]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/vge/if_vge.c
Allow biodone() to be used as a completion routine.
[FreeBSD/FreeBSD.git] / sys / dev / vge / if_vge.c
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 2004
5  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *      This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37
38 /*
39  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
40  *
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Networking Software Engineer
43  * Wind River Systems
44  */
45
46 /*
47  * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
48  * combines a tri-speed ethernet MAC and PHY, with the following
49  * features:
50  *
51  *      o Jumbo frame support up to 16K
52  *      o Transmit and receive flow control
53  *      o IPv4 checksum offload
54  *      o VLAN tag insertion and stripping
55  *      o TCP large send
56  *      o 64-bit multicast hash table filter
57  *      o 64 entry CAM filter
58  *      o 16K RX FIFO and 48K TX FIFO memory
59  *      o Interrupt moderation
60  *
61  * The VT6122 supports up to four transmit DMA queues. The descriptors
62  * in the transmit ring can address up to 7 data fragments; frames which
63  * span more than 7 data buffers must be coalesced, but in general the
64  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
65  * long. The receive descriptors address only a single buffer.
66  *
67  * There are two peculiar design issues with the VT6122. One is that
68  * receive data buffers must be aligned on a 32-bit boundary. This is
69  * not a problem where the VT6122 is used as a LOM device in x86-based
70  * systems, but on architectures that generate unaligned access traps, we
71  * have to do some copying.
72  *
73  * The other issue has to do with the way 64-bit addresses are handled.
74  * The DMA descriptors only allow you to specify 48 bits of addressing
75  * information. The remaining 16 bits are specified using one of the
76  * I/O registers. If you only have a 32-bit system, then this isn't
77  * an issue, but if you have a 64-bit system and more than 4GB of
78  * memory, you must have to make sure your network data buffers reside
79  * in the same 48-bit 'segment.'
80  *
81  * Special thanks to Ryan Fu at VIA Networking for providing documentation
82  * and sample NICs for testing.
83  */
84
85 #ifdef HAVE_KERNEL_OPTION_HEADERS
86 #include "opt_device_polling.h"
87 #endif
88
89 #include <sys/param.h>
90 #include <sys/endian.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/module.h>
96 #include <sys/kernel.h>
97 #include <sys/socket.h>
98 #include <sys/sysctl.h>
99
100 #include <net/if.h>
101 #include <net/if_arp.h>
102 #include <net/ethernet.h>
103 #include <net/if_dl.h>
104 #include <net/if_var.h>
105 #include <net/if_media.h>
106 #include <net/if_types.h>
107 #include <net/if_vlan_var.h>
108
109 #include <net/bpf.h>
110
111 #include <machine/bus.h>
112 #include <machine/resource.h>
113 #include <sys/bus.h>
114 #include <sys/rman.h>
115
116 #include <dev/mii/mii.h>
117 #include <dev/mii/miivar.h>
118
119 #include <dev/pci/pcireg.h>
120 #include <dev/pci/pcivar.h>
121
122 MODULE_DEPEND(vge, pci, 1, 1, 1);
123 MODULE_DEPEND(vge, ether, 1, 1, 1);
124 MODULE_DEPEND(vge, miibus, 1, 1, 1);
125
126 /* "device miibus" required.  See GENERIC if you get errors here. */
127 #include "miibus_if.h"
128
129 #include <dev/vge/if_vgereg.h>
130 #include <dev/vge/if_vgevar.h>
131
132 #define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
133
134 /* Tunables */
135 static int msi_disable = 0;
136 TUNABLE_INT("hw.vge.msi_disable", &msi_disable);
137
138 /*
139  * The SQE error counter of MIB seems to report bogus value.
140  * Vendor's workaround does not seem to work on PCIe based
141  * controllers. Disable it until we find better workaround.
142  */
143 #undef VGE_ENABLE_SQEERR
144
145 /*
146  * Various supported device vendors/types and their names.
147  */
148 static struct vge_type vge_devs[] = {
149         { VIA_VENDORID, VIA_DEVICEID_61XX,
150                 "VIA Networking Velocity Gigabit Ethernet" },
151         { 0, 0, NULL }
152 };
153
154 static int      vge_attach(device_t);
155 static int      vge_detach(device_t);
156 static int      vge_probe(device_t);
157 static int      vge_resume(device_t);
158 static int      vge_shutdown(device_t);
159 static int      vge_suspend(device_t);
160
161 static void     vge_cam_clear(struct vge_softc *);
162 static int      vge_cam_set(struct vge_softc *, uint8_t *);
163 static void     vge_clrwol(struct vge_softc *);
164 static void     vge_discard_rxbuf(struct vge_softc *, int);
165 static int      vge_dma_alloc(struct vge_softc *);
166 static void     vge_dma_free(struct vge_softc *);
167 static void     vge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
168 #ifdef VGE_EEPROM
169 static void     vge_eeprom_getword(struct vge_softc *, int, uint16_t *);
170 #endif
171 static int      vge_encap(struct vge_softc *, struct mbuf **);
172 #ifndef __NO_STRICT_ALIGNMENT
173 static __inline void
174                 vge_fixup_rx(struct mbuf *);
175 #endif
176 static void     vge_freebufs(struct vge_softc *);
177 static void     vge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
178 static int      vge_ifmedia_upd(struct ifnet *);
179 static int      vge_ifmedia_upd_locked(struct vge_softc *);
180 static void     vge_init(void *);
181 static void     vge_init_locked(struct vge_softc *);
182 static void     vge_intr(void *);
183 static void     vge_intr_holdoff(struct vge_softc *);
184 static int      vge_ioctl(struct ifnet *, u_long, caddr_t);
185 static void     vge_link_statchg(void *);
186 static int      vge_miibus_readreg(device_t, int, int);
187 static int      vge_miibus_writereg(device_t, int, int, int);
188 static void     vge_miipoll_start(struct vge_softc *);
189 static void     vge_miipoll_stop(struct vge_softc *);
190 static int      vge_newbuf(struct vge_softc *, int);
191 static void     vge_read_eeprom(struct vge_softc *, caddr_t, int, int, int);
192 static void     vge_reset(struct vge_softc *);
193 static int      vge_rx_list_init(struct vge_softc *);
194 static int      vge_rxeof(struct vge_softc *, int);
195 static void     vge_rxfilter(struct vge_softc *);
196 static void     vge_setmedia(struct vge_softc *);
197 static void     vge_setvlan(struct vge_softc *);
198 static void     vge_setwol(struct vge_softc *);
199 static void     vge_start(struct ifnet *);
200 static void     vge_start_locked(struct ifnet *);
201 static void     vge_stats_clear(struct vge_softc *);
202 static void     vge_stats_update(struct vge_softc *);
203 static void     vge_stop(struct vge_softc *);
204 static void     vge_sysctl_node(struct vge_softc *);
205 static int      vge_tx_list_init(struct vge_softc *);
206 static void     vge_txeof(struct vge_softc *);
207 static void     vge_watchdog(void *);
208
209 static device_method_t vge_methods[] = {
210         /* Device interface */
211         DEVMETHOD(device_probe,         vge_probe),
212         DEVMETHOD(device_attach,        vge_attach),
213         DEVMETHOD(device_detach,        vge_detach),
214         DEVMETHOD(device_suspend,       vge_suspend),
215         DEVMETHOD(device_resume,        vge_resume),
216         DEVMETHOD(device_shutdown,      vge_shutdown),
217
218         /* MII interface */
219         DEVMETHOD(miibus_readreg,       vge_miibus_readreg),
220         DEVMETHOD(miibus_writereg,      vge_miibus_writereg),
221
222         DEVMETHOD_END
223 };
224
225 static driver_t vge_driver = {
226         "vge",
227         vge_methods,
228         sizeof(struct vge_softc)
229 };
230
231 static devclass_t vge_devclass;
232
233 DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
234 DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
235
236 #ifdef VGE_EEPROM
237 /*
238  * Read a word of data stored in the EEPROM at address 'addr.'
239  */
240 static void
241 vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t *dest)
242 {
243         int i;
244         uint16_t word = 0;
245
246         /*
247          * Enter EEPROM embedded programming mode. In order to
248          * access the EEPROM at all, we first have to set the
249          * EELOAD bit in the CHIPCFG2 register.
250          */
251         CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
252         CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
253
254         /* Select the address of the word we want to read */
255         CSR_WRITE_1(sc, VGE_EEADDR, addr);
256
257         /* Issue read command */
258         CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
259
260         /* Wait for the done bit to be set. */
261         for (i = 0; i < VGE_TIMEOUT; i++) {
262                 if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
263                         break;
264         }
265
266         if (i == VGE_TIMEOUT) {
267                 device_printf(sc->vge_dev, "EEPROM read timed out\n");
268                 *dest = 0;
269                 return;
270         }
271
272         /* Read the result */
273         word = CSR_READ_2(sc, VGE_EERDDAT);
274
275         /* Turn off EEPROM access mode. */
276         CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
277         CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
278
279         *dest = word;
280 }
281 #endif
282
283 /*
284  * Read a sequence of words from the EEPROM.
