]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/vge/if_vge.c
Mark more nodes as CTLFLAG_MPSAFE or CTLFLAG_NEEDGIANT (17 of many)
[FreeBSD/FreeBSD.git] / sys / dev / vge / if_vge.c
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 2004
5  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *      This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37
38 /*
39  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
40  *
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Networking Software Engineer
43  * Wind River Systems
44  */
45
46 /*
47  * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
48  * combines a tri-speed ethernet MAC and PHY, with the following
49  * features:
50  *
51  *      o Jumbo frame support up to 16K
52  *      o Transmit and receive flow control
53  *      o IPv4 checksum offload
54  *      o VLAN tag insertion and stripping
55  *      o TCP large send
56  *      o 64-bit multicast hash table filter
57  *      o 64 entry CAM filter
58  *      o 16K RX FIFO and 48K TX FIFO memory
59  *      o Interrupt moderation
60  *
61  * The VT6122 supports up to four transmit DMA queues. The descriptors
62  * in the transmit ring can address up to 7 data fragments; frames which
63  * span more than 7 data buffers must be coalesced, but in general the
64  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
65  * long. The receive descriptors address only a single buffer.
66  *
67  * There are two peculiar design issues with the VT6122. One is that
68  * receive data buffers must be aligned on a 32-bit boundary. This is
69  * not a problem where the VT6122 is used as a LOM device in x86-based
70  * systems, but on architectures that generate unaligned access traps, we
71  * have to do some copying.
72  *
73  * The other issue has to do with the way 64-bit addresses are handled.
74  * The DMA descriptors only allow you to specify 48 bits of addressing
75  * information. The remaining 16 bits are specified using one of the
76  * I/O registers. If you only have a 32-bit system, then this isn't
77  * an issue, but if you have a 64-bit system and more than 4GB of
78  * memory, you must have to make sure your network data buffers reside
79  * in the same 48-bit 'segment.'
80  *
81  * Special thanks to Ryan Fu at VIA Networking for providing documentation
82  * and sample NICs for testing.
83  */
84
85 #ifdef HAVE_KERNEL_OPTION_HEADERS
86 #include "opt_device_polling.h"
87 #endif
88
89 #include <sys/param.h>
90 #include <sys/endian.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/module.h>
96 #include <sys/kernel.h>
97 #include <sys/socket.h>
98 #include <sys/sysctl.h>
99
100 #include <net/if.h>
101 #include <net/if_arp.h>
102 #include <net/ethernet.h>
103 #include <net/if_dl.h>
104 #include <net/if_var.h>
105 #include <net/if_media.h>
106 #include <net/if_types.h>
107 #include <net/if_vlan_var.h>
108
109 #include <net/bpf.h>
110
111 #include <machine/bus.h>
112 #include <machine/resource.h>
113 #include <sys/bus.h>
114 #include <sys/rman.h>
115
116 #include <dev/mii/mii.h>
117 #include <dev/mii/miivar.h>
118
119 #include <dev/pci/pcireg.h>
120 #include <dev/pci/pcivar.h>
121
122 MODULE_DEPEND(vge, pci, 1, 1, 1);
123 MODULE_DEPEND(vge, ether, 1, 1, 1);
124 MODULE_DEPEND(vge, miibus, 1, 1, 1);
125
126 /* "device miibus" required.  See GENERIC if you get errors here. */
127 #include "miibus_if.h"
128
129 #include <dev/vge/if_vgereg.h>
130 #include <dev/vge/if_vgevar.h>
131
132 #define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
133
134 /* Tunables */
135 static int msi_disable = 0;
136 TUNABLE_INT("hw.vge.msi_disable", &msi_disable);
137
138 /*
139  * The SQE error counter of MIB seems to report bogus value.
140  * Vendor's workaround does not seem to work on PCIe based
141  * controllers. Disable it until we find better workaround.
142  */
143 #undef VGE_ENABLE_SQEERR
144
145 /*
146  * Various supported device vendors/types and their names.
147  */
148 static struct vge_type vge_devs[] = {
149         { VIA_VENDORID, VIA_DEVICEID_61XX,
150                 "VIA Networking Velocity Gigabit Ethernet" },
151         { 0, 0, NULL }
152 };
153
154 static int      vge_attach(device_t);
155 static int      vge_detach(device_t);
156 static int      vge_probe(device_t);
157 static int      vge_resume(device_t);
158 static int      vge_shutdown(device_t);
159 static int      vge_suspend(device_t);
160
161 static void     vge_cam_clear(struct vge_softc *);
162 static int      vge_cam_set(struct vge_softc *, uint8_t *);
163 static void     vge_clrwol(struct vge_softc *);
164 static void     vge_discard_rxbuf(struct vge_softc *, int);
165 static int      vge_dma_alloc(struct vge_softc *);
166 static void     vge_dma_free(struct vge_softc *);
167 static void     vge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
168 #ifdef VGE_EEPROM
169 static void     vge_eeprom_getword(struct vge_softc *, int, uint16_t *);
170 #endif
171 static int      vge_encap(struct vge_softc *, struct mbuf **);
172 #ifndef __NO_STRICT_ALIGNMENT
173 static __inline void
174                 vge_fixup_rx(struct mbuf *);
175 #endif
176 static void     vge_freebufs(struct vge_softc *);
177 static void     vge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
178 static int      vge_ifmedia_upd(struct ifnet *);
179 static int      vge_ifmedia_upd_locked(struct vge_softc *);
180 static void     vge_init(void *);
181 static void     vge_init_locked(struct vge_softc *);
182 static void     vge_intr(void *);
183 static void     vge_intr_holdoff(struct vge_softc *);
184 static int      vge_ioctl(struct ifnet *, u_long, caddr_t);
185 static void     vge_link_statchg(void *);
186 static int      vge_miibus_readreg(device_t, int, int);
187 static int      vge_miibus_writereg(device_t, int, int, int);
188 static void     vge_miipoll_start(struct vge_softc *);
189 static void     vge_miipoll_stop(struct vge_softc *);
190 static int      vge_newbuf(struct vge_softc *, int);
191 static void     vge_read_eeprom(struct vge_softc *, caddr_t, int, int, int);
192 static void     vge_reset(struct vge_softc *);
193 static int      vge_rx_list_init(struct vge_softc *);
194 static int      vge_rxeof(struct vge_softc *, int);
195 static void     vge_rxfilter(struct vge_softc *);
196 static void     vge_setmedia(struct vge_softc *);
197 static void     vge_setvlan(struct vge_softc *);
198 static void     vge_setwol(struct vge_softc *);
199 static void     vge_start(struct ifnet *);
200 static void     vge_start_locked(struct ifnet *);
201 static void     vge_stats_clear(struct vge_softc *);
202 static void     vge_stats_update(struct vge_softc *);
203 static void     vge_stop(struct vge_softc *);
204 static void     vge_sysctl_node(struct vge_softc *);
205 static int      vge_tx_list_init(struct vge_softc *);
206 static void     vge_txeof(struct vge_softc *);
207 static void     vge_watchdog(void *);
208
209 static device_method_t vge_methods[] = {
210         /* Device interface */
211         DEVMETHOD(device_probe,         vge_probe),
212         DEVMETHOD(device_attach,        vge_attach),
213         DEVMETHOD(device_detach,        vge_detach),
214         DEVMETHOD(device_suspend,       vge_suspend),
215         DEVMETHOD(device_resume,        vge_resume),
216         DEVMETHOD(device_shutdown,      vge_shutdown),
217
218         /* MII interface */
219         DEVMETHOD(miibus_readreg,       vge_miibus_readreg),
220         DEVMETHOD(miibus_writereg,      vge_miibus_writereg),
221
222         DEVMETHOD_END
223 };
224
225 static driver_t vge_driver = {
226         "vge",
227         vge_methods,
228         sizeof(struct vge_softc)
229 };
230
231 static devclass_t vge_devclass;
232
233 DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
234 DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
235
236 #ifdef VGE_EEPROM
237 /*
238  * Read a word of data stored in the EEPROM at address 'addr.'
239  */
240 static void
241 vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t *dest)
242 {
243         int i;
244         uint16_t word = 0;
245
246         /*
247          * Enter EEPROM embedded programming mode. In order to
248          * access the EEPROM at all, we first have to set the
249          * EELOAD bit in the CHIPCFG2 register.
250          */
251         CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
252         CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
253
254         /* Select the address of the word we want to read */
255         CSR_WRITE_1(sc, VGE_EEADDR, addr);
256
257         /* Issue read command */
258         CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
259
260         /* Wait for the done bit to be set. */
261         for (i = 0; i < VGE_TIMEOUT; i++) {
262                 if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
263                         break;
264         }
265
266         if (i == VGE_TIMEOUT) {
267                 device_printf(sc->vge_dev, "EEPROM read timed out\n");
268                 *dest = 0;
269                 return;
270         }
271
272         /* Read the result */
273         word = CSR_READ_2(sc, VGE_EERDDAT);
274
275         /* Turn off EEPROM access mode. */
276         CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
277         CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
278
279         *dest = word;
280 }
281 #endif
282
283 /*
284  * Read a sequence of words from the EEPROM.
285  */
286 static void
287 vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt, int swap)
288 {
289         int i;
290 #ifdef VGE_EEPROM
291         uint16_t word = 0, *ptr;
292
293         for (i = 0; i < cnt; i++) {
294                 vge_eeprom_getword(sc, off + i, &word);
295                 ptr = (uint16_t *)(dest + (i * 2));
296                 if (swap)
297                         *ptr = ntohs(word);
298                 else
299                         *ptr = word;
300         }
301 #else
302         for (i = 0; i < ETHER_ADDR_LEN; i++)
303                 dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
304 #endif
305 }
306
307 static void
308 vge_miipoll_stop(struct vge_softc *sc)
309 {
310         int i;
311
312         CSR_WRITE_1(sc, VGE_MIICMD, 0);
313
314         for (i = 0; i < VGE_TIMEOUT; i++) {
315                 DELAY(1);
316                 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
317                         break;
318         }
319
320         if (i == VGE_TIMEOUT)
321                 device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
322 }
323
324 static void
325 vge_miipoll_start(struct vge_softc *sc)
326 {
327         int i;
328
329         /* First, make sure we're idle. */
330
331         CSR_WRITE_1(sc, VGE_MIICMD, 0);
332         CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
333
334         for (i = 0; i < VGE_TIMEOUT; i++) {
335                 DELAY(1);
336                 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
337                         break;
338         }
339
340         if (i == VGE_TIMEOUT) {
341                 device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
342                 return;
343         }
344
345         /* Now enable auto poll mode. */
346
347         CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
348
349         /* And make sure it started. */
350
351         for (i = 0; i < VGE_TIMEOUT; i++) {
352                 DELAY(1);
353                 if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
354                         break;
355         }
356
357         if (i == VGE_TIMEOUT)
358                 device_printf(sc->vge_dev, "failed to start MII autopoll\n");
359 }
360
361 static int
362 vge_miibus_readreg(device_t dev, int phy, int reg)
363 {
364         struct vge_softc *sc;
365         int i;
366         uint16_t rval = 0;
367
368         sc = device_get_softc(dev);
369
370         vge_miipoll_stop(sc);
371
372         /* Specify the register we want to read. */
373         CSR_WRITE_1(sc, VGE_MIIADDR, reg);
374
375         /* Issue read command. */
376         CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
377
378         /* Wait for the read command bit to self-clear. */
379         for (i = 0; i < VGE_TIMEOUT; i++) {
380                 DELAY(1);
381                 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
382                         break;
383         }
384
385         if (i == VGE_TIMEOUT)
386                 device_printf(sc->vge_dev, "MII read timed out\n");
387         else
388                 rval = CSR_READ_2(sc, VGE_MIIDATA);
389
390         vge_miipoll_start(sc);
391
392         return (rval);
393 }
394
395 static int
396 vge_miibus_writereg(device_t dev, int phy, int reg, int data)
397 {
398         struct vge_softc *sc;
399         int i, rval = 0;
400
401         sc = device_get_softc(dev);
402
403         vge_miipoll_stop(sc);
404
405         /* Specify the register we want to write. */
406         CSR_WRITE_1(sc, VGE_MIIADDR, reg);
407
408         /* Specify the data we want to write. */
409         CSR_WRITE_2(sc, VGE_MIIDATA, data);
410
411         /* Issue write command. */
412         CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
413
414         /* Wait for the write command bit to self-clear. */
415         for (i = 0; i < VGE_TIMEOUT; i++) {
416                 DELAY(1);
417                 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
418                         break;
419         }
420
421         if (i == VGE_TIMEOUT) {
422                 device_printf(sc->vge_dev, "MII write timed out\n");
423                 rval = EIO;
424         }
425
426         vge_miipoll_start(sc);
427
428         return (rval);
429 }
430
431 static void
432 vge_cam_clear(struct vge_softc *sc)
433 {
434         int i;
435
436         /*
437          * Turn off all the mask bits. This tells the chip
438          * that none of the entries in the CAM filter are valid.
439          * desired entries will be enabled as we fill the filter in.
