]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/usb/wlan/if_ural.c
MFV: r329072
[FreeBSD/FreeBSD.git] / sys / dev / usb / wlan / if_ural.c
1 /*      $FreeBSD$       */
2
3 /*-
4  * Copyright (c) 2005, 2006
5  *      Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Copyright (c) 2006, 2008
8  *      Hans Petter Selasky <hselasky@FreeBSD.org>
9  *
10  * Permission to use, copy, modify, and distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22
23 #include <sys/cdefs.h>
24 __FBSDID("$FreeBSD$");
25
26 /*-
27  * Ralink Technology RT2500USB chipset driver
28  * http://www.ralinktech.com/
29  */
30
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/lock.h>
35 #include <sys/mutex.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/module.h>
42 #include <sys/bus.h>
43 #include <sys/endian.h>
44 #include <sys/kdb.h>
45
46 #include <machine/bus.h>
47 #include <machine/resource.h>
48 #include <sys/rman.h>
49
50 #include <net/bpf.h>
51 #include <net/if.h>
52 #include <net/if_var.h>
53 #include <net/if_arp.h>
54 #include <net/ethernet.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58
59 #ifdef INET
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/in_var.h>
63 #include <netinet/if_ether.h>
64 #include <netinet/ip.h>
65 #endif
66
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_regdomain.h>
69 #include <net80211/ieee80211_radiotap.h>
70 #include <net80211/ieee80211_ratectl.h>
71
72 #include <dev/usb/usb.h>
73 #include <dev/usb/usbdi.h>
74 #include "usbdevs.h"
75
76 #define USB_DEBUG_VAR ural_debug
77 #include <dev/usb/usb_debug.h>
78
79 #include <dev/usb/wlan/if_uralreg.h>
80 #include <dev/usb/wlan/if_uralvar.h>
81
82 #ifdef USB_DEBUG
83 static int ural_debug = 0;
84
85 static SYSCTL_NODE(_hw_usb, OID_AUTO, ural, CTLFLAG_RW, 0, "USB ural");
86 SYSCTL_INT(_hw_usb_ural, OID_AUTO, debug, CTLFLAG_RWTUN, &ural_debug, 0,
87     "Debug level");
88 #endif
89
90 #define URAL_RSSI(rssi)                                 \
91         ((rssi) > (RAL_NOISE_FLOOR + RAL_RSSI_CORR) ?   \
92          ((rssi) - (RAL_NOISE_FLOOR + RAL_RSSI_CORR)) : 0)
93
94 /* various supported device vendors/products */
95 static const STRUCT_USB_HOST_ID ural_devs[] = {
96 #define URAL_DEV(v,p)  { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
97         URAL_DEV(ASUS, WL167G),
98         URAL_DEV(ASUS, RT2570),
99         URAL_DEV(BELKIN, F5D7050),
100         URAL_DEV(BELKIN, F5D7051),
101         URAL_DEV(CISCOLINKSYS, HU200TS),
102         URAL_DEV(CISCOLINKSYS, WUSB54G),
103         URAL_DEV(CISCOLINKSYS, WUSB54GP),
104         URAL_DEV(CONCEPTRONIC2, C54RU),
105         URAL_DEV(DLINK, DWLG122),
106         URAL_DEV(GIGABYTE, GN54G),
107         URAL_DEV(GIGABYTE, GNWBKG),
108         URAL_DEV(GUILLEMOT, HWGUSB254),
109         URAL_DEV(MELCO, KG54),
110         URAL_DEV(MELCO, KG54AI),
111         URAL_DEV(MELCO, KG54YB),
112         URAL_DEV(MELCO, NINWIFI),
113         URAL_DEV(MSI, RT2570),
114         URAL_DEV(MSI, RT2570_2),
115         URAL_DEV(MSI, RT2570_3),
116         URAL_DEV(NOVATECH, NV902),
117         URAL_DEV(RALINK, RT2570),
118         URAL_DEV(RALINK, RT2570_2),
119         URAL_DEV(RALINK, RT2570_3),
120         URAL_DEV(SIEMENS2, WL54G),
121         URAL_DEV(SMC, 2862WG),
122         URAL_DEV(SPHAIRON, UB801R),
123         URAL_DEV(SURECOM, RT2570),
124         URAL_DEV(VTECH, RT2570),
125         URAL_DEV(ZINWELL, RT2570),
126 #undef URAL_DEV
127 };
128
129 static usb_callback_t ural_bulk_read_callback;
130 static usb_callback_t ural_bulk_write_callback;
131
132 static usb_error_t      ural_do_request(struct ural_softc *sc,
133                             struct usb_device_request *req, void *data);
134 static struct ieee80211vap *ural_vap_create(struct ieee80211com *,
135                             const char [IFNAMSIZ], int, enum ieee80211_opmode,
136                             int, const uint8_t [IEEE80211_ADDR_LEN],
137                             const uint8_t [IEEE80211_ADDR_LEN]);
138 static void             ural_vap_delete(struct ieee80211vap *);
139 static void             ural_tx_free(struct ural_tx_data *, int);
140 static void             ural_setup_tx_list(struct ural_softc *);
141 static void             ural_unsetup_tx_list(struct ural_softc *);
142 static int              ural_newstate(struct ieee80211vap *,
143                             enum ieee80211_state, int);
144 static void             ural_setup_tx_desc(struct ural_softc *,
145                             struct ural_tx_desc *, uint32_t, int, int);
146 static int              ural_tx_bcn(struct ural_softc *, struct mbuf *,
147                             struct ieee80211_node *);
148 static int              ural_tx_mgt(struct ural_softc *, struct mbuf *,
149                             struct ieee80211_node *);
150 static int              ural_tx_data(struct ural_softc *, struct mbuf *,
151                             struct ieee80211_node *);
152 static int              ural_transmit(struct ieee80211com *, struct mbuf *);
153 static void             ural_start(struct ural_softc *);
154 static void             ural_parent(struct ieee80211com *);
155 static void             ural_set_testmode(struct ural_softc *);
156 static void             ural_eeprom_read(struct ural_softc *, uint16_t, void *,
157                             int);
158 static uint16_t         ural_read(struct ural_softc *, uint16_t);
159 static void             ural_read_multi(struct ural_softc *, uint16_t, void *,
160                             int);
161 static void             ural_write(struct ural_softc *, uint16_t, uint16_t);
162 static void             ural_write_multi(struct ural_softc *, uint16_t, void *,
163                             int) __unused;
164 static void             ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
165 static uint8_t          ural_bbp_read(struct ural_softc *, uint8_t);
166 static void             ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
167 static void             ural_scan_start(struct ieee80211com *);
168 static void             ural_scan_end(struct ieee80211com *);
169 static void             ural_getradiocaps(struct ieee80211com *, int, int *,
170                             struct ieee80211_channel[]);
171 static void             ural_set_channel(struct ieee80211com *);
172 static void             ural_set_chan(struct ural_softc *,
173                             struct ieee80211_channel *);
174 static void             ural_disable_rf_tune(struct ural_softc *);
175 static void             ural_enable_tsf_sync(struct ural_softc *);
176 static void             ural_enable_tsf(struct ural_softc *);
177 static void             ural_update_slot(struct ural_softc *);
178 static void             ural_set_txpreamble(struct ural_softc *);
179 static void             ural_set_basicrates(struct ural_softc *,
180                             const struct ieee80211_channel *);
181 static void             ural_set_bssid(struct ural_softc *, const uint8_t *);
182 static void             ural_set_macaddr(struct ural_softc *, const uint8_t *);
183 static void             ural_update_promisc(struct ieee80211com *);
184 static void             ural_setpromisc(struct ural_softc *);
185 static const char       *ural_get_rf(int);
186 static void             ural_read_eeprom(struct ural_softc *);
187 static int              ural_bbp_init(struct ural_softc *);
188 static void             ural_set_txantenna(struct ural_softc *, int);
189 static void             ural_set_rxantenna(struct ural_softc *, int);
190 static void             ural_init(struct ural_softc *);
191 static void             ural_stop(struct ural_softc *);
192 static int              ural_raw_xmit(struct ieee80211_node *, struct mbuf *,
193                             const struct ieee80211_bpf_params *);
194 static void             ural_ratectl_start(struct ural_softc *,
195                             struct ieee80211_node *);
196 static void             ural_ratectl_timeout(void *);
197 static void             ural_ratectl_task(void *, int);
198 static int              ural_pause(struct ural_softc *sc, int timeout);
199
200 /*
201  * Default values for MAC registers; values taken from the reference driver.
202  */
203 static const struct {
204         uint16_t        reg;
205         uint16_t        val;
206 } ural_def_mac[] = {
207         { RAL_TXRX_CSR5,  0x8c8d },
208         { RAL_TXRX_CSR6,  0x8b8a },
209         { RAL_TXRX_CSR7,  0x8687 },
210         { RAL_TXRX_CSR8,  0x0085 },
211         { RAL_MAC_CSR13,  0x1111 },
212         { RAL_MAC_CSR14,  0x1e11 },
213         { RAL_TXRX_CSR21, 0xe78f },
214         { RAL_MAC_CSR9,   0xff1d },
215         { RAL_MAC_CSR11,  0x0002 },
216         { RAL_MAC_CSR22,  0x0053 },
217         { RAL_MAC_CSR15,  0x0000 },
218         { RAL_MAC_CSR8,   RAL_FRAME_SIZE },
219         { RAL_TXRX_CSR19, 0x0000 },
220         { RAL_TXRX_CSR18, 0x005a },
221         { RAL_PHY_CSR2,   0x0000 },
222         { RAL_TXRX_CSR0,  0x1ec0 },
223         { RAL_PHY_CSR4,   0x000f }
224 };
225
226 /*
227  * Default values for BBP registers; values taken from the reference driver.
