]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/vge/if_vge.c
Add support for Armada 3700 in the NETA driver
[FreeBSD/FreeBSD.git] / sys / dev / vge / if_vge.c
1 /*-
2  * Copyright (c) 2004
3  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *      This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35
36 /*
37  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43
44 /*
45  * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46  * combines a tri-speed ethernet MAC and PHY, with the following
47  * features:
48  *
49  *      o Jumbo frame support up to 16K
50  *      o Transmit and receive flow control
51  *      o IPv4 checksum offload
52  *      o VLAN tag insertion and stripping
53  *      o TCP large send
54  *      o 64-bit multicast hash table filter
55  *      o 64 entry CAM filter
56  *      o 16K RX FIFO and 48K TX FIFO memory
57  *      o Interrupt moderation
58  *
59  * The VT6122 supports up to four transmit DMA queues. The descriptors
60  * in the transmit ring can address up to 7 data fragments; frames which
61  * span more than 7 data buffers must be coalesced, but in general the
62  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63  * long. The receive descriptors address only a single buffer.
64  *
65  * There are two peculiar design issues with the VT6122. One is that
66  * receive data buffers must be aligned on a 32-bit boundary. This is
67  * not a problem where the VT6122 is used as a LOM device in x86-based
68  * systems, but on architectures that generate unaligned access traps, we
69  * have to do some copying.
70  *
71  * The other issue has to do with the way 64-bit addresses are handled.
72  * The DMA descriptors only allow you to specify 48 bits of addressing
73  * information. The remaining 16 bits are specified using one of the
74  * I/O registers. If you only have a 32-bit system, then this isn't
75  * an issue, but if you have a 64-bit system and more than 4GB of
76  * memory, you must have to make sure your network data buffers reside
77  * in the same 48-bit 'segment.'
78  *
79  * Special thanks to Ryan Fu at VIA Networking for providing documentation
80  * and sample NICs for testing.
81  */
82
83 #ifdef HAVE_KERNEL_OPTION_HEADERS
84 #include "opt_device_polling.h"
85 #endif
86
87 #include <sys/param.h>
88 #include <sys/endian.h>
89 #include <sys/systm.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/module.h>
94 #include <sys/kernel.h>
95 #include <sys/socket.h>
96 #include <sys/sysctl.h>
97
98 #include <net/if.h>
99 #include <net/if_arp.h>
100 #include <net/ethernet.h>
101 #include <net/if_dl.h>
102 #include <net/if_var.h>
103 #include <net/if_media.h>
104 #include <net/if_types.h>
105 #include <net/if_vlan_var.h>
106
107 #include <net/bpf.h>
108
109 #include <machine/bus.h>
110 #include <machine/resource.h>
111 #include <sys/bus.h>
112 #include <sys/rman.h>
113
114 #include <dev/mii/mii.h>
115 #include <dev/mii/miivar.h>
116
117 #include <dev/pci/pcireg.h>
118 #include <dev/pci/pcivar.h>
119
120 MODULE_DEPEND(vge, pci, 1, 1, 1);
121 MODULE_DEPEND(vge, ether, 1, 1, 1);
122 MODULE_DEPEND(vge, miibus, 1, 1, 1);
123
124 /* "device miibus" required.  See GENERIC if you get errors here. */
125 #include "miibus_if.h"
126
127 #include <dev/vge/if_vgereg.h>
128 #include <dev/vge/if_vgevar.h>
129
130 #define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
131
132 /* Tunables */
133 static int msi_disable = 0;
134 TUNABLE_INT("hw.vge.msi_disable", &msi_disable);
135
136 /*
137  * The SQE error counter of MIB seems to report bogus value.
138  * Vendor's workaround does not seem to work on PCIe based
139  * controllers. Disable it until we find better workaround.
140  */
141 #undef VGE_ENABLE_SQEERR
142
143 /*
144  * Various supported device vendors/types and their names.
145  */
146 static struct vge_type vge_devs[] = {
147         { VIA_VENDORID, VIA_DEVICEID_61XX,
148                 "VIA Networking Velocity Gigabit Ethernet" },
149         { 0, 0, NULL }
150 };
151
152 static int      vge_attach(device_t);
153 static int      vge_detach(device_t);
154 static int      vge_probe(device_t);
155 static int      vge_resume(device_t);
156 static int      vge_shutdown(device_t);
157 static int      vge_suspend(device_t);
158
159 static void     vge_cam_clear(struct vge_softc *);
160 static int      vge_cam_set(struct vge_softc *, uint8_t *);
161 static void     vge_clrwol(struct vge_softc *);
162 static void     vge_discard_rxbuf(struct vge_softc *, int);
163 static int      vge_dma_alloc(struct vge_softc *);
164 static void     vge_dma_free(struct vge_softc *);
165 static void     vge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
166 #ifdef VGE_EEPROM
167 static void     vge_eeprom_getword(struct vge_softc *, int, uint16_t *);
168 #endif
169 static int      vge_encap(struct vge_softc *, struct mbuf **);
170 #ifndef __NO_STRICT_ALIGNMENT
171 static __inline void
172                 vge_fixup_rx(struct mbuf *);
173 #endif
174 static void     vge_freebufs(struct vge_softc *);
175 static void     vge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
176 static int      vge_ifmedia_upd(struct ifnet *);
177 static int      vge_ifmedia_upd_locked(struct vge_softc *);
178 static void     vge_init(void *);
179 static void     vge_init_locked(struct vge_softc *);
180 static void     vge_intr(void *);
181 static void     vge_intr_holdoff(struct vge_softc *);
182 static int      vge_ioctl(struct ifnet *, u_long, caddr_t);
183 static void     vge_link_statchg(void *);
184 static int      vge_miibus_readreg(device_t, int, int);
185 static int      vge_miibus_writereg(device_t, int, int, int);
186 static void     vge_miipoll_start(struct vge_softc *);
187 static void     vge_miipoll_stop(struct vge_softc *);
188 static int      vge_newbuf(struct vge_softc *, int);
189 static void     vge_read_eeprom(struct vge_softc *, caddr_t, int, int, int);
190 static void     vge_reset(struct vge_softc *);
191 static int      vge_rx_list_init(struct vge_softc *);
192 static int      vge_rxeof(struct vge_softc *, int);
193 static void     vge_rxfilter(struct vge_softc *);
194 static void     vge_setmedia(struct vge_softc *);
195 static void     vge_setvlan(struct vge_softc *);
196 static void     vge_setwol(struct vge_softc *);
197 static void     vge_start(struct ifnet *);
198 static void     vge_start_locked(struct ifnet *);
199 static void     vge_stats_clear(struct vge_softc *);
200 static void     vge_stats_update(struct vge_softc *);
201 static void     vge_stop(struct vge_softc *);
202 static void     vge_sysctl_node(struct vge_softc *);
203 static int      vge_tx_list_init(struct vge_softc *);
204 static void     vge_txeof(struct vge_softc *);
205 static void     vge_watchdog(void *);
206
207 static device_method_t vge_methods[] = {
208         /* Device interface */
209         DEVMETHOD(device_probe,         vge_probe),
210         DEVMETHOD(device_attach,        vge_attach),
211         DEVMETHOD(device_detach,        vge_detach),
212         DEVMETHOD(device_suspend,       vge_suspend),
213         DEVMETHOD(device_resume,        vge_resume),
214         DEVMETHOD(device_shutdown,      vge_shutdown),
215
216         /* MII interface */
217         DEVMETHOD(miibus_readreg,       vge_miibus_readreg),
218         DEVMETHOD(miibus_writereg,      vge_miibus_writereg),
219
220         DEVMETHOD_END
221 };
222
223 static driver_t vge_driver = {
224         "vge",
225         vge_methods,
226         sizeof(struct vge_softc)
227 };
228
229 static devclass_t vge_devclass;
230
231 DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
232 DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
233
234 #ifdef VGE_EEPROM
235 /*
236  * Read a word of data stored in the EEPROM at address 'addr.'
237  */
238 static void
239 vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t *dest)
240 {
241         int i;
242         uint16_t word = 0;
243
244         /*
245          * Enter EEPROM embedded programming mode. In order to
246          * access the EEPROM at all, we first have to set the
247          * EELOAD bit in the CHIPCFG2 register.
248          */
249         CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
250         CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
251
252         /* Select the address of the word we want to read */
253         CSR_WRITE_1(sc, VGE_EEADDR, addr);
254
255         /* Issue read command */
256         CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
257
258         /* Wait for the done bit to be set. */
259         for (i = 0; i < VGE_TIMEOUT; i++) {
260                 if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
261                         break;
262         }
263
264         if (i == VGE_TIMEOUT) {
265                 device_printf(sc->vge_dev, "EEPROM read timed out\n");
266                 *dest = 0;
267                 return;
268         }
269
270         /* Read the result */
271         word = CSR_READ_2(sc, VGE_EERDDAT);
272
273         /* Turn off EEPROM access mode. */
274         CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
275         CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
276
277         *dest = word;
278 }
279 #endif
280
281 /*
282  * Read a sequence of words from the EEPROM.
283  */
284 static void
285 vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt, int swap)
286 {
287         int i;
288 #ifdef VGE_EEPROM
289         uint16_t word = 0, *ptr;
290
291         for (i = 0; i < cnt; i++) {
292                 vge_eeprom_getword(sc, off + i, &word);
293                 ptr = (uint16_t *)(dest + (i * 2));
294                 if (swap)
295                         *ptr = ntohs(word);
296                 else
297                         *ptr = word;
298         }
299 #else
300         for (i = 0; i < ETHER_ADDR_LEN; i++)
301                 dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
302 #endif
303 }
304
305 static void
306 vge_miipoll_stop(struct vge_softc *sc)
307 {
308         int i;
309
310         CSR_WRITE_1(sc, VGE_MIICMD, 0);
311
312         for (i = 0; i < VGE_TIMEOUT; i++) {
313                 DELAY(1);
314                 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
315                         break;
316         }
317
318         if (i == VGE_TIMEOUT)
319                 device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
320 }
321
322 static void
323 vge_miipoll_start(struct vge_softc *sc)
324 {
325         int i;
326
327         /* First, make sure we're idle. */
328
329         CSR_WRITE_1(sc, VGE_MIICMD, 0);
330         CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
331
332         for (i = 0; i < VGE_TIMEOUT; i++) {
333                 DELAY(1);
334                 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
335                         break;
336         }
337
338         if (i == VGE_TIMEOUT) {
339                 device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
340                 return;
341         }
342
343         /* Now enable auto poll mode. */
344
345         CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
346
347         /* And make sure it started. */
348
349         for (i = 0; i < VGE_TIMEOUT; i++) {
350                 DELAY(1);
351                 if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
352                         break;
353         }
354
355         if (i == VGE_TIMEOUT)
356                 device_printf(sc->vge_dev, "failed to start MII autopoll\n");
357 }
358
359 static int
360 vge_miibus_readreg(device_t dev, int phy, int reg)
361 {
362         struct vge_softc *sc;
363         int i;
364         uint16_t rval = 0;
365
366         sc = device_get_softc(dev);
367
368         vge_miipoll_stop(sc);
369
370         /* Specify the register we want to read. */
371         CSR_WRITE_1(sc, VGE_MIIADDR, reg);
372
373         /* Issue read command. */
374         CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
375
376         /* Wait for the read command bit to self-clear. */
377         for (i = 0; i < VGE_TIMEOUT; i++) {
378                 DELAY(1);
379                 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
380                         break;
381         }
382
383         if (i == VGE_TIMEOUT)
384                 device_printf(sc->vge_dev, "MII read timed out\n");
385         else
386                 rval = CSR_READ_2(sc, VGE_MIIDATA);
387
388         vge_miipoll_start(sc);
389
390         return (rval);
391 }
392
393 static int
394 vge_miibus_writereg(device_t dev, int phy, int reg, int data)
395 {
396         struct vge_softc *sc;
397         int i, rval = 0;
398
399         sc = device_get_softc(dev);
400
401         vge_miipoll_stop(sc);
402
403         /* Specify the register we want to write. */
404         CSR_WRITE_1(sc, VGE_MIIADDR, reg);
405
406         /* Specify the data we want to write. */
407         CSR_WRITE_2(sc, VGE_MIIDATA, data);
408
409         /* Issue write command. */
410         CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
411
412         /* Wait for the write command bit to self-clear. */
413         for (i = 0; i < VGE_TIMEOUT; i++) {
414                 DELAY(1);
415                 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
416                         break;
417         }
418
419         if (i == VGE_TIMEOUT) {
420                 device_printf(sc->vge_dev, "MII write timed out\n");
421                 rval = EIO;
422         }
423
424         vge_miipoll_start(sc);
425
426         return (rval);
427 }
428
429 static void
430 vge_cam_clear(struct vge_softc *sc)
431 {
432         int i;
433
434         /*
435          * Turn off all the mask bits. This tells the chip
436          * that none of the entries in the CAM filter are valid.
437          * desired entries will be enabled as we fill the filter in.