440          */
441
442         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
443         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
444         CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
445         for (i = 0; i < 8; i++)
446                 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
447
448         /* Clear the VLAN filter too. */
449
450         CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
451         for (i = 0; i < 8; i++)
452                 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
453
454         CSR_WRITE_1(sc, VGE_CAMADDR, 0);
455         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
456         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
457
458         sc->vge_camidx = 0;
459 }
460
461 static int
462 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
463 {
464         int i, error = 0;
465
466         if (sc->vge_camidx == VGE_CAM_MAXADDRS)
467                 return (ENOSPC);
468
469         /* Select the CAM data page. */
470         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
471         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
472
473         /* Set the filter entry we want to update and enable writing. */
474         CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
475
476         /* Write the address to the CAM registers */
477         for (i = 0; i < ETHER_ADDR_LEN; i++)
478                 CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
479
480         /* Issue a write command. */
481         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
482
483         /* Wake for it to clear. */
484         for (i = 0; i < VGE_TIMEOUT; i++) {
485                 DELAY(1);
486                 if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
487                         break;
488         }
489
490         if (i == VGE_TIMEOUT) {
491                 device_printf(sc->vge_dev, "setting CAM filter failed\n");
492                 error = EIO;
493                 goto fail;
494         }
495
496         /* Select the CAM mask page. */
497         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
498         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
499
500         /* Set the mask bit that enables this filter. */
501         CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
502             1<<(sc->vge_camidx & 7));
503
504         sc->vge_camidx++;
505
506 fail:
507         /* Turn off access to CAM. */
508         CSR_WRITE_1(sc, VGE_CAMADDR, 0);
509         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
510         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
511
512         return (error);
513 }
514
515 static void
516 vge_setvlan(struct vge_softc *sc)
517 {
518         struct ifnet *ifp;
519         uint8_t cfg;
520
521         VGE_LOCK_ASSERT(sc);
522
523         ifp = sc->vge_ifp;
524         cfg = CSR_READ_1(sc, VGE_RXCFG);
525         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
526                 cfg |= VGE_VTAG_OPT2;
527         else
528                 cfg &= ~VGE_VTAG_OPT2;
529         CSR_WRITE_1(sc, VGE_RXCFG, cfg);
530 }
531
532 static u_int
533 vge_set_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
534 {
535         struct vge_softc *sc = arg;
536
537         if (sc->vge_camidx == VGE_CAM_MAXADDRS)
538                 return (0);
539
540         (void )vge_cam_set(sc, LLADDR(sdl));
541
542         return (1);
543 }
544
545 static u_int
546 vge_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
547 {
548         uint32_t h, *hashes = arg;
549
550         h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 26;
551         if (h < 32)
552                 hashes[0] |= (1 << h);
553         else
554                 hashes[1] |= (1 << (h - 32));
555
556         return (1);
557 }
558
559
560 /*
561  * Program the multicast filter. We use the 64-entry CAM filter
562  * for perfect filtering. If there's more than 64 multicast addresses,
563  * we use the hash filter instead.
564  */
565 static void
566 vge_rxfilter(struct vge_softc *sc)
567 {
568         struct ifnet *ifp;
569         uint32_t hashes[2];
570         uint8_t rxcfg;
571
572         VGE_LOCK_ASSERT(sc);
573
574         /* First, zot all the multicast entries. */
575         hashes[0] = 0;
576         hashes[1] = 0;
577
578         rxcfg = CSR_READ_1(sc, VGE_RXCTL);
579         rxcfg &= ~(VGE_RXCTL_RX_MCAST | VGE_RXCTL_RX_BCAST |
580             VGE_RXCTL_RX_PROMISC);
581         /*
582          * Always allow VLAN oversized frames and frames for
583          * this host.
584          */
585         rxcfg |= VGE_RXCTL_RX_GIANT | VGE_RXCTL_RX_UCAST;
586
587         ifp = sc->vge_ifp;
588         if ((ifp->if_flags & IFF_BROADCAST) != 0)
589                 rxcfg |= VGE_RXCTL_RX_BCAST;
590         if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
591                 if ((ifp->if_flags & IFF_PROMISC) != 0)
592                         rxcfg |= VGE_RXCTL_RX_PROMISC;
593                 if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
594                         hashes[0] = 0xFFFFFFFF;
595                         hashes[1] = 0xFFFFFFFF;
596                 }
597                 goto done;
598         }
599
600         vge_cam_clear(sc);
601
602         /* Now program new ones */
603         if_foreach_llmaddr(ifp, vge_set_maddr, sc);
604
605         /* If there were too many addresses, use the hash filter. */
606         if (sc->vge_camidx == VGE_CAM_MAXADDRS) {
607                 vge_cam_clear(sc);
608                  if_foreach_llmaddr(ifp, vge_hash_maddr, hashes);
609         }
610
611 done:
612         if (hashes[0] != 0 || hashes[1] != 0)
613                 rxcfg |= VGE_RXCTL_RX_MCAST;
614         CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
615         CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
616         CSR_WRITE_1(sc, VGE_RXCTL, rxcfg);
617 }
618
619 static void
620 vge_reset(struct vge_softc *sc)
621 {
622         int i;
623
624         CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
625
626         for (i = 0; i < VGE_TIMEOUT; i++) {
627                 DELAY(5);
628                 if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
629                         break;
630         }
631
632         if (i == VGE_TIMEOUT) {
633                 device_printf(sc->vge_dev, "soft reset timed out\n");
634                 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
635                 DELAY(2000);
636         }
637
638         DELAY(5000);
639 }
640
641 /*
642  * Probe for a VIA gigabit chip. Check the PCI vendor and device
643  * IDs against our list and return a device name if we find a match.
644  */
645 static int
646 vge_probe(device_t dev)
647 {
648         struct vge_type *t;
649
650         t = vge_devs;
651
652         while (t->vge_name != NULL) {
653                 if ((pci_get_vendor(dev) == t->vge_vid) &&
654                     (pci_get_device(dev) == t->vge_did)) {
655                         device_set_desc(dev, t->vge_name);
656                         return (BUS_PROBE_DEFAULT);
657                 }
658                 t++;
659         }
660
661         return (ENXIO);
662 }
663
664 /*
665  * Map a single buffer address.
666  */
667
668 struct vge_dmamap_arg {
669         bus_addr_t      vge_busaddr;
670 };
671
672 static void
673 vge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
674 {
675         struct vge_dmamap_arg *ctx;
676
677         if (error != 0)
678                 return;
679
680         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
681
682         ctx = (struct vge_dmamap_arg *)arg;
683         ctx->vge_busaddr = segs[0].ds_addr;
684 }
685
686 static int
687 vge_dma_alloc(struct vge_softc *sc)
688 {
689         struct vge_dmamap_arg ctx;
690         struct vge_txdesc *txd;
691         struct vge_rxdesc *rxd;
692         bus_addr_t lowaddr, tx_ring_end, rx_ring_end;
693         int error, i;
694
695         /*
696          * It seems old PCI controllers do not support DAC.  DAC
697          * configuration can be enabled by accessing VGE_CHIPCFG3
698          * register but honor EEPROM configuration instead of
699          * blindly overriding DAC configuration.  PCIe based
700          * controllers are supposed to support 64bit DMA so enable
701          * 64bit DMA on these controllers.
702          */
703         if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
704                 lowaddr = BUS_SPACE_MAXADDR;
705         else
706                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
707
708 again:
709         /* Create parent ring tag. */
710         error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
711             1, 0,                       /* algnmnt, boundary */
712             lowaddr,                    /* lowaddr */
713             BUS_SPACE_MAXADDR,          /* highaddr */
714             NULL, NULL,                 /* filter, filterarg */
715             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
716             0,                          /* nsegments */
717             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
718             0,                          /* flags */
719             NULL, NULL,                 /* lockfunc, lockarg */
720             &sc->vge_cdata.vge_ring_tag);
721         if (error != 0) {
722                 device_printf(sc->vge_dev,
723                     "could not create parent DMA tag.\n");
724                 goto fail;
725         }
726
727         /* Create tag for Tx ring. */
728         error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
729             VGE_TX_RING_ALIGN, 0,       /* algnmnt, boundary */
730             BUS_SPACE_MAXADDR,          /* lowaddr */
731             BUS_SPACE_MAXADDR,          /* highaddr */
732             NULL, NULL,                 /* filter, filterarg */
733             VGE_TX_LIST_SZ,             /* maxsize */
734             1,                          /* nsegments */
735             VGE_TX_LIST_SZ,             /* maxsegsize */
736             0,                          /* flags */
737             NULL, NULL,                 /* lockfunc, lockarg */
738             &sc->vge_cdata.vge_tx_ring_tag);
739         if (error != 0) {
740                 device_printf(sc->vge_dev,
741                     "could not allocate Tx ring DMA tag.\n");
742                 goto fail;
743         }
744
745         /* Create tag for Rx ring. */
746         error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
747             VGE_RX_RING_ALIGN, 0,       /* algnmnt, boundary */
748             BUS_SPACE_MAXADDR,          /* lowaddr */
749             BUS_SPACE_MAXADDR,          /* highaddr */
750             NULL, NULL,                 /* filter, filterarg */
751             VGE_RX_LIST_SZ,             /* maxsize */
752             1,                          /* nsegments */
753             VGE_RX_LIST_SZ,             /* maxsegsize */
754             0,                          /* flags */
755             NULL, NULL,                 /* lockfunc, lockarg */
756             &sc->vge_cdata.vge_rx_ring_tag);
757         if (error != 0) {
758                 device_printf(sc->vge_dev,
759                     "could not allocate Rx ring DMA tag.\n");
760                 goto fail;
761         }
762
763         /* Allocate DMA'able memory and load the DMA map for Tx ring. */
764         error = bus_dmamem_alloc(sc->vge_cdata.vge_tx_ring_tag,
765             (void **)&sc->vge_rdata.vge_tx_ring,
766             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
767             &sc->vge_cdata.vge_tx_ring_map);
768         if (error != 0) {
769                 device_printf(sc->vge_dev,
770                     "could not allocate DMA'able memory for Tx ring.\n");
771                 goto fail;
772         }
773
774         ctx.vge_busaddr = 0;
775         error = bus_dmamap_load(sc->vge_cdata.vge_tx_ring_tag,
776             sc->vge_cdata.vge_tx_ring_map, sc->vge_rdata.vge_tx_ring,
777             VGE_TX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
778         if (error != 0 || ctx.vge_busaddr == 0) {
779                 device_printf(sc->vge_dev,
780                     "could not load DMA'able memory for Tx ring.\n");
781                 goto fail;
782         }
783         sc->vge_rdata.vge_tx_ring_paddr = ctx.vge_busaddr;
784
785         /* Allocate DMA'able memory and load the DMA map for Rx ring. */
786         error = bus_dmamem_alloc(sc->vge_cdata.vge_rx_ring_tag,
787             (void **)&sc->vge_rdata.vge_rx_ring,
788             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
789             &sc->vge_cdata.vge_rx_ring_map);
790         if (error != 0) {
791                 device_printf(sc->vge_dev,
792                     "could not allocate DMA'able memory for Rx ring.\n");
793                 goto fail;
794         }
795
796         ctx.vge_busaddr = 0;
797         error = bus_dmamap_load(sc->vge_cdata.vge_rx_ring_tag,
798             sc->vge_cdata.vge_rx_ring_map, sc->vge_rdata.vge_rx_ring,
799             VGE_RX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
800         if (error != 0 || ctx.vge_busaddr == 0) {
801                 device_printf(sc->vge_dev,
802                     "could not load DMA'able memory for Rx ring.\n");
803                 goto fail;
804         }
805         sc->vge_rdata.vge_rx_ring_paddr = ctx.vge_busaddr;
806
807         /* Tx/Rx descriptor queue should reside within 4GB boundary. */
808         tx_ring_end = sc->vge_rdata.vge_tx_ring_paddr + VGE_TX_LIST_SZ;
809         rx_ring_end = sc->vge_rdata.vge_rx_ring_paddr + VGE_RX_LIST_SZ;
810         if ((VGE_ADDR_HI(tx_ring_end) !=
811             VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr)) ||
812             (VGE_ADDR_HI(rx_ring_end) !=
813             VGE_ADDR_HI(sc->vge_rdata.vge_rx_ring_paddr)) ||
814             VGE_ADDR_HI(tx_ring_end) != VGE_ADDR_HI(rx_ring_end)) {
815                 device_printf(sc->vge_dev, "4GB boundary crossed, "
816                     "switching to 32bit DMA address mode.\n");
817                 vge_dma_free(sc);
818                 /* Limit DMA address space to 32bit and try again. */
819                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
820                 goto again;
821         }
822
823         if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
824                 lowaddr = VGE_BUF_DMA_MAXADDR;
825         else
826                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
827         /* Create parent buffer tag. */