228  */
229 static const struct {
230         uint8_t reg;
231         uint8_t val;
232 } ural_def_bbp[] = {
233         {  3, 0x02 },
234         {  4, 0x19 },
235         { 14, 0x1c },
236         { 15, 0x30 },
237         { 16, 0xac },
238         { 17, 0x48 },
239         { 18, 0x18 },
240         { 19, 0xff },
241         { 20, 0x1e },
242         { 21, 0x08 },
243         { 22, 0x08 },
244         { 23, 0x08 },
245         { 24, 0x80 },
246         { 25, 0x50 },
247         { 26, 0x08 },
248         { 27, 0x23 },
249         { 30, 0x10 },
250         { 31, 0x2b },
251         { 32, 0xb9 },
252         { 34, 0x12 },
253         { 35, 0x50 },
254         { 39, 0xc4 },
255         { 40, 0x02 },
256         { 41, 0x60 },
257         { 53, 0x10 },
258         { 54, 0x18 },
259         { 56, 0x08 },
260         { 57, 0x10 },
261         { 58, 0x08 },
262         { 61, 0x60 },
263         { 62, 0x10 },
264         { 75, 0xff }
265 };
266
267 /*
268  * Default values for RF register R2 indexed by channel numbers.
269  */
270 static const uint32_t ural_rf2522_r2[] = {
271         0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
272         0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
273 };
274
275 static const uint32_t ural_rf2523_r2[] = {
276         0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
277         0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
278 };
279
280 static const uint32_t ural_rf2524_r2[] = {
281         0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
282         0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
283 };
284
285 static const uint32_t ural_rf2525_r2[] = {
286         0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
287         0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
288 };
289
290 static const uint32_t ural_rf2525_hi_r2[] = {
291         0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
292         0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
293 };
294
295 static const uint32_t ural_rf2525e_r2[] = {
296         0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
297         0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
298 };
299
300 static const uint32_t ural_rf2526_hi_r2[] = {
301         0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
302         0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
303 };
304
305 static const uint32_t ural_rf2526_r2[] = {
306         0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
307         0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
308 };
309
310 /*
311  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
312  * values taken from the reference driver.
313  */
314 static const struct {
315         uint8_t         chan;
316         uint32_t        r1;
317         uint32_t        r2;
318         uint32_t        r4;
319 } ural_rf5222[] = {
320         {   1, 0x08808, 0x0044d, 0x00282 },
321         {   2, 0x08808, 0x0044e, 0x00282 },
322         {   3, 0x08808, 0x0044f, 0x00282 },
323         {   4, 0x08808, 0x00460, 0x00282 },
324         {   5, 0x08808, 0x00461, 0x00282 },
325         {   6, 0x08808, 0x00462, 0x00282 },
326         {   7, 0x08808, 0x00463, 0x00282 },
327         {   8, 0x08808, 0x00464, 0x00282 },
328         {   9, 0x08808, 0x00465, 0x00282 },
329         {  10, 0x08808, 0x00466, 0x00282 },
330         {  11, 0x08808, 0x00467, 0x00282 },
331         {  12, 0x08808, 0x00468, 0x00282 },
332         {  13, 0x08808, 0x00469, 0x00282 },
333         {  14, 0x08808, 0x0046b, 0x00286 },
334
335         {  36, 0x08804, 0x06225, 0x00287 },
336         {  40, 0x08804, 0x06226, 0x00287 },
337         {  44, 0x08804, 0x06227, 0x00287 },
338         {  48, 0x08804, 0x06228, 0x00287 },
339         {  52, 0x08804, 0x06229, 0x00287 },
340         {  56, 0x08804, 0x0622a, 0x00287 },
341         {  60, 0x08804, 0x0622b, 0x00287 },
342         {  64, 0x08804, 0x0622c, 0x00287 },
343
344         { 100, 0x08804, 0x02200, 0x00283 },
345         { 104, 0x08804, 0x02201, 0x00283 },
346         { 108, 0x08804, 0x02202, 0x00283 },
347         { 112, 0x08804, 0x02203, 0x00283 },
348         { 116, 0x08804, 0x02204, 0x00283 },
349         { 120, 0x08804, 0x02205, 0x00283 },
350         { 124, 0x08804, 0x02206, 0x00283 },
351         { 128, 0x08804, 0x02207, 0x00283 },
352         { 132, 0x08804, 0x02208, 0x00283 },
353         { 136, 0x08804, 0x02209, 0x00283 },
354         { 140, 0x08804, 0x0220a, 0x00283 },
355
356         { 149, 0x08808, 0x02429, 0x00281 },
357         { 153, 0x08808, 0x0242b, 0x00281 },
358         { 157, 0x08808, 0x0242d, 0x00281 },
359         { 161, 0x08808, 0x0242f, 0x00281 }
360 };
361
362 static const uint8_t ural_chan_2ghz[] =
363         { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 };
364
365 static const uint8_t ural_chan_5ghz[] =
366         { 36, 40, 44, 48, 52, 56, 60, 64,
367           100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140,
368           149, 153, 157, 161 };
369
370 static const struct usb_config ural_config[URAL_N_TRANSFER] = {
371         [URAL_BULK_WR] = {
372                 .type = UE_BULK,
373                 .endpoint = UE_ADDR_ANY,
374                 .direction = UE_DIR_OUT,
375                 .bufsize = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE + 4),
376                 .flags = {.pipe_bof = 1,.force_short_xfer = 1,},
377                 .callback = ural_bulk_write_callback,
378                 .timeout = 5000,        /* ms */
379         },
380         [URAL_BULK_RD] = {
381                 .type = UE_BULK,
382                 .endpoint = UE_ADDR_ANY,
383                 .direction = UE_DIR_IN,
384                 .bufsize = (RAL_FRAME_SIZE + RAL_RX_DESC_SIZE),
385                 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
386                 .callback = ural_bulk_read_callback,
387         },
388 };
389
390 static device_probe_t ural_match;
391 static device_attach_t ural_attach;
392 static device_detach_t ural_detach;
393
394 static device_method_t ural_methods[] = {
395         /* Device interface */
396         DEVMETHOD(device_probe,         ural_match),
397         DEVMETHOD(device_attach,        ural_attach),
398         DEVMETHOD(device_detach,        ural_detach),
399         DEVMETHOD_END
400 };
401
402 static driver_t ural_driver = {
403         .name = "ural",
404         .methods = ural_methods,
405         .size = sizeof(struct ural_softc),
406 };
407
408 static devclass_t ural_devclass;
409
410 DRIVER_MODULE(ural, uhub, ural_driver, ural_devclass, NULL, 0);
411 MODULE_DEPEND(ural, usb, 1, 1, 1);
412 MODULE_DEPEND(ural, wlan, 1, 1, 1);
413 MODULE_VERSION(ural, 1);
414 USB_PNP_HOST_INFO(ural_devs);
415
416 static int
417 ural_match(device_t self)
418 {
419         struct usb_attach_arg *uaa = device_get_ivars(self);
420
421         if (uaa->usb_mode != USB_MODE_HOST)
422                 return (ENXIO);
423         if (uaa->info.bConfigIndex != 0)
424                 return (ENXIO);
425         if (uaa->info.bIfaceIndex != RAL_IFACE_INDEX)
426                 return (ENXIO);
427
428         return (usbd_lookup_id_by_uaa(ural_devs, sizeof(ural_devs), uaa));
429 }
430
431 static int
432 ural_attach(device_t self)
433 {
434         struct usb_attach_arg *uaa = device_get_ivars(self);
435         struct ural_softc *sc = device_get_softc(self);
436         struct ieee80211com *ic = &sc->sc_ic;
437         uint8_t iface_index;
438         int error;
439
440         device_set_usb_desc(self);
441         sc->sc_udev = uaa->device;
442         sc->sc_dev = self;
443
444         mtx_init(&sc->sc_mtx, device_get_nameunit(self),
445             MTX_NETWORK_LOCK, MTX_DEF);
446         mbufq_init(&sc->sc_snd, ifqmaxlen);
447
448         iface_index = RAL_IFACE_INDEX;
449         error = usbd_transfer_setup(uaa->device,
450             &iface_index, sc->sc_xfer, ural_config,
451             URAL_N_TRANSFER, sc, &sc->sc_mtx);
452         if (error) {
453                 device_printf(self, "could not allocate USB transfers, "
454                     "err=%s\n", usbd_errstr(error));
455                 goto detach;
456         }
457
458         RAL_LOCK(sc);
459         /* retrieve RT2570 rev. no */
460         sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
461
462         /* retrieve MAC address and various other things from EEPROM */
463         ural_read_eeprom(sc);
464         RAL_UNLOCK(sc);
465
466         device_printf(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
467             sc->asic_rev, ural_get_rf(sc->rf_rev));
468
469         ic->ic_softc = sc;
470         ic->ic_name = device_get_nameunit(self);
471         ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
472
473         /* set device capabilities */
474         ic->ic_caps =
475               IEEE80211_C_STA           /* station mode supported */
476             | IEEE80211_C_IBSS          /* IBSS mode supported */
477             | IEEE80211_C_MONITOR       /* monitor mode supported */
478             | IEEE80211_C_HOSTAP        /* HostAp mode supported */
479             | IEEE80211_C_TXPMGT        /* tx power management */
480             | IEEE80211_C_SHPREAMBLE    /* short preamble supported */
481             | IEEE80211_C_SHSLOT        /* short slot time supported */
482             | IEEE80211_C_BGSCAN        /* bg scanning supported */
483             | IEEE80211_C_WPA           /* 802.11i */
484             ;
485
486         ural_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
487             ic->ic_channels);
488
489         ieee80211_ifattach(ic);
490         ic->ic_update_promisc = ural_update_promisc;
491         ic->ic_raw_xmit = ural_raw_xmit;
492         ic->ic_scan_start = ural_scan_start;
493         ic->ic_scan_end = ural_scan_end;
494         ic->ic_getradiocaps = ural_getradiocaps;
495         ic->ic_set_channel = ural_set_channel;
496         ic->ic_parent = ural_parent;
497         ic->ic_transmit = ural_transmit;
498         ic->ic_vap_create = ural_vap_create;
499         ic->ic_vap_delete = ural_vap_delete;
500
501         ieee80211_radiotap_attach(ic,
502             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
503                 RAL_TX_RADIOTAP_PRESENT,
504             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
505                 RAL_RX_RADIOTAP_PRESENT);
506
507         if (bootverbose)
508                 ieee80211_announce(ic);
509
510         return (0);
511
512 detach:
513         ural_detach(self);
514         return (ENXIO);                 /* failure */
515 }
516
517 static int
518 ural_detach(device_t self)
519 {
520         struct ural_softc *sc = device_get_softc(self);
521         struct ieee80211com *ic = &sc->sc_ic;
522
523         /* prevent further ioctls */
524         RAL_LOCK(sc);
525         sc->sc_detached = 1;
526         RAL_UNLOCK(sc);
527
528         /* stop all USB transfers */
529         usbd_transfer_unsetup(sc->sc_xfer, URAL_N_TRANSFER);
530
531         /* free TX list, if any */
532         RAL_LOCK(sc);
533         ural_unsetup_tx_list(sc);
534         RAL_UNLOCK(sc);
535
536         if (ic->ic_softc == sc)
