1459         error = ural_do_request(sc, &req, buf);
1460         if (error != 0) {
1461                 device_printf(sc->sc_dev, "could not read MAC register: %s\n",
1462                     usbd_errstr(error));
1463         }
1464 }
1465
1466 static void
1467 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1468 {
1469         struct usb_device_request req;
1470         usb_error_t error;
1471
1472         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1473         req.bRequest = RAL_WRITE_MAC;
1474         USETW(req.wValue, val);
1475         USETW(req.wIndex, reg);
1476         USETW(req.wLength, 0);
1477
1478         error = ural_do_request(sc, &req, NULL);
1479         if (error != 0) {
1480                 device_printf(sc->sc_dev, "could not write MAC register: %s\n",
1481                     usbd_errstr(error));
1482         }
1483 }
1484
1485 static void
1486 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1487 {
1488         struct usb_device_request req;
1489         usb_error_t error;
1490
1491         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1492         req.bRequest = RAL_WRITE_MULTI_MAC;
1493         USETW(req.wValue, 0);
1494         USETW(req.wIndex, reg);
1495         USETW(req.wLength, len);
1496
1497         error = ural_do_request(sc, &req, buf);
1498         if (error != 0) {
1499                 device_printf(sc->sc_dev, "could not write MAC register: %s\n",
1500                     usbd_errstr(error));
1501         }
1502 }
1503
1504 static void
1505 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1506 {
1507         uint16_t tmp;
1508         int ntries;
1509
1510         for (ntries = 0; ntries < 100; ntries++) {
1511                 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1512                         break;
1513                 if (ural_pause(sc, hz / 100))
1514                         break;
1515         }
1516         if (ntries == 100) {
1517                 device_printf(sc->sc_dev, "could not write to BBP\n");
1518                 return;
1519         }
1520
1521         tmp = reg << 8 | val;
1522         ural_write(sc, RAL_PHY_CSR7, tmp);
1523 }
1524
1525 static uint8_t
1526 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1527 {
1528         uint16_t val;
1529         int ntries;
1530
1531         val = RAL_BBP_WRITE | reg << 8;
1532         ural_write(sc, RAL_PHY_CSR7, val);
1533
1534         for (ntries = 0; ntries < 100; ntries++) {
1535                 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1536                         break;
1537                 if (ural_pause(sc, hz / 100))
1538                         break;
1539         }
1540         if (ntries == 100) {
1541                 device_printf(sc->sc_dev, "could not read BBP\n");
1542                 return 0;
1543         }
1544
1545         return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1546 }
1547
1548 static void
1549 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1550 {
1551         uint32_t tmp;
1552         int ntries;
1553
1554         for (ntries = 0; ntries < 100; ntries++) {
1555                 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1556                         break;
1557                 if (ural_pause(sc, hz / 100))
1558                         break;
1559         }
1560         if (ntries == 100) {
1561                 device_printf(sc->sc_dev, "could not write to RF\n");
1562                 return;
1563         }
1564
1565         tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1566         ural_write(sc, RAL_PHY_CSR9,  tmp & 0xffff);
1567         ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1568
1569         /* remember last written value in sc */
1570         sc->rf_regs[reg] = val;
1571
1572         DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff);
1573 }
1574
1575 static void
1576 ural_scan_start(struct ieee80211com *ic)
1577 {
1578         struct ural_softc *sc = ic->ic_softc;
1579
1580         RAL_LOCK(sc);
1581         ural_write(sc, RAL_TXRX_CSR19, 0);
1582         ural_set_bssid(sc, ieee80211broadcastaddr);
1583         RAL_UNLOCK(sc);
1584 }
1585
1586 static void
1587 ural_scan_end(struct ieee80211com *ic)
1588 {
1589         struct ural_softc *sc = ic->ic_softc;
1590
1591         RAL_LOCK(sc);
1592         ural_enable_tsf_sync(sc);
1593         ural_set_bssid(sc, sc->sc_bssid);
1594         RAL_UNLOCK(sc);
1595
1596 }
1597
1598 static void
1599 ural_getradiocaps(struct ieee80211com *ic,
1600     int maxchans, int *nchans, struct ieee80211_channel chans[])
1601 {
1602         struct ural_softc *sc = ic->ic_softc;
1603         uint8_t bands[IEEE80211_MODE_BYTES];
1604
1605         memset(bands, 0, sizeof(bands));
1606         setbit(bands, IEEE80211_MODE_11B);
1607         setbit(bands, IEEE80211_MODE_11G);
1608         ieee80211_add_channel_list_2ghz(chans, maxchans, nchans,
1609             ural_chan_2ghz, nitems(ural_chan_2ghz), bands, 0);
1610
1611         if (sc->rf_rev == RAL_RF_5222) {
1612                 setbit(bands, IEEE80211_MODE_11A);
1613                 ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
1614                     ural_chan_5ghz, nitems(ural_chan_5ghz), bands, 0);
1615         }
1616 }
1617
1618 static void
1619 ural_set_channel(struct ieee80211com *ic)
1620 {