285  */
286 static void
287 vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt, int swap)
288 {
289         int i;
290 #ifdef VGE_EEPROM
291         uint16_t word = 0, *ptr;
292
293         for (i = 0; i < cnt; i++) {
294                 vge_eeprom_getword(sc, off + i, &word);
295                 ptr = (uint16_t *)(dest + (i * 2));
296                 if (swap)
297                         *ptr = ntohs(word);
298                 else
299                         *ptr = word;
300         }
301 #else
302         for (i = 0; i < ETHER_ADDR_LEN; i++)
303                 dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
304 #endif
305 }
306
307 static void
308 vge_miipoll_stop(struct vge_softc *sc)
309 {
310         int i;
311
312         CSR_WRITE_1(sc, VGE_MIICMD, 0);
313
314         for (i = 0; i < VGE_TIMEOUT; i++) {
315                 DELAY(1);
316                 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
317                         break;
318         }
319
320         if (i == VGE_TIMEOUT)
321                 device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
322 }
323
324 static void
325 vge_miipoll_start(struct vge_softc *sc)
326 {
327         int i;
328
329         /* First, make sure we're idle. */
330
331         CSR_WRITE_1(sc, VGE_MIICMD, 0);
332         CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
333
334         for (i = 0; i < VGE_TIMEOUT; i++) {
335                 DELAY(1);
336                 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
337                         break;
338         }
339
340         if (i == VGE_TIMEOUT) {
341                 device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
342                 return;
343         }
344
345         /* Now enable auto poll mode. */
346
347         CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
348
349         /* And make sure it started. */
350
351         for (i = 0; i < VGE_TIMEOUT; i++) {
352                 DELAY(1);
353                 if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
354                         break;
355         }
356
357         if (i == VGE_TIMEOUT)
358                 device_printf(sc->vge_dev, "failed to start MII autopoll\n");
359 }
360
361 static int
362 vge_miibus_readreg(device_t dev, int phy, int reg)
363 {
364         struct vge_softc *sc;
365         int i;
366         uint16_t rval = 0;
367
368         sc = device_get_softc(dev);
369
370         vge_miipoll_stop(sc);
371
372         /* Specify the register we want to read. */
373         CSR_WRITE_1(sc, VGE_MIIADDR, reg);
374
375         /* Issue read command. */
376         CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
377
378         /* Wait for the read command bit to self-clear. */
379         for (i = 0; i < VGE_TIMEOUT; i++) {
380                 DELAY(1);
381                 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
382                         break;
383         }
384
385         if (i == VGE_TIMEOUT)
386                 device_printf(sc->vge_dev, "MII read timed out\n");
387         else
388                 rval = CSR_READ_2(sc, VGE_MIIDATA);
389
390         vge_miipoll_start(sc);
391
392         return (rval);
393 }
394
395 static int
396 vge_miibus_writereg(device_t dev, int phy, int reg, int data)
397 {
398         struct vge_softc *sc;
399         int i, rval = 0;
400
401         sc = device_get_softc(dev);
402
403         vge_miipoll_stop(sc);
404
405         /* Specify the register we want to write. */
406         CSR_WRITE_1(sc, VGE_MIIADDR, reg);
407
408         /* Specify the data we want to write. */
409         CSR_WRITE_2(sc, VGE_MIIDATA, data);
410
411         /* Issue write command. */
412         CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
413
414         /* Wait for the write command bit to self-clear. */
415         for (i = 0; i < VGE_TIMEOUT; i++) {
416                 DELAY(1);
417                 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
418                         break;
419         }
420
421         if (i == VGE_TIMEOUT) {
422                 device_printf(sc->vge_dev, "MII write timed out\n");
423                 rval = EIO;
424         }
425
426         vge_miipoll_start(sc);
427
428         return (rval);
429 }
430
431 static void
432 vge_cam_clear(struct vge_softc *sc)
433 {
434         int i;
435
436         /*
437          * Turn off all the mask bits. This tells the chip
438          * that none of the entries in the CAM filter are valid.
439          * desired entries will be enabled as we fill the filter in.
440          */
441
442         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
443         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
444         CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
445         for (i = 0; i < 8; i++)
446                 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
447
448         /* Clear the VLAN filter too. */
449
450         CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
451         for (i = 0; i < 8; i++)
452                 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
453
454         CSR_WRITE_1(sc, VGE_CAMADDR, 0);
455         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
456         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
457
458         sc->vge_camidx = 0;
459 }
460
461 static int
462 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
463 {
464         int i, error = 0;
465
466         if (sc->vge_camidx == VGE_CAM_MAXADDRS)
467                 return (ENOSPC);
468
469         /* Select the CAM data page. */
470         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
471         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
472
473         /* Set the filter entry we want to update and enable writing. */
474         CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
475
476         /* Write the address to the CAM registers */
477         for (i = 0; i < ETHER_ADDR_LEN; i++)
478                 CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
479
480         /* Issue a write command. */
481         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
482
483         /* Wake for it to clear. */
484         for (i = 0; i < VGE_TIMEOUT; i++) {
485                 DELAY(1);
486                 if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
487                         break;
488         }
489
490         if (i == VGE_TIMEOUT) {
491                 device_printf(sc->vge_dev, "setting CAM filter failed\n");
492                 error = EIO;
493                 goto fail;
494         }
495
496         /* Select the CAM mask page. */
497         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
498         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
499
500         /* Set the mask bit that enables this filter. */
501         CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
502             1<<(sc->vge_camidx & 7));
503
504         sc->vge_camidx++;
505
506 fail:
507         /* Turn off access to CAM. */
508         CSR_WRITE_1(sc, VGE_CAMADDR, 0);
509         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
510         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
511
512         return (error);
513 }
514
515 static void
516 vge_setvlan(struct vge_softc *sc)
517 {
518         struct ifnet *ifp;
519         uint8_t cfg;
520
521         VGE_LOCK_ASSERT(sc);
522
523         ifp = sc->vge_ifp;
524         cfg = CSR_READ_1(sc, VGE_RXCFG);
525         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
526                 cfg |= VGE_VTAG_OPT2;
527         else
528                 cfg &= ~VGE_VTAG_OPT2;
529         CSR_WRITE_1(sc, VGE_RXCFG, cfg);
530 }
531
532 static u_int
533 vge_set_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
534 {
535         struct vge_softc *sc = arg;
536
537         if (sc->vge_camidx == VGE_CAM_MAXADDRS)
538                 return (0);
539
540         (void )vge_cam_set(sc, LLADDR(sdl));
541
542         return (1);
543 }
544
545 static u_int
546 vge_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
547 {
548         uint32_t h, *hashes = arg;
549
550         h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 26;
551         if (h < 32)
552                 hashes[0] |= (1 << h);
553         else
554                 hashes[1] |= (1 << (h - 32));
555
556         return (1);
557 }
558
559 /*
560  * Program the multicast filter. We use the 64-entry CAM filter
561  * for perfect filtering. If there's more than 64 multicast addresses,
562  * we use the hash filter instead.
563  */
564 static void
565 vge_rxfilter(struct vge_softc *sc)
566 {
567         struct ifnet *ifp;
568         uint32_t hashes[2];
569         uint8_t rxcfg;
570
571         VGE_LOCK_ASSERT(sc);
572
573         /* First, zot all the multicast entries. */
574         hashes[0] = 0;
575         hashes[1] = 0;
576
577         rxcfg = CSR_READ_1(sc, VGE_RXCTL);
578         rxcfg &= ~(VGE_RXCTL_RX_MCAST | VGE_RXCTL_RX_BCAST |
579             VGE_RXCTL_RX_PROMISC);
580         /*
581          * Always allow VLAN oversized frames and frames for
582          * this host.