537                 ieee80211_ifdetach(ic);
538         mbufq_drain(&sc->sc_snd);
539         mtx_destroy(&sc->sc_mtx);
540
541         return (0);
542 }
543
544 static usb_error_t
545 ural_do_request(struct ural_softc *sc,
546     struct usb_device_request *req, void *data)
547 {
548         usb_error_t err;
549         int ntries = 10;
550
551         while (ntries--) {
552                 err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
553                     req, data, 0, NULL, 250 /* ms */);
554                 if (err == 0)
555                         break;
556
557                 DPRINTFN(1, "Control request failed, %s (retrying)\n",
558                     usbd_errstr(err));
559                 if (ural_pause(sc, hz / 100))
560                         break;
561         }
562         return (err);
563 }
564
565 static struct ieee80211vap *
566 ural_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
567     enum ieee80211_opmode opmode, int flags,
568     const uint8_t bssid[IEEE80211_ADDR_LEN],
569     const uint8_t mac[IEEE80211_ADDR_LEN])
570 {
571         struct ural_softc *sc = ic->ic_softc;
572         struct ural_vap *uvp;
573         struct ieee80211vap *vap;
574
575         if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
576                 return NULL;
577         uvp = malloc(sizeof(struct ural_vap), M_80211_VAP, M_WAITOK | M_ZERO);
578         vap = &uvp->vap;
579         /* enable s/w bmiss handling for sta mode */
580
581         if (ieee80211_vap_setup(ic, vap, name, unit, opmode,
582             flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) {
583                 /* out of memory */
584                 free(uvp, M_80211_VAP);
585                 return (NULL);
586         }
587
588         /* override state transition machine */
589         uvp->newstate = vap->iv_newstate;
590         vap->iv_newstate = ural_newstate;
591
592         usb_callout_init_mtx(&uvp->ratectl_ch, &sc->sc_mtx, 0);
593         TASK_INIT(&uvp->ratectl_task, 0, ural_ratectl_task, uvp);
594         ieee80211_ratectl_init(vap);
595         ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
596
597         /* complete setup */
598         ieee80211_vap_attach(vap, ieee80211_media_change,
599             ieee80211_media_status, mac);
600         ic->ic_opmode = opmode;
601         return vap;
602 }
603
604 static void
605 ural_vap_delete(struct ieee80211vap *vap)
606 {
607         struct ural_vap *uvp = URAL_VAP(vap);
608         struct ieee80211com *ic = vap->iv_ic;
609
610         usb_callout_drain(&uvp->ratectl_ch);
611         ieee80211_draintask(ic, &uvp->ratectl_task);
612         ieee80211_ratectl_deinit(vap);
613         ieee80211_vap_detach(vap);
614         free(uvp, M_80211_VAP);
615 }
616
617 static void
618 ural_tx_free(struct ural_tx_data *data, int txerr)
619 {
620         struct ural_softc *sc = data->sc;
621
622         if (data->m != NULL) {
623                 ieee80211_tx_complete(data->ni, data->m, txerr);
624                 data->m = NULL;
625                 data->ni = NULL;
626         }
627         STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
628         sc->tx_nfree++;
629 }
630
631 static void
632 ural_setup_tx_list(struct ural_softc *sc)
633 {
634         struct ural_tx_data *data;
635         int i;
636
637         sc->tx_nfree = 0;
638         STAILQ_INIT(&sc->tx_q);
639         STAILQ_INIT(&sc->tx_free);
640
641         for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
642                 data = &sc->tx_data[i];
643
644                 data->sc = sc;
645                 STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
646                 sc->tx_nfree++;
647         }
648 }
649
650 static void
651 ural_unsetup_tx_list(struct ural_softc *sc)
652 {
653         struct ural_tx_data *data;
654         int i;
655
656         /* make sure any subsequent use of the queues will fail */
657         sc->tx_nfree = 0;
658         STAILQ_INIT(&sc->tx_q);
659         STAILQ_INIT(&sc->tx_free);
660
661         /* free up all node references and mbufs */
662         for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
663                 data = &sc->tx_data[i];
664
665                 if (data->m != NULL) {
666                         m_freem(data->m);
667                         data->m = NULL;
668                 }
669                 if (data->ni != NULL) {
670                         ieee80211_free_node(data->ni);
671                         data->ni = NULL;
672                 }
673         }
674 }
675
676 static int
677 ural_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
678 {
679         struct ural_vap *uvp = URAL_VAP(vap);
680         struct ieee80211com *ic = vap->iv_ic;
681         struct ural_softc *sc = ic->ic_softc;
682         const struct ieee80211_txparam *tp;
683         struct ieee80211_node *ni;
684         struct mbuf *m;
685
686         DPRINTF("%s -> %s\n",
687                 ieee80211_state_name[vap->iv_state],
688                 ieee80211_state_name[nstate]);
689
690         IEEE80211_UNLOCK(ic);
691         RAL_LOCK(sc);
692         usb_callout_stop(&uvp->ratectl_ch);
693
694         switch (nstate) {
695         case IEEE80211_S_INIT:
696                 if (vap->iv_state == IEEE80211_S_RUN) {
697                         /* abort TSF synchronization */
698                         ural_write(sc, RAL_TXRX_CSR19, 0);
699
700                         /* force tx led to stop blinking */
701                         ural_write(sc, RAL_MAC_CSR20, 0);
702                 }
703                 break;
704
705         case IEEE80211_S_RUN:
706                 ni = ieee80211_ref_node(vap->iv_bss);
707
708                 if (vap->iv_opmode != IEEE80211_M_MONITOR) {
709                         if (ic->ic_bsschan == IEEE80211_CHAN_ANYC)
710                                 goto fail;
711
712                         ural_update_slot(sc);
713                         ural_set_txpreamble(sc);
714                         ural_set_basicrates(sc, ic->ic_bsschan);
715                         IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
716                         ural_set_bssid(sc, sc->sc_bssid);
717                 }
718
719                 if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
720                     vap->iv_opmode == IEEE80211_M_IBSS) {
721                         m = ieee80211_beacon_alloc(ni);
722                         if (m == NULL) {
723                                 device_printf(sc->sc_dev,
724                                     "could not allocate beacon\n");
725                                 goto fail;
726                         }
727                         ieee80211_ref_node(ni);
728                         if (ural_tx_bcn(sc, m, ni) != 0) {
729                                 device_printf(sc->sc_dev,
730                                     "could not send beacon\n");
731                                 goto fail;
732                         }
733                 }
734
735                 /* make tx led blink on tx (controlled by ASIC) */
736                 ural_write(sc, RAL_MAC_CSR20, 1);
737
738                 if (vap->iv_opmode != IEEE80211_M_MONITOR)
739                         ural_enable_tsf_sync(sc);
740                 else
741                         ural_enable_tsf(sc);
742
743                 /* enable automatic rate adaptation */
744                 /* XXX should use ic_bsschan but not valid until after newstate call below */
745                 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
746                 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
747                         ural_ratectl_start(sc, ni);
748                 ieee80211_free_node(ni);
749                 break;
750
751         default:
752                 break;
753         }
754         RAL_UNLOCK(sc);
755         IEEE80211_LOCK(ic);
756         return (uvp->newstate(vap, nstate, arg));
757
758 fail:
759         RAL_UNLOCK(sc);
760         IEEE80211_LOCK(ic);
761         ieee80211_free_node(ni);
762         return (-1);
763 }
764
765
766 static void
767 ural_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
768 {
769         struct ural_softc *sc = usbd_xfer_softc(xfer);
770         struct ieee80211vap *vap;
771         struct ural_tx_data *data;
772         struct mbuf *m;
773         struct usb_page_cache *pc;
774         int len;
775
776         usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
777
778         switch (USB_GET_STATE(xfer)) {
779         case USB_ST_TRANSFERRED:
780                 DPRINTFN(11, "transfer complete, %d bytes\n", len);
781
782                 /* free resources */
783                 data = usbd_xfer_get_priv(xfer);
784                 ural_tx_free(data, 0);
785                 usbd_xfer_set_priv(xfer, NULL);
786
787                 /* FALLTHROUGH */
788         case USB_ST_SETUP:
789 tr_setup:
790                 data = STAILQ_FIRST(&sc->tx_q);
791                 if (data) {
792                         STAILQ_REMOVE_HEAD(&sc->tx_q, next);
793                         m = data->m;
794
795                         if (m->m_pkthdr.len > (int)(RAL_FRAME_SIZE + RAL_TX_DESC_SIZE)) {
796                                 DPRINTFN(0, "data overflow, %u bytes\n",
797                                     m->m_pkthdr.len);
798                                 m->m_pkthdr.len = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE);
799                         }
800                         pc = usbd_xfer_get_frame(xfer, 0);
801                         usbd_copy_in(pc, 0, &data->desc, RAL_TX_DESC_SIZE);
802                         usbd_m_copy_in(pc, RAL_TX_DESC_SIZE, m, 0,
803                             m->m_pkthdr.len);
804
805                         vap = data->ni->ni_vap;
806                         if (ieee80211_radiotap_active_vap(vap)) {
807                                 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
808
809                                 tap->wt_flags = 0;
810                                 tap->wt_rate = data->rate;
811                                 tap->wt_antenna = sc->tx_ant;
812
813                                 ieee80211_radiotap_tx(vap, m);
814                         }
815
816                         /* xfer length needs to be a multiple of two! */
817                         len = (RAL_TX_DESC_SIZE + m->m_pkthdr.len + 1) & ~1;
818                         if ((len % 64) == 0)
819                                 len += 2;
820
821                         DPRINTFN(11, "sending frame len=%u xferlen=%u\n",
822                             m->m_pkthdr.len, len);
823
824                         usbd_xfer_set_frame_len(xfer, 0, len);
825                         usbd_xfer_set_priv(xfer, data);
826
827                         usbd_transfer_submit(xfer);
828                 }
829                 ural_start(sc);
830                 break;
831
832         default:                        /* Error */
833                 DPRINTFN(11, "transfer error, %s\n",
834                     usbd_errstr(error));
835
836                 data = usbd_xfer_get_priv(xfer);