1621         struct ural_softc *sc = ic->ic_softc;
1622
1623         RAL_LOCK(sc);
1624         ural_set_chan(sc, ic->ic_curchan);
1625         RAL_UNLOCK(sc);
1626 }
1627
1628 static void
1629 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1630 {
1631         struct ieee80211com *ic = &sc->sc_ic;
1632         uint8_t power, tmp;
1633         int i, chan;
1634
1635         chan = ieee80211_chan2ieee(ic, c);
1636         if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1637                 return;
1638
1639         if (IEEE80211_IS_CHAN_2GHZ(c))
1640                 power = min(sc->txpow[chan - 1], 31);
1641         else
1642                 power = 31;
1643
1644         /* adjust txpower using ifconfig settings */
1645         power -= (100 - ic->ic_txpowlimit) / 8;
1646
1647         DPRINTFN(2, "setting channel to %u, txpower to %u\n", chan, power);
1648
1649         switch (sc->rf_rev) {
1650         case RAL_RF_2522:
1651                 ural_rf_write(sc, RAL_RF1, 0x00814);
1652                 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1653                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1654                 break;
1655
1656         case RAL_RF_2523:
1657                 ural_rf_write(sc, RAL_RF1, 0x08804);
1658                 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1659                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1660                 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1661                 break;
1662
1663         case RAL_RF_2524:
1664                 ural_rf_write(sc, RAL_RF1, 0x0c808);
1665                 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1666                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1667                 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1668                 break;
1669
1670         case RAL_RF_2525:
1671                 ural_rf_write(sc, RAL_RF1, 0x08808);
1672                 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1673                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1674                 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1675
1676                 ural_rf_write(sc, RAL_RF1, 0x08808);
1677                 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1678                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1679                 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1680                 break;
1681
1682         case RAL_RF_2525E:
1683                 ural_rf_write(sc, RAL_RF1, 0x08808);
1684                 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1685                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1686                 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1687                 break;
1688
1689         case RAL_RF_2526:
1690                 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1691                 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1692                 ural_rf_write(sc, RAL_RF1, 0x08804);
1693
1694                 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1695                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1696                 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1697                 break;
1698
1699         /* dual-band RF */
1700         case RAL_RF_5222:
1701                 for (i = 0; ural_rf5222[i].chan != chan; i++);
1702
1703                 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1704                 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1705                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1706                 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1707                 break;
1708         }
1709
1710         if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1711             (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1712                 /* set Japan filter bit for channel 14 */
1713                 tmp = ural_bbp_read(sc, 70);
1714
1715                 tmp &= ~RAL_JAPAN_FILTER;
1716                 if (chan == 14)
1717                         tmp |= RAL_JAPAN_FILTER;
1718
1719                 ural_bbp_write(sc, 70, tmp);
1720
1721                 /* clear CRC errors */
1722                 ural_read(sc, RAL_STA_CSR0);
1723
1724                 ural_pause(sc, hz / 100);
1725                 ural_disable_rf_tune(sc);
1726         }
1727
1728         /* XXX doesn't belong here */
1729         /* update basic rate set */
1730         ural_set_basicrates(sc, c);
1731
1732         /* give the hardware some time to do the switchover */
1733         ural_pause(sc, hz / 100);
1734 }
1735
1736 /*
1737  * Disable RF auto-tuning.
1738  */
1739 static void
1740 ural_disable_rf_tune(struct ural_softc *sc)
1741 {
1742         uint32_t tmp;
1743
1744         if (sc->rf_rev != RAL_RF_2523) {
1745                 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1746                 ural_rf_write(sc, RAL_RF1, tmp);
1747         }
1748
1749         tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1750         ural_rf_write(sc, RAL_RF3, tmp);
1751
1752         DPRINTFN(2, "disabling RF autotune\n");
1753 }
1754
1755 /*
1756  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1757  * synchronization.