583          */
584         rxcfg |= VGE_RXCTL_RX_GIANT | VGE_RXCTL_RX_UCAST;
585
586         ifp = sc->vge_ifp;
587         if ((ifp->if_flags & IFF_BROADCAST) != 0)
588                 rxcfg |= VGE_RXCTL_RX_BCAST;
589         if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
590                 if ((ifp->if_flags & IFF_PROMISC) != 0)
591                         rxcfg |= VGE_RXCTL_RX_PROMISC;
592                 if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
593                         hashes[0] = 0xFFFFFFFF;
594                         hashes[1] = 0xFFFFFFFF;
595                 }
596                 goto done;
597         }
598
599         vge_cam_clear(sc);
600
601         /* Now program new ones */
602         if_foreach_llmaddr(ifp, vge_set_maddr, sc);
603
604         /* If there were too many addresses, use the hash filter. */
605         if (sc->vge_camidx == VGE_CAM_MAXADDRS) {
606                 vge_cam_clear(sc);
607                  if_foreach_llmaddr(ifp, vge_hash_maddr, hashes);
608         }
609
610 done:
611         if (hashes[0] != 0 || hashes[1] != 0)
612                 rxcfg |= VGE_RXCTL_RX_MCAST;
613         CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
614         CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
615         CSR_WRITE_1(sc, VGE_RXCTL, rxcfg);
616 }
617
618 static void
619 vge_reset(struct vge_softc *sc)
620 {
621         int i;
622
623         CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
624
625         for (i = 0; i < VGE_TIMEOUT; i++) {
626                 DELAY(5);
627                 if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
628                         break;
629         }
630
631         if (i == VGE_TIMEOUT) {
632                 device_printf(sc->vge_dev, "soft reset timed out\n");
633                 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
634                 DELAY(2000);
635         }
636
637         DELAY(5000);
638 }
639
640 /*
641  * Probe for a VIA gigabit chip. Check the PCI vendor and device
642  * IDs against our list and return a device name if we find a match.
643  */
644 static int
645 vge_probe(device_t dev)
646 {
647         struct vge_type *t;
648
649         t = vge_devs;
650
651         while (t->vge_name != NULL) {
652                 if ((pci_get_vendor(dev) == t->vge_vid) &&
653                     (pci_get_device(dev) == t->vge_did)) {
654                         device_set_desc(dev, t->vge_name);
655                         return (BUS_PROBE_DEFAULT);
656                 }
657                 t++;
658         }
659
660         return (ENXIO);
661 }
662
663 /*
664  * Map a single buffer address.
665  */
666
667 struct vge_dmamap_arg {
668         bus_addr_t      vge_busaddr;
669 };
670
671 static void
672 vge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
673 {
674         struct vge_dmamap_arg *ctx;
675
676         if (error != 0)
677                 return;
678
679         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
680
681         ctx = (struct vge_dmamap_arg *)arg;
682         ctx->vge_busaddr = segs[0].ds_addr;
683 }
684
685 static int
686 vge_dma_alloc(struct vge_softc *sc)
687 {
688         struct vge_dmamap_arg ctx;
689         struct vge_txdesc *txd;
690         struct vge_rxdesc *rxd;
691         bus_addr_t lowaddr, tx_ring_end, rx_ring_end;
692         int error, i;
693
694         /*
695          * It seems old PCI controllers do not support DAC.  DAC
696          * configuration can be enabled by accessing VGE_CHIPCFG3
697          * register but honor EEPROM configuration instead of
698          * blindly overriding DAC configuration.  PCIe based
699          * controllers are supposed to support 64bit DMA so enable
700          * 64bit DMA on these controllers.
701          */
702         if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
703                 lowaddr = BUS_SPACE_MAXADDR;
704         else
705                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
706
707 again:
708         /* Create parent ring tag. */
709         error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
710             1, 0,                       /* algnmnt, boundary */
711             lowaddr,                    /* lowaddr */
712             BUS_SPACE_MAXADDR,          /* highaddr */
713             NULL, NULL,                 /* filter, filterarg */
714             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
715             0,                          /* nsegments */
716             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
717             0,                          /* flags */
718             NULL, NULL,                 /* lockfunc, lockarg */
719             &sc->vge_cdata.vge_ring_tag);
720         if (error != 0) {
721                 device_printf(sc->vge_dev,
722                     "could not create parent DMA tag.\n");
723                 goto fail;
724         }
725
726         /* Create tag for Tx ring. */
727         error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
728             VGE_TX_RING_ALIGN, 0,       /* algnmnt, boundary */
729             BUS_SPACE_MAXADDR,          /* lowaddr */
730             BUS_SPACE_MAXADDR,          /* highaddr */
731             NULL, NULL,                 /* filter, filterarg */
732             VGE_TX_LIST_SZ,             /* maxsize */
733             1,                          /* nsegments */
734             VGE_TX_LIST_SZ,             /* maxsegsize */
735             0,                          /* flags */
736             NULL, NULL,                 /* lockfunc, lockarg */
737             &sc->vge_cdata.vge_tx_ring_tag);
738         if (error != 0) {
739                 device_printf(sc->vge_dev,
740                     "could not allocate Tx ring DMA tag.\n");
741                 goto fail;
742         }
743
744         /* Create tag for Rx ring. */
745         error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
746             VGE_RX_RING_ALIGN, 0,       /* algnmnt, boundary */
747             BUS_SPACE_MAXADDR,          /* lowaddr */
748             BUS_SPACE_MAXADDR,          /* highaddr */
749             NULL, NULL,                 /* filter, filterarg */
750             VGE_RX_LIST_SZ,             /* maxsize */
751             1,                          /* nsegments */
752             VGE_RX_LIST_SZ,             /* maxsegsize */
753             0,                          /* flags */
754             NULL, NULL,                 /* lockfunc, lockarg */
755             &sc->vge_cdata.vge_rx_ring_tag);
756         if (error != 0) {
757                 device_printf(sc->vge_dev,
758                     "could not allocate Rx ring DMA tag.\n");
759                 goto fail;
760         }
761
762         /* Allocate DMA'able memory and load the DMA map for Tx ring. */
763         error = bus_dmamem_alloc(sc->vge_cdata.vge_tx_ring_tag,
764             (void **)&sc->vge_rdata.vge_tx_ring,
765             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
766             &sc->vge_cdata.vge_tx_ring_map);
767         if (error != 0) {
768                 device_printf(sc->vge_dev,
769                     "could not allocate DMA'able memory for Tx ring.\n");
770                 goto fail;
771         }
772
773         ctx.vge_busaddr = 0;
774         error = bus_dmamap_load(sc->vge_cdata.vge_tx_ring_tag,
775             sc->vge_cdata.vge_tx_ring_map, sc->vge_rdata.vge_tx_ring,
776             VGE_TX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
777         if (error != 0 || ctx.vge_busaddr == 0) {
778                 device_printf(sc->vge_dev,
779                     "could not load DMA'able memory for Tx ring.\n");
780                 goto fail;
781         }
782         sc->vge_rdata.vge_tx_ring_paddr = ctx.vge_busaddr;
783
784         /* Allocate DMA'able memory and load the DMA map for Rx ring. */
785         error = bus_dmamem_alloc(sc->vge_cdata.vge_rx_ring_tag,
786             (void **)&sc->vge_rdata.vge_rx_ring,
787             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
788             &sc->vge_cdata.vge_rx_ring_map);
789         if (error != 0) {
790                 device_printf(sc->vge_dev,
791                     "could not allocate DMA'able memory for Rx ring.\n");
792                 goto fail;
793         }
794
795         ctx.vge_busaddr = 0;
796         error = bus_dmamap_load(sc->vge_cdata.vge_rx_ring_tag,
797             sc->vge_cdata.vge_rx_ring_map, sc->vge_rdata.vge_rx_ring,
798             VGE_RX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
799         if (error != 0 || ctx.vge_busaddr == 0) {
800                 device_printf(sc->vge_dev,
801                     "could not load DMA'able memory for Rx ring.\n");
802                 goto fail;
803         }
804         sc->vge_rdata.vge_rx_ring_paddr = ctx.vge_busaddr;
805
806         /* Tx/Rx descriptor queue should reside within 4GB boundary. */
807         tx_ring_end = sc->vge_rdata.vge_tx_ring_paddr + VGE_TX_LIST_SZ;
808         rx_ring_end = sc->vge_rdata.vge_rx_ring_paddr + VGE_RX_LIST_SZ;
809         if ((VGE_ADDR_HI(tx_ring_end) !=
810             VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr)) ||
811             (VGE_ADDR_HI(rx_ring_end) !=