837                 if (data != NULL) {
838                         ural_tx_free(data, error);
839                         usbd_xfer_set_priv(xfer, NULL);
840                 }
841
842                 if (error == USB_ERR_STALLED) {
843                         /* try to clear stall first */
844                         usbd_xfer_set_stall(xfer);
845                         goto tr_setup;
846                 }
847                 if (error == USB_ERR_TIMEOUT)
848                         device_printf(sc->sc_dev, "device timeout\n");
849                 break;
850         }
851 }
852
853 static void
854 ural_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
855 {
856         struct ural_softc *sc = usbd_xfer_softc(xfer);
857         struct ieee80211com *ic = &sc->sc_ic;
858         struct ieee80211_node *ni;
859         struct mbuf *m = NULL;
860         struct usb_page_cache *pc;
861         uint32_t flags;
862         int8_t rssi = 0, nf = 0;
863         int len;
864
865         usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
866
867         switch (USB_GET_STATE(xfer)) {
868         case USB_ST_TRANSFERRED:
869
870                 DPRINTFN(15, "rx done, actlen=%d\n", len);
871
872                 if (len < (int)(RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN)) {
873                         DPRINTF("%s: xfer too short %d\n",
874                             device_get_nameunit(sc->sc_dev), len);
875                         counter_u64_add(ic->ic_ierrors, 1);
876                         goto tr_setup;
877                 }
878
879                 len -= RAL_RX_DESC_SIZE;
880                 /* rx descriptor is located at the end */
881                 pc = usbd_xfer_get_frame(xfer, 0);
882                 usbd_copy_out(pc, len, &sc->sc_rx_desc, RAL_RX_DESC_SIZE);
883
884                 rssi = URAL_RSSI(sc->sc_rx_desc.rssi);
885                 nf = RAL_NOISE_FLOOR;
886                 flags = le32toh(sc->sc_rx_desc.flags);
887                 if (flags & (RAL_RX_PHY_ERROR | RAL_RX_CRC_ERROR)) {
888                         /*
889                          * This should not happen since we did not
890                          * request to receive those frames when we
891                          * filled RAL_TXRX_CSR2:
892                          */
893                         DPRINTFN(5, "PHY or CRC error\n");
894                         counter_u64_add(ic->ic_ierrors, 1);
895                         goto tr_setup;
896                 }
897
898                 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
899                 if (m == NULL) {
900                         DPRINTF("could not allocate mbuf\n");
901                         counter_u64_add(ic->ic_ierrors, 1);
902                         goto tr_setup;
903                 }
904                 usbd_copy_out(pc, 0, mtod(m, uint8_t *), len);
905
906                 /* finalize mbuf */
907                 m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff;
908
909                 if (ieee80211_radiotap_active(ic)) {
910                         struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
911
912                         /* XXX set once */
913                         tap->wr_flags = 0;
914                         tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate,
915                             (flags & RAL_RX_OFDM) ?
916                             IEEE80211_T_OFDM : IEEE80211_T_CCK);
917                         tap->wr_antenna = sc->rx_ant;
918                         tap->wr_antsignal = nf + rssi;
919                         tap->wr_antnoise = nf;
920                 }
921                 /* Strip trailing 802.11 MAC FCS. */
922                 m_adj(m, -IEEE80211_CRC_LEN);
923
924                 /* FALLTHROUGH */
925         case USB_ST_SETUP:
926 tr_setup:
927                 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
928                 usbd_transfer_submit(xfer);
929
930                 /*
931                  * At the end of a USB callback it is always safe to unlock
932                  * the private mutex of a device! That is why we do the
933                  * "ieee80211_input" here, and not some lines up!
934                  */
935                 RAL_UNLOCK(sc);
936                 if (m) {
937                         ni = ieee80211_find_rxnode(ic,
938                             mtod(m, struct ieee80211_frame_min *));
939                         if (ni != NULL) {
940                                 (void) ieee80211_input(ni, m, rssi, nf);
941                                 ieee80211_free_node(ni);
942                         } else
943                                 (void) ieee80211_input_all(ic, m, rssi, nf);
944                 }
945                 RAL_LOCK(sc);
946                 ural_start(sc);
947                 return;
948
949         default:                        /* Error */
950                 if (error != USB_ERR_CANCELLED) {
951                         /* try to clear stall first */
952                         usbd_xfer_set_stall(xfer);
953                         goto tr_setup;
954                 }
955                 return;
956         }
957 }
958
959 static uint8_t
960 ural_plcp_signal(int rate)
961 {
962         switch (rate) {
963         /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
964         case 12:        return 0xb;
965         case 18:        return 0xf;
966         case 24:        return 0xa;
967         case 36:        return 0xe;
968         case 48:        return 0x9;
969         case 72:        return 0xd;
970         case 96:        return 0x8;
971         case 108:       return 0xc;
972
973         /* CCK rates (NB: not IEEE std, device-specific) */
974         case 2:         return 0x0;
975         case 4:         return 0x1;
976         case 11:        return 0x2;
977         case 22:        return 0x3;
978         }
979         return 0xff;            /* XXX unsupported/unknown rate */
980 }
981
982 static void
983 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
984     uint32_t flags, int len, int rate)
985 {
986         struct ieee80211com *ic = &sc->sc_ic;
987         uint16_t plcp_length;
988         int remainder;
989
990         desc->flags = htole32(flags);
991         desc->flags |= htole32(RAL_TX_NEWSEQ);
992         desc->flags |= htole32(len << 16);
993
994         desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
995         desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
996
997         /* setup PLCP fields */
998         desc->plcp_signal  = ural_plcp_signal(rate);
999         desc->plcp_service = 4;
1000
1001         len += IEEE80211_CRC_LEN;
1002         if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) {
1003                 desc->flags |= htole32(RAL_TX_OFDM);
1004
1005                 plcp_length = len & 0xfff;
1006                 desc->plcp_length_hi = plcp_length >> 6;
1007                 desc->plcp_length_lo = plcp_length & 0x3f;
1008         } else {
1009                 if (rate == 0)
1010                         rate = 2;       /* avoid division by zero */
1011                 plcp_length = howmany(16 * len, rate);
1012                 if (rate == 22) {
1013                         remainder = (16 * len) % 22;
1014                         if (remainder != 0 && remainder < 7)
1015                                 desc->plcp_service |= RAL_PLCP_LENGEXT;
1016                 }
1017                 desc->plcp_length_hi = plcp_length >> 8;
1018                 desc->plcp_length_lo = plcp_length & 0xff;
1019
1020                 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1021                         desc->plcp_signal |= 0x08;
1022         }
1023
1024         desc->iv = 0;
1025         desc->eiv = 0;
1026 }
1027
1028 #define RAL_TX_TIMEOUT  5000
1029
1030 static int
1031 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1032 {
1033         struct ieee80211vap *vap = ni->ni_vap;
1034         struct ieee80211com *ic = ni->ni_ic;
1035         const struct ieee80211_txparam *tp;
1036         struct ural_tx_data *data;
1037
1038         if (sc->tx_nfree == 0) {
1039                 m_freem(m0);
1040                 ieee80211_free_node(ni);
1041                 return (EIO);
1042         }
1043         if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) {
1044                 m_freem(m0);
1045                 ieee80211_free_node(ni);
1046                 return (ENXIO);
1047         }
1048         data = STAILQ_FIRST(&sc->tx_free);
1049         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1050         sc->tx_nfree--;
1051         tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)];
1052
1053         data->m = m0;
1054         data->ni = ni;
1055         data->rate = tp->mgmtrate;
1056
1057         ural_setup_tx_desc(sc, &data->desc,
1058             RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP, m0->m_pkthdr.len,
1059             tp->mgmtrate);
1060
1061         DPRINTFN(10, "sending beacon frame len=%u rate=%u\n",
1062             m0->m_pkthdr.len, tp->mgmtrate);
1063
1064         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1065         usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1066
1067         return (0);
1068 }
1069
1070 static int
1071 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1072 {
1073         const struct ieee80211_txparam *tp = ni->ni_txparms;
1074         struct ieee80211com *ic = ni->ni_ic;
1075         struct ural_tx_data *data;
1076         struct ieee80211_frame *wh;
1077         struct ieee80211_key *k;
1078         uint32_t flags;
1079         uint16_t dur;
1080
1081         RAL_LOCK_ASSERT(sc, MA_OWNED);
1082
1083         data = STAILQ_FIRST(&sc->tx_free);
1084         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1085         sc->tx_nfree--;
1086
1087         wh = mtod(m0, struct ieee80211_frame *);
1088         if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1089                 k = ieee80211_crypto_encap(ni, m0);
1090                 if (k == NULL) {
1091                         m_freem(m0);
1092                         return ENOBUFS;
1093                 }
1094                 wh = mtod(m0, struct ieee80211_frame *);
1095         }
1096
1097         data->m = m0;
1098         data->ni = ni;
1099         data->rate = tp->mgmtrate;
1100
1101         flags = 0;
1102         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1103                 flags |= RAL_TX_ACK;
1104
1105                 dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate, 
1106                     ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1107                 USETW(wh->i_dur, dur);
1108
1109                 /* tell hardware to add timestamp for probe responses */
1110                 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1111                     IEEE80211_FC0_TYPE_MGT &&
1112                     (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1113                     IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1114                         flags |= RAL_TX_TIMESTAMP;
1115         }