438          */
439
440         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
441         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
442         CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
443         for (i = 0; i < 8; i++)
444                 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
445
446         /* Clear the VLAN filter too. */
447
448         CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
449         for (i = 0; i < 8; i++)
450                 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
451
452         CSR_WRITE_1(sc, VGE_CAMADDR, 0);
453         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
454         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
455
456         sc->vge_camidx = 0;
457 }
458
459 static int
460 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
461 {
462         int i, error = 0;
463
464         if (sc->vge_camidx == VGE_CAM_MAXADDRS)
465                 return (ENOSPC);
466
467         /* Select the CAM data page. */
468         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
469         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
470
471         /* Set the filter entry we want to update and enable writing. */
472         CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
473
474         /* Write the address to the CAM registers */
475         for (i = 0; i < ETHER_ADDR_LEN; i++)
476                 CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
477
478         /* Issue a write command. */
479         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
480
481         /* Wake for it to clear. */
482         for (i = 0; i < VGE_TIMEOUT; i++) {
483                 DELAY(1);
484                 if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
485                         break;
486         }
487
488         if (i == VGE_TIMEOUT) {
489                 device_printf(sc->vge_dev, "setting CAM filter failed\n");
490                 error = EIO;
491                 goto fail;
492         }
493
494         /* Select the CAM mask page. */
495         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
496         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
497
498         /* Set the mask bit that enables this filter. */
499         CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
500             1<<(sc->vge_camidx & 7));
501
502         sc->vge_camidx++;
503
504 fail:
505         /* Turn off access to CAM. */
506         CSR_WRITE_1(sc, VGE_CAMADDR, 0);
507         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
508         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
509
510         return (error);
511 }
512
513 static void
514 vge_setvlan(struct vge_softc *sc)
515 {
516         struct ifnet *ifp;
517         uint8_t cfg;
518
519         VGE_LOCK_ASSERT(sc);
520
521         ifp = sc->vge_ifp;
522         cfg = CSR_READ_1(sc, VGE_RXCFG);
523         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
524                 cfg |= VGE_VTAG_OPT2;
525         else
526                 cfg &= ~VGE_VTAG_OPT2;
527         CSR_WRITE_1(sc, VGE_RXCFG, cfg);
528 }
529
530 /*
531  * Program the multicast filter. We use the 64-entry CAM filter
532  * for perfect filtering. If there's more than 64 multicast addresses,
533  * we use the hash filter instead.
534  */
535 static void
536 vge_rxfilter(struct vge_softc *sc)
537 {
538         struct ifnet *ifp;
539         struct ifmultiaddr *ifma;
540         uint32_t h, hashes[2];
541         uint8_t rxcfg;
542         int error = 0;
543
544         VGE_LOCK_ASSERT(sc);
545
546         /* First, zot all the multicast entries. */
547         hashes[0] = 0;
548         hashes[1] = 0;
549
550         rxcfg = CSR_READ_1(sc, VGE_RXCTL);
551         rxcfg &= ~(VGE_RXCTL_RX_MCAST | VGE_RXCTL_RX_BCAST |
552             VGE_RXCTL_RX_PROMISC);
553         /*
554          * Always allow VLAN oversized frames and frames for
555          * this host.
556          */
557         rxcfg |= VGE_RXCTL_RX_GIANT | VGE_RXCTL_RX_UCAST;
558
559         ifp = sc->vge_ifp;
560         if ((ifp->if_flags & IFF_BROADCAST) != 0)
561                 rxcfg |= VGE_RXCTL_RX_BCAST;
562         if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
563                 if ((ifp->if_flags & IFF_PROMISC) != 0)
564                         rxcfg |= VGE_RXCTL_RX_PROMISC;
565                 if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
566                         hashes[0] = 0xFFFFFFFF;
567                         hashes[1] = 0xFFFFFFFF;
568                 }
569                 goto done;
570         }
571
572         vge_cam_clear(sc);
573         /* Now program new ones */
574         if_maddr_rlock(ifp);
575         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
576                 if (ifma->ifma_addr->sa_family != AF_LINK)
577                         continue;
578                 error = vge_cam_set(sc,
579                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
580                 if (error)
581                         break;
582         }
583
584         /* If there were too many addresses, use the hash filter. */
585         if (error) {
586                 vge_cam_clear(sc);
587
588                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
589                         if (ifma->ifma_addr->sa_family != AF_LINK)
590                                 continue;
591                         h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
592                             ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
593                         if (h < 32)
594                                 hashes[0] |= (1 << h);
595                         else
596                                 hashes[1] |= (1 << (h - 32));
597                 }
598         }
599         if_maddr_runlock(ifp);
600
601 done:
602         if (hashes[0] != 0 || hashes[1] != 0)
603                 rxcfg |= VGE_RXCTL_RX_MCAST;
604         CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
605         CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
606         CSR_WRITE_1(sc, VGE_RXCTL, rxcfg);
607 }
608
609 static void
610 vge_reset(struct vge_softc *sc)
611 {
612         int i;
613
614         CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
615
616         for (i = 0; i < VGE_TIMEOUT; i++) {
617                 DELAY(5);
618                 if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
619                         break;
620         }
621
622         if (i == VGE_TIMEOUT) {
623                 device_printf(sc->vge_dev, "soft reset timed out\n");
624                 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
625                 DELAY(2000);
626         }
627
628         DELAY(5000);
629 }
630
631 /*
632  * Probe for a VIA gigabit chip. Check the PCI vendor and device
633  * IDs against our list and return a device name if we find a match.
634  */
635 static int
636 vge_probe(device_t dev)
637 {
638         struct vge_type *t;
639
640         t = vge_devs;
641
642         while (t->vge_name != NULL) {
643                 if ((pci_get_vendor(dev) == t->vge_vid) &&
644                     (pci_get_device(dev) == t->vge_did)) {
645                         device_set_desc(dev, t->vge_name);
646                         return (BUS_PROBE_DEFAULT);
647                 }
648                 t++;
649         }
650
651         return (ENXIO);
652 }
653
654 /*
655  * Map a single buffer address.
656  */
657
658 struct vge_dmamap_arg {
659         bus_addr_t      vge_busaddr;
660 };
661
662 static void
663 vge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
664 {
665         struct vge_dmamap_arg *ctx;
666
667         if (error != 0)
668                 return;
669
670         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
671
672         ctx = (struct vge_dmamap_arg *)arg;
673         ctx->vge_busaddr = segs[0].ds_addr;
674 }
675
676 static int
677 vge_dma_alloc(struct vge_softc *sc)
678 {
679         struct vge_dmamap_arg ctx;
680         struct vge_txdesc *txd;
681         struct vge_rxdesc *rxd;
682         bus_addr_t lowaddr, tx_ring_end, rx_ring_end;
683         int error, i;
684
685         /*
686          * It seems old PCI controllers do not support DAC.  DAC
687          * configuration can be enabled by accessing VGE_CHIPCFG3
688          * register but honor EEPROM configuration instead of
689          * blindly overriding DAC configuration.  PCIe based
690          * controllers are supposed to support 64bit DMA so enable
691          * 64bit DMA on these controllers.
692          */
693         if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
694                 lowaddr = BUS_SPACE_MAXADDR;
695         else
696                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
697
698 again:
699         /* Create parent ring tag. */
700         error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
701             1, 0,                       /* algnmnt, boundary */
702             lowaddr,                    /* lowaddr */
703             BUS_SPACE_MAXADDR,          /* highaddr */
704             NULL, NULL,                 /* filter, filterarg */
705             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
706             0,                          /* nsegments */
707             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
708             0,                          /* flags */
709             NULL, NULL,                 /* lockfunc, lockarg */
710             &sc->vge_cdata.vge_ring_tag);
711         if (error != 0) {
712                 device_printf(sc->vge_dev,
713                     "could not create parent DMA tag.\n");
714                 goto fail;
715         }
716
717         /* Create tag for Tx ring. */
718         error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
719             VGE_TX_RING_ALIGN, 0,       /* algnmnt, boundary */
720             BUS_SPACE_MAXADDR,          /* lowaddr */
721             BUS_SPACE_MAXADDR,          /* highaddr */
722             NULL, NULL,                 /* filter, filterarg */
723             VGE_TX_LIST_SZ,             /* maxsize */
724             1,                          /* nsegments */
725             VGE_TX_LIST_SZ,             /* maxsegsize */
726             0,                          /* flags */
727             NULL, NULL,                 /* lockfunc, lockarg */
728             &sc->vge_cdata.vge_tx_ring_tag);
729         if (error != 0) {
730                 device_printf(sc->vge_dev,
731                     "could not allocate Tx ring DMA tag.\n");
732                 goto fail;
733         }
734
735         /* Create tag for Rx ring. */
736         error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
737             VGE_RX_RING_ALIGN, 0,       /* algnmnt, boundary */
738             BUS_SPACE_MAXADDR,          /* lowaddr */
739             BUS_SPACE_MAXADDR,          /* highaddr */
740             NULL, NULL,                 /* filter, filterarg */
741             VGE_RX_LIST_SZ,             /* maxsize */
742             1,                          /* nsegments */
743             VGE_RX_LIST_SZ,             /* maxsegsize */
744             0,                          /* flags */
745             NULL, NULL,                 /* lockfunc, lockarg */
746             &sc->vge_cdata.vge_rx_ring_tag);
747         if (error != 0) {
748                 device_printf(sc->vge_dev,
749                     "could not allocate Rx ring DMA tag.\n");
750                 goto fail;
751         }
752
753         /* Allocate DMA'able memory and load the DMA map for Tx ring. */
754         error = bus_dmamem_alloc(sc->vge_cdata.vge_tx_ring_tag,
755             (void **)&sc->vge_rdata.vge_tx_ring,
756             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
757             &sc->vge_cdata.vge_tx_ring_map);
758         if (error != 0) {
759                 device_printf(sc->vge_dev,
760                     "could not allocate DMA'able memory for Tx ring.\n");
761                 goto fail;
762         }
763
764         ctx.vge_busaddr = 0;
765         error = bus_dmamap_load(sc->vge_cdata.vge_tx_ring_tag,
766             sc->vge_cdata.vge_tx_ring_map, sc->vge_rdata.vge_tx_ring,
767             VGE_TX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
768         if (error != 0 || ctx.vge_busaddr == 0) {
769                 device_printf(sc->vge_dev,
770                     "could not load DMA'able memory for Tx ring.\n");
771                 goto fail;
772         }
773         sc->vge_rdata.vge_tx_ring_paddr = ctx.vge_busaddr;
774
775         /* Allocate DMA'able memory and load the DMA map for Rx ring. */
776         error = bus_dmamem_alloc(sc->vge_cdata.vge_rx_ring_tag,
777             (void **)&sc->vge_rdata.vge_rx_ring,
778             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
779             &sc->vge_cdata.vge_rx_ring_map);
780         if (error != 0) {
781                 device_printf(sc->vge_dev,
782                     "could not allocate DMA'able memory for Rx ring.\n");
783                 goto fail;
784         }
785
786         ctx.vge_busaddr = 0;
787         error = bus_dmamap_load(sc->vge_cdata.vge_rx_ring_tag,
788             sc->vge_cdata.vge_rx_ring_map, sc->vge_rdata.vge_rx_ring,
789             VGE_RX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
790         if (error != 0 || ctx.vge_busaddr == 0) {
791                 device_printf(sc->vge_dev,
792                     "could not load DMA'able memory for Rx ring.\n");
793                 goto fail;
794         }
795         sc->vge_rdata.vge_rx_ring_paddr = ctx.vge_busaddr;
796
797         /* Tx/Rx descriptor queue should reside within 4GB boundary. */
798         tx_ring_end = sc->vge_rdata.vge_tx_ring_paddr + VGE_TX_LIST_SZ;
799         rx_ring_end = sc->vge_rdata.vge_rx_ring_paddr + VGE_RX_LIST_SZ;
800         if ((VGE_ADDR_HI(tx_ring_end) !=
801             VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr)) ||
802             (VGE_ADDR_HI(rx_ring_end) !=
803             VGE_ADDR_HI(sc->vge_rdata.vge_rx_ring_paddr)) ||
804             VGE_ADDR_HI(tx_ring_end) != VGE_ADDR_HI(rx_ring_end)) {
805                 device_printf(sc->vge_dev, "4GB boundary crossed, "
806                     "switching to 32bit DMA address mode.\n");
807                 vge_dma_free(sc);
808                 /* Limit DMA address space to 32bit and try again. */
809                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
810                 goto again;
811         }
812
813         if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
814                 lowaddr = VGE_BUF_DMA_MAXADDR;
815         else