828         error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
829             1, 0,                       /* algnmnt, boundary */
830             lowaddr,                    /* lowaddr */
831             BUS_SPACE_MAXADDR,          /* highaddr */
832             NULL, NULL,                 /* filter, filterarg */
833             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
834             0,                          /* nsegments */
835             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
836             0,                          /* flags */
837             NULL, NULL,                 /* lockfunc, lockarg */
838             &sc->vge_cdata.vge_buffer_tag);
839         if (error != 0) {
840                 device_printf(sc->vge_dev,
841                     "could not create parent buffer DMA tag.\n");
842                 goto fail;
843         }
844
845         /* Create tag for Tx buffers. */
846         error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
847             1, 0,                       /* algnmnt, boundary */
848             BUS_SPACE_MAXADDR,          /* lowaddr */
849             BUS_SPACE_MAXADDR,          /* highaddr */
850             NULL, NULL,                 /* filter, filterarg */
851             MCLBYTES * VGE_MAXTXSEGS,   /* maxsize */
852             VGE_MAXTXSEGS,              /* nsegments */
853             MCLBYTES,                   /* maxsegsize */
854             0,                          /* flags */
855             NULL, NULL,                 /* lockfunc, lockarg */
856             &sc->vge_cdata.vge_tx_tag);
857         if (error != 0) {
858                 device_printf(sc->vge_dev, "could not create Tx DMA tag.\n");
859                 goto fail;
860         }
861
862         /* Create tag for Rx buffers. */
863         error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
864             VGE_RX_BUF_ALIGN, 0,        /* algnmnt, boundary */
865             BUS_SPACE_MAXADDR,          /* lowaddr */
866             BUS_SPACE_MAXADDR,          /* highaddr */
867             NULL, NULL,                 /* filter, filterarg */
868             MCLBYTES,                   /* maxsize */
869             1,                          /* nsegments */
870             MCLBYTES,                   /* maxsegsize */
871             0,                          /* flags */
872             NULL, NULL,                 /* lockfunc, lockarg */
873             &sc->vge_cdata.vge_rx_tag);
874         if (error != 0) {
875                 device_printf(sc->vge_dev, "could not create Rx DMA tag.\n");
876                 goto fail;
877         }
878
879         /* Create DMA maps for Tx buffers. */
880         for (i = 0; i < VGE_TX_DESC_CNT; i++) {
881                 txd = &sc->vge_cdata.vge_txdesc[i];
882                 txd->tx_m = NULL;
883                 txd->tx_dmamap = NULL;
884                 error = bus_dmamap_create(sc->vge_cdata.vge_tx_tag, 0,
885                     &txd->tx_dmamap);
886                 if (error != 0) {
887                         device_printf(sc->vge_dev,
888                             "could not create Tx dmamap.\n");
889                         goto fail;
890                 }
891         }
892         /* Create DMA maps for Rx buffers. */
893         if ((error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
894             &sc->vge_cdata.vge_rx_sparemap)) != 0) {
895                 device_printf(sc->vge_dev,
896                     "could not create spare Rx dmamap.\n");
897                 goto fail;
898         }
899         for (i = 0; i < VGE_RX_DESC_CNT; i++) {
900                 rxd = &sc->vge_cdata.vge_rxdesc[i];
901                 rxd->rx_m = NULL;
902                 rxd->rx_dmamap = NULL;
903                 error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
904                     &rxd->rx_dmamap);
905                 if (error != 0) {
906                         device_printf(sc->vge_dev,
907                             "could not create Rx dmamap.\n");
908                         goto fail;
909                 }
910         }
911
912 fail:
913         return (error);
914 }
915
916 static void
917 vge_dma_free(struct vge_softc *sc)
918 {
919         struct vge_txdesc *txd;
920         struct vge_rxdesc *rxd;
921         int i;
922
923         /* Tx ring. */
924         if (sc->vge_cdata.vge_tx_ring_tag != NULL) {
925                 if (sc->vge_rdata.vge_tx_ring_paddr)
926                         bus_dmamap_unload(sc->vge_cdata.vge_tx_ring_tag,
927                             sc->vge_cdata.vge_tx_ring_map);
928                 if (sc->vge_rdata.vge_tx_ring)
929                         bus_dmamem_free(sc->vge_cdata.vge_tx_ring_tag,
930                             sc->vge_rdata.vge_tx_ring,
931                             sc->vge_cdata.vge_tx_ring_map);
932                 sc->vge_rdata.vge_tx_ring = NULL;
933                 sc->vge_rdata.vge_tx_ring_paddr = 0;
934                 bus_dma_tag_destroy(sc->vge_cdata.vge_tx_ring_tag);
935                 sc->vge_cdata.vge_tx_ring_tag = NULL;
936         }
937         /* Rx ring. */
938         if (sc->vge_cdata.vge_rx_ring_tag != NULL) {
939                 if (sc->vge_rdata.vge_rx_ring_paddr)
940                         bus_dmamap_unload(sc->vge_cdata.vge_rx_ring_tag,
941                             sc->vge_cdata.vge_rx_ring_map);
942                 if (sc->vge_rdata.vge_rx_ring)
943                         bus_dmamem_free(sc->vge_cdata.vge_rx_ring_tag,
944                             sc->vge_rdata.vge_rx_ring,
945                             sc->vge_cdata.vge_rx_ring_map);
946                 sc->vge_rdata.vge_rx_ring = NULL;
947                 sc->vge_rdata.vge_rx_ring_paddr = 0;
948                 bus_dma_tag_destroy(sc->vge_cdata.vge_rx_ring_tag);
949                 sc->vge_cdata.vge_rx_ring_tag = NULL;
950         }
951         /* Tx buffers. */
952         if (sc->vge_cdata.vge_tx_tag != NULL) {
953                 for (i = 0; i < VGE_TX_DESC_CNT; i++) {
954                         txd = &sc->vge_cdata.vge_txdesc[i];
955                         if (txd->tx_dmamap != NULL) {
956                                 bus_dmamap_destroy(sc->vge_cdata.vge_tx_tag,
957                                     txd->tx_dmamap);
958                                 txd->tx_dmamap = NULL;
959                         }
960                 }
961                 bus_dma_tag_destroy(sc->vge_cdata.vge_tx_tag);
962                 sc->vge_cdata.vge_tx_tag = NULL;
963         }
964         /* Rx buffers. */
965         if (sc->vge_cdata.vge_rx_tag != NULL) {
966                 for (i = 0; i < VGE_RX_DESC_CNT; i++) {
967                         rxd = &sc->vge_cdata.vge_rxdesc[i];
968                         if (rxd->rx_dmamap != NULL) {
969                                 bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
970                                     rxd->rx_dmamap);
971                                 rxd->rx_dmamap = NULL;
972                         }
973                 }
974                 if (sc->vge_cdata.vge_rx_sparemap != NULL) {
975                         bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
976                             sc->vge_cdata.vge_rx_sparemap);
977                         sc->vge_cdata.vge_rx_sparemap = NULL;
978                 }
979                 bus_dma_tag_destroy(sc->vge_cdata.vge_rx_tag);
980                 sc->vge_cdata.vge_rx_tag = NULL;
981         }
982
983         if (sc->vge_cdata.vge_buffer_tag != NULL) {
984                 bus_dma_tag_destroy(sc->vge_cdata.vge_buffer_tag);
985                 sc->vge_cdata.vge_buffer_tag = NULL;
986         }
987         if (sc->vge_cdata.vge_ring_tag != NULL) {
988                 bus_dma_tag_destroy(sc->vge_cdata.vge_ring_tag);
989                 sc->vge_cdata.vge_ring_tag = NULL;
990         }
991 }
992
993 /*
994  * Attach the interface. Allocate softc structures, do ifmedia
995  * setup and ethernet/BPF attach.
996  */
997 static int
998 vge_attach(device_t dev)
999 {
1000         u_char eaddr[ETHER_ADDR_LEN];
1001         struct vge_softc *sc;
1002         struct ifnet *ifp;
1003         int error = 0, cap, i, msic, rid;
1004
1005         sc = device_get_softc(dev);
1006         sc->vge_dev = dev;
1007
1008         mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1009             MTX_DEF);
1010         callout_init_mtx(&sc->vge_watchdog, &sc->vge_mtx, 0);
1011
1012         /*
1013          * Map control/status registers.
1014          */
1015         pci_enable_busmaster(dev);
1016
1017         rid = PCIR_BAR(1);
1018         sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1019             RF_ACTIVE);
1020
1021         if (sc->vge_res == NULL) {
1022                 device_printf(dev, "couldn't map ports/memory\n");
1023                 error = ENXIO;
1024                 goto fail;
1025         }
1026
1027         if (pci_find_cap(dev, PCIY_EXPRESS, &cap) == 0) {
1028                 sc->vge_flags |= VGE_FLAG_PCIE;
1029                 sc->vge_expcap = cap;
1030         } else
1031                 sc->vge_flags |= VGE_FLAG_JUMBO;
1032         if (pci_find_cap(dev, PCIY_PMG, &cap) == 0) {
1033                 sc->vge_flags |= VGE_FLAG_PMCAP;
1034                 sc->vge_pmcap = cap;
1035         }
1036         rid = 0;
1037         msic = pci_msi_count(dev);
1038         if (msi_disable == 0 && msic > 0) {
1039                 msic = 1;
1040                 if (pci_alloc_msi(dev, &msic) == 0) {
1041                         if (msic == 1) {
1042                                 sc->vge_flags |= VGE_FLAG_MSI;
1043                                 device_printf(dev, "Using %d MSI message\n",
1044                                     msic);
1045                                 rid = 1;
1046                         } else
1047                                 pci_release_msi(dev);
1048                 }
1049         }
1050
1051         /* Allocate interrupt */
1052         sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1053             ((sc->vge_flags & VGE_FLAG_MSI) ? 0 : RF_SHAREABLE) | RF_ACTIVE);
1054         if (sc->vge_irq == NULL) {
1055                 device_printf(dev, "couldn't map interrupt\n");
1056                 error = ENXIO;
1057                 goto fail;
1058         }
1059
1060         /* Reset the adapter. */
1061         vge_reset(sc);
1062         /* Reload EEPROM. */
1063         CSR_WRITE_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
1064         for (i = 0; i < VGE_TIMEOUT; i++) {
1065                 DELAY(5);
1066                 if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
1067                         break;
1068         }
1069         if (i == VGE_TIMEOUT)
1070                 device_printf(dev, "EEPROM reload timed out\n");
1071         /*
1072          * Clear PACPI as EEPROM reload will set the bit. Otherwise
1073          * MAC will receive magic packet which in turn confuses
1074          * controller.
1075          */
1076         CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
1077
1078         /*
1079          * Get station address from the EEPROM.
1080          */
1081         vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
1082         /*
1083          * Save configured PHY address.
1084          * It seems the PHY address of PCIe controllers just
1085          * reflects media jump strapping status so we assume the
1086          * internal PHY address of PCIe controller is at 1.
1087          */
1088         if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
1089                 sc->vge_phyaddr = 1;
1090         else
1091                 sc->vge_phyaddr = CSR_READ_1(sc, VGE_MIICFG) &
1092                     VGE_MIICFG_PHYADDR;
1093         /* Clear WOL and take hardware from powerdown. */
1094         vge_clrwol(sc);
1095         vge_sysctl_node(sc);
1096         error = vge_dma_alloc(sc);
1097         if (error)
1098                 goto fail;
1099
1100         ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
1101         if (ifp == NULL) {
1102                 device_printf(dev, "can not if_alloc()\n");
1103                 error = ENOSPC;
1104                 goto fail;
1105         }
1106
1107         vge_miipoll_start(sc);
1108         /* Do MII setup */
1109         error = mii_attach(dev, &sc->vge_miibus, ifp, vge_ifmedia_upd,
1110             vge_ifmedia_sts, BMSR_DEFCAPMASK, sc->vge_phyaddr, MII_OFFSET_ANY,
1111             MIIF_DOPAUSE);
1112         if (error != 0) {
1113                 device_printf(dev, "attaching PHYs failed\n");
1114                 goto fail;
1115         }
1116
1117         ifp->if_softc = sc;
1118         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1119         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1120         ifp->if_ioctl = vge_ioctl;
1121         ifp->if_capabilities = IFCAP_VLAN_MTU;
1122         ifp->if_start = vge_start;
1123         ifp->if_hwassist = VGE_CSUM_FEATURES;
1124         ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM |
1125             IFCAP_VLAN_HWTAGGING;
1126         if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0)
1127                 ifp->if_capabilities |= IFCAP_WOL;
1128         ifp->if_capenable = ifp->if_capabilities;
1129 #ifdef DEVICE_POLLING
1130         ifp->if_capabilities |= IFCAP_POLLING;
1131 #endif
1132         ifp->if_init = vge_init;
1133         IFQ_SET_MAXLEN(&ifp->if_snd, VGE_TX_DESC_CNT - 1);
1134         ifp->if_snd.ifq_drv_maxlen = VGE_TX_DESC_CNT - 1;
1135         IFQ_SET_READY(&ifp->if_snd);
1136
1137         /*
1138          * Call MI attach routine.
1139          */
1140         ether_ifattach(ifp, eaddr);
1141
1142         /* Tell the upper layer(s) we support long frames. */
1143         ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1144
1145         /* Hook interrupt last to avoid having to lock softc */
1146         error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1147             NULL, vge_intr, sc, &sc->vge_intrhand);
1148
1149         if (error) {
1150                 device_printf(dev, "couldn't set up irq\n");
1151                 ether_ifdetach(ifp);
1152                 goto fail;
1153         }
1154
1155 fail:
1156         if (error)
1157                 vge_detach(dev);
1158
1159         return (error);
1160 }
1161
1162 /*
1163  * Shutdown hardware and free up resources. This can be called any
1164  * time after the mutex has been initialized. It is called in both
1165  * the error case in attach and the normal detach case so it needs
1166  * to be careful about only freeing resources that have actually been
1167  * allocated.