1758  */
1759 static void
1760 ural_enable_tsf_sync(struct ural_softc *sc)
1761 {
1762         struct ieee80211com *ic = &sc->sc_ic;
1763         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1764         uint16_t logcwmin, preload, tmp;
1765
1766         /* first, disable TSF synchronization */
1767         ural_write(sc, RAL_TXRX_CSR19, 0);
1768
1769         tmp = (16 * vap->iv_bss->ni_intval) << 4;
1770         ural_write(sc, RAL_TXRX_CSR18, tmp);
1771
1772         logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1773         preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1774         tmp = logcwmin << 12 | preload;
1775         ural_write(sc, RAL_TXRX_CSR20, tmp);
1776
1777         /* finally, enable TSF synchronization */
1778         tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1779         if (ic->ic_opmode == IEEE80211_M_STA)
1780                 tmp |= RAL_ENABLE_TSF_SYNC(1);
1781         else
1782                 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1783         ural_write(sc, RAL_TXRX_CSR19, tmp);
1784
1785         DPRINTF("enabling TSF synchronization\n");
1786 }
1787
1788 static void
1789 ural_enable_tsf(struct ural_softc *sc)
1790 {
1791         /* first, disable TSF synchronization */
1792         ural_write(sc, RAL_TXRX_CSR19, 0);
1793         ural_write(sc, RAL_TXRX_CSR19, RAL_ENABLE_TSF | RAL_ENABLE_TSF_SYNC(2));
1794 }
1795
1796 #define RAL_RXTX_TURNAROUND     5       /* us */
1797 static void
1798 ural_update_slot(struct ural_softc *sc)
1799 {
1800         struct ieee80211com *ic = &sc->sc_ic;
1801         uint16_t slottime, sifs, eifs;
1802
1803         slottime = IEEE80211_GET_SLOTTIME(ic);
1804
1805         /*
1806          * These settings may sound a bit inconsistent but this is what the
1807          * reference driver does.
1808          */
1809         if (ic->ic_curmode == IEEE80211_MODE_11B) {
1810                 sifs = 16 - RAL_RXTX_TURNAROUND;
1811                 eifs = 364;
1812         } else {
1813                 sifs = 10 - RAL_RXTX_TURNAROUND;
1814                 eifs = 64;
1815         }
1816
1817         ural_write(sc, RAL_MAC_CSR10, slottime);
1818         ural_write(sc, RAL_MAC_CSR11, sifs);
1819         ural_write(sc, RAL_MAC_CSR12, eifs);
1820 }
1821
1822 static void
1823 ural_set_txpreamble(struct ural_softc *sc)
1824 {
1825         struct ieee80211com *ic = &sc->sc_ic;
1826         uint16_t tmp;
1827
1828         tmp = ural_read(sc, RAL_TXRX_CSR10);
1829
1830         tmp &= ~RAL_SHORT_PREAMBLE;
1831         if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1832                 tmp |= RAL_SHORT_PREAMBLE;
1833
1834         ural_write(sc, RAL_TXRX_CSR10, tmp);
1835 }
1836
1837 static void
1838 ural_set_basicrates(struct ural_softc *sc, const struct ieee80211_channel *c)
1839 {
1840         /* XXX wrong, take from rate set */
1841         /* update basic rate set */
1842         if (IEEE80211_IS_CHAN_5GHZ(c)) {
1843                 /* 11a basic rates: 6, 12, 24Mbps */
1844                 ural_write(sc, RAL_TXRX_CSR11, 0x150);
1845         } else if (IEEE80211_IS_CHAN_ANYG(c)) {
1846                 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1847                 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1848         } else {
1849                 /* 11b basic rates: 1, 2Mbps */
1850                 ural_write(sc, RAL_TXRX_CSR11, 0x3);
1851         }
1852 }
1853
1854 static void
1855 ural_set_bssid(struct ural_softc *sc, const uint8_t *bssid)
1856 {
1857         uint16_t tmp;
1858
1859         tmp = bssid[0] | bssid[1] << 8;
1860         ural_write(sc, RAL_MAC_CSR5, tmp);
1861
1862         tmp = bssid[2] | bssid[3] << 8;
1863         ural_write(sc, RAL_MAC_CSR6, tmp);
1864
1865         tmp = bssid[4] | bssid[5] << 8;
1866         ural_write(sc, RAL_MAC_CSR7, tmp);