816                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
817         /* Create parent buffer tag. */
818         error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
819             1, 0,                       /* algnmnt, boundary */
820             lowaddr,                    /* lowaddr */
821             BUS_SPACE_MAXADDR,          /* highaddr */
822             NULL, NULL,                 /* filter, filterarg */
823             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
824             0,                          /* nsegments */
825             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
826             0,                          /* flags */
827             NULL, NULL,                 /* lockfunc, lockarg */
828             &sc->vge_cdata.vge_buffer_tag);
829         if (error != 0) {
830                 device_printf(sc->vge_dev,
831                     "could not create parent buffer DMA tag.\n");
832                 goto fail;
833         }
834
835         /* Create tag for Tx buffers. */
836         error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
837             1, 0,                       /* algnmnt, boundary */
838             BUS_SPACE_MAXADDR,          /* lowaddr */
839             BUS_SPACE_MAXADDR,          /* highaddr */
840             NULL, NULL,                 /* filter, filterarg */
841             MCLBYTES * VGE_MAXTXSEGS,   /* maxsize */
842             VGE_MAXTXSEGS,              /* nsegments */
843             MCLBYTES,                   /* maxsegsize */
844             0,                          /* flags */
845             NULL, NULL,                 /* lockfunc, lockarg */
846             &sc->vge_cdata.vge_tx_tag);
847         if (error != 0) {
848                 device_printf(sc->vge_dev, "could not create Tx DMA tag.\n");
849                 goto fail;
850         }
851
852         /* Create tag for Rx buffers. */
853         error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
854             VGE_RX_BUF_ALIGN, 0,        /* algnmnt, boundary */
855             BUS_SPACE_MAXADDR,          /* lowaddr */
856             BUS_SPACE_MAXADDR,          /* highaddr */
857             NULL, NULL,                 /* filter, filterarg */
858             MCLBYTES,                   /* maxsize */
859             1,                          /* nsegments */
860             MCLBYTES,                   /* maxsegsize */
861             0,                          /* flags */
862             NULL, NULL,                 /* lockfunc, lockarg */
863             &sc->vge_cdata.vge_rx_tag);
864         if (error != 0) {
865                 device_printf(sc->vge_dev, "could not create Rx DMA tag.\n");
866                 goto fail;
867         }
868
869         /* Create DMA maps for Tx buffers. */
870         for (i = 0; i < VGE_TX_DESC_CNT; i++) {
871                 txd = &sc->vge_cdata.vge_txdesc[i];
872                 txd->tx_m = NULL;
873                 txd->tx_dmamap = NULL;
874                 error = bus_dmamap_create(sc->vge_cdata.vge_tx_tag, 0,
875                     &txd->tx_dmamap);
876                 if (error != 0) {
877                         device_printf(sc->vge_dev,
878                             "could not create Tx dmamap.\n");
879                         goto fail;
880                 }
881         }
882         /* Create DMA maps for Rx buffers. */
883         if ((error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
884             &sc->vge_cdata.vge_rx_sparemap)) != 0) {
885                 device_printf(sc->vge_dev,
886                     "could not create spare Rx dmamap.\n");
887                 goto fail;
888         }
889         for (i = 0; i < VGE_RX_DESC_CNT; i++) {
890                 rxd = &sc->vge_cdata.vge_rxdesc[i];
891                 rxd->rx_m = NULL;
892                 rxd->rx_dmamap = NULL;
893                 error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
894                     &rxd->rx_dmamap);
895                 if (error != 0) {
896                         device_printf(sc->vge_dev,
897                             "could not create Rx dmamap.\n");
898                         goto fail;
899                 }
900         }
901
902 fail:
903         return (error);
904 }
905
906 static void
907 vge_dma_free(struct vge_softc *sc)
908 {
909         struct vge_txdesc *txd;
910         struct vge_rxdesc *rxd;
911         int i;
912
913         /* Tx ring. */
914         if (sc->vge_cdata.vge_tx_ring_tag != NULL) {
915                 if (sc->vge_rdata.vge_tx_ring_paddr)
916                         bus_dmamap_unload(sc->vge_cdata.vge_tx_ring_tag,
917                             sc->vge_cdata.vge_tx_ring_map);
918                 if (sc->vge_rdata.vge_tx_ring)
919                         bus_dmamem_free(sc->vge_cdata.vge_tx_ring_tag,
920                             sc->vge_rdata.vge_tx_ring,
921                             sc->vge_cdata.vge_tx_ring_map);
922                 sc->vge_rdata.vge_tx_ring = NULL;
923                 sc->vge_rdata.vge_tx_ring_paddr = 0;
924                 bus_dma_tag_destroy(sc->vge_cdata.vge_tx_ring_tag);
925                 sc->vge_cdata.vge_tx_ring_tag = NULL;
926         }
927         /* Rx ring. */
928         if (sc->vge_cdata.vge_rx_ring_tag != NULL) {
929                 if (sc->vge_rdata.vge_rx_ring_paddr)
930                         bus_dmamap_unload(sc->vge_cdata.vge_rx_ring_tag,
931                             sc->vge_cdata.vge_rx_ring_map);
932                 if (sc->vge_rdata.vge_rx_ring)
933                         bus_dmamem_free(sc->vge_cdata.vge_rx_ring_tag,
934                             sc->vge_rdata.vge_rx_ring,
935                             sc->vge_cdata.vge_rx_ring_map);
936                 sc->vge_rdata.vge_rx_ring = NULL;
937                 sc->vge_rdata.vge_rx_ring_paddr = 0;
938                 bus_dma_tag_destroy(sc->vge_cdata.vge_rx_ring_tag);
939                 sc->vge_cdata.vge_rx_ring_tag = NULL;
940         }
941         /* Tx buffers. */
942         if (sc->vge_cdata.vge_tx_tag != NULL) {
943                 for (i = 0; i < VGE_TX_DESC_CNT; i++) {
944                         txd = &sc->vge_cdata.vge_txdesc[i];
945                         if (txd->tx_dmamap != NULL) {
946                                 bus_dmamap_destroy(sc->vge_cdata.vge_tx_tag,
947                                     txd->tx_dmamap);
948                                 txd->tx_dmamap = NULL;
949                         }
950                 }
951                 bus_dma_tag_destroy(sc->vge_cdata.vge_tx_tag);
952                 sc->vge_cdata.vge_tx_tag = NULL;
953         }
954         /* Rx buffers. */
955         if (sc->vge_cdata.vge_rx_tag != NULL) {
956                 for (i = 0; i < VGE_RX_DESC_CNT; i++) {
957                         rxd = &sc->vge_cdata.vge_rxdesc[i];
958                         if (rxd->rx_dmamap != NULL) {
959                                 bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
960                                     rxd->rx_dmamap);
961                                 rxd->rx_dmamap = NULL;
962                         }
963                 }
964                 if (sc->vge_cdata.vge_rx_sparemap != NULL) {
965                         bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
966                             sc->vge_cdata.vge_rx_sparemap);
967                         sc->vge_cdata.vge_rx_sparemap = NULL;
968                 }
969                 bus_dma_tag_destroy(sc->vge_cdata.vge_rx_tag);
970                 sc->vge_cdata.vge_rx_tag = NULL;
971         }
972
973         if (sc->vge_cdata.vge_buffer_tag != NULL) {
974                 bus_dma_tag_destroy(sc->vge_cdata.vge_buffer_tag);
975                 sc->vge_cdata.vge_buffer_tag = NULL;
976         }
977         if (sc->vge_cdata.vge_ring_tag != NULL) {
978                 bus_dma_tag_destroy(sc->vge_cdata.vge_ring_tag);
979                 sc->vge_cdata.vge_ring_tag = NULL;
980         }
981 }
982
983 /*
984  * Attach the interface. Allocate softc structures, do ifmedia
985  * setup and ethernet/BPF attach.
986  */
987 static int
988 vge_attach(device_t dev)
989 {
990         u_char eaddr[ETHER_ADDR_LEN];
991         struct vge_softc *sc;
992         struct ifnet *ifp;
993         int error = 0, cap, i, msic, rid;
994
995         sc = device_get_softc(dev);
996         sc->vge_dev = dev;
997
998         mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
999             MTX_DEF);
1000         callout_init_mtx(&sc->vge_watchdog, &sc->vge_mtx, 0);
1001
1002         /*
1003          * Map control/status registers.
1004          */
1005         pci_enable_busmaster(dev);
1006
1007         rid = PCIR_BAR(1);
1008         sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1009             RF_ACTIVE);
1010
1011         if (sc->vge_res == NULL) {
1012                 device_printf(dev, "couldn't map ports/memory\n");
1013                 error = ENXIO;
1014                 goto fail;
1015         }
1016
1017         if (pci_find_cap(dev, PCIY_EXPRESS, &cap) == 0) {
1018                 sc->vge_flags |= VGE_FLAG_PCIE;
1019                 sc->vge_expcap = cap;
1020         } else
1021                 sc->vge_flags |= VGE_FLAG_JUMBO;
1022         if (pci_find_cap(dev, PCIY_PMG, &cap) == 0) {
1023                 sc->vge_flags |= VGE_FLAG_PMCAP;
1024                 sc->vge_pmcap = cap;
1025         }
1026         rid = 0;
1027         msic = pci_msi_count(dev);
1028         if (msi_disable == 0 && msic > 0) {
1029                 msic = 1;
1030                 if (pci_alloc_msi(dev, &msic) == 0) {
1031                         if (msic == 1) {
1032                                 sc->vge_flags |= VGE_FLAG_MSI;
1033                                 device_printf(dev, "Using %d MSI message\n",
1034                                     msic);
1035                                 rid = 1;
1036                         } else
1037                                 pci_release_msi(dev);
1038                 }
1039         }
1040
1041         /* Allocate interrupt */
1042         sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1043             ((sc->vge_flags & VGE_FLAG_MSI) ? 0 : RF_SHAREABLE) | RF_ACTIVE);
1044         if (sc->vge_irq == NULL) {
1045                 device_printf(dev, "couldn't map interrupt\n");
1046                 error = ENXIO;
1047                 goto fail;
1048         }
1049
1050         /* Reset the adapter. */
1051         vge_reset(sc);
1052         /* Reload EEPROM. */
1053         CSR_WRITE_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
1054         for (i = 0; i < VGE_TIMEOUT; i++) {
1055                 DELAY(5);
1056                 if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
1057                         break;
1058         }
1059         if (i == VGE_TIMEOUT)
1060                 device_printf(dev, "EEPROM reload timed out\n");
1061         /*
1062          * Clear PACPI as EEPROM reload will set the bit. Otherwise
1063          * MAC will receive magic packet which in turn confuses
1064          * controller.
1065          */
1066         CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
1067
1068         /*
1069          * Get station address from the EEPROM.
1070          */
1071         vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
1072         /*
1073          * Save configured PHY address.
1074          * It seems the PHY address of PCIe controllers just
1075          * reflects media jump strapping status so we assume the
1076          * internal PHY address of PCIe controller is at 1.
1077          */
1078         if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
1079                 sc->vge_phyaddr = 1;
1080         else
1081                 sc->vge_phyaddr = CSR_READ_1(sc, VGE_MIICFG) &
1082                     VGE_MIICFG_PHYADDR;
1083         /* Clear WOL and take hardware from powerdown. */
1084         vge_clrwol(sc);
1085         vge_sysctl_node(sc);
1086         error = vge_dma_alloc(sc);
1087         if (error)
1088                 goto fail;
1089
1090         ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
1091         if (ifp == NULL) {
1092                 device_printf(dev, "can not if_alloc()\n");
1093                 error = ENOSPC;
1094                 goto fail;
1095         }
1096
1097         vge_miipoll_start(sc);
1098         /* Do MII setup */
1099         error = mii_attach(dev, &sc->vge_miibus, ifp, vge_ifmedia_upd,
1100             vge_ifmedia_sts, BMSR_DEFCAPMASK, sc->vge_phyaddr, MII_OFFSET_ANY,
1101             MIIF_DOPAUSE);
1102         if (error != 0) {
1103                 device_printf(dev, "attaching PHYs failed\n");
1104                 goto fail;
1105         }
1106
1107         ifp->if_softc = sc;
1108         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1109         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1110         ifp->if_ioctl = vge_ioctl;
1111         ifp->if_capabilities = IFCAP_VLAN_MTU;
1112         ifp->if_start = vge_start;
1113         ifp->if_hwassist = VGE_CSUM_FEATURES;
1114         ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM |
1115             IFCAP_VLAN_HWTAGGING;
1116         if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0)
1117                 ifp->if_capabilities |= IFCAP_WOL;
1118         ifp->if_capenable = ifp->if_capabilities;
1119 #ifdef DEVICE_POLLING
1120         ifp->if_capabilities |= IFCAP_POLLING;
1121 #endif
1122         ifp->if_init = vge_init;
1123         IFQ_SET_MAXLEN(&ifp->if_snd, VGE_TX_DESC_CNT - 1);
1124         ifp->if_snd.ifq_drv_maxlen = VGE_TX_DESC_CNT - 1;
1125         IFQ_SET_READY(&ifp->if_snd);
1126
1127         /*
1128          * Call MI attach routine.
1129          */
1130         ether_ifattach(ifp, eaddr);
1131
1132         /* Tell the upper layer(s) we support long frames. */
1133         ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1134
1135         /* Hook interrupt last to avoid having to lock softc */
1136         error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1137             NULL, vge_intr, sc, &sc->vge_intrhand);
1138
1139         if (error) {
1140                 device_printf(dev, "couldn't set up irq\n");
1141                 ether_ifdetach(ifp);
1142                 goto fail;
1143         }
1144
1145 fail:
1146         if (error)
1147                 vge_detach(dev);
1148
1149         return (error);
1150 }
1151
1152 /*
1153  * Shutdown hardware and free up resources. This can be called any
1154  * time after the mutex has been initialized. It is called in both
1155  * the error case in attach and the normal detach case so it needs
1156  * to be careful about only freeing resources that have actually been
1157  * allocated.