1168  */
1169 static int
1170 vge_detach(device_t dev)
1171 {
1172         struct vge_softc *sc;
1173         struct ifnet *ifp;
1174
1175         sc = device_get_softc(dev);
1176         KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1177         ifp = sc->vge_ifp;
1178
1179 #ifdef DEVICE_POLLING
1180         if (ifp->if_capenable & IFCAP_POLLING)
1181                 ether_poll_deregister(ifp);
1182 #endif
1183
1184         /* These should only be active if attach succeeded */
1185         if (device_is_attached(dev)) {
1186                 ether_ifdetach(ifp);
1187                 VGE_LOCK(sc);
1188                 vge_stop(sc);
1189                 VGE_UNLOCK(sc);
1190                 callout_drain(&sc->vge_watchdog);
1191         }
1192         if (sc->vge_miibus)
1193                 device_delete_child(dev, sc->vge_miibus);
1194         bus_generic_detach(dev);
1195
1196         if (sc->vge_intrhand)
1197                 bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1198         if (sc->vge_irq)
1199                 bus_release_resource(dev, SYS_RES_IRQ,
1200                     sc->vge_flags & VGE_FLAG_MSI ? 1 : 0, sc->vge_irq);
1201         if (sc->vge_flags & VGE_FLAG_MSI)
1202                 pci_release_msi(dev);
1203         if (sc->vge_res)
1204                 bus_release_resource(dev, SYS_RES_MEMORY,
1205                     PCIR_BAR(1), sc->vge_res);
1206         if (ifp)
1207                 if_free(ifp);
1208
1209         vge_dma_free(sc);
1210         mtx_destroy(&sc->vge_mtx);
1211
1212         return (0);
1213 }
1214
1215 static void
1216 vge_discard_rxbuf(struct vge_softc *sc, int prod)
1217 {
1218         struct vge_rxdesc *rxd;
1219         int i;
1220
1221         rxd = &sc->vge_cdata.vge_rxdesc[prod];
1222         rxd->rx_desc->vge_sts = 0;
1223         rxd->rx_desc->vge_ctl = 0;
1224
1225         /*
1226          * Note: the manual fails to document the fact that for
1227          * proper opration, the driver needs to replentish the RX
1228          * DMA ring 4 descriptors at a time (rather than one at a
1229          * time, like most chips). We can allocate the new buffers
1230          * but we should not set the OWN bits until we're ready
1231          * to hand back 4 of them in one shot.
1232          */
1233         if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1234                 for (i = VGE_RXCHUNK; i > 0; i--) {
1235                         rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1236                         rxd = rxd->rxd_prev;
1237                 }
1238                 sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1239         }
1240 }
1241
1242 static int
1243 vge_newbuf(struct vge_softc *sc, int prod)
1244 {
1245         struct vge_rxdesc *rxd;
1246         struct mbuf *m;
1247         bus_dma_segment_t segs[1];
1248         bus_dmamap_t map;
1249         int i, nsegs;
1250
1251         m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1252         if (m == NULL)
1253                 return (ENOBUFS);
1254         /*
1255          * This is part of an evil trick to deal with strict-alignment
1256          * architectures. The VIA chip requires RX buffers to be aligned
1257          * on 32-bit boundaries, but that will hose strict-alignment
1258          * architectures. To get around this, we leave some empty space
1259          * at the start of each buffer and for non-strict-alignment hosts,
1260          * we copy the buffer back two bytes to achieve word alignment.
1261          * This is slightly more efficient than allocating a new buffer,
1262          * copying the contents, and discarding the old buffer.
1263          */
1264         m->m_len = m->m_pkthdr.len = MCLBYTES;
1265         m_adj(m, VGE_RX_BUF_ALIGN);
1266
1267         if (bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_rx_tag,
1268             sc->vge_cdata.vge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1269                 m_freem(m);
1270                 return (ENOBUFS);
1271         }
1272         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1273
1274         rxd = &sc->vge_cdata.vge_rxdesc[prod];
1275         if (rxd->rx_m != NULL) {
1276                 bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1277                     BUS_DMASYNC_POSTREAD);
1278                 bus_dmamap_unload(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap);
1279         }
1280         map = rxd->rx_dmamap;
1281         rxd->rx_dmamap = sc->vge_cdata.vge_rx_sparemap;
1282         sc->vge_cdata.vge_rx_sparemap = map;
1283         bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1284             BUS_DMASYNC_PREREAD);
1285         rxd->rx_m = m;
1286
1287         rxd->rx_desc->vge_sts = 0;
1288         rxd->rx_desc->vge_ctl = 0;
1289         rxd->rx_desc->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
1290         rxd->rx_desc->vge_addrhi = htole32(VGE_ADDR_HI(segs[0].ds_addr) |
1291             (VGE_BUFLEN(segs[0].ds_len) << 16) | VGE_RXDESC_I);
1292
1293         /*
1294          * Note: the manual fails to document the fact that for
1295          * proper operation, the driver needs to replenish the RX
1296          * DMA ring 4 descriptors at a time (rather than one at a
1297          * time, like most chips). We can allocate the new buffers
1298          * but we should not set the OWN bits until we're ready
1299          * to hand back 4 of them in one shot.
1300          */
1301         if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1302                 for (i = VGE_RXCHUNK; i > 0; i--) {
1303                         rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1304                         rxd = rxd->rxd_prev;
1305                 }
1306                 sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1307         }
1308
1309         return (0);
1310 }
1311
1312 static int
1313 vge_tx_list_init(struct vge_softc *sc)
1314 {
1315         struct vge_ring_data *rd;
1316         struct vge_txdesc *txd;
1317         int i;
1318
1319         VGE_LOCK_ASSERT(sc);
1320
1321         sc->vge_cdata.vge_tx_prodidx = 0;
1322         sc->vge_cdata.vge_tx_considx = 0;
1323         sc->vge_cdata.vge_tx_cnt = 0;
1324
1325         rd = &sc->vge_rdata;
1326         bzero(rd->vge_tx_ring, VGE_TX_LIST_SZ);
1327         for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1328                 txd = &sc->vge_cdata.vge_txdesc[i];
1329                 txd->tx_m = NULL;
1330                 txd->tx_desc = &rd->vge_tx_ring[i];
1331         }
1332
1333         bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1334             sc->vge_cdata.vge_tx_ring_map,
1335             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1336
1337         return (0);
1338 }
1339
1340 static int
1341 vge_rx_list_init(struct vge_softc *sc)
1342 {
1343         struct vge_ring_data *rd;
1344         struct vge_rxdesc *rxd;
1345         int i;
1346
1347         VGE_LOCK_ASSERT(sc);
1348
1349         sc->vge_cdata.vge_rx_prodidx = 0;
1350         sc->vge_cdata.vge_head = NULL;
1351         sc->vge_cdata.vge_tail = NULL;
1352         sc->vge_cdata.vge_rx_commit = 0;
1353
1354         rd = &sc->vge_rdata;
1355         bzero(rd->vge_rx_ring, VGE_RX_LIST_SZ);
1356         for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1357                 rxd = &sc->vge_cdata.vge_rxdesc[i];
1358                 rxd->rx_m = NULL;
1359                 rxd->rx_desc = &rd->vge_rx_ring[i];
1360                 if (i == 0)
1361                         rxd->rxd_prev =
1362                             &sc->vge_cdata.vge_rxdesc[VGE_RX_DESC_CNT - 1];
1363                 else
1364                         rxd->rxd_prev = &sc->vge_cdata.vge_rxdesc[i - 1];
1365                 if (vge_newbuf(sc, i) != 0)
1366                         return (ENOBUFS);
1367         }
1368
1369         bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1370             sc->vge_cdata.vge_rx_ring_map,
1371             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1372
1373         sc->vge_cdata.vge_rx_commit = 0;
1374
1375         return (0);
1376 }
1377
1378 static void
1379 vge_freebufs(struct vge_softc *sc)
1380 {
1381         struct vge_txdesc *txd;
1382         struct vge_rxdesc *rxd;
1383         struct ifnet *ifp;
1384         int i;
1385
1386         VGE_LOCK_ASSERT(sc);
1387
1388         ifp = sc->vge_ifp;
1389         /*
1390          * Free RX and TX mbufs still in the queues.
1391          */
1392         for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1393                 rxd = &sc->vge_cdata.vge_rxdesc[i];
1394                 if (rxd->rx_m != NULL) {
1395                         bus_dmamap_sync(sc->vge_cdata.vge_rx_tag,
1396                             rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
1397                         bus_dmamap_unload(sc->vge_cdata.vge_rx_tag,
1398                             rxd->rx_dmamap);
1399                         m_freem(rxd->rx_m);
1400                         rxd->rx_m = NULL;
1401                 }
1402         }
1403
1404         for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1405                 txd = &sc->vge_cdata.vge_txdesc[i];
1406                 if (txd->tx_m != NULL) {
1407                         bus_dmamap_sync(sc->vge_cdata.vge_tx_tag,
1408                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1409                         bus_dmamap_unload(sc->vge_cdata.vge_tx_tag,
1410                             txd->tx_dmamap);
1411                         m_freem(txd->tx_m);
1412                         txd->tx_m = NULL;
1413                         if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1414                 }
1415         }
1416 }
1417
1418 #ifndef __NO_STRICT_ALIGNMENT
1419 static __inline void
1420 vge_fixup_rx(struct mbuf *m)
1421 {
1422         int i;
1423         uint16_t *src, *dst;
1424
1425         src = mtod(m, uint16_t *);
1426         dst = src - 1;
1427
1428         for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1429                 *dst++ = *src++;
1430
1431         m->m_data -= ETHER_ALIGN;
1432 }
1433 #endif
1434
1435 /*
1436  * RX handler. We support the reception of jumbo frames that have
1437  * been fragmented across multiple 2K mbuf cluster buffers.
1438  */
1439 static int
1440 vge_rxeof(struct vge_softc *sc, int count)
1441 {
1442         struct mbuf *m;
1443         struct ifnet *ifp;
1444         int prod, prog, total_len;
1445         struct vge_rxdesc *rxd;
1446         struct vge_rx_desc *cur_rx;
1447         uint32_t rxstat, rxctl;
1448
1449         VGE_LOCK_ASSERT(sc);
1450
1451         ifp = sc->vge_ifp;
1452
1453         bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1454             sc->vge_cdata.vge_rx_ring_map,
1455             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1456
1457         prod = sc->vge_cdata.vge_rx_prodidx;
1458         for (prog = 0; count > 0 &&
1459             (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1460             VGE_RX_DESC_INC(prod)) {
1461                 cur_rx = &sc->vge_rdata.vge_rx_ring[prod];
1462                 rxstat = le32toh(cur_rx->vge_sts);
1463                 if ((rxstat & VGE_RDSTS_OWN) != 0)
1464                         break;
1465                 count--;
1466                 prog++;
1467                 rxctl = le32toh(cur_rx->vge_ctl);
1468                 total_len = VGE_RXBYTES(rxstat);
1469                 rxd = &sc->vge_cdata.vge_rxdesc[prod];
1470                 m = rxd->rx_m;
1471
1472                 /*
1473                  * If the 'start of frame' bit is set, this indicates
1474                  * either the first fragment in a multi-fragment receive,
1475                  * or an intermediate fragment. Either way, we want to
1476                  * accumulate the buffers.
1477                  */
1478                 if ((rxstat & VGE_RXPKT_SOF) != 0) {
1479                         if (vge_newbuf(sc, prod) != 0) {
1480                                 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1481                                 VGE_CHAIN_RESET(sc);
1482                                 vge_discard_rxbuf(sc, prod);
1483                                 continue;
1484                         }
1485                         m->m_len = MCLBYTES - VGE_RX_BUF_ALIGN;
1486                         if (sc->vge_cdata.vge_head == NULL) {
1487                                 sc->vge_cdata.vge_head = m;
1488                                 sc->vge_cdata.vge_tail = m;
1489                         } else {
1490                                 m->m_flags &= ~M_PKTHDR;
1491                                 sc->vge_cdata.vge_tail->m_next = m;
1492                                 sc->vge_cdata.vge_tail = m;
1493                         }
1494                         continue;
1495                 }
1496
1497                 /*
1498                  * Bad/error frames will have the RXOK bit cleared.
1499                  * However, there's one error case we want to allow:
1500                  * if a VLAN tagged frame arrives and the chip can't
1501                  * match it against the CAM filter, it considers this
1502                  * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1503                  * We don't want to drop the frame though: our VLAN
1504                  * filtering is done in software.
1505                  * We also want to receive bad-checksummed frames and
1506                  * and frames with bad-length.
1507                  */
1508                 if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
1509                     (rxstat & (VGE_RDSTS_VIDM | VGE_RDSTS_RLERR |
1510                     VGE_RDSTS_CSUMERR)) == 0) {
1511                         if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1512                         /*
1513                          * If this is part of a multi-fragment packet,
1514                          * discard all the pieces.