812             VGE_ADDR_HI(sc->vge_rdata.vge_rx_ring_paddr)) ||
813             VGE_ADDR_HI(tx_ring_end) != VGE_ADDR_HI(rx_ring_end)) {
814                 device_printf(sc->vge_dev, "4GB boundary crossed, "
815                     "switching to 32bit DMA address mode.\n");
816                 vge_dma_free(sc);
817                 /* Limit DMA address space to 32bit and try again. */
818                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
819                 goto again;
820         }
821
822         if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
823                 lowaddr = VGE_BUF_DMA_MAXADDR;
824         else
825                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
826         /* Create parent buffer tag. */
827         error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
828             1, 0,                       /* algnmnt, boundary */
829             lowaddr,                    /* lowaddr */
830             BUS_SPACE_MAXADDR,          /* highaddr */
831             NULL, NULL,                 /* filter, filterarg */
832             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
833             0,                          /* nsegments */
834             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
835             0,                          /* flags */
836             NULL, NULL,                 /* lockfunc, lockarg */
837             &sc->vge_cdata.vge_buffer_tag);
838         if (error != 0) {
839                 device_printf(sc->vge_dev,
840                     "could not create parent buffer DMA tag.\n");
841                 goto fail;
842         }
843
844         /* Create tag for Tx buffers. */
845         error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
846             1, 0,                       /* algnmnt, boundary */
847             BUS_SPACE_MAXADDR,          /* lowaddr */
848             BUS_SPACE_MAXADDR,          /* highaddr */
849             NULL, NULL,                 /* filter, filterarg */
850             MCLBYTES * VGE_MAXTXSEGS,   /* maxsize */
851             VGE_MAXTXSEGS,              /* nsegments */
852             MCLBYTES,                   /* maxsegsize */
853             0,                          /* flags */
854             NULL, NULL,                 /* lockfunc, lockarg */
855             &sc->vge_cdata.vge_tx_tag);
856         if (error != 0) {
857                 device_printf(sc->vge_dev, "could not create Tx DMA tag.\n");
858                 goto fail;
859         }
860
861         /* Create tag for Rx buffers. */
862         error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
863             VGE_RX_BUF_ALIGN, 0,        /* algnmnt, boundary */
864             BUS_SPACE_MAXADDR,          /* lowaddr */
865             BUS_SPACE_MAXADDR,          /* highaddr */
866             NULL, NULL,                 /* filter, filterarg */
867             MCLBYTES,                   /* maxsize */
868             1,                          /* nsegments */
869             MCLBYTES,                   /* maxsegsize */
870             0,                          /* flags */
871             NULL, NULL,                 /* lockfunc, lockarg */
872             &sc->vge_cdata.vge_rx_tag);
873         if (error != 0) {
874                 device_printf(sc->vge_dev, "could not create Rx DMA tag.\n");
875                 goto fail;
876         }
877
878         /* Create DMA maps for Tx buffers. */
879         for (i = 0; i < VGE_TX_DESC_CNT; i++) {
880                 txd = &sc->vge_cdata.vge_txdesc[i];
881                 txd->tx_m = NULL;
882                 txd->tx_dmamap = NULL;
883                 error = bus_dmamap_create(sc->vge_cdata.vge_tx_tag, 0,
884                     &txd->tx_dmamap);
885                 if (error != 0) {
886                         device_printf(sc->vge_dev,
887                             "could not create Tx dmamap.\n");
888                         goto fail;
889                 }
890         }
891         /* Create DMA maps for Rx buffers. */
892         if ((error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
893             &sc->vge_cdata.vge_rx_sparemap)) != 0) {
894                 device_printf(sc->vge_dev,
895                     "could not create spare Rx dmamap.\n");
896                 goto fail;
897         }
898         for (i = 0; i < VGE_RX_DESC_CNT; i++) {
899                 rxd = &sc->vge_cdata.vge_rxdesc[i];
900                 rxd->rx_m = NULL;
901                 rxd->rx_dmamap = NULL;
902                 error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
903                     &rxd->rx_dmamap);
904                 if (error != 0) {
905                         device_printf(sc->vge_dev,
906                             "could not create Rx dmamap.\n");
907                         goto fail;
908                 }
909         }
910
911 fail:
912         return (error);
913 }
914
915 static void
916 vge_dma_free(struct vge_softc *sc)
917 {
918         struct vge_txdesc *txd;
919         struct vge_rxdesc *rxd;
920         int i;
921
922         /* Tx ring. */
923         if (sc->vge_cdata.vge_tx_ring_tag != NULL) {
924                 if (sc->vge_rdata.vge_tx_ring_paddr)
925                         bus_dmamap_unload(sc->vge_cdata.vge_tx_ring_tag,
926                             sc->vge_cdata.vge_tx_ring_map);
927                 if (sc->vge_rdata.vge_tx_ring)
928                         bus_dmamem_free(sc->vge_cdata.vge_tx_ring_tag,
929                             sc->vge_rdata.vge_tx_ring,
930                             sc->vge_cdata.vge_tx_ring_map);
931                 sc->vge_rdata.vge_tx_ring = NULL;
932                 sc->vge_rdata.vge_tx_ring_paddr = 0;
933                 bus_dma_tag_destroy(sc->vge_cdata.vge_tx_ring_tag);
934                 sc->vge_cdata.vge_tx_ring_tag = NULL;
935         }
936         /* Rx ring. */
937         if (sc->vge_cdata.vge_rx_ring_tag != NULL) {
938                 if (sc->vge_rdata.vge_rx_ring_paddr)
939                         bus_dmamap_unload(sc->vge_cdata.vge_rx_ring_tag,
940                             sc->vge_cdata.vge_rx_ring_map);
941                 if (sc->vge_rdata.vge_rx_ring)
942                         bus_dmamem_free(sc->vge_cdata.vge_rx_ring_tag,
943                             sc->vge_rdata.vge_rx_ring,
944                             sc->vge_cdata.vge_rx_ring_map);
945                 sc->vge_rdata.vge_rx_ring = NULL;
946                 sc->vge_rdata.vge_rx_ring_paddr = 0;
947                 bus_dma_tag_destroy(sc->vge_cdata.vge_rx_ring_tag);
948                 sc->vge_cdata.vge_rx_ring_tag = NULL;
949         }
950         /* Tx buffers. */
951         if (sc->vge_cdata.vge_tx_tag != NULL) {
952                 for (i = 0; i < VGE_TX_DESC_CNT; i++) {
953                         txd = &sc->vge_cdata.vge_txdesc[i];
954                         if (txd->tx_dmamap != NULL) {
955                                 bus_dmamap_destroy(sc->vge_cdata.vge_tx_tag,
956                                     txd->tx_dmamap);
957                                 txd->tx_dmamap = NULL;
958                         }
959                 }
960                 bus_dma_tag_destroy(sc->vge_cdata.vge_tx_tag);
961                 sc->vge_cdata.vge_tx_tag = NULL;
962         }
963         /* Rx buffers. */
964         if (sc->vge_cdata.vge_rx_tag != NULL) {
965                 for (i = 0; i < VGE_RX_DESC_CNT; i++) {
966                         rxd = &sc->vge_cdata.vge_rxdesc[i];
967                         if (rxd->rx_dmamap != NULL) {
968                                 bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
969                                     rxd->rx_dmamap);
970                                 rxd->rx_dmamap = NULL;
971                         }
972                 }
973                 if (sc->vge_cdata.vge_rx_sparemap != NULL) {
974                         bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
975                             sc->vge_cdata.vge_rx_sparemap);
976                         sc->vge_cdata.vge_rx_sparemap = NULL;
977                 }
978                 bus_dma_tag_destroy(sc->vge_cdata.vge_rx_tag);
979                 sc->vge_cdata.vge_rx_tag = NULL;
980         }
981
982         if (sc->vge_cdata.vge_buffer_tag != NULL) {
983                 bus_dma_tag_destroy(sc->vge_cdata.vge_buffer_tag);
984                 sc->vge_cdata.vge_buffer_tag = NULL;
985         }
986         if (sc->vge_cdata.vge_ring_tag != NULL) {
987                 bus_dma_tag_destroy(sc->vge_cdata.vge_ring_tag);
988                 sc->vge_cdata.vge_ring_tag = NULL;
989         }
990 }
991
992 /*
993  * Attach the interface. Allocate softc structures, do ifmedia
994  * setup and ethernet/BPF attach.
995  */
996 static int
997 vge_attach(device_t dev)
998 {
999         u_char eaddr[ETHER_ADDR_LEN];
1000         struct vge_softc *sc;
1001         struct ifnet *ifp;
1002         int error = 0, cap, i, msic, rid;
1003
1004         sc = device_get_softc(dev);
1005         sc->vge_dev = dev;
1006
1007         mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1008             MTX_DEF);
1009         callout_init_mtx(&sc->vge_watchdog, &sc->vge_mtx, 0);
1010
1011         /*
1012          * Map control/status registers.