1116
1117         ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, tp->mgmtrate);
1118
1119         DPRINTFN(10, "sending mgt frame len=%u rate=%u\n",
1120             m0->m_pkthdr.len, tp->mgmtrate);
1121
1122         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1123         usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1124
1125         return 0;
1126 }
1127
1128 static int
1129 ural_sendprot(struct ural_softc *sc,
1130     const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
1131 {
1132         struct ieee80211com *ic = ni->ni_ic;
1133         const struct ieee80211_frame *wh;
1134         struct ural_tx_data *data;
1135         struct mbuf *mprot;
1136         int protrate, ackrate, pktlen, flags, isshort;
1137         uint16_t dur;
1138
1139         KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY,
1140             ("protection %d", prot));
1141
1142         wh = mtod(m, const struct ieee80211_frame *);
1143         pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
1144
1145         protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
1146         ackrate = ieee80211_ack_rate(ic->ic_rt, rate);
1147
1148         isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
1149         dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
1150             + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1151         flags = RAL_TX_RETRY(7);
1152         if (prot == IEEE80211_PROT_RTSCTS) {
1153                 /* NB: CTS is the same size as an ACK */
1154                 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1155                 flags |= RAL_TX_ACK;
1156                 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
1157         } else {
1158                 mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
1159         }
1160         if (mprot == NULL) {
1161                 /* XXX stat + msg */
1162                 return ENOBUFS;
1163         }
1164         data = STAILQ_FIRST(&sc->tx_free);
1165         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1166         sc->tx_nfree--;
1167
1168         data->m = mprot;
1169         data->ni = ieee80211_ref_node(ni);
1170         data->rate = protrate;
1171         ural_setup_tx_desc(sc, &data->desc, flags, mprot->m_pkthdr.len, protrate);
1172
1173         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1174         usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1175
1176         return 0;
1177 }
1178
1179 static int
1180 ural_tx_raw(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1181     const struct ieee80211_bpf_params *params)
1182 {
1183         struct ieee80211com *ic = ni->ni_ic;
1184         struct ural_tx_data *data;
1185         uint32_t flags;
1186         int error;
1187         int rate;
1188
1189         RAL_LOCK_ASSERT(sc, MA_OWNED);
1190         KASSERT(params != NULL, ("no raw xmit params"));
1191
1192         rate = params->ibp_rate0;
1193         if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
1194                 m_freem(m0);
1195                 return EINVAL;
1196         }
1197         flags = 0;
1198         if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
1199                 flags |= RAL_TX_ACK;
1200         if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
1201                 error = ural_sendprot(sc, m0, ni,
1202                     params->ibp_flags & IEEE80211_BPF_RTS ?
1203                          IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
1204                     rate);
1205                 if (error || sc->tx_nfree == 0) {
1206                         m_freem(m0);
1207                         return ENOBUFS;
1208                 }
1209                 flags |= RAL_TX_IFS_SIFS;
1210         }
1211
1212         data = STAILQ_FIRST(&sc->tx_free);
1213         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1214         sc->tx_nfree--;
1215
1216         data->m = m0;
1217         data->ni = ni;
1218         data->rate = rate;
1219
1220         /* XXX need to setup descriptor ourself */
1221         ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate);
1222
1223         DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
1224             m0->m_pkthdr.len, rate);
1225
1226         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1227         usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1228
1229         return 0;
1230 }
1231
1232 static int
1233 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1234 {
1235         struct ieee80211vap *vap = ni->ni_vap;
1236         struct ieee80211com *ic = ni->ni_ic;
1237         struct ural_tx_data *data;
1238         struct ieee80211_frame *wh;
1239         const struct ieee80211_txparam *tp = ni->ni_txparms;
1240         struct ieee80211_key *k;
1241         uint32_t flags = 0;
1242         uint16_t dur;
1243         int error, rate;
1244
1245         RAL_LOCK_ASSERT(sc, MA_OWNED);
1246
1247         wh = mtod(m0, struct ieee80211_frame *);
1248
1249         if (m0->m_flags & M_EAPOL)
1250                 rate = tp->mgmtrate;
1251         else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1252                 rate = tp->mcastrate;
1253         else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
1254                 rate = tp->ucastrate;
1255         else {
1256                 (void) ieee80211_ratectl_rate(ni, NULL, 0);
1257                 rate = ni->ni_txrate;
1258         }
1259
1260         if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1261                 k = ieee80211_crypto_encap(ni, m0);
1262                 if (k == NULL) {
1263                         m_freem(m0);
1264                         return ENOBUFS;
1265                 }
1266                 /* packet header may have moved, reset our local pointer */
1267                 wh = mtod(m0, struct ieee80211_frame *);
1268         }
1269
1270         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1271                 int prot = IEEE80211_PROT_NONE;
1272                 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
1273                         prot = IEEE80211_PROT_RTSCTS;
1274                 else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1275                     ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM)
1276                         prot = ic->ic_protmode;
1277                 if (prot != IEEE80211_PROT_NONE) {
1278                         error = ural_sendprot(sc, m0, ni, prot, rate);
1279                         if (error || sc->tx_nfree == 0) {
1280                                 m_freem(m0);
1281                                 return ENOBUFS;
1282                         }
1283                         flags |= RAL_TX_IFS_SIFS;
1284                 }
1285         }
1286
1287         data = STAILQ_FIRST(&sc->tx_free);
1288         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1289         sc->tx_nfree--;
1290
1291         data->m = m0;
1292         data->ni = ni;
1293         data->rate = rate;
1294
1295         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1296                 flags |= RAL_TX_ACK;
1297                 flags |= RAL_TX_RETRY(7);
1298
1299                 dur = ieee80211_ack_duration(ic->ic_rt, rate, 
1300                     ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1301                 USETW(wh->i_dur, dur);
1302         }
1303
1304         ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate);
1305
1306         DPRINTFN(10, "sending data frame len=%u rate=%u\n",
1307             m0->m_pkthdr.len, rate);
1308
1309         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1310         usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1311
1312         return 0;
1313 }
1314
1315 static int
1316 ural_transmit(struct ieee80211com *ic, struct mbuf *m)
1317 {
1318         struct ural_softc *sc = ic->ic_softc;
1319         int error;
1320
1321         RAL_LOCK(sc);
1322         if (!sc->sc_running) {
1323                 RAL_UNLOCK(sc);
1324                 return (ENXIO);
1325         }
1326         error = mbufq_enqueue(&sc->sc_snd, m);
1327         if (error) {
1328                 RAL_UNLOCK(sc);
1329                 return (error);
1330         }
1331         ural_start(sc);
1332         RAL_UNLOCK(sc);
1333
1334         return (0);
1335 }
1336
1337 static void
1338 ural_start(struct ural_softc *sc)
1339 {
1340         struct ieee80211_node *ni;
1341         struct mbuf *m;
1342
1343         RAL_LOCK_ASSERT(sc, MA_OWNED);
1344
1345         if (sc->sc_running == 0)
1346                 return;
1347
1348         while (sc->tx_nfree >= RAL_TX_MINFREE &&
1349             (m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
1350                 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1351                 if (ural_tx_data(sc, m, ni) != 0) {
1352                         if_inc_counter(ni->ni_vap->iv_ifp,
1353                              IFCOUNTER_OERRORS, 1);
1354                         ieee80211_free_node(ni);
1355                         break;
1356                 }
1357         }
1358 }
1359
1360 static void
1361 ural_parent(struct ieee80211com *ic)
1362 {
1363         struct ural_softc *sc = ic->ic_softc;
1364         int startall = 0;
1365
1366         RAL_LOCK(sc);
1367         if (sc->sc_detached) {
1368                 RAL_UNLOCK(sc);
1369                 return;
1370         }
1371         if (ic->ic_nrunning > 0) {
1372                 if (sc->sc_running == 0) {
1373                         ural_init(sc);
1374                         startall = 1;
1375                 } else
1376                         ural_setpromisc(sc);
1377         } else if (sc->sc_running)
1378                 ural_stop(sc);
1379         RAL_UNLOCK(sc);
1380         if (startall)
1381                 ieee80211_start_all(ic);
1382 }
1383
1384 static void
1385 ural_set_testmode(struct ural_softc *sc)
1386 {
1387         struct usb_device_request req;
1388         usb_error_t error;
1389
1390         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1391         req.bRequest = RAL_VENDOR_REQUEST;
1392         USETW(req.wValue, 4);
1393         USETW(req.wIndex, 1);
1394         USETW(req.wLength, 0);
1395
1396         error = ural_do_request(sc, &req, NULL);
1397         if (error != 0) {
1398                 device_printf(sc->sc_dev, "could not set test mode: %s\n",
1399                     usbd_errstr(error));
1400         }
1401 }
1402
1403 static void
1404 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1405 {
1406         struct usb_device_request req;
1407         usb_error_t error;
1408
1409         req.bmRequestType = UT_READ_VENDOR_DEVICE;
1410         req.bRequest = RAL_READ_EEPROM;
1411         USETW(req.wValue, 0);
1412         USETW(req.wIndex, addr);
1413         USETW(req.wLength, len);
1414
1415         error = ural_do_request(sc, &req, buf);
1416         if (error != 0) {
1417                 device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
1418                     usbd_errstr(error));
1419         }
1420 }
1421
1422 static uint16_t
1423 ural_read(struct ural_softc *sc, uint16_t reg)