1158  */
1159 static int
1160 vge_detach(device_t dev)
1161 {
1162         struct vge_softc *sc;
1163         struct ifnet *ifp;
1164
1165         sc = device_get_softc(dev);
1166         KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1167         ifp = sc->vge_ifp;
1168
1169 #ifdef DEVICE_POLLING
1170         if (ifp->if_capenable & IFCAP_POLLING)
1171                 ether_poll_deregister(ifp);
1172 #endif
1173
1174         /* These should only be active if attach succeeded */
1175         if (device_is_attached(dev)) {
1176                 ether_ifdetach(ifp);
1177                 VGE_LOCK(sc);
1178                 vge_stop(sc);
1179                 VGE_UNLOCK(sc);
1180                 callout_drain(&sc->vge_watchdog);
1181         }
1182         if (sc->vge_miibus)
1183                 device_delete_child(dev, sc->vge_miibus);
1184         bus_generic_detach(dev);
1185
1186         if (sc->vge_intrhand)
1187                 bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1188         if (sc->vge_irq)
1189                 bus_release_resource(dev, SYS_RES_IRQ,
1190                     sc->vge_flags & VGE_FLAG_MSI ? 1 : 0, sc->vge_irq);
1191         if (sc->vge_flags & VGE_FLAG_MSI)
1192                 pci_release_msi(dev);
1193         if (sc->vge_res)
1194                 bus_release_resource(dev, SYS_RES_MEMORY,
1195                     PCIR_BAR(1), sc->vge_res);
1196         if (ifp)
1197                 if_free(ifp);
1198
1199         vge_dma_free(sc);
1200         mtx_destroy(&sc->vge_mtx);
1201
1202         return (0);
1203 }
1204
1205 static void
1206 vge_discard_rxbuf(struct vge_softc *sc, int prod)
1207 {
1208         struct vge_rxdesc *rxd;
1209         int i;
1210
1211         rxd = &sc->vge_cdata.vge_rxdesc[prod];
1212         rxd->rx_desc->vge_sts = 0;
1213         rxd->rx_desc->vge_ctl = 0;
1214
1215         /*
1216          * Note: the manual fails to document the fact that for
1217          * proper opration, the driver needs to replentish the RX
1218          * DMA ring 4 descriptors at a time (rather than one at a
1219          * time, like most chips). We can allocate the new buffers
1220          * but we should not set the OWN bits until we're ready
1221          * to hand back 4 of them in one shot.
1222          */
1223         if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1224                 for (i = VGE_RXCHUNK; i > 0; i--) {
1225                         rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1226                         rxd = rxd->rxd_prev;
1227                 }
1228                 sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1229         }
1230 }
1231
1232 static int
1233 vge_newbuf(struct vge_softc *sc, int prod)
1234 {
1235         struct vge_rxdesc *rxd;
1236         struct mbuf *m;
1237         bus_dma_segment_t segs[1];
1238         bus_dmamap_t map;
1239         int i, nsegs;
1240
1241         m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1242         if (m == NULL)
1243                 return (ENOBUFS);
1244         /*
1245          * This is part of an evil trick to deal with strict-alignment
1246          * architectures. The VIA chip requires RX buffers to be aligned
1247          * on 32-bit boundaries, but that will hose strict-alignment
1248          * architectures. To get around this, we leave some empty space
1249          * at the start of each buffer and for non-strict-alignment hosts,
1250          * we copy the buffer back two bytes to achieve word alignment.
1251          * This is slightly more efficient than allocating a new buffer,
1252          * copying the contents, and discarding the old buffer.
1253          */
1254         m->m_len = m->m_pkthdr.len = MCLBYTES;
1255         m_adj(m, VGE_RX_BUF_ALIGN);
1256
1257         if (bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_rx_tag,
1258             sc->vge_cdata.vge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1259                 m_freem(m);
1260                 return (ENOBUFS);
1261         }
1262         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1263
1264         rxd = &sc->vge_cdata.vge_rxdesc[prod];
1265         if (rxd->rx_m != NULL) {
1266                 bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1267                     BUS_DMASYNC_POSTREAD);
1268                 bus_dmamap_unload(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap);
1269         }
1270         map = rxd->rx_dmamap;
1271         rxd->rx_dmamap = sc->vge_cdata.vge_rx_sparemap;
1272         sc->vge_cdata.vge_rx_sparemap = map;
1273         bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1274             BUS_DMASYNC_PREREAD);
1275         rxd->rx_m = m;
1276
1277         rxd->rx_desc->vge_sts = 0;
1278         rxd->rx_desc->vge_ctl = 0;
1279         rxd->rx_desc->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
1280         rxd->rx_desc->vge_addrhi = htole32(VGE_ADDR_HI(segs[0].ds_addr) |
1281             (VGE_BUFLEN(segs[0].ds_len) << 16) | VGE_RXDESC_I);
1282
1283         /*
1284          * Note: the manual fails to document the fact that for
1285          * proper operation, the driver needs to replenish the RX
1286          * DMA ring 4 descriptors at a time (rather than one at a
1287          * time, like most chips). We can allocate the new buffers
1288          * but we should not set the OWN bits until we're ready
1289          * to hand back 4 of them in one shot.
1290          */
1291         if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1292                 for (i = VGE_RXCHUNK; i > 0; i--) {
1293                         rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1294                         rxd = rxd->rxd_prev;
1295                 }
1296                 sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1297         }
1298
1299         return (0);
1300 }
1301
1302 static int
1303 vge_tx_list_init(struct vge_softc *sc)
1304 {
1305         struct vge_ring_data *rd;
1306         struct vge_txdesc *txd;
1307         int i;
1308
1309         VGE_LOCK_ASSERT(sc);
1310
1311         sc->vge_cdata.vge_tx_prodidx = 0;
1312         sc->vge_cdata.vge_tx_considx = 0;
1313         sc->vge_cdata.vge_tx_cnt = 0;
1314
1315         rd = &sc->vge_rdata;
1316         bzero(rd->vge_tx_ring, VGE_TX_LIST_SZ);
1317         for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1318                 txd = &sc->vge_cdata.vge_txdesc[i];
1319                 txd->tx_m = NULL;
1320                 txd->tx_desc = &rd->vge_tx_ring[i];
1321         }
1322
1323         bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1324             sc->vge_cdata.vge_tx_ring_map,
1325             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1326
1327         return (0);
1328 }
1329
1330 static int
1331 vge_rx_list_init(struct vge_softc *sc)
1332 {
1333         struct vge_ring_data *rd;
1334         struct vge_rxdesc *rxd;
1335         int i;
1336
1337         VGE_LOCK_ASSERT(sc);
1338
1339         sc->vge_cdata.vge_rx_prodidx = 0;
1340         sc->vge_cdata.vge_head = NULL;
1341         sc->vge_cdata.vge_tail = NULL;
1342         sc->vge_cdata.vge_rx_commit = 0;
1343
1344         rd = &sc->vge_rdata;
1345         bzero(rd->vge_rx_ring, VGE_RX_LIST_SZ);
1346         for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1347                 rxd = &sc->vge_cdata.vge_rxdesc[i];
1348                 rxd->rx_m = NULL;
1349                 rxd->rx_desc = &rd->vge_rx_ring[i];
1350                 if (i == 0)
1351                         rxd->rxd_prev =
1352                             &sc->vge_cdata.vge_rxdesc[VGE_RX_DESC_CNT - 1];
1353                 else
1354                         rxd->rxd_prev = &sc->vge_cdata.vge_rxdesc[i - 1];
1355                 if (vge_newbuf(sc, i) != 0)
1356                         return (ENOBUFS);
1357         }
1358
1359         bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1360             sc->vge_cdata.vge_rx_ring_map,
1361             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1362
1363         sc->vge_cdata.vge_rx_commit = 0;
1364
1365         return (0);
1366 }
1367
1368 static void
1369 vge_freebufs(struct vge_softc *sc)
1370 {
1371         struct vge_txdesc *txd;
1372         struct vge_rxdesc *rxd;
1373         struct ifnet *ifp;
1374         int i;
1375
1376         VGE_LOCK_ASSERT(sc);
1377
1378         ifp = sc->vge_ifp;
1379         /*
1380          * Free RX and TX mbufs still in the queues.
1381          */
1382         for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1383                 rxd = &sc->vge_cdata.vge_rxdesc[i];
1384                 if (rxd->rx_m != NULL) {
1385                         bus_dmamap_sync(sc->vge_cdata.vge_rx_tag,
1386                             rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
1387                         bus_dmamap_unload(sc->vge_cdata.vge_rx_tag,
1388                             rxd->rx_dmamap);
1389                         m_freem(rxd->rx_m);
1390                         rxd->rx_m = NULL;
1391                 }
1392         }
1393
1394         for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1395                 txd = &sc->vge_cdata.vge_txdesc[i];
1396                 if (txd->tx_m != NULL) {
1397                         bus_dmamap_sync(sc->vge_cdata.vge_tx_tag,
1398                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1399                         bus_dmamap_unload(sc->vge_cdata.vge_tx_tag,
1400                             txd->tx_dmamap);
1401                         m_freem(txd->tx_m);
1402                         txd->tx_m = NULL;
1403                         if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1404                 }
1405         }
1406 }
1407
1408 #ifndef __NO_STRICT_ALIGNMENT
1409 static __inline void
1410 vge_fixup_rx(struct mbuf *m)
1411 {
1412         int i;
1413         uint16_t *src, *dst;
1414
1415         src = mtod(m, uint16_t *);
1416         dst = src - 1;
1417
1418         for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1419                 *dst++ = *src++;
1420
1421         m->m_data -= ETHER_ALIGN;
1422 }
1423 #endif
1424
1425 /*
1426  * RX handler. We support the reception of jumbo frames that have
1427  * been fragmented across multiple 2K mbuf cluster buffers.
1428  */
1429 static int
1430 vge_rxeof(struct vge_softc *sc, int count)
1431 {
1432         struct mbuf *m;
1433         struct ifnet *ifp;
1434         int prod, prog, total_len;
1435         struct vge_rxdesc *rxd;
1436         struct vge_rx_desc *cur_rx;
1437         uint32_t rxstat, rxctl;
1438
1439         VGE_LOCK_ASSERT(sc);
1440
1441         ifp = sc->vge_ifp;
1442
1443         bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1444             sc->vge_cdata.vge_rx_ring_map,
1445             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1446
1447         prod = sc->vge_cdata.vge_rx_prodidx;
1448         for (prog = 0; count > 0 &&
1449             (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1450             VGE_RX_DESC_INC(prod)) {
1451                 cur_rx = &sc->vge_rdata.vge_rx_ring[prod];
1452                 rxstat = le32toh(cur_rx->vge_sts);
1453                 if ((rxstat & VGE_RDSTS_OWN) != 0)
1454                         break;
1455                 count--;
1456                 prog++;
1457                 rxctl = le32toh(cur_rx->vge_ctl);
1458                 total_len = VGE_RXBYTES(rxstat);
1459                 rxd = &sc->vge_cdata.vge_rxdesc[prod];
1460                 m = rxd->rx_m;
1461
1462                 /*
1463                  * If the 'start of frame' bit is set, this indicates
1464                  * either the first fragment in a multi-fragment receive,
1465                  * or an intermediate fragment. Either way, we want to
1466                  * accumulate the buffers.
1467                  */
1468                 if ((rxstat & VGE_RXPKT_SOF) != 0) {
1469                         if (vge_newbuf(sc, prod) != 0) {
1470                                 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1471                                 VGE_CHAIN_RESET(sc);
1472                                 vge_discard_rxbuf(sc, prod);
1473                                 continue;
1474                         }
1475                         m->m_len = MCLBYTES - VGE_RX_BUF_ALIGN;
1476                         if (sc->vge_cdata.vge_head == NULL) {
1477                                 sc->vge_cdata.vge_head = m;
1478                                 sc->vge_cdata.vge_tail = m;
1479                         } else {
1480                                 m->m_flags &= ~M_PKTHDR;
1481                                 sc->vge_cdata.vge_tail->m_next = m;
1482                                 sc->vge_cdata.vge_tail = m;
1483                         }
1484                         continue;
1485                 }
1486
1487                 /*
1488                  * Bad/error frames will have the RXOK bit cleared.
1489                  * However, there's one error case we want to allow:
1490                  * if a VLAN tagged frame arrives and the chip can't
1491                  * match it against the CAM filter, it considers this
1492                  * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1493                  * We don't want to drop the frame though: our VLAN
1494                  * filtering is done in software.
1495                  * We also want to receive bad-checksummed frames and
1496                  * and frames with bad-length.
1497                  */
1498                 if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
1499                     (rxstat & (VGE_RDSTS_VIDM | VGE_RDSTS_RLERR |
1500                     VGE_RDSTS_CSUMERR)) == 0) {
1501                         if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1502                         /*
1503                          * If this is part of a multi-fragment packet,
1504                          * discard all the pieces.