1013          */
1014         pci_enable_busmaster(dev);
1015
1016         rid = PCIR_BAR(1);
1017         sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1018             RF_ACTIVE);
1019
1020         if (sc->vge_res == NULL) {
1021                 device_printf(dev, "couldn't map ports/memory\n");
1022                 error = ENXIO;
1023                 goto fail;
1024         }
1025
1026         if (pci_find_cap(dev, PCIY_EXPRESS, &cap) == 0) {
1027                 sc->vge_flags |= VGE_FLAG_PCIE;
1028                 sc->vge_expcap = cap;
1029         } else
1030                 sc->vge_flags |= VGE_FLAG_JUMBO;
1031         if (pci_find_cap(dev, PCIY_PMG, &cap) == 0) {
1032                 sc->vge_flags |= VGE_FLAG_PMCAP;
1033                 sc->vge_pmcap = cap;
1034         }
1035         rid = 0;
1036         msic = pci_msi_count(dev);
1037         if (msi_disable == 0 && msic > 0) {
1038                 msic = 1;
1039                 if (pci_alloc_msi(dev, &msic) == 0) {
1040                         if (msic == 1) {
1041                                 sc->vge_flags |= VGE_FLAG_MSI;
1042                                 device_printf(dev, "Using %d MSI message\n",
1043                                     msic);
1044                                 rid = 1;
1045                         } else
1046                                 pci_release_msi(dev);
1047                 }
1048         }
1049
1050         /* Allocate interrupt */
1051         sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1052             ((sc->vge_flags & VGE_FLAG_MSI) ? 0 : RF_SHAREABLE) | RF_ACTIVE);
1053         if (sc->vge_irq == NULL) {
1054                 device_printf(dev, "couldn't map interrupt\n");
1055                 error = ENXIO;
1056                 goto fail;
1057         }
1058
1059         /* Reset the adapter. */
1060         vge_reset(sc);
1061         /* Reload EEPROM. */
1062         CSR_WRITE_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
1063         for (i = 0; i < VGE_TIMEOUT; i++) {
1064                 DELAY(5);
1065                 if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
1066                         break;
1067         }
1068         if (i == VGE_TIMEOUT)
1069                 device_printf(dev, "EEPROM reload timed out\n");
1070         /*
1071          * Clear PACPI as EEPROM reload will set the bit. Otherwise
1072          * MAC will receive magic packet which in turn confuses
1073          * controller.
1074          */
1075         CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
1076
1077         /*
1078          * Get station address from the EEPROM.
1079          */
1080         vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
1081         /*
1082          * Save configured PHY address.
1083          * It seems the PHY address of PCIe controllers just
1084          * reflects media jump strapping status so we assume the
1085          * internal PHY address of PCIe controller is at 1.
1086          */
1087         if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
1088                 sc->vge_phyaddr = 1;
1089         else
1090                 sc->vge_phyaddr = CSR_READ_1(sc, VGE_MIICFG) &
1091                     VGE_MIICFG_PHYADDR;
1092         /* Clear WOL and take hardware from powerdown. */
1093         vge_clrwol(sc);
1094         vge_sysctl_node(sc);
1095         error = vge_dma_alloc(sc);
1096         if (error)
1097                 goto fail;
1098
1099         ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
1100         if (ifp == NULL) {
1101                 device_printf(dev, "can not if_alloc()\n");
1102                 error = ENOSPC;
1103                 goto fail;
1104         }
1105
1106         vge_miipoll_start(sc);
1107         /* Do MII setup */
1108         error = mii_attach(dev, &sc->vge_miibus, ifp, vge_ifmedia_upd,
1109             vge_ifmedia_sts, BMSR_DEFCAPMASK, sc->vge_phyaddr, MII_OFFSET_ANY,
1110             MIIF_DOPAUSE);
1111         if (error != 0) {
1112                 device_printf(dev, "attaching PHYs failed\n");
1113                 goto fail;
1114         }
1115
1116         ifp->if_softc = sc;
1117         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1118         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1119         ifp->if_ioctl = vge_ioctl;
1120         ifp->if_capabilities = IFCAP_VLAN_MTU;
1121         ifp->if_start = vge_start;
1122         ifp->if_hwassist = VGE_CSUM_FEATURES;
1123         ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM |
1124             IFCAP_VLAN_HWTAGGING;
1125         if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0)
1126                 ifp->if_capabilities |= IFCAP_WOL;
1127         ifp->if_capenable = ifp->if_capabilities;
1128 #ifdef DEVICE_POLLING
1129         ifp->if_capabilities |= IFCAP_POLLING;
1130 #endif
1131         ifp->if_init = vge_init;
1132         IFQ_SET_MAXLEN(&ifp->if_snd, VGE_TX_DESC_CNT - 1);
1133         ifp->if_snd.ifq_drv_maxlen = VGE_TX_DESC_CNT - 1;
1134         IFQ_SET_READY(&ifp->if_snd);
1135
1136         /*
1137          * Call MI attach routine.
1138          */
1139         ether_ifattach(ifp, eaddr);
1140
1141         /* Tell the upper layer(s) we support long frames. */
1142         ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1143
1144         /* Hook interrupt last to avoid having to lock softc */
1145         error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1146             NULL, vge_intr, sc, &sc->vge_intrhand);
1147
1148         if (error) {
1149                 device_printf(dev, "couldn't set up irq\n");
1150                 ether_ifdetach(ifp);
1151                 goto fail;
1152         }
1153
1154 fail:
1155         if (error)
1156                 vge_detach(dev);
1157
1158         return (error);
1159 }
1160
1161 /*
1162  * Shutdown hardware and free up resources. This can be called any
1163  * time after the mutex has been initialized. It is called in both
1164  * the error case in attach and the normal detach case so it needs
1165  * to be careful about only freeing resources that have actually been
1166  * allocated.
1167  */
1168 static int
1169 vge_detach(device_t dev)
1170 {
1171         struct vge_softc *sc;
1172         struct ifnet *ifp;
1173
1174         sc = device_get_softc(dev);
1175         KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1176         ifp = sc->vge_ifp;
1177
1178 #ifdef DEVICE_POLLING
1179         if (ifp->if_capenable & IFCAP_POLLING)
1180                 ether_poll_deregister(ifp);
1181 #endif
1182
1183         /* These should only be active if attach succeeded */
1184         if (device_is_attached(dev)) {
1185                 ether_ifdetach(ifp);
1186                 VGE_LOCK(sc);
1187                 vge_stop(sc);
1188                 VGE_UNLOCK(sc);
1189                 callout_drain(&sc->vge_watchdog);
1190         }
1191         if (sc->vge_miibus)
1192                 device_delete_child(dev, sc->vge_miibus);
1193         bus_generic_detach(dev);
1194
1195         if (sc->vge_intrhand)
1196                 bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1197         if (sc->vge_irq)
1198                 bus_release_resource(dev, SYS_RES_IRQ,
1199                     sc->vge_flags & VGE_FLAG_MSI ? 1 : 0, sc->vge_irq);
1200         if (sc->vge_flags & VGE_FLAG_MSI)
1201                 pci_release_msi(dev);
1202         if (sc->vge_res)
1203                 bus_release_resource(dev, SYS_RES_MEMORY,
1204                     PCIR_BAR(1), sc->vge_res);
1205         if (ifp)
1206                 if_free(ifp);
1207
1208         vge_dma_free(sc);
1209         mtx_destroy(&sc->vge_mtx);
1210
1211         return (0);
1212 }
1213
1214 static void
1215 vge_discard_rxbuf(struct vge_softc *sc, int prod)
1216 {
1217         struct vge_rxdesc *rxd;
1218         int i;
1219
1220         rxd = &sc->vge_cdata.vge_rxdesc[prod];
1221         rxd->rx_desc->vge_sts = 0;
1222         rxd->rx_desc->vge_ctl = 0;
1223
1224         /*
1225          * Note: the manual fails to document the fact that for
1226          * proper opration, the driver needs to replentish the RX
1227          * DMA ring 4 descriptors at a time (rather than one at a
1228          * time, like most chips). We can allocate the new buffers
1229          * but we should not set the OWN bits until we're ready
1230          * to hand back 4 of them in one shot.
1231          */
1232         if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1233                 for (i = VGE_RXCHUNK; i > 0; i--) {
1234                         rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1235                         rxd = rxd->rxd_prev;
1236                 }
1237                 sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1238         }
1239 }
1240
1241 static int
1242 vge_newbuf(struct vge_softc *sc, int prod)
1243 {
1244         struct vge_rxdesc *rxd;
1245         struct mbuf *m;
1246         bus_dma_segment_t segs[1];
1247         bus_dmamap_t map;
1248         int i, nsegs;
1249
1250         m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1251         if (m == NULL)
1252                 return (ENOBUFS);
1253         /*
1254          * This is part of an evil trick to deal with strict-alignment
1255          * architectures. The VIA chip requires RX buffers to be aligned
1256          * on 32-bit boundaries, but that will hose strict-alignment
1257          * architectures. To get around this, we leave some empty space
1258          * at the start of each buffer and for non-strict-alignment hosts,
1259          * we copy the buffer back two bytes to achieve word alignment.
1260          * This is slightly more efficient than allocating a new buffer,
1261          * copying the contents, and discarding the old buffer.