1515                          */
1516                         VGE_CHAIN_RESET(sc);
1517                         vge_discard_rxbuf(sc, prod);
1518                         continue;
1519                 }
1520
1521                 if (vge_newbuf(sc, prod) != 0) {
1522                         if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1523                         VGE_CHAIN_RESET(sc);
1524                         vge_discard_rxbuf(sc, prod);
1525                         continue;
1526                 }
1527
1528                 /* Chain received mbufs. */
1529                 if (sc->vge_cdata.vge_head != NULL) {
1530                         m->m_len = total_len % (MCLBYTES - VGE_RX_BUF_ALIGN);
1531                         /*
1532                          * Special case: if there's 4 bytes or less
1533                          * in this buffer, the mbuf can be discarded:
1534                          * the last 4 bytes is the CRC, which we don't
1535                          * care about anyway.
1536                          */
1537                         if (m->m_len <= ETHER_CRC_LEN) {
1538                                 sc->vge_cdata.vge_tail->m_len -=
1539                                     (ETHER_CRC_LEN - m->m_len);
1540                                 m_freem(m);
1541                         } else {
1542                                 m->m_len -= ETHER_CRC_LEN;
1543                                 m->m_flags &= ~M_PKTHDR;
1544                                 sc->vge_cdata.vge_tail->m_next = m;
1545                         }
1546                         m = sc->vge_cdata.vge_head;
1547                         m->m_flags |= M_PKTHDR;
1548                         m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1549                 } else {
1550                         m->m_flags |= M_PKTHDR;
1551                         m->m_pkthdr.len = m->m_len =
1552                             (total_len - ETHER_CRC_LEN);
1553                 }
1554
1555 #ifndef __NO_STRICT_ALIGNMENT
1556                 vge_fixup_rx(m);
1557 #endif
1558                 m->m_pkthdr.rcvif = ifp;
1559
1560                 /* Do RX checksumming if enabled */
1561                 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
1562                     (rxctl & VGE_RDCTL_FRAG) == 0) {
1563                         /* Check IP header checksum */
1564                         if ((rxctl & VGE_RDCTL_IPPKT) != 0)
1565                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1566                         if ((rxctl & VGE_RDCTL_IPCSUMOK) != 0)
1567                                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1568
1569                         /* Check TCP/UDP checksum */
1570                         if (rxctl & (VGE_RDCTL_TCPPKT | VGE_RDCTL_UDPPKT) &&
1571                             rxctl & VGE_RDCTL_PROTOCSUMOK) {
1572                                 m->m_pkthdr.csum_flags |=
1573                                     CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1574                                 m->m_pkthdr.csum_data = 0xffff;
1575                         }
1576                 }
1577
1578                 if ((rxstat & VGE_RDSTS_VTAG) != 0) {
1579                         /*
1580                          * The 32-bit rxctl register is stored in little-endian.
1581                          * However, the 16-bit vlan tag is stored in big-endian,
1582                          * so we have to byte swap it.
1583                          */
1584                         m->m_pkthdr.ether_vtag =
1585                             bswap16(rxctl & VGE_RDCTL_VLANID);
1586                         m->m_flags |= M_VLANTAG;
1587                 }
1588
1589                 VGE_UNLOCK(sc);
1590                 (*ifp->if_input)(ifp, m);
1591                 VGE_LOCK(sc);
1592                 sc->vge_cdata.vge_head = NULL;
1593                 sc->vge_cdata.vge_tail = NULL;
1594         }
1595
1596         if (prog > 0) {
1597                 sc->vge_cdata.vge_rx_prodidx = prod;
1598                 bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1599                     sc->vge_cdata.vge_rx_ring_map,
1600                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1601                 /* Update residue counter. */
1602                 if (sc->vge_cdata.vge_rx_commit != 0) {
1603                         CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT,
1604                             sc->vge_cdata.vge_rx_commit);
1605                         sc->vge_cdata.vge_rx_commit = 0;
1606                 }
1607         }
1608         return (prog);
1609 }
1610
1611 static void
1612 vge_txeof(struct vge_softc *sc)
1613 {
1614         struct ifnet *ifp;
1615         struct vge_tx_desc *cur_tx;
1616         struct vge_txdesc *txd;
1617         uint32_t txstat;
1618         int cons, prod;
1619
1620         VGE_LOCK_ASSERT(sc);
1621
1622         ifp = sc->vge_ifp;
1623
1624         if (sc->vge_cdata.vge_tx_cnt == 0)
1625                 return;
1626
1627         bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1628             sc->vge_cdata.vge_tx_ring_map,
1629             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1630
1631         /*
1632          * Go through our tx list and free mbufs for those
1633          * frames that have been transmitted.
1634          */
1635         cons = sc->vge_cdata.vge_tx_considx;
1636         prod = sc->vge_cdata.vge_tx_prodidx;
1637         for (; cons != prod; VGE_TX_DESC_INC(cons)) {
1638                 cur_tx = &sc->vge_rdata.vge_tx_ring[cons];
1639                 txstat = le32toh(cur_tx->vge_sts);
1640                 if ((txstat & VGE_TDSTS_OWN) != 0)
1641                         break;
1642                 sc->vge_cdata.vge_tx_cnt--;
1643                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1644
1645                 txd = &sc->vge_cdata.vge_txdesc[cons];
1646                 bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1647                     BUS_DMASYNC_POSTWRITE);
1648                 bus_dmamap_unload(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap);
1649
1650                 KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1651                     __func__));
1652                 m_freem(txd->tx_m);
1653                 txd->tx_m = NULL;
1654                 txd->tx_desc->vge_frag[0].vge_addrhi = 0;
1655         }
1656         bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1657             sc->vge_cdata.vge_tx_ring_map,
1658             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1659         sc->vge_cdata.vge_tx_considx = cons;
1660         if (sc->vge_cdata.vge_tx_cnt == 0)
1661                 sc->vge_timer = 0;
1662 }
1663
1664 static void
1665 vge_link_statchg(void *xsc)
1666 {
1667         struct vge_softc *sc;
1668         struct ifnet *ifp;
1669         uint8_t physts;
1670
1671         sc = xsc;
1672         ifp = sc->vge_ifp;
1673         VGE_LOCK_ASSERT(sc);
1674
1675         physts = CSR_READ_1(sc, VGE_PHYSTS0);
1676         if ((physts & VGE_PHYSTS_RESETSTS) == 0) {
1677                 if ((physts & VGE_PHYSTS_LINK) == 0) {
1678                         sc->vge_flags &= ~VGE_FLAG_LINK;
1679                         if_link_state_change(sc->vge_ifp,
1680                             LINK_STATE_DOWN);
1681                 } else {
1682                         sc->vge_flags |= VGE_FLAG_LINK;
1683                         if_link_state_change(sc->vge_ifp,
1684                             LINK_STATE_UP);
1685                         CSR_WRITE_1(sc, VGE_CRC2, VGE_CR2_FDX_TXFLOWCTL_ENABLE |
1686                             VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1687                         if ((physts & VGE_PHYSTS_FDX) != 0) {
1688                                 if ((physts & VGE_PHYSTS_TXFLOWCAP) != 0)
1689                                         CSR_WRITE_1(sc, VGE_CRS2,
1690                                             VGE_CR2_FDX_TXFLOWCTL_ENABLE);
1691                                 if ((physts & VGE_PHYSTS_RXFLOWCAP) != 0)
1692                                         CSR_WRITE_1(sc, VGE_CRS2,
1693                                             VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1694                         }
1695                         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1696                                 vge_start_locked(ifp);
1697                 }
1698         }
1699         /*
1700          * Restart MII auto-polling because link state change interrupt
1701          * will disable it.
1702          */
1703         vge_miipoll_start(sc);
1704 }
1705
1706 #ifdef DEVICE_POLLING
1707 static int
1708 vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1709 {
1710         struct vge_softc *sc = ifp->if_softc;
1711         int rx_npkts = 0;
1712
1713         VGE_LOCK(sc);
1714         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1715                 goto done;
1716
1717         rx_npkts = vge_rxeof(sc, count);
1718         vge_txeof(sc);
1719
1720         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1721                 vge_start_locked(ifp);
1722
1723         if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1724                 uint32_t       status;
1725                 status = CSR_READ_4(sc, VGE_ISR);
1726                 if (status == 0xFFFFFFFF)
1727                         goto done;
1728                 if (status)
1729                         CSR_WRITE_4(sc, VGE_ISR, status);
1730
1731                 /*
1732                  * XXX check behaviour on receiver stalls.
1733                  */
1734
1735                 if (status & VGE_ISR_TXDMA_STALL ||
1736                     status & VGE_ISR_RXDMA_STALL) {
1737                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1738                         vge_init_locked(sc);
1739                 }
1740
1741                 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1742                         vge_rxeof(sc, count);
1743                         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1744                         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1745                 }
1746         }
1747 done:
1748         VGE_UNLOCK(sc);
1749         return (rx_npkts);
1750 }
1751 #endif /* DEVICE_POLLING */
1752
1753 static void
1754 vge_intr(void *arg)
1755 {
1756         struct vge_softc *sc;
1757         struct ifnet *ifp;
1758         uint32_t status;
1759
1760         sc = arg;
1761         VGE_LOCK(sc);
1762
1763         ifp = sc->vge_ifp;
1764         if ((sc->vge_flags & VGE_FLAG_SUSPENDED) != 0 ||
1765             (ifp->if_flags & IFF_UP) == 0) {
1766                 VGE_UNLOCK(sc);
1767                 return;
1768         }
1769
1770 #ifdef DEVICE_POLLING
1771         if  (ifp->if_capenable & IFCAP_POLLING) {
1772                 status = CSR_READ_4(sc, VGE_ISR);
1773                 CSR_WRITE_4(sc, VGE_ISR, status);
1774                 if (status != 0xFFFFFFFF && (status & VGE_ISR_LINKSTS) != 0)
1775                         vge_link_statchg(sc);
1776                 VGE_UNLOCK(sc);
1777                 return;
1778         }
1779 #endif
1780
1781         /* Disable interrupts */
1782         CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1783         status = CSR_READ_4(sc, VGE_ISR);
1784         CSR_WRITE_4(sc, VGE_ISR, status | VGE_ISR_HOLDOFF_RELOAD);
1785         /* If the card has gone away the read returns 0xffff. */
1786         if (status == 0xFFFFFFFF || (status & VGE_INTRS) == 0)
1787                 goto done;
1788         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1789                 if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1790                         vge_rxeof(sc, VGE_RX_DESC_CNT);
1791                 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1792                         vge_rxeof(sc, VGE_RX_DESC_CNT);
1793                         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1794                         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1795                 }
1796
1797                 if (status & (VGE_ISR_TXOK0|VGE_ISR_TXOK_HIPRIO))
1798                         vge_txeof(sc);
1799
1800                 if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) {
1801                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1802                         vge_init_locked(sc);
1803                 }
1804
1805                 if (status & VGE_ISR_LINKSTS)
1806                         vge_link_statchg(sc);
1807         }
1808 done:
1809         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1810                 /* Re-enable interrupts */
1811                 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1812
1813                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1814                         vge_start_locked(ifp);
1815         }
1816         VGE_UNLOCK(sc);
1817 }
1818
1819 static int
1820 vge_encap(struct vge_softc *sc, struct mbuf **m_head)
1821 {
1822         struct vge_txdesc *txd;
1823         struct vge_tx_frag *frag;
1824         struct mbuf *m;
1825         bus_dma_segment_t txsegs[VGE_MAXTXSEGS];
1826         int error, i, nsegs, padlen;
1827         uint32_t cflags;
1828
1829         VGE_LOCK_ASSERT(sc);
1830
1831         M_ASSERTPKTHDR((*m_head));
1832
1833         /* Argh. This chip does not autopad short frames. */
1834         if ((*m_head)->m_pkthdr.len < VGE_MIN_FRAMELEN) {
1835                 m = *m_head;
1836                 padlen = VGE_MIN_FRAMELEN - m->m_pkthdr.len;
1837                 if (M_WRITABLE(m) == 0) {
1838                         /* Get a writable copy. */
1839                         m = m_dup(*m_head, M_NOWAIT);
1840                         m_freem(*m_head);
1841                         if (m == NULL) {
1842                                 *m_head = NULL;
1843                                 return (ENOBUFS);
1844                         }
1845                         *m_head = m;
1846                 }
1847                 if (M_TRAILINGSPACE(m) < padlen) {
1848                         m = m_defrag(m, M_NOWAIT);
1849                         if (m == NULL) {
1850                                 m_freem(*m_head);
1851                                 *m_head = NULL;
1852                                 return (ENOBUFS);
1853                         }
1854                 }
1855                 /*
1856                  * Manually pad short frames, and zero the pad space
1857                  * to avoid leaking data.