1505                          */
1506                         VGE_CHAIN_RESET(sc);
1507                         vge_discard_rxbuf(sc, prod);
1508                         continue;
1509                 }
1510
1511                 if (vge_newbuf(sc, prod) != 0) {
1512                         if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1513                         VGE_CHAIN_RESET(sc);
1514                         vge_discard_rxbuf(sc, prod);
1515                         continue;
1516                 }
1517
1518                 /* Chain received mbufs. */
1519                 if (sc->vge_cdata.vge_head != NULL) {
1520                         m->m_len = total_len % (MCLBYTES - VGE_RX_BUF_ALIGN);
1521                         /*
1522                          * Special case: if there's 4 bytes or less
1523                          * in this buffer, the mbuf can be discarded:
1524                          * the last 4 bytes is the CRC, which we don't
1525                          * care about anyway.
1526                          */
1527                         if (m->m_len <= ETHER_CRC_LEN) {
1528                                 sc->vge_cdata.vge_tail->m_len -=
1529                                     (ETHER_CRC_LEN - m->m_len);
1530                                 m_freem(m);
1531                         } else {
1532                                 m->m_len -= ETHER_CRC_LEN;
1533                                 m->m_flags &= ~M_PKTHDR;
1534                                 sc->vge_cdata.vge_tail->m_next = m;
1535                         }
1536                         m = sc->vge_cdata.vge_head;
1537                         m->m_flags |= M_PKTHDR;
1538                         m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1539                 } else {
1540                         m->m_flags |= M_PKTHDR;
1541                         m->m_pkthdr.len = m->m_len =
1542                             (total_len - ETHER_CRC_LEN);
1543                 }
1544
1545 #ifndef __NO_STRICT_ALIGNMENT
1546                 vge_fixup_rx(m);
1547 #endif
1548                 m->m_pkthdr.rcvif = ifp;
1549
1550                 /* Do RX checksumming if enabled */
1551                 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
1552                     (rxctl & VGE_RDCTL_FRAG) == 0) {
1553                         /* Check IP header checksum */
1554                         if ((rxctl & VGE_RDCTL_IPPKT) != 0)
1555                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1556                         if ((rxctl & VGE_RDCTL_IPCSUMOK) != 0)
1557                                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1558
1559                         /* Check TCP/UDP checksum */
1560                         if (rxctl & (VGE_RDCTL_TCPPKT | VGE_RDCTL_UDPPKT) &&
1561                             rxctl & VGE_RDCTL_PROTOCSUMOK) {
1562                                 m->m_pkthdr.csum_flags |=
1563                                     CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1564                                 m->m_pkthdr.csum_data = 0xffff;
1565                         }
1566                 }
1567
1568                 if ((rxstat & VGE_RDSTS_VTAG) != 0) {
1569                         /*
1570                          * The 32-bit rxctl register is stored in little-endian.
1571                          * However, the 16-bit vlan tag is stored in big-endian,
1572                          * so we have to byte swap it.
1573                          */
1574                         m->m_pkthdr.ether_vtag =
1575                             bswap16(rxctl & VGE_RDCTL_VLANID);
1576                         m->m_flags |= M_VLANTAG;
1577                 }
1578
1579                 VGE_UNLOCK(sc);
1580                 (*ifp->if_input)(ifp, m);
1581                 VGE_LOCK(sc);
1582                 sc->vge_cdata.vge_head = NULL;
1583                 sc->vge_cdata.vge_tail = NULL;
1584         }
1585
1586         if (prog > 0) {
1587                 sc->vge_cdata.vge_rx_prodidx = prod;
1588                 bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1589                     sc->vge_cdata.vge_rx_ring_map,
1590                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1591                 /* Update residue counter. */
1592                 if (sc->vge_cdata.vge_rx_commit != 0) {
1593                         CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT,
1594                             sc->vge_cdata.vge_rx_commit);
1595                         sc->vge_cdata.vge_rx_commit = 0;
1596                 }
1597         }
1598         return (prog);
1599 }
1600
1601 static void
1602 vge_txeof(struct vge_softc *sc)
1603 {
1604         struct ifnet *ifp;
1605         struct vge_tx_desc *cur_tx;
1606         struct vge_txdesc *txd;
1607         uint32_t txstat;
1608         int cons, prod;
1609
1610         VGE_LOCK_ASSERT(sc);
1611
1612         ifp = sc->vge_ifp;
1613
1614         if (sc->vge_cdata.vge_tx_cnt == 0)
1615                 return;
1616
1617         bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1618             sc->vge_cdata.vge_tx_ring_map,
1619             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1620
1621         /*
1622          * Go through our tx list and free mbufs for those
1623          * frames that have been transmitted.
1624          */
1625         cons = sc->vge_cdata.vge_tx_considx;
1626         prod = sc->vge_cdata.vge_tx_prodidx;
1627         for (; cons != prod; VGE_TX_DESC_INC(cons)) {
1628                 cur_tx = &sc->vge_rdata.vge_tx_ring[cons];
1629                 txstat = le32toh(cur_tx->vge_sts);
1630                 if ((txstat & VGE_TDSTS_OWN) != 0)
1631                         break;
1632                 sc->vge_cdata.vge_tx_cnt--;
1633                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1634
1635                 txd = &sc->vge_cdata.vge_txdesc[cons];
1636                 bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1637                     BUS_DMASYNC_POSTWRITE);
1638                 bus_dmamap_unload(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap);
1639
1640                 KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1641                     __func__));
1642                 m_freem(txd->tx_m);
1643                 txd->tx_m = NULL;
1644                 txd->tx_desc->vge_frag[0].vge_addrhi = 0;
1645         }
1646         bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1647             sc->vge_cdata.vge_tx_ring_map,
1648             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1649         sc->vge_cdata.vge_tx_considx = cons;
1650         if (sc->vge_cdata.vge_tx_cnt == 0)
1651                 sc->vge_timer = 0;
1652 }
1653
1654 static void
1655 vge_link_statchg(void *xsc)
1656 {
1657         struct vge_softc *sc;
1658         struct ifnet *ifp;
1659         uint8_t physts;
1660
1661         sc = xsc;
1662         ifp = sc->vge_ifp;
1663         VGE_LOCK_ASSERT(sc);
1664
1665         physts = CSR_READ_1(sc, VGE_PHYSTS0);
1666         if ((physts & VGE_PHYSTS_RESETSTS) == 0) {
1667                 if ((physts & VGE_PHYSTS_LINK) == 0) {
1668                         sc->vge_flags &= ~VGE_FLAG_LINK;
1669                         if_link_state_change(sc->vge_ifp,
1670                             LINK_STATE_DOWN);
1671                 } else {
1672                         sc->vge_flags |= VGE_FLAG_LINK;
1673                         if_link_state_change(sc->vge_ifp,
1674                             LINK_STATE_UP);
1675                         CSR_WRITE_1(sc, VGE_CRC2, VGE_CR2_FDX_TXFLOWCTL_ENABLE |
1676                             VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1677                         if ((physts & VGE_PHYSTS_FDX) != 0) {
1678                                 if ((physts & VGE_PHYSTS_TXFLOWCAP) != 0)
1679                                         CSR_WRITE_1(sc, VGE_CRS2,
1680                                             VGE_CR2_FDX_TXFLOWCTL_ENABLE);
1681                                 if ((physts & VGE_PHYSTS_RXFLOWCAP) != 0)
1682                                         CSR_WRITE_1(sc, VGE_CRS2,
1683                                             VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1684                         }
1685                         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1686                                 vge_start_locked(ifp);
1687                 }
1688         }
1689         /*
1690          * Restart MII auto-polling because link state change interrupt
1691          * will disable it.
1692          */
1693         vge_miipoll_start(sc);
1694 }
1695
1696 #ifdef DEVICE_POLLING
1697 static int
1698 vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1699 {
1700         struct vge_softc *sc = ifp->if_softc;
1701         int rx_npkts = 0;
1702
1703         VGE_LOCK(sc);
1704         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1705                 goto done;
1706
1707         rx_npkts = vge_rxeof(sc, count);
1708         vge_txeof(sc);
1709
1710         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1711                 vge_start_locked(ifp);
1712
1713         if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1714                 uint32_t       status;
1715                 status = CSR_READ_4(sc, VGE_ISR);
1716                 if (status == 0xFFFFFFFF)
1717                         goto done;
1718                 if (status)
1719                         CSR_WRITE_4(sc, VGE_ISR, status);
1720
1721                 /*
1722                  * XXX check behaviour on receiver stalls.
1723                  */
1724
1725                 if (status & VGE_ISR_TXDMA_STALL ||
1726                     status & VGE_ISR_RXDMA_STALL) {
1727                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1728                         vge_init_locked(sc);
1729                 }
1730
1731                 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1732                         vge_rxeof(sc, count);
1733                         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1734                         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1735                 }
1736         }
1737 done:
1738         VGE_UNLOCK(sc);
1739         return (rx_npkts);
1740 }
1741 #endif /* DEVICE_POLLING */
1742
1743 static void
1744 vge_intr(void *arg)
1745 {
1746         struct vge_softc *sc;
1747         struct ifnet *ifp;
1748         uint32_t status;
1749
1750         sc = arg;
1751         VGE_LOCK(sc);
1752
1753         ifp = sc->vge_ifp;
1754         if ((sc->vge_flags & VGE_FLAG_SUSPENDED) != 0 ||
1755             (ifp->if_flags & IFF_UP) == 0) {
1756                 VGE_UNLOCK(sc);
1757                 return;
1758         }
1759
1760 #ifdef DEVICE_POLLING
1761         if  (ifp->if_capenable & IFCAP_POLLING) {
1762                 status = CSR_READ_4(sc, VGE_ISR);
1763                 CSR_WRITE_4(sc, VGE_ISR, status);
1764                 if (status != 0xFFFFFFFF && (status & VGE_ISR_LINKSTS) != 0)
1765                         vge_link_statchg(sc);
1766                 VGE_UNLOCK(sc);
1767                 return;
1768         }
1769 #endif
1770
1771         /* Disable interrupts */
1772         CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1773         status = CSR_READ_4(sc, VGE_ISR);
1774         CSR_WRITE_4(sc, VGE_ISR, status | VGE_ISR_HOLDOFF_RELOAD);
1775         /* If the card has gone away the read returns 0xffff. */
1776         if (status == 0xFFFFFFFF || (status & VGE_INTRS) == 0)
1777                 goto done;
1778         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1779                 if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1780                         vge_rxeof(sc, VGE_RX_DESC_CNT);
1781                 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1782                         vge_rxeof(sc, VGE_RX_DESC_CNT);
1783                         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1784                         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1785                 }
1786
1787                 if (status & (VGE_ISR_TXOK0|VGE_ISR_TXOK_HIPRIO))
1788                         vge_txeof(sc);
1789
1790                 if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) {
1791                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1792                         vge_init_locked(sc);
1793                 }
1794
1795                 if (status & VGE_ISR_LINKSTS)
1796                         vge_link_statchg(sc);
1797         }
1798 done:
1799         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1800                 /* Re-enable interrupts */
1801                 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1802
1803                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1804                         vge_start_locked(ifp);
1805         }
1806         VGE_UNLOCK(sc);
1807 }
1808
1809 static int
1810 vge_encap(struct vge_softc *sc, struct mbuf **m_head)
1811 {
1812         struct vge_txdesc *txd;
1813         struct vge_tx_frag *frag;
1814         struct mbuf *m;
1815         bus_dma_segment_t txsegs[VGE_MAXTXSEGS];
1816         int error, i, nsegs, padlen;
1817         uint32_t cflags;
1818
1819         VGE_LOCK_ASSERT(sc);
1820
1821         M_ASSERTPKTHDR((*m_head));
1822
1823         /* Argh. This chip does not autopad short frames. */
1824         if ((*m_head)->m_pkthdr.len < VGE_MIN_FRAMELEN) {
1825                 m = *m_head;
1826                 padlen = VGE_MIN_FRAMELEN - m->m_pkthdr.len;
1827                 if (M_WRITABLE(m) == 0) {
1828                         /* Get a writable copy. */
1829                         m = m_dup(*m_head, M_NOWAIT);
1830                         m_freem(*m_head);
1831                         if (m == NULL) {
1832                                 *m_head = NULL;
1833                                 return (ENOBUFS);
1834                         }
1835                         *m_head = m;
1836                 }
1837                 if (M_TRAILINGSPACE(m) < padlen) {
1838                         m = m_defrag(m, M_NOWAIT);
1839                         if (m == NULL) {
1840                                 m_freem(*m_head);
1841                                 *m_head = NULL;
1842                                 return (ENOBUFS);
1843                         }
1844                 }
1845                 /*
1846                  * Manually pad short frames, and zero the pad space
1847                  * to avoid leaking data.