1262          */
1263         m->m_len = m->m_pkthdr.len = MCLBYTES;
1264         m_adj(m, VGE_RX_BUF_ALIGN);
1265
1266         if (bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_rx_tag,
1267             sc->vge_cdata.vge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1268                 m_freem(m);
1269                 return (ENOBUFS);
1270         }
1271         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1272
1273         rxd = &sc->vge_cdata.vge_rxdesc[prod];
1274         if (rxd->rx_m != NULL) {
1275                 bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1276                     BUS_DMASYNC_POSTREAD);
1277                 bus_dmamap_unload(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap);
1278         }
1279         map = rxd->rx_dmamap;
1280         rxd->rx_dmamap = sc->vge_cdata.vge_rx_sparemap;
1281         sc->vge_cdata.vge_rx_sparemap = map;
1282         bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1283             BUS_DMASYNC_PREREAD);
1284         rxd->rx_m = m;
1285
1286         rxd->rx_desc->vge_sts = 0;
1287         rxd->rx_desc->vge_ctl = 0;
1288         rxd->rx_desc->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
1289         rxd->rx_desc->vge_addrhi = htole32(VGE_ADDR_HI(segs[0].ds_addr) |
1290             (VGE_BUFLEN(segs[0].ds_len) << 16) | VGE_RXDESC_I);
1291
1292         /*
1293          * Note: the manual fails to document the fact that for
1294          * proper operation, the driver needs to replenish the RX
1295          * DMA ring 4 descriptors at a time (rather than one at a
1296          * time, like most chips). We can allocate the new buffers
1297          * but we should not set the OWN bits until we're ready
1298          * to hand back 4 of them in one shot.
1299          */
1300         if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1301                 for (i = VGE_RXCHUNK; i > 0; i--) {
1302                         rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1303                         rxd = rxd->rxd_prev;
1304                 }
1305                 sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1306         }
1307
1308         return (0);
1309 }
1310
1311 static int
1312 vge_tx_list_init(struct vge_softc *sc)
1313 {
1314         struct vge_ring_data *rd;
1315         struct vge_txdesc *txd;
1316         int i;
1317
1318         VGE_LOCK_ASSERT(sc);
1319
1320         sc->vge_cdata.vge_tx_prodidx = 0;
1321         sc->vge_cdata.vge_tx_considx = 0;
1322         sc->vge_cdata.vge_tx_cnt = 0;
1323
1324         rd = &sc->vge_rdata;
1325         bzero(rd->vge_tx_ring, VGE_TX_LIST_SZ);
1326         for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1327                 txd = &sc->vge_cdata.vge_txdesc[i];
1328                 txd->tx_m = NULL;
1329                 txd->tx_desc = &rd->vge_tx_ring[i];
1330         }
1331
1332         bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1333             sc->vge_cdata.vge_tx_ring_map,
1334             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1335
1336         return (0);
1337 }
1338
1339 static int
1340 vge_rx_list_init(struct vge_softc *sc)
1341 {
1342         struct vge_ring_data *rd;
1343         struct vge_rxdesc *rxd;
1344         int i;
1345
1346         VGE_LOCK_ASSERT(sc);
1347
1348         sc->vge_cdata.vge_rx_prodidx = 0;
1349         sc->vge_cdata.vge_head = NULL;
1350         sc->vge_cdata.vge_tail = NULL;
1351         sc->vge_cdata.vge_rx_commit = 0;
1352
1353         rd = &sc->vge_rdata;
1354         bzero(rd->vge_rx_ring, VGE_RX_LIST_SZ);
1355         for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1356                 rxd = &sc->vge_cdata.vge_rxdesc[i];
1357                 rxd->rx_m = NULL;
1358                 rxd->rx_desc = &rd->vge_rx_ring[i];
1359                 if (i == 0)
1360                         rxd->rxd_prev =
1361                             &sc->vge_cdata.vge_rxdesc[VGE_RX_DESC_CNT - 1];
1362                 else
1363                         rxd->rxd_prev = &sc->vge_cdata.vge_rxdesc[i - 1];
1364                 if (vge_newbuf(sc, i) != 0)
1365                         return (ENOBUFS);
1366         }
1367
1368         bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1369             sc->vge_cdata.vge_rx_ring_map,
1370             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1371
1372         sc->vge_cdata.vge_rx_commit = 0;
1373
1374         return (0);
1375 }
1376
1377 static void
1378 vge_freebufs(struct vge_softc *sc)
1379 {
1380         struct vge_txdesc *txd;
1381         struct vge_rxdesc *rxd;
1382         struct ifnet *ifp;
1383         int i;
1384
1385         VGE_LOCK_ASSERT(sc);
1386
1387         ifp = sc->vge_ifp;
1388         /*
1389          * Free RX and TX mbufs still in the queues.
1390          */
1391         for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1392                 rxd = &sc->vge_cdata.vge_rxdesc[i];
1393                 if (rxd->rx_m != NULL) {
1394                         bus_dmamap_sync(sc->vge_cdata.vge_rx_tag,
1395                             rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
1396                         bus_dmamap_unload(sc->vge_cdata.vge_rx_tag,
1397                             rxd->rx_dmamap);
1398                         m_freem(rxd->rx_m);
1399                         rxd->rx_m = NULL;
1400                 }
1401         }
1402
1403         for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1404                 txd = &sc->vge_cdata.vge_txdesc[i];
1405                 if (txd->tx_m != NULL) {
1406                         bus_dmamap_sync(sc->vge_cdata.vge_tx_tag,
1407                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1408                         bus_dmamap_unload(sc->vge_cdata.vge_tx_tag,
1409                             txd->tx_dmamap);
1410                         m_freem(txd->tx_m);
1411                         txd->tx_m = NULL;
1412                         if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1413                 }
1414         }
1415 }
1416
1417 #ifndef __NO_STRICT_ALIGNMENT
1418 static __inline void
1419 vge_fixup_rx(struct mbuf *m)
1420 {
1421         int i;
1422         uint16_t *src, *dst;
1423
1424         src = mtod(m, uint16_t *);
1425         dst = src - 1;
1426
1427         for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1428                 *dst++ = *src++;
1429
1430         m->m_data -= ETHER_ALIGN;
1431 }
1432 #endif
1433
1434 /*
1435  * RX handler. We support the reception of jumbo frames that have
1436  * been fragmented across multiple 2K mbuf cluster buffers.
1437  */
1438 static int
1439 vge_rxeof(struct vge_softc *sc, int count)
1440 {
1441         struct mbuf *m;
1442         struct ifnet *ifp;
1443         int prod, prog, total_len;
1444         struct vge_rxdesc *rxd;
1445         struct vge_rx_desc *cur_rx;
1446         uint32_t rxstat, rxctl;
1447
1448         VGE_LOCK_ASSERT(sc);
1449
1450         ifp = sc->vge_ifp;
1451
1452         bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1453             sc->vge_cdata.vge_rx_ring_map,
1454             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1455
1456         prod = sc->vge_cdata.vge_rx_prodidx;
1457         for (prog = 0; count > 0 &&
1458             (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1459             VGE_RX_DESC_INC(prod)) {
1460                 cur_rx = &sc->vge_rdata.vge_rx_ring[prod];
1461                 rxstat = le32toh(cur_rx->vge_sts);
1462                 if ((rxstat & VGE_RDSTS_OWN) != 0)
1463                         break;
1464                 count--;
1465                 prog++;
1466                 rxctl = le32toh(cur_rx->vge_ctl);
1467                 total_len = VGE_RXBYTES(rxstat);
1468                 rxd = &sc->vge_cdata.vge_rxdesc[prod];
1469                 m = rxd->rx_m;
1470
1471                 /*
1472                  * If the 'start of frame' bit is set, this indicates
1473                  * either the first fragment in a multi-fragment receive,
1474                  * or an intermediate fragment. Either way, we want to
1475                  * accumulate the buffers.
1476                  */
1477                 if ((rxstat & VGE_RXPKT_SOF) != 0) {
1478                         if (vge_newbuf(sc, prod) != 0) {
1479                                 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1480                                 VGE_CHAIN_RESET(sc);
1481                                 vge_discard_rxbuf(sc, prod);
1482                                 continue;
1483                         }
1484                         m->m_len = MCLBYTES - VGE_RX_BUF_ALIGN;
1485                         if (sc->vge_cdata.vge_head == NULL) {
1486                                 sc->vge_cdata.vge_head = m;
1487                                 sc->vge_cdata.vge_tail = m;
1488                         } else {
1489                                 m->m_flags &= ~M_PKTHDR;
1490                                 sc->vge_cdata.vge_tail->m_next = m;
1491                                 sc->vge_cdata.vge_tail = m;
1492                         }
1493                         continue;
1494                 }
1495
1496                 /*
1497                  * Bad/error frames will have the RXOK bit cleared.
1498                  * However, there's one error case we want to allow:
1499                  * if a VLAN tagged frame arrives and the chip can't
1500                  * match it against the CAM filter, it considers this
1501                  * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1502                  * We don't want to drop the frame though: our VLAN
1503                  * filtering is done in software.
1504                  * We also want to receive bad-checksummed frames and
1505                  * and frames with bad-length.
1506                  */
1507                 if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
1508                     (rxstat & (VGE_RDSTS_VIDM | VGE_RDSTS_RLERR |
1509                     VGE_RDSTS_CSUMERR)) == 0) {
1510                         if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1511                         /*
1512                          * If this is part of a multi-fragment packet,
1513                          * discard all the pieces.