1424 {
1425         struct usb_device_request req;
1426         usb_error_t error;
1427         uint16_t val;
1428
1429         req.bmRequestType = UT_READ_VENDOR_DEVICE;
1430         req.bRequest = RAL_READ_MAC;
1431         USETW(req.wValue, 0);
1432         USETW(req.wIndex, reg);
1433         USETW(req.wLength, sizeof (uint16_t));
1434
1435         error = ural_do_request(sc, &req, &val);
1436         if (error != 0) {
1437                 device_printf(sc->sc_dev, "could not read MAC register: %s\n",
1438                     usbd_errstr(error));
1439                 return 0;
1440         }
1441
1442         return le16toh(val);
1443 }
1444
1445 static void
1446 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1447 {
1448         struct usb_device_request req;
1449         usb_error_t error;
1450
1451         req.bmRequestType = UT_READ_VENDOR_DEVICE;
1452         req.bRequest = RAL_READ_MULTI_MAC;
1453         USETW(req.wValue, 0);
1454         USETW(req.wIndex, reg);
1455         USETW(req.wLength, len);
1456
1457         error = ural_do_request(sc, &req, buf);
1458         if (error != 0) {
1459                 device_printf(sc->sc_dev, "could not read MAC register: %s\n",
1460                     usbd_errstr(error));
1461         }
1462 }
1463
1464 static void
1465 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1466 {
1467         struct usb_device_request req;
1468         usb_error_t error;
1469
1470         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1471         req.bRequest = RAL_WRITE_MAC;
1472         USETW(req.wValue, val);
1473         USETW(req.wIndex, reg);
1474         USETW(req.wLength, 0);
1475
1476         error = ural_do_request(sc, &req, NULL);
1477         if (error != 0) {
1478                 device_printf(sc->sc_dev, "could not write MAC register: %s\n",
1479                     usbd_errstr(error));
1480         }
1481 }
1482
1483 static void
1484 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1485 {
1486         struct usb_device_request req;
1487         usb_error_t error;
1488
1489         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1490         req.bRequest = RAL_WRITE_MULTI_MAC;
1491         USETW(req.wValue, 0);
1492         USETW(req.wIndex, reg);
1493         USETW(req.wLength, len);
1494
1495         error = ural_do_request(sc, &req, buf);
1496         if (error != 0) {
1497                 device_printf(sc->sc_dev, "could not write MAC register: %s\n",
1498                     usbd_errstr(error));
1499         }
1500 }
1501
1502 static void
1503 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1504 {
1505         uint16_t tmp;
1506         int ntries;
1507
1508         for (ntries = 0; ntries < 100; ntries++) {
1509                 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1510                         break;
1511                 if (ural_pause(sc, hz / 100))
1512                         break;
1513         }
1514         if (ntries == 100) {
1515                 device_printf(sc->sc_dev, "could not write to BBP\n");
1516                 return;
1517         }
1518
1519         tmp = reg << 8 | val;
1520         ural_write(sc, RAL_PHY_CSR7, tmp);
1521 }
1522
1523 static uint8_t
1524 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1525 {
1526         uint16_t val;
1527         int ntries;
1528
1529         val = RAL_BBP_WRITE | reg << 8;
1530         ural_write(sc, RAL_PHY_CSR7, val);
1531
1532         for (ntries = 0; ntries < 100; ntries++) {
1533                 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1534                         break;
1535                 if (ural_pause(sc, hz / 100))
1536                         break;
1537         }
1538         if (ntries == 100) {
1539                 device_printf(sc->sc_dev, "could not read BBP\n");
1540                 return 0;
1541         }
1542
1543         return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1544 }
1545
1546 static void
1547 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1548 {
1549         uint32_t tmp;
1550         int ntries;
1551
1552         for (ntries = 0; ntries < 100; ntries++) {
1553                 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1554                         break;
1555                 if (ural_pause(sc, hz / 100))
1556                         break;
1557         }
1558         if (ntries == 100) {
1559                 device_printf(sc->sc_dev, "could not write to RF\n");
1560                 return;
1561         }
1562
1563         tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1564         ural_write(sc, RAL_PHY_CSR9,  tmp & 0xffff);
1565         ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1566
1567         /* remember last written value in sc */
1568         sc->rf_regs[reg] = val;
1569
1570         DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff);
1571 }
1572
1573 static void
1574 ural_scan_start(struct ieee80211com *ic)
1575 {
1576         struct ural_softc *sc = ic->ic_softc;
1577
1578         RAL_LOCK(sc);
1579         ural_write(sc, RAL_TXRX_CSR19, 0);
1580         ural_set_bssid(sc, ieee80211broadcastaddr);
1581         RAL_UNLOCK(sc);
1582 }
1583
1584 static void
1585 ural_scan_end(struct ieee80211com *ic)
1586 {
1587         struct ural_softc *sc = ic->ic_softc;
1588
1589         RAL_LOCK(sc);
1590         ural_enable_tsf_sync(sc);
1591         ural_set_bssid(sc, sc->sc_bssid);
1592         RAL_UNLOCK(sc);
1593
1594 }
1595
1596 static void
1597 ural_getradiocaps(struct ieee80211com *ic,
1598     int maxchans, int *nchans, struct ieee80211_channel chans[])
1599 {
1600         struct ural_softc *sc = ic->ic_softc;
1601         uint8_t bands[IEEE80211_MODE_BYTES];
1602
1603         memset(bands, 0, sizeof(bands));
1604         setbit(bands, IEEE80211_MODE_11B);
1605         setbit(bands, IEEE80211_MODE_11G);
1606         ieee80211_add_channel_list_2ghz(chans, maxchans, nchans,
1607             ural_chan_2ghz, nitems(ural_chan_2ghz), bands, 0);
1608
1609         if (sc->rf_rev == RAL_RF_5222) {
1610                 setbit(bands, IEEE80211_MODE_11A);
1611                 ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
1612                     ural_chan_5ghz, nitems(ural_chan_5ghz), bands, 0);
1613         }
1614 }
1615
1616 static void
1617 ural_set_channel(struct ieee80211com *ic)
1618 {
1619         struct ural_softc *sc = ic->ic_softc;
1620
1621         RAL_LOCK(sc);
1622         ural_set_chan(sc, ic->ic_curchan);
1623         RAL_UNLOCK(sc);
1624 }
1625
1626 static void
1627 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1628 {
1629         struct ieee80211com *ic = &sc->sc_ic;
1630         uint8_t power, tmp;
1631         int i, chan;
1632
1633         chan = ieee80211_chan2ieee(ic, c);
1634         if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1635                 return;
1636
1637         if (IEEE80211_IS_CHAN_2GHZ(c))
1638                 power = min(sc->txpow[chan - 1], 31);
1639         else
1640                 power = 31;
1641
1642         /* adjust txpower using ifconfig settings */
1643         power -= (100 - ic->ic_txpowlimit) / 8;
1644
1645         DPRINTFN(2, "setting channel to %u, txpower to %u\n", chan, power);
1646
1647         switch (sc->rf_rev) {
1648         case RAL_RF_2522:
1649                 ural_rf_write(sc, RAL_RF1, 0x00814);
1650                 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1651                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1652                 break;
1653
1654         case RAL_RF_2523:
1655                 ural_rf_write(sc, RAL_RF1, 0x08804);
1656                 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1657                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1658                 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1659                 break;
1660
1661         case RAL_RF_2524:
1662                 ural_rf_write(sc, RAL_RF1, 0x0c808);
1663                 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1664                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1665                 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1666                 break;
1667
1668         case RAL_RF_2525:
1669                 ural_rf_write(sc, RAL_RF1, 0x08808);
1670                 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1671                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1672                 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1673
1674                 ural_rf_write(sc, RAL_RF1, 0x08808);
1675                 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1676                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1677                 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1678                 break;
1679
1680         case RAL_RF_2525E:
1681                 ural_rf_write(sc, RAL_RF1, 0x08808);
1682                 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1683                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1684                 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1685                 break;
1686
1687         case RAL_RF_2526:
1688                 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1689                 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1690                 ural_rf_write(sc, RAL_RF1, 0x08804);
1691
1692                 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1693                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1694                 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1695                 break;
1696
1697         /* dual-band RF */
1698         case RAL_RF_5222:
1699                 for (i = 0; ural_rf5222[i].chan != chan; i++);
1700
1701                 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1702                 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1703                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1704                 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1705                 break;
1706         }
1707
1708         if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1709             (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1710                 /* set Japan filter bit for channel 14 */
1711                 tmp = ural_bbp_read(sc, 70);
1712
1713                 tmp &= ~RAL_JAPAN_FILTER;
1714                 if (chan == 14)
1715                         tmp |= RAL_JAPAN_FILTER;
1716
1717                 ural_bbp_write(sc, 70, tmp);
1718
1719                 /* clear CRC errors */
1720                 ural_read(sc, RAL_STA_CSR0);
1721
1722                 ural_pause(sc, hz / 100);
1723                 ural_disable_rf_tune(sc);
1724         }
1725
1726         /* XXX doesn't belong here */
1727         /* update basic rate set */
1728         ural_set_basicrates(sc, c);
1729
1730         /* give the hardware some time to do the switchover */
1731         ural_pause(sc, hz / 100);
1732 }
1733
1734 /*
1735  * Disable RF auto-tuning.