1848                  */
1849                 bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1850                 m->m_pkthdr.len += padlen;
1851                 m->m_len = m->m_pkthdr.len;
1852                 *m_head = m;
1853         }
1854
1855         txd = &sc->vge_cdata.vge_txdesc[sc->vge_cdata.vge_tx_prodidx];
1856
1857         error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1858             txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1859         if (error == EFBIG) {
1860                 m = m_collapse(*m_head, M_NOWAIT, VGE_MAXTXSEGS);
1861                 if (m == NULL) {
1862                         m_freem(*m_head);
1863                         *m_head = NULL;
1864                         return (ENOMEM);
1865                 }
1866                 *m_head = m;
1867                 error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1868                     txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1869                 if (error != 0) {
1870                         m_freem(*m_head);
1871                         *m_head = NULL;
1872                         return (error);
1873                 }
1874         } else if (error != 0)
1875                 return (error);
1876         bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1877             BUS_DMASYNC_PREWRITE);
1878
1879         m = *m_head;
1880         cflags = 0;
1881
1882         /* Configure checksum offload. */
1883         if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1884                 cflags |= VGE_TDCTL_IPCSUM;
1885         if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1886                 cflags |= VGE_TDCTL_TCPCSUM;
1887         if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1888                 cflags |= VGE_TDCTL_UDPCSUM;
1889
1890         /* Configure VLAN. */
1891         if ((m->m_flags & M_VLANTAG) != 0)
1892                 cflags |= m->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG;
1893         txd->tx_desc->vge_sts = htole32(m->m_pkthdr.len << 16);
1894         /*
1895          * XXX
1896          * Velocity family seems to support TSO but no information
1897          * for MSS configuration is available. Also the number of
1898          * fragments supported by a descriptor is too small to hold
1899          * entire 64KB TCP/IP segment. Maybe VGE_TD_LS_MOF,
1900          * VGE_TD_LS_SOF and VGE_TD_LS_EOF could be used to build
1901          * longer chain of buffers but no additional information is
1902          * available.
1903          *
1904          * When telling the chip how many segments there are, we
1905          * must use nsegs + 1 instead of just nsegs. Darned if I
1906          * know why. This also means we can't use the last fragment
1907          * field of Tx descriptor.
1908          */
1909         txd->tx_desc->vge_ctl = htole32(cflags | ((nsegs + 1) << 28) |
1910             VGE_TD_LS_NORM);
1911         for (i = 0; i < nsegs; i++) {
1912                 frag = &txd->tx_desc->vge_frag[i];
1913                 frag->vge_addrlo = htole32(VGE_ADDR_LO(txsegs[i].ds_addr));
1914                 frag->vge_addrhi = htole32(VGE_ADDR_HI(txsegs[i].ds_addr) |
1915                     (VGE_BUFLEN(txsegs[i].ds_len) << 16));
1916         }
1917
1918         sc->vge_cdata.vge_tx_cnt++;
1919         VGE_TX_DESC_INC(sc->vge_cdata.vge_tx_prodidx);
1920
1921         /*
1922          * Finally request interrupt and give the first descriptor
1923          * ownership to hardware.
1924          */
1925         txd->tx_desc->vge_ctl |= htole32(VGE_TDCTL_TIC);
1926         txd->tx_desc->vge_sts |= htole32(VGE_TDSTS_OWN);
1927         txd->tx_m = m;
1928
1929         return (0);
1930 }
1931
1932 /*
1933  * Main transmit routine.
1934  */
1935
1936 static void
1937 vge_start(struct ifnet *ifp)
1938 {
1939         struct vge_softc *sc;
1940
1941         sc = ifp->if_softc;
1942         VGE_LOCK(sc);
1943         vge_start_locked(ifp);
1944         VGE_UNLOCK(sc);
1945 }
1946
1947
1948 static void
1949 vge_start_locked(struct ifnet *ifp)
1950 {
1951         struct vge_softc *sc;
1952         struct vge_txdesc *txd;
1953         struct mbuf *m_head;
1954         int enq, idx;
1955
1956         sc = ifp->if_softc;
1957
1958         VGE_LOCK_ASSERT(sc);
1959
1960         if ((sc->vge_flags & VGE_FLAG_LINK) == 0 ||
1961             (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1962             IFF_DRV_RUNNING)
1963                 return;
1964
1965         idx = sc->vge_cdata.vge_tx_prodidx;
1966         VGE_TX_DESC_DEC(idx);
1967         for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1968             sc->vge_cdata.vge_tx_cnt < VGE_TX_DESC_CNT - 1; ) {
1969                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1970                 if (m_head == NULL)
1971                         break;
1972                 /*
1973                  * Pack the data into the transmit ring. If we
1974                  * don't have room, set the OACTIVE flag and wait
1975                  * for the NIC to drain the ring.
1976                  */
1977                 if (vge_encap(sc, &m_head)) {
1978                         if (m_head == NULL)
1979                                 break;
1980                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1981                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1982                         break;
1983                 }
1984
1985                 txd = &sc->vge_cdata.vge_txdesc[idx];
1986                 txd->tx_desc->vge_frag[0].vge_addrhi |= htole32(VGE_TXDESC_Q);
1987                 VGE_TX_DESC_INC(idx);
1988
1989                 enq++;
1990                 /*
1991                  * If there's a BPF listener, bounce a copy of this frame
1992                  * to him.
1993                  */
1994                 ETHER_BPF_MTAP(ifp, m_head);
1995         }
1996
1997         if (enq > 0) {
1998                 bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1999                     sc->vge_cdata.vge_tx_ring_map,
2000                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2001                 /* Issue a transmit command. */
2002                 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
2003                 /*
2004                  * Set a timeout in case the chip goes out to lunch.
2005                  */
2006                 sc->vge_timer = 5;
2007         }
2008 }
2009
2010 static void
2011 vge_init(void *xsc)
2012 {
2013         struct vge_softc *sc = xsc;
2014
2015         VGE_LOCK(sc);
2016         vge_init_locked(sc);
2017         VGE_UNLOCK(sc);
2018 }
2019
2020 static void
2021 vge_init_locked(struct vge_softc *sc)
2022 {
2023         struct ifnet *ifp = sc->vge_ifp;
2024         int error, i;
2025
2026         VGE_LOCK_ASSERT(sc);
2027
2028         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2029                 return;
2030
2031         /*
2032          * Cancel pending I/O and free all RX/TX buffers.
2033          */
2034         vge_stop(sc);
2035         vge_reset(sc);
2036         vge_miipoll_start(sc);
2037
2038         /*
2039          * Initialize the RX and TX descriptors and mbufs.
2040          */
2041
2042         error = vge_rx_list_init(sc);
2043         if (error != 0) {
2044                 device_printf(sc->vge_dev, "no memory for Rx buffers.\n");
2045                 return;
2046         }
2047         vge_tx_list_init(sc);
2048         /* Clear MAC statistics. */
2049         vge_stats_clear(sc);
2050         /* Set our station address */
2051         for (i = 0; i < ETHER_ADDR_LEN; i++)
2052                 CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
2053
2054         /*
2055          * Set receive FIFO threshold. Also allow transmission and
2056          * reception of VLAN tagged frames.
2057          */
2058         CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
2059         CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES);
2060
2061         /* Set DMA burst length */
2062         CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
2063         CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
2064
2065         CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
2066
2067         /* Set collision backoff algorithm */
2068         CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
2069             VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
2070         CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
2071
2072         /* Disable LPSEL field in priority resolution */
2073         CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
2074
2075         /*
2076          * Load the addresses of the DMA queues into the chip.
2077          * Note that we only use one transmit queue.
2078          */
2079
2080         CSR_WRITE_4(sc, VGE_TXDESC_HIADDR,
2081             VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr));
2082         CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
2083             VGE_ADDR_LO(sc->vge_rdata.vge_tx_ring_paddr));
2084         CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
2085
2086         CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
2087             VGE_ADDR_LO(sc->vge_rdata.vge_rx_ring_paddr));
2088         CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
2089         CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
2090
2091         /* Configure interrupt moderation. */
2092         vge_intr_holdoff(sc);
2093
2094         /* Enable and wake up the RX descriptor queue */
2095         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
2096         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
2097
2098         /* Enable the TX descriptor queue */
2099         CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
2100
2101         /* Init the cam filter. */
2102         vge_cam_clear(sc);
2103
2104         /* Set up receiver filter. */
2105         vge_rxfilter(sc);
2106         vge_setvlan(sc);
2107
2108         /* Initialize pause timer. */
2109         CSR_WRITE_2(sc, VGE_TX_PAUSE_TIMER, 0xFFFF);
2110         /*
2111          * Initialize flow control parameters.
2112          *  TX XON high threshold : 48
2113          *  TX pause low threshold : 24
2114          *  Disable hald-duplex flow control
2115          */
2116         CSR_WRITE_1(sc, VGE_CRC2, 0xFF);
2117         CSR_WRITE_1(sc, VGE_CRS2, VGE_CR2_XON_ENABLE | 0x0B);
2118
2119         /* Enable jumbo frame reception (if desired) */
2120
2121         /* Start the MAC. */
2122         CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
2123         CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
2124         CSR_WRITE_1(sc, VGE_CRS0,
2125             VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
2126
2127 #ifdef DEVICE_POLLING
2128         /*
2129          * Disable interrupts except link state change if we are polling.
2130          */
2131         if (ifp->if_capenable & IFCAP_POLLING) {
2132                 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2133         } else  /* otherwise ... */
2134 #endif
2135         {
2136         /*
2137          * Enable interrupts.
2138          */
2139                 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2140         }
2141         CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2142         CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2143
2144         sc->vge_flags &= ~VGE_FLAG_LINK;
2145         vge_ifmedia_upd_locked(sc);
2146
2147         ifp->if_drv_flags |= IFF_DRV_RUNNING;
2148         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2149         callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2150 }
2151
2152 /*
2153  * Set media options.
2154  */
2155 static int
2156 vge_ifmedia_upd(struct ifnet *ifp)
2157 {
2158         struct vge_softc *sc;
2159         int error;
2160
2161         sc = ifp->if_softc;
2162         VGE_LOCK(sc);
2163         error = vge_ifmedia_upd_locked(sc);
2164         VGE_UNLOCK(sc);
2165
2166         return (error);
2167 }
2168
2169 static int
2170 vge_ifmedia_upd_locked(struct vge_softc *sc)
2171 {
2172         struct mii_data *mii;
2173         struct mii_softc *miisc;
2174         int error;
2175
2176         mii = device_get_softc(sc->vge_miibus);
2177         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2178                 PHY_RESET(miisc);
2179         vge_setmedia(sc);
2180         error = mii_mediachg(mii);
2181
2182         return (error);
2183 }
2184
2185 /*
2186  * Report current media status.
2187  */
2188 static void
2189 vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2190 {
2191         struct vge_softc *sc;
2192         struct mii_data *mii;
2193
2194         sc = ifp->if_softc;
2195         mii = device_get_softc(sc->vge_miibus);
2196
2197         VGE_LOCK(sc);
2198         if ((ifp->if_flags & IFF_UP) == 0) {
2199                 VGE_UNLOCK(sc);
2200                 return;
2201         }
2202         mii_pollstat(mii);
2203         ifmr->ifm_active = mii->mii_media_active;
2204         ifmr->ifm_status = mii->mii_media_status;
2205         VGE_UNLOCK(sc);
2206 }
2207
2208 static void
2209 vge_setmedia(struct vge_softc *sc)
2210 {
2211         struct mii_data *mii;
2212         struct ifmedia_entry *ife;
2213
2214         mii = device_get_softc(sc->vge_miibus);
2215         ife = mii->mii_media.ifm_cur;
2216
2217         /*
2218          * If the user manually selects a media mode, we need to turn
2219          * on the forced MAC mode bit in the DIAGCTL register. If the
2220          * user happens to choose a full duplex mode, we also need to
2221          * set the 'force full duplex' bit. This applies only to
2222          * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2223          * mode is disabled, and in 1000baseT mode, full duplex is
2224          * always implied, so we turn on the forced mode bit but leave
2225          * the FDX bit cleared.