1867
1868         DPRINTF("setting BSSID to %6D\n", bssid, ":");
1869 }
1870
1871 static void
1872 ural_set_macaddr(struct ural_softc *sc, const uint8_t *addr)
1873 {
1874         uint16_t tmp;
1875
1876         tmp = addr[0] | addr[1] << 8;
1877         ural_write(sc, RAL_MAC_CSR2, tmp);
1878
1879         tmp = addr[2] | addr[3] << 8;
1880         ural_write(sc, RAL_MAC_CSR3, tmp);
1881
1882         tmp = addr[4] | addr[5] << 8;
1883         ural_write(sc, RAL_MAC_CSR4, tmp);
1884
1885         DPRINTF("setting MAC address to %6D\n", addr, ":");
1886 }
1887
1888 static void
1889 ural_setpromisc(struct ural_softc *sc)
1890 {
1891         uint32_t tmp;
1892
1893         tmp = ural_read(sc, RAL_TXRX_CSR2);
1894
1895         tmp &= ~RAL_DROP_NOT_TO_ME;
1896         if (sc->sc_ic.ic_promisc == 0)
1897                 tmp |= RAL_DROP_NOT_TO_ME;
1898
1899         ural_write(sc, RAL_TXRX_CSR2, tmp);
1900
1901         DPRINTF("%s promiscuous mode\n", sc->sc_ic.ic_promisc ?
1902             "entering" : "leaving");
1903 }
1904
1905 static void
1906 ural_update_promisc(struct ieee80211com *ic)
1907 {
1908         struct ural_softc *sc = ic->ic_softc;
1909
1910         RAL_LOCK(sc);
1911         if (sc->sc_running)
1912                 ural_setpromisc(sc);
1913         RAL_UNLOCK(sc);
1914 }
1915
1916 static const char *
1917 ural_get_rf(int rev)
1918 {
1919         switch (rev) {
1920         case RAL_RF_2522:       return "RT2522";
1921         case RAL_RF_2523:       return "RT2523";
1922         case RAL_RF_2524:       return "RT2524";
1923         case RAL_RF_2525:       return "RT2525";
1924         case RAL_RF_2525E:      return "RT2525e";
1925         case RAL_RF_2526:       return "RT2526";
1926         case RAL_RF_5222:       return "RT5222";
1927         default:                return "unknown";
1928         }
1929 }
1930
1931 static void
1932 ural_read_eeprom(struct ural_softc *sc)
1933 {
1934         struct ieee80211com *ic = &sc->sc_ic;
1935         uint16_t val;
1936
1937         ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1938         val = le16toh(val);
1939         sc->rf_rev =   (val >> 11) & 0x7;
1940         sc->hw_radio = (val >> 10) & 0x1;
1941         sc->led_mode = (val >> 6)  & 0x7;
1942         sc->rx_ant =   (val >> 4)  & 0x3;
1943         sc->tx_ant =   (val >> 2)  & 0x3;
1944         sc->nb_ant =   val & 0x3;
1945
1946         /* read MAC address */
1947         ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_macaddr, 6);
1948
1949         /* read default values for BBP registers */
1950         ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1951
1952         /* read Tx power for all b/g channels */
1953         ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
1954 }
1955
1956 static int
1957 ural_bbp_init(struct ural_softc *sc)
1958 {
1959         int i, ntries;
1960
1961         /* wait for BBP to be ready */
1962         for (ntries = 0; ntries < 100; ntries++) {
1963                 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
1964                         break;
1965                 if (ural_pause(sc, hz / 100))
1966                         break;
1967         }
1968         if (ntries == 100) {
1969                 device_printf(sc->sc_dev, "timeout waiting for BBP\n");
1970                 return EIO;
1971         }
1972
1973         /* initialize BBP registers to default values */
1974         for (i = 0; i < nitems(ural_def_bbp); i++)
1975                 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
1976
1977 #if 0
1978         /* initialize BBP registers to values stored in EEPROM */
1979         for (i = 0; i < 16; i++) {
1980                 if (sc->bbp_prom[i].reg == 0xff)
1981                         continue;
1982                 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1983         }