1514                          */
1515                         VGE_CHAIN_RESET(sc);
1516                         vge_discard_rxbuf(sc, prod);
1517                         continue;
1518                 }
1519
1520                 if (vge_newbuf(sc, prod) != 0) {
1521                         if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1522                         VGE_CHAIN_RESET(sc);
1523                         vge_discard_rxbuf(sc, prod);
1524                         continue;
1525                 }
1526
1527                 /* Chain received mbufs. */
1528                 if (sc->vge_cdata.vge_head != NULL) {
1529                         m->m_len = total_len % (MCLBYTES - VGE_RX_BUF_ALIGN);
1530                         /*
1531                          * Special case: if there's 4 bytes or less
1532                          * in this buffer, the mbuf can be discarded:
1533                          * the last 4 bytes is the CRC, which we don't
1534                          * care about anyway.
1535                          */
1536                         if (m->m_len <= ETHER_CRC_LEN) {
1537                                 sc->vge_cdata.vge_tail->m_len -=
1538                                     (ETHER_CRC_LEN - m->m_len);
1539                                 m_freem(m);
1540                         } else {
1541                                 m->m_len -= ETHER_CRC_LEN;
1542                                 m->m_flags &= ~M_PKTHDR;
1543                                 sc->vge_cdata.vge_tail->m_next = m;
1544                         }
1545                         m = sc->vge_cdata.vge_head;
1546                         m->m_flags |= M_PKTHDR;
1547                         m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1548                 } else {
1549                         m->m_flags |= M_PKTHDR;
1550                         m->m_pkthdr.len = m->m_len =
1551                             (total_len - ETHER_CRC_LEN);
1552                 }
1553
1554 #ifndef __NO_STRICT_ALIGNMENT
1555                 vge_fixup_rx(m);
1556 #endif
1557                 m->m_pkthdr.rcvif = ifp;
1558
1559                 /* Do RX checksumming if enabled */
1560                 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
1561                     (rxctl & VGE_RDCTL_FRAG) == 0) {
1562                         /* Check IP header checksum */
1563                         if ((rxctl & VGE_RDCTL_IPPKT) != 0)
1564                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1565                         if ((rxctl & VGE_RDCTL_IPCSUMOK) != 0)
1566                                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1567
1568                         /* Check TCP/UDP checksum */
1569                         if (rxctl & (VGE_RDCTL_TCPPKT | VGE_RDCTL_UDPPKT) &&
1570                             rxctl & VGE_RDCTL_PROTOCSUMOK) {
1571                                 m->m_pkthdr.csum_flags |=
1572                                     CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1573                                 m->m_pkthdr.csum_data = 0xffff;
1574                         }
1575                 }
1576
1577                 if ((rxstat & VGE_RDSTS_VTAG) != 0) {
1578                         /*
1579                          * The 32-bit rxctl register is stored in little-endian.
1580                          * However, the 16-bit vlan tag is stored in big-endian,
1581                          * so we have to byte swap it.
1582                          */
1583                         m->m_pkthdr.ether_vtag =
1584                             bswap16(rxctl & VGE_RDCTL_VLANID);
1585                         m->m_flags |= M_VLANTAG;
1586                 }
1587
1588                 VGE_UNLOCK(sc);
1589                 (*ifp->if_input)(ifp, m);
1590                 VGE_LOCK(sc);
1591                 sc->vge_cdata.vge_head = NULL;
1592                 sc->vge_cdata.vge_tail = NULL;
1593         }
1594
1595         if (prog > 0) {
1596                 sc->vge_cdata.vge_rx_prodidx = prod;
1597                 bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1598                     sc->vge_cdata.vge_rx_ring_map,
1599                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1600                 /* Update residue counter. */
1601                 if (sc->vge_cdata.vge_rx_commit != 0) {
1602                         CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT,
1603                             sc->vge_cdata.vge_rx_commit);
1604                         sc->vge_cdata.vge_rx_commit = 0;
1605                 }
1606         }
1607         return (prog);
1608 }
1609
1610 static void
1611 vge_txeof(struct vge_softc *sc)
1612 {
1613         struct ifnet *ifp;
1614         struct vge_tx_desc *cur_tx;
1615         struct vge_txdesc *txd;
1616         uint32_t txstat;
1617         int cons, prod;
1618
1619         VGE_LOCK_ASSERT(sc);
1620
1621         ifp = sc->vge_ifp;
1622
1623         if (sc->vge_cdata.vge_tx_cnt == 0)
1624                 return;
1625
1626         bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1627             sc->vge_cdata.vge_tx_ring_map,
1628             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1629
1630         /*
1631          * Go through our tx list and free mbufs for those
1632          * frames that have been transmitted.
1633          */
1634         cons = sc->vge_cdata.vge_tx_considx;
1635         prod = sc->vge_cdata.vge_tx_prodidx;
1636         for (; cons != prod; VGE_TX_DESC_INC(cons)) {
1637                 cur_tx = &sc->vge_rdata.vge_tx_ring[cons];
1638                 txstat = le32toh(cur_tx->vge_sts);
1639                 if ((txstat & VGE_TDSTS_OWN) != 0)
1640                         break;
1641                 sc->vge_cdata.vge_tx_cnt--;
1642                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1643
1644                 txd = &sc->vge_cdata.vge_txdesc[cons];
1645                 bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1646                     BUS_DMASYNC_POSTWRITE);
1647                 bus_dmamap_unload(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap);
1648
1649                 KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1650                     __func__));
1651                 m_freem(txd->tx_m);
1652                 txd->tx_m = NULL;
1653                 txd->tx_desc->vge_frag[0].vge_addrhi = 0;
1654         }
1655         bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1656             sc->vge_cdata.vge_tx_ring_map,
1657             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1658         sc->vge_cdata.vge_tx_considx = cons;
1659         if (sc->vge_cdata.vge_tx_cnt == 0)
1660                 sc->vge_timer = 0;
1661 }
1662
1663 static void
1664 vge_link_statchg(void *xsc)
1665 {
1666         struct vge_softc *sc;
1667         struct ifnet *ifp;
1668         uint8_t physts;
1669
1670         sc = xsc;
1671         ifp = sc->vge_ifp;
1672         VGE_LOCK_ASSERT(sc);
1673
1674         physts = CSR_READ_1(sc, VGE_PHYSTS0);
1675         if ((physts & VGE_PHYSTS_RESETSTS) == 0) {
1676                 if ((physts & VGE_PHYSTS_LINK) == 0) {
1677                         sc->vge_flags &= ~VGE_FLAG_LINK;
1678                         if_link_state_change(sc->vge_ifp,
1679                             LINK_STATE_DOWN);
1680                 } else {
1681                         sc->vge_flags |= VGE_FLAG_LINK;
1682                         if_link_state_change(sc->vge_ifp,
1683                             LINK_STATE_UP);
1684                         CSR_WRITE_1(sc, VGE_CRC2, VGE_CR2_FDX_TXFLOWCTL_ENABLE |
1685                             VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1686                         if ((physts & VGE_PHYSTS_FDX) != 0) {
1687                                 if ((physts & VGE_PHYSTS_TXFLOWCAP) != 0)
1688                                         CSR_WRITE_1(sc, VGE_CRS2,
1689                                             VGE_CR2_FDX_TXFLOWCTL_ENABLE);
1690                                 if ((physts & VGE_PHYSTS_RXFLOWCAP) != 0)
1691                                         CSR_WRITE_1(sc, VGE_CRS2,
1692                                             VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1693                         }
1694                         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1695                                 vge_start_locked(ifp);
1696                 }
1697         }
1698         /*
1699          * Restart MII auto-polling because link state change interrupt
1700          * will disable it.
1701          */
1702         vge_miipoll_start(sc);
1703 }
1704
1705 #ifdef DEVICE_POLLING
1706 static int
1707 vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1708 {
1709         struct vge_softc *sc = ifp->if_softc;
1710         int rx_npkts = 0;
1711
1712         VGE_LOCK(sc);
1713         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1714                 goto done;
1715
1716         rx_npkts = vge_rxeof(sc, count);
1717         vge_txeof(sc);
1718
1719         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1720                 vge_start_locked(ifp);
1721
1722         if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1723                 uint32_t       status;
1724                 status = CSR_READ_4(sc, VGE_ISR);
1725                 if (status == 0xFFFFFFFF)
1726                         goto done;
1727                 if (status)
1728                         CSR_WRITE_4(sc, VGE_ISR, status);
1729
1730                 /*
1731                  * XXX check behaviour on receiver stalls.