2226          */
2227
2228         switch (IFM_SUBTYPE(ife->ifm_media)) {
2229         case IFM_AUTO:
2230                 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2231                 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2232                 break;
2233         case IFM_1000_T:
2234                 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2235                 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2236                 break;
2237         case IFM_100_TX:
2238         case IFM_10_T:
2239                 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2240                 if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2241                         CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2242                 } else {
2243                         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2244                 }
2245                 break;
2246         default:
2247                 device_printf(sc->vge_dev, "unknown media type: %x\n",
2248                     IFM_SUBTYPE(ife->ifm_media));
2249                 break;
2250         }
2251 }
2252
2253 static int
2254 vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2255 {
2256         struct vge_softc *sc = ifp->if_softc;
2257         struct ifreq *ifr = (struct ifreq *) data;
2258         struct mii_data *mii;
2259         int error = 0, mask;
2260
2261         switch (command) {
2262         case SIOCSIFMTU:
2263                 VGE_LOCK(sc);
2264                 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > VGE_JUMBO_MTU)
2265                         error = EINVAL;
2266                 else if (ifp->if_mtu != ifr->ifr_mtu) {
2267                         if (ifr->ifr_mtu > ETHERMTU &&
2268                             (sc->vge_flags & VGE_FLAG_JUMBO) == 0)
2269                                 error = EINVAL;
2270                         else
2271                                 ifp->if_mtu = ifr->ifr_mtu;
2272                 }
2273                 VGE_UNLOCK(sc);
2274                 break;
2275         case SIOCSIFFLAGS:
2276                 VGE_LOCK(sc);
2277                 if ((ifp->if_flags & IFF_UP) != 0) {
2278                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2279                             ((ifp->if_flags ^ sc->vge_if_flags) &
2280                             (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2281                                 vge_rxfilter(sc);
2282                         else
2283                                 vge_init_locked(sc);
2284                 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2285                         vge_stop(sc);
2286                 sc->vge_if_flags = ifp->if_flags;
2287                 VGE_UNLOCK(sc);
2288                 break;
2289         case SIOCADDMULTI:
2290         case SIOCDELMULTI:
2291                 VGE_LOCK(sc);
2292                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2293                         vge_rxfilter(sc);
2294                 VGE_UNLOCK(sc);
2295                 break;
2296         case SIOCGIFMEDIA:
2297         case SIOCSIFMEDIA:
2298                 mii = device_get_softc(sc->vge_miibus);
2299                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2300                 break;
2301         case SIOCSIFCAP:
2302                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2303 #ifdef DEVICE_POLLING
2304                 if (mask & IFCAP_POLLING) {
2305                         if (ifr->ifr_reqcap & IFCAP_POLLING) {
2306                                 error = ether_poll_register(vge_poll, ifp);
2307                                 if (error)
2308                                         return (error);
2309                                 VGE_LOCK(sc);
2310                                         /* Disable interrupts */
2311                                 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2312                                 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2313                                 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2314                                 ifp->if_capenable |= IFCAP_POLLING;
2315                                 VGE_UNLOCK(sc);
2316                         } else {
2317                                 error = ether_poll_deregister(ifp);
2318                                 /* Enable interrupts. */
2319                                 VGE_LOCK(sc);
2320                                 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2321                                 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2322                                 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2323                                 ifp->if_capenable &= ~IFCAP_POLLING;
2324                                 VGE_UNLOCK(sc);
2325                         }
2326                 }
2327 #endif /* DEVICE_POLLING */
2328                 VGE_LOCK(sc);
2329                 if ((mask & IFCAP_TXCSUM) != 0 &&
2330                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2331                         ifp->if_capenable ^= IFCAP_TXCSUM;
2332                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2333                                 ifp->if_hwassist |= VGE_CSUM_FEATURES;
2334                         else
2335                                 ifp->if_hwassist &= ~VGE_CSUM_FEATURES;
2336                 }
2337                 if ((mask & IFCAP_RXCSUM) != 0 &&
2338                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2339                         ifp->if_capenable ^= IFCAP_RXCSUM;
2340                 if ((mask & IFCAP_WOL_UCAST) != 0 &&
2341                     (ifp->if_capabilities & IFCAP_WOL_UCAST) != 0)
2342                         ifp->if_capenable ^= IFCAP_WOL_UCAST;
2343                 if ((mask & IFCAP_WOL_MCAST) != 0 &&
2344                     (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2345                         ifp->if_capenable ^= IFCAP_WOL_MCAST;
2346                 if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2347                     (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2348                         ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2349                 if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2350                     (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2351                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2352                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2353                     (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
2354                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2355                         vge_setvlan(sc);
2356                 }
2357                 VGE_UNLOCK(sc);
2358                 VLAN_CAPABILITIES(ifp);
2359                 break;
2360         default:
2361                 error = ether_ioctl(ifp, command, data);
2362                 break;
2363         }
2364
2365         return (error);
2366 }
2367
2368 static void
2369 vge_watchdog(void *arg)
2370 {
2371         struct vge_softc *sc;
2372         struct ifnet *ifp;
2373
2374         sc = arg;
2375         VGE_LOCK_ASSERT(sc);
2376         vge_stats_update(sc);
2377         callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2378         if (sc->vge_timer == 0 || --sc->vge_timer > 0)
2379                 return;
2380
2381         ifp = sc->vge_ifp;
2382         if_printf(ifp, "watchdog timeout\n");
2383         if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2384
2385         vge_txeof(sc);
2386         vge_rxeof(sc, VGE_RX_DESC_CNT);
2387
2388         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2389         vge_init_locked(sc);
2390 }
2391
2392 /*
2393  * Stop the adapter and free any mbufs allocated to the
2394  * RX and TX lists.
2395  */
2396 static void
2397 vge_stop(struct vge_softc *sc)
2398 {
2399         struct ifnet *ifp;
2400
2401         VGE_LOCK_ASSERT(sc);
2402         ifp = sc->vge_ifp;
2403         sc->vge_timer = 0;
2404         callout_stop(&sc->vge_watchdog);
2405
2406         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2407
2408         CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2409         CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2410         CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2411         CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2412         CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2413         CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2414
2415         vge_stats_update(sc);
2416         VGE_CHAIN_RESET(sc);
2417         vge_txeof(sc);
2418         vge_freebufs(sc);
2419 }
2420
2421 /*
2422  * Device suspend routine.  Stop the interface and save some PCI
2423  * settings in case the BIOS doesn't restore them properly on
2424  * resume.
2425  */
2426 static int
2427 vge_suspend(device_t dev)
2428 {
2429         struct vge_softc *sc;
2430
2431         sc = device_get_softc(dev);
2432
2433         VGE_LOCK(sc);
2434         vge_stop(sc);
2435         vge_setwol(sc);
2436         sc->vge_flags |= VGE_FLAG_SUSPENDED;
2437         VGE_UNLOCK(sc);
2438
2439         return (0);
2440 }
2441
2442 /*
2443  * Device resume routine.  Restore some PCI settings in case the BIOS
2444  * doesn't, re-enable busmastering, and restart the interface if
2445  * appropriate.
2446  */
2447 static int
2448 vge_resume(device_t dev)
2449 {
2450         struct vge_softc *sc;
2451         struct ifnet *ifp;
2452         uint16_t pmstat;
2453
2454         sc = device_get_softc(dev);
2455         VGE_LOCK(sc);
2456         if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0) {
2457                 /* Disable PME and clear PME status. */
2458                 pmstat = pci_read_config(sc->vge_dev,
2459                     sc->vge_pmcap + PCIR_POWER_STATUS, 2);
2460                 if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2461                         pmstat &= ~PCIM_PSTAT_PMEENABLE;
2462                         pci_write_config(sc->vge_dev,
2463                             sc->vge_pmcap + PCIR_POWER_STATUS, pmstat, 2);
2464                 }
2465         }
2466         vge_clrwol(sc);
2467         /* Restart MII auto-polling. */
2468         vge_miipoll_start(sc);
2469         ifp = sc->vge_ifp;
2470         /* Reinitialize interface if necessary. */
2471         if ((ifp->if_flags & IFF_UP) != 0) {
2472                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2473                 vge_init_locked(sc);
2474         }
2475         sc->vge_flags &= ~VGE_FLAG_SUSPENDED;
2476         VGE_UNLOCK(sc);
2477
2478         return (0);
2479 }
2480
2481 /*
2482  * Stop all chip I/O so that the kernel's probe routines don't
2483  * get confused by errant DMAs when rebooting.
2484  */
2485 static int
2486 vge_shutdown(device_t dev)
2487 {
2488
2489         return (vge_suspend(dev));
2490 }
2491
2492 #define VGE_SYSCTL_STAT_ADD32(c, h, n, p, d)    \
2493             SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2494
2495 static void
2496 vge_sysctl_node(struct vge_softc *sc)
2497 {
2498         struct sysctl_ctx_list *ctx;
2499         struct sysctl_oid_list *child, *parent;
2500         struct sysctl_oid *tree;
2501         struct vge_hw_stats *stats;
2502
2503         stats = &sc->vge_stats;
2504         ctx = device_get_sysctl_ctx(sc->vge_dev);
2505         child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vge_dev));
2506
2507         SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_holdoff",
2508             CTLFLAG_RW, &sc->vge_int_holdoff, 0, "interrupt holdoff");
2509         SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_coal_pkt",
2510             CTLFLAG_RW, &sc->vge_rx_coal_pkt, 0, "rx coalescing packet");
2511         SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_coal_pkt",
2512             CTLFLAG_RW, &sc->vge_tx_coal_pkt, 0, "tx coalescing packet");
2513
2514         /* Pull in device tunables. */
2515         sc->vge_int_holdoff = VGE_INT_HOLDOFF_DEFAULT;
2516         resource_int_value(device_get_name(sc->vge_dev),
2517             device_get_unit(sc->vge_dev), "int_holdoff", &sc->vge_int_holdoff);
2518         sc->vge_rx_coal_pkt = VGE_RX_COAL_PKT_DEFAULT;
2519         resource_int_value(device_get_name(sc->vge_dev),
2520             device_get_unit(sc->vge_dev), "rx_coal_pkt", &sc->vge_rx_coal_pkt);
2521         sc->vge_tx_coal_pkt = VGE_TX_COAL_PKT_DEFAULT;
2522         resource_int_value(device_get_name(sc->vge_dev),
2523             device_get_unit(sc->vge_dev), "tx_coal_pkt", &sc->vge_tx_coal_pkt);
2524
2525         tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2526             NULL, "VGE statistics");
2527         parent = SYSCTL_CHILDREN(tree);
2528
2529         /* Rx statistics. */
2530         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
2531             NULL, "RX MAC statistics");
2532         child = SYSCTL_CHILDREN(tree);
2533         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames",
2534             &stats->rx_frames, "frames");
2535         VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2536             &stats->rx_good_frames, "Good frames");
2537         VGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2538             &stats->rx_fifo_oflows, "FIFO overflows");
2539         VGE_SYSCTL_STAT_ADD32(ctx, child, "runts",
2540             &stats->rx_runts, "Too short frames");
2541         VGE_SYSCTL_STAT_ADD32(ctx, child, "runts_errs",
2542             &stats->rx_runts_errs, "Too short frames with errors");
2543         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2544             &stats->rx_pkts_64, "64 bytes frames");
2545         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2546             &stats->rx_pkts_65_127, "65 to 127 bytes frames");
2547         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2548             &stats->rx_pkts_128_255, "128 to 255 bytes frames");
2549         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2550             &stats->rx_pkts_256_511, "256 to 511 bytes frames");
2551         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2552             &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
2553         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2554             &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
2555         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
2556             &stats->rx_pkts_1519_max, "1519 to max frames");
2557         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max_errs",
2558             &stats->rx_pkts_1519_max_errs, "1519 to max frames with error");
2559         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2560             &stats->rx_jumbos, "Jumbo frames");
2561         VGE_SYSCTL_STAT_ADD32(ctx, child, "crcerrs",
2562             &stats->rx_crcerrs, "CRC errors");
2563         VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2564             &stats->rx_pause_frames, "CRC errors");
2565         VGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2566             &stats->rx_alignerrs, "Alignment errors");
2567         VGE_SYSCTL_STAT_ADD32(ctx, child, "nobufs",
2568             &stats->rx_nobufs, "Frames with no buffer event");
2569         VGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2570             &stats->rx_symerrs, "Frames with symbol errors");
2571         VGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2572             &stats->rx_lenerrs, "Frames with length mismatched");
2573
2574         /* Tx statistics. */
2575         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
2576             NULL, "TX MAC statistics");
2577         child = SYSCTL_CHILDREN(tree);
2578         VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2579             &stats->tx_good_frames, "Good frames");