1858                  */
1859                 bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1860                 m->m_pkthdr.len += padlen;
1861                 m->m_len = m->m_pkthdr.len;
1862                 *m_head = m;
1863         }
1864
1865         txd = &sc->vge_cdata.vge_txdesc[sc->vge_cdata.vge_tx_prodidx];
1866
1867         error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1868             txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1869         if (error == EFBIG) {
1870                 m = m_collapse(*m_head, M_NOWAIT, VGE_MAXTXSEGS);
1871                 if (m == NULL) {
1872                         m_freem(*m_head);
1873                         *m_head = NULL;
1874                         return (ENOMEM);
1875                 }
1876                 *m_head = m;
1877                 error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1878                     txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1879                 if (error != 0) {
1880                         m_freem(*m_head);
1881                         *m_head = NULL;
1882                         return (error);
1883                 }
1884         } else if (error != 0)
1885                 return (error);
1886         bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1887             BUS_DMASYNC_PREWRITE);
1888
1889         m = *m_head;
1890         cflags = 0;
1891
1892         /* Configure checksum offload. */
1893         if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1894                 cflags |= VGE_TDCTL_IPCSUM;
1895         if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1896                 cflags |= VGE_TDCTL_TCPCSUM;
1897         if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1898                 cflags |= VGE_TDCTL_UDPCSUM;
1899
1900         /* Configure VLAN. */
1901         if ((m->m_flags & M_VLANTAG) != 0)
1902                 cflags |= m->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG;
1903         txd->tx_desc->vge_sts = htole32(m->m_pkthdr.len << 16);
1904         /*
1905          * XXX
1906          * Velocity family seems to support TSO but no information
1907          * for MSS configuration is available. Also the number of
1908          * fragments supported by a descriptor is too small to hold
1909          * entire 64KB TCP/IP segment. Maybe VGE_TD_LS_MOF,
1910          * VGE_TD_LS_SOF and VGE_TD_LS_EOF could be used to build
1911          * longer chain of buffers but no additional information is
1912          * available.
1913          *
1914          * When telling the chip how many segments there are, we
1915          * must use nsegs + 1 instead of just nsegs. Darned if I
1916          * know why. This also means we can't use the last fragment
1917          * field of Tx descriptor.
1918          */
1919         txd->tx_desc->vge_ctl = htole32(cflags | ((nsegs + 1) << 28) |
1920             VGE_TD_LS_NORM);
1921         for (i = 0; i < nsegs; i++) {
1922                 frag = &txd->tx_desc->vge_frag[i];
1923                 frag->vge_addrlo = htole32(VGE_ADDR_LO(txsegs[i].ds_addr));
1924                 frag->vge_addrhi = htole32(VGE_ADDR_HI(txsegs[i].ds_addr) |
1925                     (VGE_BUFLEN(txsegs[i].ds_len) << 16));
1926         }
1927
1928         sc->vge_cdata.vge_tx_cnt++;
1929         VGE_TX_DESC_INC(sc->vge_cdata.vge_tx_prodidx);
1930
1931         /*
1932          * Finally request interrupt and give the first descriptor
1933          * ownership to hardware.
1934          */
1935         txd->tx_desc->vge_ctl |= htole32(VGE_TDCTL_TIC);
1936         txd->tx_desc->vge_sts |= htole32(VGE_TDSTS_OWN);
1937         txd->tx_m = m;
1938
1939         return (0);
1940 }
1941
1942 /*
1943  * Main transmit routine.
1944  */
1945
1946 static void
1947 vge_start(struct ifnet *ifp)
1948 {
1949         struct vge_softc *sc;
1950
1951         sc = ifp->if_softc;
1952         VGE_LOCK(sc);
1953         vge_start_locked(ifp);
1954         VGE_UNLOCK(sc);
1955 }
1956
1957
1958 static void
1959 vge_start_locked(struct ifnet *ifp)
1960 {
1961         struct vge_softc *sc;
1962         struct vge_txdesc *txd;
1963         struct mbuf *m_head;
1964         int enq, idx;
1965
1966         sc = ifp->if_softc;
1967
1968         VGE_LOCK_ASSERT(sc);
1969
1970         if ((sc->vge_flags & VGE_FLAG_LINK) == 0 ||
1971             (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1972             IFF_DRV_RUNNING)
1973                 return;
1974
1975         idx = sc->vge_cdata.vge_tx_prodidx;
1976         VGE_TX_DESC_DEC(idx);
1977         for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1978             sc->vge_cdata.vge_tx_cnt < VGE_TX_DESC_CNT - 1; ) {
1979                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1980                 if (m_head == NULL)
1981                         break;
1982                 /*
1983                  * Pack the data into the transmit ring. If we
1984                  * don't have room, set the OACTIVE flag and wait
1985                  * for the NIC to drain the ring.
1986                  */
1987                 if (vge_encap(sc, &m_head)) {
1988                         if (m_head == NULL)
1989                                 break;
1990                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1991                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1992                         break;
1993                 }
1994
1995                 txd = &sc->vge_cdata.vge_txdesc[idx];
1996                 txd->tx_desc->vge_frag[0].vge_addrhi |= htole32(VGE_TXDESC_Q);
1997                 VGE_TX_DESC_INC(idx);
1998
1999                 enq++;
2000                 /*
2001                  * If there's a BPF listener, bounce a copy of this frame
2002                  * to him.
2003                  */
2004                 ETHER_BPF_MTAP(ifp, m_head);
2005         }
2006
2007         if (enq > 0) {
2008                 bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
2009                     sc->vge_cdata.vge_tx_ring_map,
2010                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2011                 /* Issue a transmit command. */
2012                 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
2013                 /*
2014                  * Set a timeout in case the chip goes out to lunch.
2015                  */
2016                 sc->vge_timer = 5;
2017         }
2018 }
2019
2020 static void
2021 vge_init(void *xsc)
2022 {
2023         struct vge_softc *sc = xsc;
2024
2025         VGE_LOCK(sc);
2026         vge_init_locked(sc);
2027         VGE_UNLOCK(sc);
2028 }
2029
2030 static void
2031 vge_init_locked(struct vge_softc *sc)
2032 {
2033         struct ifnet *ifp = sc->vge_ifp;
2034         int error, i;
2035
2036         VGE_LOCK_ASSERT(sc);
2037
2038         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2039                 return;
2040
2041         /*
2042          * Cancel pending I/O and free all RX/TX buffers.
2043          */
2044         vge_stop(sc);
2045         vge_reset(sc);
2046         vge_miipoll_start(sc);
2047
2048         /*
2049          * Initialize the RX and TX descriptors and mbufs.
2050          */
2051
2052         error = vge_rx_list_init(sc);
2053         if (error != 0) {
2054                 device_printf(sc->vge_dev, "no memory for Rx buffers.\n");
2055                 return;
2056         }
2057         vge_tx_list_init(sc);
2058         /* Clear MAC statistics. */
2059         vge_stats_clear(sc);
2060         /* Set our station address */
2061         for (i = 0; i < ETHER_ADDR_LEN; i++)
2062                 CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
2063
2064         /*
2065          * Set receive FIFO threshold. Also allow transmission and
2066          * reception of VLAN tagged frames.
2067          */
2068         CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
2069         CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES);
2070
2071         /* Set DMA burst length */
2072         CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
2073         CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
2074
2075         CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
2076
2077         /* Set collision backoff algorithm */
2078         CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
2079             VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
2080         CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
2081
2082         /* Disable LPSEL field in priority resolution */
2083         CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
2084
2085         /*
2086          * Load the addresses of the DMA queues into the chip.
2087          * Note that we only use one transmit queue.
2088          */
2089
2090         CSR_WRITE_4(sc, VGE_TXDESC_HIADDR,
2091             VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr));
2092         CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
2093             VGE_ADDR_LO(sc->vge_rdata.vge_tx_ring_paddr));
2094         CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
2095
2096         CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
2097             VGE_ADDR_LO(sc->vge_rdata.vge_rx_ring_paddr));
2098         CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
2099         CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
2100
2101         /* Configure interrupt moderation. */
2102         vge_intr_holdoff(sc);
2103
2104         /* Enable and wake up the RX descriptor queue */
2105         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
2106         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
2107
2108         /* Enable the TX descriptor queue */
2109         CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
2110
2111         /* Init the cam filter. */
2112         vge_cam_clear(sc);
2113
2114         /* Set up receiver filter. */
2115         vge_rxfilter(sc);
2116         vge_setvlan(sc);
2117
2118         /* Initialize pause timer. */
2119         CSR_WRITE_2(sc, VGE_TX_PAUSE_TIMER, 0xFFFF);
2120         /*
2121          * Initialize flow control parameters.
2122          *  TX XON high threshold : 48
2123          *  TX pause low threshold : 24
2124          *  Disable hald-duplex flow control
2125          */
2126         CSR_WRITE_1(sc, VGE_CRC2, 0xFF);
2127         CSR_WRITE_1(sc, VGE_CRS2, VGE_CR2_XON_ENABLE | 0x0B);
2128
2129         /* Enable jumbo frame reception (if desired) */
2130
2131         /* Start the MAC. */
2132         CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
2133         CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
2134         CSR_WRITE_1(sc, VGE_CRS0,
2135             VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
2136
2137 #ifdef DEVICE_POLLING
2138         /*
2139          * Disable interrupts except link state change if we are polling.
2140          */
2141         if (ifp->if_capenable & IFCAP_POLLING) {
2142                 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2143         } else  /* otherwise ... */
2144 #endif
2145         {
2146         /*
2147          * Enable interrupts.
2148          */
2149                 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2150         }
2151         CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2152         CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2153
2154         sc->vge_flags &= ~VGE_FLAG_LINK;
2155         vge_ifmedia_upd_locked(sc);
2156
2157         ifp->if_drv_flags |= IFF_DRV_RUNNING;
2158         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2159         callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2160 }
2161
2162 /*
2163  * Set media options.
2164  */
2165 static int
2166 vge_ifmedia_upd(struct ifnet *ifp)
2167 {
2168         struct vge_softc *sc;
2169         int error;
2170
2171         sc = ifp->if_softc;
2172         VGE_LOCK(sc);
2173         error = vge_ifmedia_upd_locked(sc);
2174         VGE_UNLOCK(sc);
2175
2176         return (error);
2177 }
2178
2179 static int
2180 vge_ifmedia_upd_locked(struct vge_softc *sc)
2181 {
2182         struct mii_data *mii;
2183         struct mii_softc *miisc;
2184         int error;
2185
2186         mii = device_get_softc(sc->vge_miibus);
2187         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2188                 PHY_RESET(miisc);
2189         vge_setmedia(sc);
2190         error = mii_mediachg(mii);
2191
2192         return (error);
2193 }
2194
2195 /*
2196  * Report current media status.
2197  */
2198 static void
2199 vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2200 {
2201         struct vge_softc *sc;
2202         struct mii_data *mii;
2203
2204         sc = ifp->if_softc;
2205         mii = device_get_softc(sc->vge_miibus);
2206
2207         VGE_LOCK(sc);
2208         if ((ifp->if_flags & IFF_UP) == 0) {
2209                 VGE_UNLOCK(sc);
2210                 return;
2211         }
2212         mii_pollstat(mii);
2213         ifmr->ifm_active = mii->mii_media_active;
2214         ifmr->ifm_status = mii->mii_media_status;
2215         VGE_UNLOCK(sc);
2216 }
2217
2218 static void
2219 vge_setmedia(struct vge_softc *sc)
2220 {
2221         struct mii_data *mii;
2222         struct ifmedia_entry *ife;
2223
2224         mii = device_get_softc(sc->vge_miibus);
2225         ife = mii->mii_media.ifm_cur;
2226
2227         /*
2228          * If the user manually selects a media mode, we need to turn
2229          * on the forced MAC mode bit in the DIAGCTL register. If the
2230          * user happens to choose a full duplex mode, we also need to
2231          * set the 'force full duplex' bit. This applies only to
2232          * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2233          * mode is disabled, and in 1000baseT mode, full duplex is
2234          * always implied, so we turn on the forced mode bit but leave
2235          * the FDX bit cleared.