1984 #endif
1985
1986         return 0;
1987 }
1988
1989 static void
1990 ural_set_txantenna(struct ural_softc *sc, int antenna)
1991 {
1992         uint16_t tmp;
1993         uint8_t tx;
1994
1995         tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
1996         if (antenna == 1)
1997                 tx |= RAL_BBP_ANTA;
1998         else if (antenna == 2)
1999                 tx |= RAL_BBP_ANTB;
2000         else
2001                 tx |= RAL_BBP_DIVERSITY;
2002
2003         /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2004         if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2005             sc->rf_rev == RAL_RF_5222)
2006                 tx |= RAL_BBP_FLIPIQ;
2007
2008         ural_bbp_write(sc, RAL_BBP_TX, tx);
2009
2010         /* update values in PHY_CSR5 and PHY_CSR6 */
2011         tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2012         ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2013
2014         tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2015         ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2016 }
2017
2018 static void
2019 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2020 {
2021         uint8_t rx;
2022
2023         rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2024         if (antenna == 1)
2025                 rx |= RAL_BBP_ANTA;
2026         else if (antenna == 2)
2027                 rx |= RAL_BBP_ANTB;
2028         else
2029                 rx |= RAL_BBP_DIVERSITY;
2030
2031         /* need to force no I/Q flip for RF 2525e and 2526 */
2032         if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2033                 rx &= ~RAL_BBP_FLIPIQ;
2034
2035         ural_bbp_write(sc, RAL_BBP_RX, rx);
2036 }
2037
2038 static void
2039 ural_init(struct ural_softc *sc)
2040 {
2041         struct ieee80211com *ic = &sc->sc_ic;
2042         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2043         uint16_t tmp;
2044         int i, ntries;
2045
2046         RAL_LOCK_ASSERT(sc, MA_OWNED);
2047
2048         ural_set_testmode(sc);
2049         ural_write(sc, 0x308, 0x00f0);  /* XXX magic */
2050
2051         ural_stop(sc);
2052
2053         /* initialize MAC registers to default values */
2054         for (i = 0; i < nitems(ural_def_mac); i++)
2055                 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2056
2057         /* wait for BBP and RF to wake up (this can take a long time!) */
2058         for (ntries = 0; ntries < 100; ntries++) {
2059                 tmp = ural_read(sc, RAL_MAC_CSR17);
2060                 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2061                     (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2062                         break;
2063                 if (ural_pause(sc, hz / 100))
2064                         break;
2065         }
2066         if (ntries == 100) {
2067                 device_printf(sc->sc_dev,
2068                     "timeout waiting for BBP/RF to wakeup\n");
2069                 goto fail;
2070         }
2071
2072         /* we're ready! */
2073         ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2074
2075         /* set basic rate set (will be updated later) */
2076         ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2077
2078         if (ural_bbp_init(sc) != 0)
2079                 goto fail;
2080
2081         ural_set_chan(sc, ic->ic_curchan);
2082
2083         /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2084         ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2085
2086         ural_set_txantenna(sc, sc->tx_ant);
2087         ural_set_rxantenna(sc, sc->rx_ant);
2088
2089         ural_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr);
2090
2091         /*
2092          * Allocate Tx and Rx xfer queues.