2580         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2581             &stats->tx_pkts_64, "64 bytes frames");
2582         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2583             &stats->tx_pkts_65_127, "65 to 127 bytes frames");
2584         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2585             &stats->tx_pkts_128_255, "128 to 255 bytes frames");
2586         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2587             &stats->tx_pkts_256_511, "256 to 511 bytes frames");
2588         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2589             &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
2590         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2591             &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
2592         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2593             &stats->tx_jumbos, "Jumbo frames");
2594         VGE_SYSCTL_STAT_ADD32(ctx, child, "colls",
2595             &stats->tx_colls, "Collisions");
2596         VGE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2597             &stats->tx_latecolls, "Late collisions");
2598         VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2599             &stats->tx_pause, "Pause frames");
2600 #ifdef VGE_ENABLE_SQEERR
2601         VGE_SYSCTL_STAT_ADD32(ctx, child, "sqeerrs",
2602             &stats->tx_sqeerrs, "SQE errors");
2603 #endif
2604         /* Clear MAC statistics. */
2605         vge_stats_clear(sc);
2606 }
2607
2608 #undef  VGE_SYSCTL_STAT_ADD32
2609
2610 static void
2611 vge_stats_clear(struct vge_softc *sc)
2612 {
2613         int i;
2614
2615         CSR_WRITE_1(sc, VGE_MIBCSR,
2616             CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FREEZE);
2617         CSR_WRITE_1(sc, VGE_MIBCSR,
2618             CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_CLR);
2619         for (i = VGE_TIMEOUT; i > 0; i--) {
2620                 DELAY(1);
2621                 if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_CLR) == 0)
2622                         break;
2623         }
2624         if (i == 0)
2625                 device_printf(sc->vge_dev, "MIB clear timed out!\n");
2626         CSR_WRITE_1(sc, VGE_MIBCSR, CSR_READ_1(sc, VGE_MIBCSR) &
2627             ~VGE_MIBCSR_FREEZE);
2628 }
2629
2630 static void
2631 vge_stats_update(struct vge_softc *sc)
2632 {
2633         struct vge_hw_stats *stats;
2634         struct ifnet *ifp;
2635         uint32_t mib[VGE_MIB_CNT], val;
2636         int i;
2637
2638         VGE_LOCK_ASSERT(sc);
2639
2640         stats = &sc->vge_stats;
2641         ifp = sc->vge_ifp;
2642
2643         CSR_WRITE_1(sc, VGE_MIBCSR,
2644             CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FLUSH);
2645         for (i = VGE_TIMEOUT; i > 0; i--) {
2646                 DELAY(1);
2647                 if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_FLUSH) == 0)
2648                         break;
2649         }
2650         if (i == 0) {
2651                 device_printf(sc->vge_dev, "MIB counter dump timed out!\n");
2652                 vge_stats_clear(sc);
2653                 return;
2654         }
2655
2656         bzero(mib, sizeof(mib));
2657 reset_idx:
2658         /* Set MIB read index to 0. */
2659         CSR_WRITE_1(sc, VGE_MIBCSR,
2660             CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_RINI);
2661         for (i = 0; i < VGE_MIB_CNT; i++) {
2662                 val = CSR_READ_4(sc, VGE_MIBDATA);
2663                 if (i != VGE_MIB_DATA_IDX(val)) {
2664                         /* Reading interrupted. */
2665                         goto reset_idx;
2666                 }
2667                 mib[i] = val & VGE_MIB_DATA_MASK;
2668         }
2669
2670         /* Rx stats. */
2671         stats->rx_frames += mib[VGE_MIB_RX_FRAMES];
2672         stats->rx_good_frames += mib[VGE_MIB_RX_GOOD_FRAMES];
2673         stats->rx_fifo_oflows += mib[VGE_MIB_RX_FIFO_OVERRUNS];
2674         stats->rx_runts += mib[VGE_MIB_RX_RUNTS];
2675         stats->rx_runts_errs += mib[VGE_MIB_RX_RUNTS_ERRS];
2676         stats->rx_pkts_64 += mib[VGE_MIB_RX_PKTS_64];
2677         stats->rx_pkts_65_127 += mib[VGE_MIB_RX_PKTS_65_127];
2678         stats->rx_pkts_128_255 += mib[VGE_MIB_RX_PKTS_128_255];
2679         stats->rx_pkts_256_511 += mib[VGE_MIB_RX_PKTS_256_511];
2680         stats->rx_pkts_512_1023 += mib[VGE_MIB_RX_PKTS_512_1023];
2681         stats->rx_pkts_1024_1518 += mib[VGE_MIB_RX_PKTS_1024_1518];
2682         stats->rx_pkts_1519_max += mib[VGE_MIB_RX_PKTS_1519_MAX];
2683         stats->rx_pkts_1519_max_errs += mib[VGE_MIB_RX_PKTS_1519_MAX_ERRS];
2684         stats->rx_jumbos += mib[VGE_MIB_RX_JUMBOS];
2685         stats->rx_crcerrs += mib[VGE_MIB_RX_CRCERRS];
2686         stats->rx_pause_frames += mib[VGE_MIB_RX_PAUSE];
2687         stats->rx_alignerrs += mib[VGE_MIB_RX_ALIGNERRS];
2688         stats->rx_nobufs += mib[VGE_MIB_RX_NOBUFS];
2689         stats->rx_symerrs += mib[VGE_MIB_RX_SYMERRS];
2690         stats->rx_lenerrs += mib[VGE_MIB_RX_LENERRS];
2691
2692         /* Tx stats. */
2693         stats->tx_good_frames += mib[VGE_MIB_TX_GOOD_FRAMES];
2694         stats->tx_pkts_64 += mib[VGE_MIB_TX_PKTS_64];
2695         stats->tx_pkts_65_127 += mib[VGE_MIB_TX_PKTS_65_127];
2696         stats->tx_pkts_128_255 += mib[VGE_MIB_TX_PKTS_128_255];
2697         stats->tx_pkts_256_511 += mib[VGE_MIB_TX_PKTS_256_511];
2698         stats->tx_pkts_512_1023 += mib[VGE_MIB_TX_PKTS_512_1023];
2699         stats->tx_pkts_1024_1518 += mib[VGE_MIB_TX_PKTS_1024_1518];
2700         stats->tx_jumbos += mib[VGE_MIB_TX_JUMBOS];
2701         stats->tx_colls += mib[VGE_MIB_TX_COLLS];
2702         stats->tx_pause += mib[VGE_MIB_TX_PAUSE];
2703 #ifdef VGE_ENABLE_SQEERR
2704         stats->tx_sqeerrs += mib[VGE_MIB_TX_SQEERRS];
2705 #endif
2706         stats->tx_latecolls += mib[VGE_MIB_TX_LATECOLLS];
2707
2708         /* Update counters in ifnet. */
2709         if_inc_counter(ifp, IFCOUNTER_OPACKETS, mib[VGE_MIB_TX_GOOD_FRAMES]);
2710
2711         if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2712             mib[VGE_MIB_TX_COLLS] + mib[VGE_MIB_TX_LATECOLLS]);
2713
2714         if_inc_counter(ifp, IFCOUNTER_OERRORS,
2715             mib[VGE_MIB_TX_COLLS] + mib[VGE_MIB_TX_LATECOLLS]);
2716
2717         if_inc_counter(ifp, IFCOUNTER_IPACKETS, mib[VGE_MIB_RX_GOOD_FRAMES]);
2718
2719         if_inc_counter(ifp, IFCOUNTER_IERRORS,
2720             mib[VGE_MIB_RX_FIFO_OVERRUNS] +
2721             mib[VGE_MIB_RX_RUNTS] +
2722             mib[VGE_MIB_RX_RUNTS_ERRS] +
2723             mib[VGE_MIB_RX_CRCERRS] +
2724             mib[VGE_MIB_RX_ALIGNERRS] +
2725             mib[VGE_MIB_RX_NOBUFS] +
2726             mib[VGE_MIB_RX_SYMERRS] +
2727             mib[VGE_MIB_RX_LENERRS]);
2728 }
2729
2730 static void
2731 vge_intr_holdoff(struct vge_softc *sc)
2732 {
2733         uint8_t intctl;
2734
2735         VGE_LOCK_ASSERT(sc);
2736
2737         /*
2738          * Set Tx interrupt supression threshold.
2739          * It's possible to use single-shot timer in VGE_CRS1 register
2740          * in Tx path such that driver can remove most of Tx completion
2741          * interrupts. However this requires additional access to
2742          * VGE_CRS1 register to reload the timer in addintion to
2743          * activating Tx kick command. Another downside is we don't know
2744          * what single-shot timer value should be used in advance so
2745          * reclaiming transmitted mbufs could be delayed a lot which in
2746          * turn slows down Tx operation.
2747          */
2748         CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_TXSUPPTHR);
2749         CSR_WRITE_1(sc, VGE_TXSUPPTHR, sc->vge_tx_coal_pkt);
2750
2751         /* Set Rx interrupt suppresion threshold. */
2752         CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2753         CSR_WRITE_1(sc, VGE_RXSUPPTHR, sc->vge_rx_coal_pkt);
2754
2755         intctl = CSR_READ_1(sc, VGE_INTCTL1);
2756         intctl &= ~VGE_INTCTL_SC_RELOAD;
2757         intctl |= VGE_INTCTL_HC_RELOAD;
2758         if (sc->vge_tx_coal_pkt <= 0)
2759                 intctl |= VGE_INTCTL_TXINTSUP_DISABLE;
2760         else
2761                 intctl &= ~VGE_INTCTL_TXINTSUP_DISABLE;
2762         if (sc->vge_rx_coal_pkt <= 0)
2763                 intctl |= VGE_INTCTL_RXINTSUP_DISABLE;
2764         else
2765                 intctl &= ~VGE_INTCTL_RXINTSUP_DISABLE;
2766         CSR_WRITE_1(sc, VGE_INTCTL1, intctl);
2767         CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_HOLDOFF);
2768         if (sc->vge_int_holdoff > 0) {
2769                 /* Set interrupt holdoff timer. */
2770                 CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2771                 CSR_WRITE_1(sc, VGE_INTHOLDOFF,
2772                     VGE_INT_HOLDOFF_USEC(sc->vge_int_holdoff));
2773                 /* Enable holdoff timer. */
2774                 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2775         }
2776 }
2777
2778 static void
2779 vge_setlinkspeed(struct vge_softc *sc)
2780 {
2781         struct mii_data *mii;
2782         int aneg, i;
2783
2784         VGE_LOCK_ASSERT(sc);
2785
2786         mii = device_get_softc(sc->vge_miibus);
2787         mii_pollstat(mii);
2788         aneg = 0;
2789         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
2790             (IFM_ACTIVE | IFM_AVALID)) {
2791                 switch IFM_SUBTYPE(mii->mii_media_active) {
2792                 case IFM_10_T:
2793                 case IFM_100_TX:
2794                         return;
2795                 case IFM_1000_T:
2796                         aneg++;
2797                 default:
2798                         break;
2799                 }
2800         }
2801         /* Clear forced MAC speed/duplex configuration. */
2802         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2803         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2804         vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_100T2CR, 0);
2805         vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_ANAR,
2806             ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
2807         vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2808             BMCR_AUTOEN | BMCR_STARTNEG);
2809         DELAY(1000);
2810         if (aneg != 0) {
2811                 /* Poll link state until vge(4) get a 10/100 link. */
2812                 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
2813                         mii_pollstat(mii);
2814                         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
2815                             == (IFM_ACTIVE | IFM_AVALID)) {
2816                                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
2817                                 case IFM_10_T:
2818                                 case IFM_100_TX:
2819                                         return;
2820                                 default:
2821                                         break;
2822                                 }
2823                         }
2824                         VGE_UNLOCK(sc);
2825                         pause("vgelnk", hz);
2826                         VGE_LOCK(sc);
2827                 }
2828                 if (i == MII_ANEGTICKS_GIGE)
2829                         device_printf(sc->vge_dev, "establishing link failed, "
2830                             "WOL may not work!");
2831         }
2832         /*
2833          * No link, force MAC to have 100Mbps, full-duplex link.
2834          * This is the last resort and may/may not work.
2835          */
2836         mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
2837         mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
2838 }
2839
2840 static void
2841 vge_setwol(struct vge_softc *sc)
2842 {
2843         struct ifnet *ifp;
2844         uint16_t pmstat;
2845         uint8_t val;
2846
2847         VGE_LOCK_ASSERT(sc);
2848
2849         if ((sc->vge_flags & VGE_FLAG_PMCAP) == 0) {
2850                 /* No PME capability, PHY power down. */
2851                 vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2852                     BMCR_PDOWN);
2853                 vge_miipoll_stop(sc);
2854                 return;
2855         }
2856
2857         ifp = sc->vge_ifp;
2858
2859         /* Clear WOL on pattern match. */
2860         CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2861         /* Disable WOL on magic/unicast packet. */
2862         CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2863         CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2864             VGE_WOLCFG_PMEOVR);
2865         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
2866                 vge_setlinkspeed(sc);
2867                 val = 0;
2868                 if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2869                         val |= VGE_WOLCR1_UCAST;
2870                 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2871                         val |= VGE_WOLCR1_MAGIC;
2872                 CSR_WRITE_1(sc, VGE_WOLCR1S, val);
2873                 val = 0;
2874                 if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2875                         val |= VGE_WOLCFG_SAM | VGE_WOLCFG_SAB;
2876                 CSR_WRITE_1(sc, VGE_WOLCFGS, val | VGE_WOLCFG_PMEOVR);
2877                 /* Disable MII auto-polling. */
2878                 vge_miipoll_stop(sc);
2879         }
2880         CSR_SETBIT_1(sc, VGE_DIAGCTL,
2881             VGE_DIAGCTL_MACFORCE | VGE_DIAGCTL_FDXFORCE);
2882         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2883
2884         /* Clear WOL status on pattern match. */
2885         CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2886         CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2887
2888         val = CSR_READ_1(sc, VGE_PWRSTAT);
2889         val |= VGE_STICKHW_SWPTAG;
2890         CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2891         /* Put hardware into sleep. */
2892         val = CSR_READ_1(sc, VGE_PWRSTAT);
2893         val |= VGE_STICKHW_DS0 | VGE_STICKHW_DS1;
2894         CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2895         /* Request PME if WOL is requested. */
2896         pmstat = pci_read_config(sc->vge_dev, sc->vge_pmcap +
2897             PCIR_POWER_STATUS, 2);
2898         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2899         if ((ifp->if_capenable & IFCAP_WOL) != 0)
2900                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2901         pci_write_config(sc->vge_dev, sc->vge_pmcap + PCIR_POWER_STATUS,
2902             pmstat, 2);
2903 }
2904
2905 static void
2906 vge_clrwol(struct vge_softc *sc)
2907 {
2908         uint8_t val;
2909
2910         val = CSR_READ_1(sc, VGE_PWRSTAT);
2911         val &= ~VGE_STICKHW_SWPTAG;
2912         CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2913         /* Disable WOL and clear power state indicator. */
2914         val = CSR_READ_1(sc, VGE_PWRSTAT);
2915         val &= ~(VGE_STICKHW_DS0 | VGE_STICKHW_DS1);
2916         CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2917
2918         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2919         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2920
2921         /* Clear WOL on pattern match. */
2922         CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2923         /* Disable WOL on magic/unicast packet. */
2924         CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2925         CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2926             VGE_WOLCFG_PMEOVR);
2927         /* Clear WOL status on pattern match. */
2928         CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2929         CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2930 }