2236          */
2237
2238         switch (IFM_SUBTYPE(ife->ifm_media)) {
2239         case IFM_AUTO:
2240                 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2241                 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2242                 break;
2243         case IFM_1000_T:
2244                 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2245                 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2246                 break;
2247         case IFM_100_TX:
2248         case IFM_10_T:
2249                 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2250                 if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2251                         CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2252                 } else {
2253                         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2254                 }
2255                 break;
2256         default:
2257                 device_printf(sc->vge_dev, "unknown media type: %x\n",
2258                     IFM_SUBTYPE(ife->ifm_media));
2259                 break;
2260         }
2261 }
2262
2263 static int
2264 vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2265 {
2266         struct vge_softc *sc = ifp->if_softc;
2267         struct ifreq *ifr = (struct ifreq *) data;
2268         struct mii_data *mii;
2269         int error = 0, mask;
2270
2271         switch (command) {
2272         case SIOCSIFMTU:
2273                 VGE_LOCK(sc);
2274                 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > VGE_JUMBO_MTU)
2275                         error = EINVAL;
2276                 else if (ifp->if_mtu != ifr->ifr_mtu) {
2277                         if (ifr->ifr_mtu > ETHERMTU &&
2278                             (sc->vge_flags & VGE_FLAG_JUMBO) == 0)
2279                                 error = EINVAL;
2280                         else
2281                                 ifp->if_mtu = ifr->ifr_mtu;
2282                 }
2283                 VGE_UNLOCK(sc);
2284                 break;
2285         case SIOCSIFFLAGS:
2286                 VGE_LOCK(sc);
2287                 if ((ifp->if_flags & IFF_UP) != 0) {
2288                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2289                             ((ifp->if_flags ^ sc->vge_if_flags) &
2290                             (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2291                                 vge_rxfilter(sc);
2292                         else
2293                                 vge_init_locked(sc);
2294                 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2295                         vge_stop(sc);
2296                 sc->vge_if_flags = ifp->if_flags;
2297                 VGE_UNLOCK(sc);
2298                 break;
2299         case SIOCADDMULTI:
2300         case SIOCDELMULTI:
2301                 VGE_LOCK(sc);
2302                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2303                         vge_rxfilter(sc);
2304                 VGE_UNLOCK(sc);
2305                 break;
2306         case SIOCGIFMEDIA:
2307         case SIOCSIFMEDIA:
2308                 mii = device_get_softc(sc->vge_miibus);
2309                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2310                 break;
2311         case SIOCSIFCAP:
2312                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2313 #ifdef DEVICE_POLLING
2314                 if (mask & IFCAP_POLLING) {
2315                         if (ifr->ifr_reqcap & IFCAP_POLLING) {
2316                                 error = ether_poll_register(vge_poll, ifp);
2317                                 if (error)
2318                                         return (error);
2319                                 VGE_LOCK(sc);
2320                                         /* Disable interrupts */
2321                                 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2322                                 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2323                                 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2324                                 ifp->if_capenable |= IFCAP_POLLING;
2325                                 VGE_UNLOCK(sc);
2326                         } else {
2327                                 error = ether_poll_deregister(ifp);
2328                                 /* Enable interrupts. */
2329                                 VGE_LOCK(sc);
2330                                 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2331                                 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2332                                 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2333                                 ifp->if_capenable &= ~IFCAP_POLLING;
2334                                 VGE_UNLOCK(sc);
2335                         }
2336                 }
2337 #endif /* DEVICE_POLLING */
2338                 VGE_LOCK(sc);
2339                 if ((mask & IFCAP_TXCSUM) != 0 &&
2340                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2341                         ifp->if_capenable ^= IFCAP_TXCSUM;
2342                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2343                                 ifp->if_hwassist |= VGE_CSUM_FEATURES;
2344                         else
2345                                 ifp->if_hwassist &= ~VGE_CSUM_FEATURES;
2346                 }
2347                 if ((mask & IFCAP_RXCSUM) != 0 &&
2348                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2349                         ifp->if_capenable ^= IFCAP_RXCSUM;
2350                 if ((mask & IFCAP_WOL_UCAST) != 0 &&
2351                     (ifp->if_capabilities & IFCAP_WOL_UCAST) != 0)
2352                         ifp->if_capenable ^= IFCAP_WOL_UCAST;
2353                 if ((mask & IFCAP_WOL_MCAST) != 0 &&
2354                     (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2355                         ifp->if_capenable ^= IFCAP_WOL_MCAST;
2356                 if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2357                     (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2358                         ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2359                 if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2360                     (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2361                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2362                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2363                     (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
2364                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2365                         vge_setvlan(sc);
2366                 }
2367                 VGE_UNLOCK(sc);
2368                 VLAN_CAPABILITIES(ifp);
2369                 break;
2370         default:
2371                 error = ether_ioctl(ifp, command, data);
2372                 break;
2373         }
2374
2375         return (error);
2376 }
2377
2378 static void
2379 vge_watchdog(void *arg)
2380 {
2381         struct vge_softc *sc;
2382         struct ifnet *ifp;
2383
2384         sc = arg;
2385         VGE_LOCK_ASSERT(sc);
2386         vge_stats_update(sc);
2387         callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2388         if (sc->vge_timer == 0 || --sc->vge_timer > 0)
2389                 return;
2390
2391         ifp = sc->vge_ifp;
2392         if_printf(ifp, "watchdog timeout\n");
2393         if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2394
2395         vge_txeof(sc);
2396         vge_rxeof(sc, VGE_RX_DESC_CNT);
2397
2398         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2399         vge_init_locked(sc);
2400 }
2401
2402 /*
2403  * Stop the adapter and free any mbufs allocated to the
2404  * RX and TX lists.
2405  */
2406 static void
2407 vge_stop(struct vge_softc *sc)
2408 {
2409         struct ifnet *ifp;
2410
2411         VGE_LOCK_ASSERT(sc);
2412         ifp = sc->vge_ifp;
2413         sc->vge_timer = 0;
2414         callout_stop(&sc->vge_watchdog);
2415
2416         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2417
2418         CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2419         CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2420         CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2421         CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2422         CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2423         CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2424
2425         vge_stats_update(sc);
2426         VGE_CHAIN_RESET(sc);
2427         vge_txeof(sc);
2428         vge_freebufs(sc);
2429 }
2430
2431 /*
2432  * Device suspend routine.  Stop the interface and save some PCI
2433  * settings in case the BIOS doesn't restore them properly on
2434  * resume.
2435  */
2436 static int
2437 vge_suspend(device_t dev)
2438 {
2439         struct vge_softc *sc;
2440
2441         sc = device_get_softc(dev);
2442
2443         VGE_LOCK(sc);
2444         vge_stop(sc);
2445         vge_setwol(sc);
2446         sc->vge_flags |= VGE_FLAG_SUSPENDED;
2447         VGE_UNLOCK(sc);
2448
2449         return (0);
2450 }
2451
2452 /*
2453  * Device resume routine.  Restore some PCI settings in case the BIOS
2454  * doesn't, re-enable busmastering, and restart the interface if
2455  * appropriate.
2456  */
2457 static int
2458 vge_resume(device_t dev)
2459 {
2460         struct vge_softc *sc;
2461         struct ifnet *ifp;
2462         uint16_t pmstat;
2463
2464         sc = device_get_softc(dev);
2465         VGE_LOCK(sc);
2466         if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0) {
2467                 /* Disable PME and clear PME status. */
2468                 pmstat = pci_read_config(sc->vge_dev,
2469                     sc->vge_pmcap + PCIR_POWER_STATUS, 2);
2470                 if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2471                         pmstat &= ~PCIM_PSTAT_PMEENABLE;
2472                         pci_write_config(sc->vge_dev,
2473                             sc->vge_pmcap + PCIR_POWER_STATUS, pmstat, 2);
2474                 }
2475         }
2476         vge_clrwol(sc);
2477         /* Restart MII auto-polling. */
2478         vge_miipoll_start(sc);
2479         ifp = sc->vge_ifp;
2480         /* Reinitialize interface if necessary. */
2481         if ((ifp->if_flags & IFF_UP) != 0) {
2482                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2483                 vge_init_locked(sc);
2484         }
2485         sc->vge_flags &= ~VGE_FLAG_SUSPENDED;
2486         VGE_UNLOCK(sc);
2487
2488         return (0);
2489 }
2490
2491 /*
2492  * Stop all chip I/O so that the kernel's probe routines don't
2493  * get confused by errant DMAs when rebooting.
2494  */
2495 static int
2496 vge_shutdown(device_t dev)
2497 {
2498
2499         return (vge_suspend(dev));
2500 }
2501
2502 #define VGE_SYSCTL_STAT_ADD32(c, h, n, p, d)    \
2503             SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2504
2505 static void
2506 vge_sysctl_node(struct vge_softc *sc)
2507 {
2508         struct sysctl_ctx_list *ctx;
2509         struct sysctl_oid_list *child, *parent;
2510         struct sysctl_oid *tree;
2511         struct vge_hw_stats *stats;
2512
2513         stats = &sc->vge_stats;
2514         ctx = device_get_sysctl_ctx(sc->vge_dev);
2515         child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vge_dev));
2516
2517         SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_holdoff",
2518             CTLFLAG_RW, &sc->vge_int_holdoff, 0, "interrupt holdoff");
2519         SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_coal_pkt",
2520             CTLFLAG_RW, &sc->vge_rx_coal_pkt, 0, "rx coalescing packet");
2521         SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_coal_pkt",
2522             CTLFLAG_RW, &sc->vge_tx_coal_pkt, 0, "tx coalescing packet");
2523
2524         /* Pull in device tunables. */
2525         sc->vge_int_holdoff = VGE_INT_HOLDOFF_DEFAULT;
2526         resource_int_value(device_get_name(sc->vge_dev),
2527             device_get_unit(sc->vge_dev), "int_holdoff", &sc->vge_int_holdoff);
2528         sc->vge_rx_coal_pkt = VGE_RX_COAL_PKT_DEFAULT;
2529         resource_int_value(device_get_name(sc->vge_dev),
2530             device_get_unit(sc->vge_dev), "rx_coal_pkt", &sc->vge_rx_coal_pkt);
2531         sc->vge_tx_coal_pkt = VGE_TX_COAL_PKT_DEFAULT;
2532         resource_int_value(device_get_name(sc->vge_dev),
2533             device_get_unit(sc->vge_dev), "tx_coal_pkt", &sc->vge_tx_coal_pkt);
2534
2535         tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
2536             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "VGE statistics");
2537         parent = SYSCTL_CHILDREN(tree);
2538
2539         /* Rx statistics. */
2540         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
2541             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX MAC statistics");
2542         child = SYSCTL_CHILDREN(tree);
2543         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames",
2544             &stats->rx_frames, "frames");
2545         VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2546             &stats->rx_good_frames, "Good frames");
2547         VGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2548             &stats->rx_fifo_oflows, "FIFO overflows");
2549         VGE_SYSCTL_STAT_ADD32(ctx, child, "runts",
2550             &stats->rx_runts, "Too short frames");
2551         VGE_SYSCTL_STAT_ADD32(ctx, child, "runts_errs",
2552             &stats->rx_runts_errs, "Too short frames with errors");
2553         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2554             &stats->rx_pkts_64, "64 bytes frames");
2555         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2556             &stats->rx_pkts_65_127, "65 to 127 bytes frames");
2557         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2558             &stats->rx_pkts_128_255, "128 to 255 bytes frames");
2559         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2560             &stats->rx_pkts_256_511, "256 to 511 bytes frames");
2561         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2562             &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
2563         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2564             &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
2565         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
2566             &stats->rx_pkts_1519_max, "1519 to max frames");
2567         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max_errs",
2568             &stats->rx_pkts_1519_max_errs, "1519 to max frames with error");
2569         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2570             &stats->rx_jumbos, "Jumbo frames");
2571         VGE_SYSCTL_STAT_ADD32(ctx, child, "crcerrs",
2572             &stats->rx_crcerrs, "CRC errors");
2573         VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2574             &stats->rx_pause_frames, "CRC errors");
2575         VGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2576             &stats->rx_alignerrs, "Alignment errors");
2577         VGE_SYSCTL_STAT_ADD32(ctx, child, "nobufs",
2578             &stats->rx_nobufs, "Frames with no buffer event");
2579         VGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2580             &stats->rx_symerrs, "Frames with symbol errors");
2581         VGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2582             &stats->rx_lenerrs, "Frames with length mismatched");
2583
2584         /* Tx statistics. */
2585         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
2586             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX MAC statistics");
2587         child = SYSCTL_CHILDREN(tree);