1736  */
1737 static void
1738 ural_disable_rf_tune(struct ural_softc *sc)
1739 {
1740         uint32_t tmp;
1741
1742         if (sc->rf_rev != RAL_RF_2523) {
1743                 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1744                 ural_rf_write(sc, RAL_RF1, tmp);
1745         }
1746
1747         tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1748         ural_rf_write(sc, RAL_RF3, tmp);
1749
1750         DPRINTFN(2, "disabling RF autotune\n");
1751 }
1752
1753 /*
1754  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1755  * synchronization.
1756  */
1757 static void
1758 ural_enable_tsf_sync(struct ural_softc *sc)
1759 {
1760         struct ieee80211com *ic = &sc->sc_ic;
1761         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1762         uint16_t logcwmin, preload, tmp;
1763
1764         /* first, disable TSF synchronization */
1765         ural_write(sc, RAL_TXRX_CSR19, 0);
1766
1767         tmp = (16 * vap->iv_bss->ni_intval) << 4;
1768         ural_write(sc, RAL_TXRX_CSR18, tmp);
1769
1770         logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1771         preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1772         tmp = logcwmin << 12 | preload;
1773         ural_write(sc, RAL_TXRX_CSR20, tmp);
1774
1775         /* finally, enable TSF synchronization */
1776         tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1777         if (ic->ic_opmode == IEEE80211_M_STA)
1778                 tmp |= RAL_ENABLE_TSF_SYNC(1);
1779         else
1780                 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1781         ural_write(sc, RAL_TXRX_CSR19, tmp);
1782
1783         DPRINTF("enabling TSF synchronization\n");
1784 }
1785
1786 static void
1787 ural_enable_tsf(struct ural_softc *sc)
1788 {
1789         /* first, disable TSF synchronization */
1790         ural_write(sc, RAL_TXRX_CSR19, 0);
1791         ural_write(sc, RAL_TXRX_CSR19, RAL_ENABLE_TSF | RAL_ENABLE_TSF_SYNC(2));
1792 }
1793
1794 #define RAL_RXTX_TURNAROUND     5       /* us */
1795 static void
1796 ural_update_slot(struct ural_softc *sc)
1797 {
1798         struct ieee80211com *ic = &sc->sc_ic;
1799         uint16_t slottime, sifs, eifs;
1800
1801         slottime = IEEE80211_GET_SLOTTIME(ic);
1802
1803         /*
1804          * These settings may sound a bit inconsistent but this is what the
1805          * reference driver does.
1806          */
1807         if (ic->ic_curmode == IEEE80211_MODE_11B) {
1808                 sifs = 16 - RAL_RXTX_TURNAROUND;
1809                 eifs = 364;
1810         } else {
1811                 sifs = 10 - RAL_RXTX_TURNAROUND;
1812                 eifs = 64;
1813         }
1814
1815         ural_write(sc, RAL_MAC_CSR10, slottime);
1816         ural_write(sc, RAL_MAC_CSR11, sifs);
1817         ural_write(sc, RAL_MAC_CSR12, eifs);
1818 }
1819
1820 static void
1821 ural_set_txpreamble(struct ural_softc *sc)
1822 {
1823         struct ieee80211com *ic = &sc->sc_ic;
1824         uint16_t tmp;
1825
1826         tmp = ural_read(sc, RAL_TXRX_CSR10);
1827
1828         tmp &= ~RAL_SHORT_PREAMBLE;
1829         if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1830                 tmp |= RAL_SHORT_PREAMBLE;
1831
1832         ural_write(sc, RAL_TXRX_CSR10, tmp);
1833 }
1834
1835 static void
1836 ural_set_basicrates(struct ural_softc *sc, const struct ieee80211_channel *c)
1837 {
1838         /* XXX wrong, take from rate set */
1839         /* update basic rate set */
1840         if (IEEE80211_IS_CHAN_5GHZ(c)) {
1841                 /* 11a basic rates: 6, 12, 24Mbps */
1842                 ural_write(sc, RAL_TXRX_CSR11, 0x150);
1843         } else if (IEEE80211_IS_CHAN_ANYG(c)) {
1844                 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1845                 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1846         } else {
1847                 /* 11b basic rates: 1, 2Mbps */
1848                 ural_write(sc, RAL_TXRX_CSR11, 0x3);
1849         }
1850 }
1851
1852 static void
1853 ural_set_bssid(struct ural_softc *sc, const uint8_t *bssid)
1854 {
1855         uint16_t tmp;
1856
1857         tmp = bssid[0] | bssid[1] << 8;
1858         ural_write(sc, RAL_MAC_CSR5, tmp);
1859
1860         tmp = bssid[2] | bssid[3] << 8;
1861         ural_write(sc, RAL_MAC_CSR6, tmp);
1862
1863         tmp = bssid[4] | bssid[5] << 8;
1864         ural_write(sc, RAL_MAC_CSR7, tmp);
1865
1866         DPRINTF("setting BSSID to %6D\n", bssid, ":");
1867 }
1868
1869 static void
1870 ural_set_macaddr(struct ural_softc *sc, const uint8_t *addr)
1871 {
1872         uint16_t tmp;
1873
1874         tmp = addr[0] | addr[1] << 8;
1875         ural_write(sc, RAL_MAC_CSR2, tmp);
1876
1877         tmp = addr[2] | addr[3] << 8;
1878         ural_write(sc, RAL_MAC_CSR3, tmp);
1879
1880         tmp = addr[4] | addr[5] << 8;
1881         ural_write(sc, RAL_MAC_CSR4, tmp);
1882
1883         DPRINTF("setting MAC address to %6D\n", addr, ":");
1884 }
1885
1886 static void
1887 ural_setpromisc(struct ural_softc *sc)
1888 {
1889         uint32_t tmp;
1890
1891         tmp = ural_read(sc, RAL_TXRX_CSR2);
1892
1893         tmp &= ~RAL_DROP_NOT_TO_ME;
1894         if (sc->sc_ic.ic_promisc == 0)
1895                 tmp |= RAL_DROP_NOT_TO_ME;
1896
1897         ural_write(sc, RAL_TXRX_CSR2, tmp);