2093          */
2094         ural_setup_tx_list(sc);
2095
2096         /* kick Rx */
2097         tmp = RAL_DROP_PHY | RAL_DROP_CRC;
2098         if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2099                 tmp |= RAL_DROP_CTL | RAL_DROP_BAD_VERSION;
2100                 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2101                         tmp |= RAL_DROP_TODS;
2102                 if (ic->ic_promisc == 0)
2103                         tmp |= RAL_DROP_NOT_TO_ME;
2104         }
2105         ural_write(sc, RAL_TXRX_CSR2, tmp);
2106
2107         sc->sc_running = 1;
2108         usbd_xfer_set_stall(sc->sc_xfer[URAL_BULK_WR]);
2109         usbd_transfer_start(sc->sc_xfer[URAL_BULK_RD]);
2110         return;
2111
2112 fail:   ural_stop(sc);
2113 }
2114
2115 static void
2116 ural_stop(struct ural_softc *sc)
2117 {
2118
2119         RAL_LOCK_ASSERT(sc, MA_OWNED);
2120
2121         sc->sc_running = 0;
2122
2123         /*
2124          * Drain all the transfers, if not already drained:
2125          */
2126         RAL_UNLOCK(sc);
2127         usbd_transfer_drain(sc->sc_xfer[URAL_BULK_WR]);
2128         usbd_transfer_drain(sc->sc_xfer[URAL_BULK_RD]);
2129         RAL_LOCK(sc);
2130
2131         ural_unsetup_tx_list(sc);
2132
2133         /* disable Rx */
2134         ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2135         /* reset ASIC and BBP (but won't reset MAC registers!) */
2136         ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2137         /* wait a little */
2138         ural_pause(sc, hz / 10);
2139         ural_write(sc, RAL_MAC_CSR1, 0);
2140         /* wait a little */
2141         ural_pause(sc, hz / 10);
2142 }
2143
2144 static int
2145 ural_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2146         const struct ieee80211_bpf_params *params)
2147 {
2148         struct ieee80211com *ic = ni->ni_ic;
2149         struct ural_softc *sc = ic->ic_softc;
2150
2151         RAL_LOCK(sc);
2152         /* prevent management frames from being sent if we're not ready */
2153         if (!sc->sc_running) {
2154                 RAL_UNLOCK(sc);
2155                 m_freem(m);
2156                 return ENETDOWN;
2157         }
2158         if (sc->tx_nfree < RAL_TX_MINFREE) {
2159                 RAL_UNLOCK(sc);
2160                 m_freem(m);
2161                 return EIO;
2162         }
2163
2164         if (params == NULL) {
2165                 /*
2166                  * Legacy path; interpret frame contents to decide
2167                  * precisely how to send the frame.
2168                  */
2169                 if (ural_tx_mgt(sc, m, ni) != 0)
2170                         goto bad;
2171         } else {
2172                 /*
2173                  * Caller supplied explicit parameters to use in
2174                  * sending the frame.
2175                  */
2176                 if (ural_tx_raw(sc, m, ni, params) != 0)
2177                         goto bad;
2178         }
2179         RAL_UNLOCK(sc);
2180         return 0;
2181 bad:
2182         RAL_UNLOCK(sc);
2183         return EIO;             /* XXX */
2184 }
2185
2186 static void
2187 ural_ratectl_start(struct ural_softc *sc, struct ieee80211_node *ni)
2188 {
2189         struct ieee80211vap *vap = ni->ni_vap;
2190         struct ural_vap *uvp = URAL_VAP(vap);
2191
2192         /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2193         ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2194
2195         usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp);
2196 }
2197
2198 static void
2199 ural_ratectl_timeout(void *arg)
2200 {
2201         struct ural_vap *uvp = arg;
2202         struct ieee80211vap *vap = &uvp->vap;
2203         struct ieee80211com *ic = vap->iv_ic;
2204
2205         ieee80211_runtask(ic, &uvp->ratectl_task);
2206 }
2207
2208 static void
2209 ural_ratectl_task(void *arg, int pending)
2210 {
2211         struct ural_vap *uvp = arg;
2212         struct ieee80211vap *vap = &uvp->vap;
2213         struct ural_softc *sc = vap->iv_ic->ic_softc;
2214         struct ieee80211_ratectl_tx_stats *txs = &sc->sc_txs;
2215         int fail;
2216
2217         RAL_LOCK(sc);
2218         /* read and clear statistic registers (STA_CSR0 to STA_CSR10) */
2219         ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2220
2221         txs->flags = IEEE80211_RATECTL_TX_STATS_RETRIES;
2222         txs->nsuccess = sc->sta[7] +    /* TX ok w/o retry */
2223                         sc->sta[8];     /* TX ok w/ retry */
2224         fail = sc->sta[9];              /* TX retry-fail count */
2225         txs->nframes = txs->nsuccess + fail;
2226         /* XXX fail * maxretry */
2227         txs->nretries = sc->sta[8] + fail;
2228
2229         ieee80211_ratectl_tx_update(vap, txs);
2230
2231         /* count TX retry-fail as Tx errors */
2232         if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, fail);
2233
2234         usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp);
2235         RAL_UNLOCK(sc);
2236 }
2237
2238 static int
2239 ural_pause(struct ural_softc *sc, int timeout)
2240 {
2241
2242         usb_pause_mtx(&sc->sc_mtx, timeout);
2243         return (0);
2244 }