2588         VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2589             &stats->tx_good_frames, "Good frames");
2590         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2591             &stats->tx_pkts_64, "64 bytes frames");
2592         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2593             &stats->tx_pkts_65_127, "65 to 127 bytes frames");
2594         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2595             &stats->tx_pkts_128_255, "128 to 255 bytes frames");
2596         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2597             &stats->tx_pkts_256_511, "256 to 511 bytes frames");
2598         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2599             &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
2600         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2601             &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
2602         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2603             &stats->tx_jumbos, "Jumbo frames");
2604         VGE_SYSCTL_STAT_ADD32(ctx, child, "colls",
2605             &stats->tx_colls, "Collisions");
2606         VGE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2607             &stats->tx_latecolls, "Late collisions");
2608         VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2609             &stats->tx_pause, "Pause frames");
2610 #ifdef VGE_ENABLE_SQEERR
2611         VGE_SYSCTL_STAT_ADD32(ctx, child, "sqeerrs",
2612             &stats->tx_sqeerrs, "SQE errors");
2613 #endif
2614         /* Clear MAC statistics. */
2615         vge_stats_clear(sc);
2616 }
2617
2618 #undef  VGE_SYSCTL_STAT_ADD32
2619
2620 static void
2621 vge_stats_clear(struct vge_softc *sc)
2622 {
2623         int i;
2624
2625         CSR_WRITE_1(sc, VGE_MIBCSR,
2626             CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FREEZE);
2627         CSR_WRITE_1(sc, VGE_MIBCSR,
2628             CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_CLR);
2629         for (i = VGE_TIMEOUT; i > 0; i--) {
2630                 DELAY(1);
2631                 if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_CLR) == 0)
2632                         break;
2633         }
2634         if (i == 0)
2635                 device_printf(sc->vge_dev, "MIB clear timed out!\n");
2636         CSR_WRITE_1(sc, VGE_MIBCSR, CSR_READ_1(sc, VGE_MIBCSR) &
2637             ~VGE_MIBCSR_FREEZE);
2638 }
2639
2640 static void
2641 vge_stats_update(struct vge_softc *sc)
2642 {
2643         struct vge_hw_stats *stats;
2644         struct ifnet *ifp;
2645         uint32_t mib[VGE_MIB_CNT], val;
2646         int i;
2647
2648         VGE_LOCK_ASSERT(sc);
2649
2650         stats = &sc->vge_stats;
2651         ifp = sc->vge_ifp;
2652
2653         CSR_WRITE_1(sc, VGE_MIBCSR,
2654             CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FLUSH);
2655         for (i = VGE_TIMEOUT; i > 0; i--) {
2656                 DELAY(1);
2657                 if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_FLUSH) == 0)
2658                         break;
2659         }
2660         if (i == 0) {
2661                 device_printf(sc->vge_dev, "MIB counter dump timed out!\n");
2662                 vge_stats_clear(sc);
2663                 return;
2664         }
2665
2666         bzero(mib, sizeof(mib));
2667 reset_idx:
2668         /* Set MIB read index to 0. */
2669         CSR_WRITE_1(sc, VGE_MIBCSR,
2670             CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_RINI);
2671         for (i = 0; i < VGE_MIB_CNT; i++) {
2672                 val = CSR_READ_4(sc, VGE_MIBDATA);
2673                 if (i != VGE_MIB_DATA_IDX(val)) {
2674                         /* Reading interrupted. */
2675                         goto reset_idx;
2676                 }
2677                 mib[i] = val & VGE_MIB_DATA_MASK;
2678         }
2679
2680         /* Rx stats. */
2681         stats->rx_frames += mib[VGE_MIB_RX_FRAMES];
2682         stats->rx_good_frames += mib[VGE_MIB_RX_GOOD_FRAMES];
2683         stats->rx_fifo_oflows += mib[VGE_MIB_RX_FIFO_OVERRUNS];
2684         stats->rx_runts += mib[VGE_MIB_RX_RUNTS];
2685         stats->rx_runts_errs += mib[VGE_MIB_RX_RUNTS_ERRS];
2686         stats->rx_pkts_64 += mib[VGE_MIB_RX_PKTS_64];
2687         stats->rx_pkts_65_127 += mib[VGE_MIB_RX_PKTS_65_127];
2688         stats->rx_pkts_128_255 += mib[VGE_MIB_RX_PKTS_128_255];
2689         stats->rx_pkts_256_511 += mib[VGE_MIB_RX_PKTS_256_511];
2690         stats->rx_pkts_512_1023 += mib[VGE_MIB_RX_PKTS_512_1023];
2691         stats->rx_pkts_1024_1518 += mib[VGE_MIB_RX_PKTS_1024_1518];
2692         stats->rx_pkts_1519_max += mib[VGE_MIB_RX_PKTS_1519_MAX];
2693         stats->rx_pkts_1519_max_errs += mib[VGE_MIB_RX_PKTS_1519_MAX_ERRS];
2694         stats->rx_jumbos += mib[VGE_MIB_RX_JUMBOS];
2695         stats->rx_crcerrs += mib[VGE_MIB_RX_CRCERRS];
2696         stats->rx_pause_frames += mib[VGE_MIB_RX_PAUSE];
2697         stats->rx_alignerrs += mib[VGE_MIB_RX_ALIGNERRS];
2698         stats->rx_nobufs += mib[VGE_MIB_RX_NOBUFS];
2699         stats->rx_symerrs += mib[VGE_MIB_RX_SYMERRS];
2700         stats->rx_lenerrs += mib[VGE_MIB_RX_LENERRS];
2701
2702         /* Tx stats. */
2703         stats->tx_good_frames += mib[VGE_MIB_TX_GOOD_FRAMES];
2704         stats->tx_pkts_64 += mib[VGE_MIB_TX_PKTS_64];
2705         stats->tx_pkts_65_127 += mib[VGE_MIB_TX_PKTS_65_127];
2706         stats->tx_pkts_128_255 += mib[VGE_MIB_TX_PKTS_128_255];
2707         stats->tx_pkts_256_511 += mib[VGE_MIB_TX_PKTS_256_511];
2708         stats->tx_pkts_512_1023 += mib[VGE_MIB_TX_PKTS_512_1023];
2709         stats->tx_pkts_1024_1518 += mib[VGE_MIB_TX_PKTS_1024_1518];
2710         stats->tx_jumbos += mib[VGE_MIB_TX_JUMBOS];
2711         stats->tx_colls += mib[VGE_MIB_TX_COLLS];
2712         stats->tx_pause += mib[VGE_MIB_TX_PAUSE];
2713 #ifdef VGE_ENABLE_SQEERR
2714         stats->tx_sqeerrs += mib[VGE_MIB_TX_SQEERRS];
2715 #endif
2716         stats->tx_latecolls += mib[VGE_MIB_TX_LATECOLLS];
2717
2718         /* Update counters in ifnet. */
2719         if_inc_counter(ifp, IFCOUNTER_OPACKETS, mib[VGE_MIB_TX_GOOD_FRAMES]);
2720
2721         if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2722             mib[VGE_MIB_TX_COLLS] + mib[VGE_MIB_TX_LATECOLLS]);
2723
2724         if_inc_counter(ifp, IFCOUNTER_OERRORS,
2725             mib[VGE_MIB_TX_COLLS] + mib[VGE_MIB_TX_LATECOLLS]);
2726
2727         if_inc_counter(ifp, IFCOUNTER_IPACKETS, mib[VGE_MIB_RX_GOOD_FRAMES]);
2728
2729         if_inc_counter(ifp, IFCOUNTER_IERRORS,
2730             mib[VGE_MIB_RX_FIFO_OVERRUNS] +
2731             mib[VGE_MIB_RX_RUNTS] +
2732             mib[VGE_MIB_RX_RUNTS_ERRS] +
2733             mib[VGE_MIB_RX_CRCERRS] +
2734             mib[VGE_MIB_RX_ALIGNERRS] +
2735             mib[VGE_MIB_RX_NOBUFS] +
2736             mib[VGE_MIB_RX_SYMERRS] +
2737             mib[VGE_MIB_RX_LENERRS]);
2738 }
2739
2740 static void
2741 vge_intr_holdoff(struct vge_softc *sc)
2742 {
2743         uint8_t intctl;
2744
2745         VGE_LOCK_ASSERT(sc);
2746
2747         /*
2748          * Set Tx interrupt supression threshold.
2749          * It's possible to use single-shot timer in VGE_CRS1 register
2750          * in Tx path such that driver can remove most of Tx completion
2751          * interrupts. However this requires additional access to
2752          * VGE_CRS1 register to reload the timer in addintion to
2753          * activating Tx kick command. Another downside is we don't know
2754          * what single-shot timer value should be used in advance so
2755          * reclaiming transmitted mbufs could be delayed a lot which in
2756          * turn slows down Tx operation.
2757          */
2758         CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_TXSUPPTHR);
2759         CSR_WRITE_1(sc, VGE_TXSUPPTHR, sc->vge_tx_coal_pkt);
2760
2761         /* Set Rx interrupt suppresion threshold. */
2762         CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2763         CSR_WRITE_1(sc, VGE_RXSUPPTHR, sc->vge_rx_coal_pkt);
2764
2765         intctl = CSR_READ_1(sc, VGE_INTCTL1);
2766         intctl &= ~VGE_INTCTL_SC_RELOAD;
2767         intctl |= VGE_INTCTL_HC_RELOAD;
2768         if (sc->vge_tx_coal_pkt <= 0)
2769                 intctl |= VGE_INTCTL_TXINTSUP_DISABLE;
2770         else
2771                 intctl &= ~VGE_INTCTL_TXINTSUP_DISABLE;
2772         if (sc->vge_rx_coal_pkt <= 0)
2773                 intctl |= VGE_INTCTL_RXINTSUP_DISABLE;
2774         else
2775                 intctl &= ~VGE_INTCTL_RXINTSUP_DISABLE;
2776         CSR_WRITE_1(sc, VGE_INTCTL1, intctl);
2777         CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_HOLDOFF);
2778         if (sc->vge_int_holdoff > 0) {
2779                 /* Set interrupt holdoff timer. */
2780                 CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2781                 CSR_WRITE_1(sc, VGE_INTHOLDOFF,
2782                     VGE_INT_HOLDOFF_USEC(sc->vge_int_holdoff));
2783                 /* Enable holdoff timer. */
2784                 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2785         }
2786 }
2787
2788 static void
2789 vge_setlinkspeed(struct vge_softc *sc)
2790 {
2791         struct mii_data *mii;
2792         int aneg, i;
2793
2794         VGE_LOCK_ASSERT(sc);
2795
2796         mii = device_get_softc(sc->vge_miibus);
2797         mii_pollstat(mii);
2798         aneg = 0;
2799         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
2800             (IFM_ACTIVE | IFM_AVALID)) {
2801                 switch IFM_SUBTYPE(mii->mii_media_active) {
2802                 case IFM_10_T:
2803                 case IFM_100_TX:
2804                         return;
2805                 case IFM_1000_T:
2806                         aneg++;
2807                 default:
2808                         break;
2809                 }
2810         }
2811         /* Clear forced MAC speed/duplex configuration. */
2812         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2813         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2814         vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_100T2CR, 0);
2815         vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_ANAR,
2816             ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
2817         vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2818             BMCR_AUTOEN | BMCR_STARTNEG);
2819         DELAY(1000);
2820         if (aneg != 0) {
2821                 /* Poll link state until vge(4) get a 10/100 link. */
2822                 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
2823                         mii_pollstat(mii);
2824                         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
2825                             == (IFM_ACTIVE | IFM_AVALID)) {
2826                                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
2827                                 case IFM_10_T:
2828                                 case IFM_100_TX:
2829                                         return;
2830                                 default:
2831                                         break;
2832                                 }
2833                         }
2834                         VGE_UNLOCK(sc);
2835                         pause("vgelnk", hz);
2836                         VGE_LOCK(sc);
2837                 }
2838                 if (i == MII_ANEGTICKS_GIGE)
2839                         device_printf(sc->vge_dev, "establishing link failed, "
2840                             "WOL may not work!");
2841         }
2842         /*
2843          * No link, force MAC to have 100Mbps, full-duplex link.
2844          * This is the last resort and may/may not work.
2845          */
2846         mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
2847         mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
2848 }
2849
2850 static void
2851 vge_setwol(struct vge_softc *sc)
2852 {
2853         struct ifnet *ifp;
2854         uint16_t pmstat;
2855         uint8_t val;
2856
2857         VGE_LOCK_ASSERT(sc);
2858
2859         if ((sc->vge_flags & VGE_FLAG_PMCAP) == 0) {
2860                 /* No PME capability, PHY power down. */
2861                 vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2862                     BMCR_PDOWN);
2863                 vge_miipoll_stop(sc);
2864                 return;
2865         }
2866
2867         ifp = sc->vge_ifp;
2868
2869         /* Clear WOL on pattern match. */
2870         CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2871         /* Disable WOL on magic/unicast packet. */
2872         CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2873         CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2874             VGE_WOLCFG_PMEOVR);
2875         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
2876                 vge_setlinkspeed(sc);
2877                 val = 0;
2878                 if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2879                         val |= VGE_WOLCR1_UCAST;
2880                 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2881                         val |= VGE_WOLCR1_MAGIC;
2882                 CSR_WRITE_1(sc, VGE_WOLCR1S, val);
2883                 val = 0;
2884                 if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2885                         val |= VGE_WOLCFG_SAM | VGE_WOLCFG_SAB;
2886                 CSR_WRITE_1(sc, VGE_WOLCFGS, val | VGE_WOLCFG_PMEOVR);
2887                 /* Disable MII auto-polling. */
2888                 vge_miipoll_stop(sc);
2889         }
2890         CSR_SETBIT_1(sc, VGE_DIAGCTL,
2891             VGE_DIAGCTL_MACFORCE | VGE_DIAGCTL_FDXFORCE);
2892         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2893
2894         /* Clear WOL status on pattern match. */
2895         CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2896         CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2897
2898         val = CSR_READ_1(sc, VGE_PWRSTAT);
2899         val |= VGE_STICKHW_SWPTAG;
2900         CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2901         /* Put hardware into sleep. */
2902         val = CSR_READ_1(sc, VGE_PWRSTAT);
2903         val |= VGE_STICKHW_DS0 | VGE_STICKHW_DS1;
2904         CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2905         /* Request PME if WOL is requested. */
2906         pmstat = pci_read_config(sc->vge_dev, sc->vge_pmcap +
2907             PCIR_POWER_STATUS, 2);
2908         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2909         if ((ifp->if_capenable & IFCAP_WOL) != 0)
2910                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2911         pci_write_config(sc->vge_dev, sc->vge_pmcap + PCIR_POWER_STATUS,
2912             pmstat, 2);
2913 }
2914
2915 static void
2916 vge_clrwol(struct vge_softc *sc)
2917 {
2918         uint8_t val;
2919
2920         val = CSR_READ_1(sc, VGE_PWRSTAT);
2921         val &= ~VGE_STICKHW_SWPTAG;
2922         CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2923         /* Disable WOL and clear power state indicator. */
2924         val = CSR_READ_1(sc, VGE_PWRSTAT);
2925         val &= ~(VGE_STICKHW_DS0 | VGE_STICKHW_DS1);
2926         CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2927
2928         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2929         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2930
2931         /* Clear WOL on pattern match. */
2932         CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2933         /* Disable WOL on magic/unicast packet. */
2934         CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2935         CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2936             VGE_WOLCFG_PMEOVR);
2937         /* Clear WOL status on pattern match. */
2938         CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2939         CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2940 }