1898
1899         DPRINTF("%s promiscuous mode\n", sc->sc_ic.ic_promisc ?
1900             "entering" : "leaving");
1901 }
1902
1903 static void
1904 ural_update_promisc(struct ieee80211com *ic)
1905 {
1906         struct ural_softc *sc = ic->ic_softc;
1907
1908         RAL_LOCK(sc);
1909         if (sc->sc_running)
1910                 ural_setpromisc(sc);
1911         RAL_UNLOCK(sc);
1912 }
1913
1914 static const char *
1915 ural_get_rf(int rev)
1916 {
1917         switch (rev) {
1918         case RAL_RF_2522:       return "RT2522";
1919         case RAL_RF_2523:       return "RT2523";
1920         case RAL_RF_2524:       return "RT2524";
1921         case RAL_RF_2525:       return "RT2525";
1922         case RAL_RF_2525E:      return "RT2525e";
1923         case RAL_RF_2526:       return "RT2526";
1924         case RAL_RF_5222:       return "RT5222";
1925         default:                return "unknown";
1926         }
1927 }
1928
1929 static void
1930 ural_read_eeprom(struct ural_softc *sc)
1931 {
1932         struct ieee80211com *ic = &sc->sc_ic;
1933         uint16_t val;
1934
1935         ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1936         val = le16toh(val);
1937         sc->rf_rev =   (val >> 11) & 0x7;
1938         sc->hw_radio = (val >> 10) & 0x1;
1939         sc->led_mode = (val >> 6)  & 0x7;
1940         sc->rx_ant =   (val >> 4)  & 0x3;
1941         sc->tx_ant =   (val >> 2)  & 0x3;
1942         sc->nb_ant =   val & 0x3;
1943
1944         /* read MAC address */
1945         ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_macaddr, 6);
1946
1947         /* read default values for BBP registers */
1948         ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1949
1950         /* read Tx power for all b/g channels */
1951         ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
1952 }
1953
1954 static int
1955 ural_bbp_init(struct ural_softc *sc)
1956 {
1957         int i, ntries;
1958
1959         /* wait for BBP to be ready */
1960         for (ntries = 0; ntries < 100; ntries++) {
1961                 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
1962                         break;
1963                 if (ural_pause(sc, hz / 100))
1964                         break;
1965         }
1966         if (ntries == 100) {
1967                 device_printf(sc->sc_dev, "timeout waiting for BBP\n");
1968                 return EIO;
1969         }
1970
1971         /* initialize BBP registers to default values */
1972         for (i = 0; i < nitems(ural_def_bbp); i++)
1973                 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
1974
1975 #if 0
1976         /* initialize BBP registers to values stored in EEPROM */
1977         for (i = 0; i < 16; i++) {
1978                 if (sc->bbp_prom[i].reg == 0xff)
1979                         continue;
1980                 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1981         }
1982 #endif
1983
1984         return 0;
1985 }
1986
1987 static void
1988 ural_set_txantenna(struct ural_softc *sc, int antenna)
1989 {
1990         uint16_t tmp;
1991         uint8_t tx;
1992
1993         tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
1994         if (antenna == 1)
1995                 tx |= RAL_BBP_ANTA;
1996         else if (antenna == 2)
1997                 tx |= RAL_BBP_ANTB;
1998         else
1999                 tx |= RAL_BBP_DIVERSITY;
2000
2001         /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2002         if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2003             sc->rf_rev == RAL_RF_5222)
2004                 tx |= RAL_BBP_FLIPIQ;
2005
2006         ural_bbp_write(sc, RAL_BBP_TX, tx);
2007
2008         /* update values in PHY_CSR5 and PHY_CSR6 */
2009         tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2010         ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2011
2012         tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2013         ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2014 }
2015
2016 static void
2017 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2018 {
2019         uint8_t rx;
2020
2021         rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2022         if (antenna == 1)
2023                 rx |= RAL_BBP_ANTA;
2024         else if (antenna == 2)
2025                 rx |= RAL_BBP_ANTB;
2026         else
2027                 rx |= RAL_BBP_DIVERSITY;
2028
2029         /* need to force no I/Q flip for RF 2525e and 2526 */
2030         if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2031                 rx &= ~RAL_BBP_FLIPIQ;
2032
2033         ural_bbp_write(sc, RAL_BBP_RX, rx);
2034 }
2035
2036 static void
2037 ural_init(struct ural_softc *sc)
2038 {
2039         struct ieee80211com *ic = &sc->sc_ic;
2040         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2041         uint16_t tmp;
2042         int i, ntries;
2043
2044         RAL_LOCK_ASSERT(sc, MA_OWNED);
2045
2046         ural_set_testmode(sc);
2047         ural_write(sc, 0x308, 0x00f0);  /* XXX magic */
2048
2049         ural_stop(sc);
2050
2051         /* initialize MAC registers to default values */
2052         for (i = 0; i < nitems(ural_def_mac); i++)
2053                 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2054
2055         /* wait for BBP and RF to wake up (this can take a long time!) */
2056         for (ntries = 0; ntries < 100; ntries++) {
2057                 tmp = ural_read(sc, RAL_MAC_CSR17);
2058                 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2059                     (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2060                         break;
2061                 if (ural_pause(sc, hz / 100))
2062                         break;
2063         }
2064         if (ntries == 100) {
2065                 device_printf(sc->sc_dev,
2066                     "timeout waiting for BBP/RF to wakeup\n");
2067                 goto fail;
2068         }
2069
2070         /* we're ready! */
2071         ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2072
2073         /* set basic rate set (will be updated later) */
2074         ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2075
2076         if (ural_bbp_init(sc) != 0)
2077                 goto fail;
2078
2079         ural_set_chan(sc, ic->ic_curchan);
2080
2081         /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2082         ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2083
2084         ural_set_txantenna(sc, sc->tx_ant);
2085         ural_set_rxantenna(sc, sc->rx_ant);
2086
2087         ural_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr);
2088
2089         /*
2090          * Allocate Tx and Rx xfer queues.
2091          */
2092         ural_setup_tx_list(sc);
2093
2094         /* kick Rx */
2095         tmp = RAL_DROP_PHY | RAL_DROP_CRC;
2096         if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2097                 tmp |= RAL_DROP_CTL | RAL_DROP_BAD_VERSION;
2098                 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2099                         tmp |= RAL_DROP_TODS;
2100                 if (ic->ic_promisc == 0)
2101                         tmp |= RAL_DROP_NOT_TO_ME;
2102         }
2103         ural_write(sc, RAL_TXRX_CSR2, tmp);
2104
2105         sc->sc_running = 1;
2106         usbd_xfer_set_stall(sc->sc_xfer[URAL_BULK_WR]);
2107         usbd_transfer_start(sc->sc_xfer[URAL_BULK_RD]);
2108         return;
2109
2110 fail:   ural_stop(sc);
2111 }
2112
2113 static void
2114 ural_stop(struct ural_softc *sc)
2115 {
2116
2117         RAL_LOCK_ASSERT(sc, MA_OWNED);
2118
2119         sc->sc_running = 0;
2120
2121         /*
2122          * Drain all the transfers, if not already drained:
2123          */
2124         RAL_UNLOCK(sc);
2125         usbd_transfer_drain(sc->sc_xfer[URAL_BULK_WR]);
2126         usbd_transfer_drain(sc->sc_xfer[URAL_BULK_RD]);
2127         RAL_LOCK(sc);
2128
2129         ural_unsetup_tx_list(sc);
2130
2131         /* disable Rx */
2132         ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2133         /* reset ASIC and BBP (but won't reset MAC registers!) */
2134         ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2135         /* wait a little */
2136         ural_pause(sc, hz / 10);
2137         ural_write(sc, RAL_MAC_CSR1, 0);
2138         /* wait a little */
2139         ural_pause(sc, hz / 10);
2140 }
2141
2142 static int
2143 ural_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2144         const struct ieee80211_bpf_params *params)
2145 {
2146         struct ieee80211com *ic = ni->ni_ic;
2147         struct ural_softc *sc = ic->ic_softc;
2148
2149         RAL_LOCK(sc);
2150         /* prevent management frames from being sent if we're not ready */
2151         if (!sc->sc_running) {
2152                 RAL_UNLOCK(sc);
2153                 m_freem(m);
2154                 return ENETDOWN;
2155         }
2156         if (sc->tx_nfree < RAL_TX_MINFREE) {
2157                 RAL_UNLOCK(sc);
2158                 m_freem(m);
2159                 return EIO;
2160         }
2161
2162         if (params == NULL) {
2163                 /*
2164                  * Legacy path; interpret frame contents to decide
2165                  * precisely how to send the frame.
2166                  */
2167                 if (ural_tx_mgt(sc, m, ni) != 0)
2168                         goto bad;
2169         } else {
2170                 /*
2171                  * Caller supplied explicit parameters to use in
2172                  * sending the frame.
2173                  */
2174                 if (ural_tx_raw(sc, m, ni, params) != 0)
2175                         goto bad;
2176         }
2177         RAL_UNLOCK(sc);
2178         return 0;
2179 bad:
2180         RAL_UNLOCK(sc);
2181         return EIO;             /* XXX */
2182 }
2183
2184 static void
2185 ural_ratectl_start(struct ural_softc *sc, struct ieee80211_node *ni)
2186 {
2187         struct ieee80211vap *vap = ni->ni_vap;
2188         struct ural_vap *uvp = URAL_VAP(vap);
2189
2190         /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2191         ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2192
2193         usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp);
2194 }
2195
2196 static void
2197 ural_ratectl_timeout(void *arg)
2198 {
2199         struct ural_vap *uvp = arg;
2200         struct ieee80211vap *vap = &uvp->vap;
2201         struct ieee80211com *ic = vap->iv_ic;
2202
2203         ieee80211_runtask(ic, &uvp->ratectl_task);
2204 }
2205
2206 static void
2207 ural_ratectl_task(void *arg, int pending)
2208 {
2209         struct ural_vap *uvp = arg;
2210         struct ieee80211vap *vap = &uvp->vap;
2211         struct ural_softc *sc = vap->iv_ic->ic_softc;
2212         struct ieee80211_ratectl_tx_stats *txs = &sc->sc_txs;
2213         int fail;
2214
2215         RAL_LOCK(sc);
2216         /* read and clear statistic registers (STA_CSR0 to STA_CSR10) */
2217         ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2218
2219         txs->flags = IEEE80211_RATECTL_TX_STATS_RETRIES;
2220         txs->nsuccess = sc->sta[7] +    /* TX ok w/o retry */
2221                         sc->sta[8];     /* TX ok w/ retry */
2222         fail = sc->sta[9];              /* TX retry-fail count */
2223         txs->nframes = txs->nsuccess + fail;
2224         /* XXX fail * maxretry */
2225         txs->nretries = sc->sta[8] + fail;
2226
2227         ieee80211_ratectl_tx_update(vap, txs);
2228
2229         /* count TX retry-fail as Tx errors */
2230         if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, fail);
2231
2232         usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp);
2233         RAL_UNLOCK(sc);
2234 }
2235
2236 static int
2237 ural_pause(struct ural_softc *sc, int timeout)
2238 {
2239
2240         usb_pause_mtx(&sc->sc_mtx, timeout);
2241         return (0);
2242 }