1732                  */
1733
1734                 if (status & VGE_ISR_TXDMA_STALL ||
1735                     status & VGE_ISR_RXDMA_STALL) {
1736                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1737                         vge_init_locked(sc);
1738                 }
1739
1740                 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1741                         vge_rxeof(sc, count);
1742                         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1743                         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1744                 }
1745         }
1746 done:
1747         VGE_UNLOCK(sc);
1748         return (rx_npkts);
1749 }
1750 #endif /* DEVICE_POLLING */
1751
1752 static void
1753 vge_intr(void *arg)
1754 {
1755         struct vge_softc *sc;
1756         struct ifnet *ifp;
1757         uint32_t status;
1758
1759         sc = arg;
1760         VGE_LOCK(sc);
1761
1762         ifp = sc->vge_ifp;
1763         if ((sc->vge_flags & VGE_FLAG_SUSPENDED) != 0 ||
1764             (ifp->if_flags & IFF_UP) == 0) {
1765                 VGE_UNLOCK(sc);
1766                 return;
1767         }
1768
1769 #ifdef DEVICE_POLLING
1770         if  (ifp->if_capenable & IFCAP_POLLING) {
1771                 status = CSR_READ_4(sc, VGE_ISR);
1772                 CSR_WRITE_4(sc, VGE_ISR, status);
1773                 if (status != 0xFFFFFFFF && (status & VGE_ISR_LINKSTS) != 0)
1774                         vge_link_statchg(sc);
1775                 VGE_UNLOCK(sc);
1776                 return;
1777         }
1778 #endif
1779
1780         /* Disable interrupts */
1781         CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1782         status = CSR_READ_4(sc, VGE_ISR);
1783         CSR_WRITE_4(sc, VGE_ISR, status | VGE_ISR_HOLDOFF_RELOAD);
1784         /* If the card has gone away the read returns 0xffff. */
1785         if (status == 0xFFFFFFFF || (status & VGE_INTRS) == 0)
1786                 goto done;
1787         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1788                 if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1789                         vge_rxeof(sc, VGE_RX_DESC_CNT);
1790                 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1791                         vge_rxeof(sc, VGE_RX_DESC_CNT);
1792                         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1793                         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1794                 }
1795
1796                 if (status & (VGE_ISR_TXOK0|VGE_ISR_TXOK_HIPRIO))
1797                         vge_txeof(sc);
1798
1799                 if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) {
1800                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1801                         vge_init_locked(sc);
1802                 }
1803
1804                 if (status & VGE_ISR_LINKSTS)
1805                         vge_link_statchg(sc);
1806         }
1807 done:
1808         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1809                 /* Re-enable interrupts */
1810                 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1811
1812                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1813                         vge_start_locked(ifp);
1814         }
1815         VGE_UNLOCK(sc);
1816 }
1817
1818 static int
1819 vge_encap(struct vge_softc *sc, struct mbuf **m_head)
1820 {
1821         struct vge_txdesc *txd;
1822         struct vge_tx_frag *frag;
1823         struct mbuf *m;
1824         bus_dma_segment_t txsegs[VGE_MAXTXSEGS];
1825         int error, i, nsegs, padlen;
1826         uint32_t cflags;
1827
1828         VGE_LOCK_ASSERT(sc);
1829
1830         M_ASSERTPKTHDR((*m_head));
1831
1832         /* Argh. This chip does not autopad short frames. */
1833         if ((*m_head)->m_pkthdr.len < VGE_MIN_FRAMELEN) {
1834                 m = *m_head;
1835                 padlen = VGE_MIN_FRAMELEN - m->m_pkthdr.len;
1836                 if (M_WRITABLE(m) == 0) {
1837                         /* Get a writable copy. */
1838                         m = m_dup(*m_head, M_NOWAIT);
1839                         m_freem(*m_head);
1840                         if (m == NULL) {
1841                                 *m_head = NULL;
1842                                 return (ENOBUFS);
1843                         }
1844                         *m_head = m;
1845                 }
1846                 if (M_TRAILINGSPACE(m) < padlen) {
1847                         m = m_defrag(m, M_NOWAIT);
1848                         if (m == NULL) {
1849                                 m_freem(*m_head);
1850                                 *m_head = NULL;
1851                                 return (ENOBUFS);
1852                         }
1853                 }
1854                 /*
1855                  * Manually pad short frames, and zero the pad space
1856                  * to avoid leaking data.
1857                  */
1858                 bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1859                 m->m_pkthdr.len += padlen;
1860                 m->m_len = m->m_pkthdr.len;
1861                 *m_head = m;
1862         }
1863
1864         txd = &sc->vge_cdata.vge_txdesc[sc->vge_cdata.vge_tx_prodidx];
1865
1866         error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1867             txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1868         if (error == EFBIG) {
1869                 m = m_collapse(*m_head, M_NOWAIT, VGE_MAXTXSEGS);
1870                 if (m == NULL) {
1871                         m_freem(*m_head);
1872                         *m_head = NULL;
1873                         return (ENOMEM);
1874                 }
1875                 *m_head = m;
1876                 error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1877                     txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1878                 if (error != 0) {
1879                         m_freem(*m_head);
1880                         *m_head = NULL;
1881                         return (error);
1882                 }
1883         } else if (error != 0)
1884                 return (error);
1885         bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1886             BUS_DMASYNC_PREWRITE);
1887
1888         m = *m_head;
1889         cflags = 0;
1890
1891         /* Configure checksum offload. */
1892         if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1893                 cflags |= VGE_TDCTL_IPCSUM;
1894         if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1895                 cflags |= VGE_TDCTL_TCPCSUM;
1896         if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1897                 cflags |= VGE_TDCTL_UDPCSUM;
1898
1899         /* Configure VLAN. */
1900         if ((m->m_flags & M_VLANTAG) != 0)
1901                 cflags |= m->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG;
1902         txd->tx_desc->vge_sts = htole32(m->m_pkthdr.len << 16);
1903         /*
1904          * XXX
1905          * Velocity family seems to support TSO but no information
1906          * for MSS configuration is available. Also the number of
1907          * fragments supported by a descriptor is too small to hold
1908          * entire 64KB TCP/IP segment. Maybe VGE_TD_LS_MOF,
1909          * VGE_TD_LS_SOF and VGE_TD_LS_EOF could be used to build
1910          * longer chain of buffers but no additional information is
1911          * available.
1912          *
1913          * When telling the chip how many segments there are, we
1914          * must use nsegs + 1 instead of just nsegs. Darned if I
1915          * know why. This also means we can't use the last fragment
1916          * field of Tx descriptor.
1917          */
1918         txd->tx_desc->vge_ctl = htole32(cflags | ((nsegs + 1) << 28) |
1919             VGE_TD_LS_NORM);
1920         for (i = 0; i < nsegs; i++) {
1921                 frag = &txd->tx_desc->vge_frag[i];
1922                 frag->vge_addrlo = htole32(VGE_ADDR_LO(txsegs[i].ds_addr));
1923                 frag->vge_addrhi = htole32(VGE_ADDR_HI(txsegs[i].ds_addr) |
1924                     (VGE_BUFLEN(txsegs[i].ds_len) << 16));
1925         }
1926
1927         sc->vge_cdata.vge_tx_cnt++;
1928         VGE_TX_DESC_INC(sc->vge_cdata.vge_tx_prodidx);
1929
1930         /*
1931          * Finally request interrupt and give the first descriptor
1932          * ownership to hardware.
1933          */
1934         txd->tx_desc->vge_ctl |= htole32(VGE_TDCTL_TIC);
1935         txd->tx_desc->vge_sts |= htole32(VGE_TDSTS_OWN);
1936         txd->tx_m = m;
1937
1938         return (0);
1939 }
1940
1941 /*
1942  * Main transmit routine.
1943  */
1944
1945 static void
1946 vge_start(struct ifnet *ifp)
1947 {
1948         struct vge_softc *sc;
1949
1950         sc = ifp->if_softc;
1951         VGE_LOCK(sc);
1952         vge_start_locked(ifp);
1953         VGE_UNLOCK(sc);
1954 }
1955
1956 static void
1957 vge_start_locked(struct ifnet *ifp)
1958 {
1959         struct vge_softc *sc;
1960         struct vge_txdesc *txd;
1961         struct mbuf *m_head;
1962         int enq, idx;
1963
1964         sc = ifp->if_softc;
1965
1966         VGE_LOCK_ASSERT(sc);
1967
1968         if ((sc->vge_flags & VGE_FLAG_LINK) == 0 ||
1969             (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1970             IFF_DRV_RUNNING)
1971                 return;
1972
1973         idx = sc->vge_cdata.vge_tx_prodidx;
1974         VGE_TX_DESC_DEC(idx);
1975         for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1976             sc->vge_cdata.vge_tx_cnt < VGE_TX_DESC_CNT - 1; ) {
1977                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1978                 if (m_head == NULL)
1979                         break;
1980                 /*
1981                  * Pack the data into the transmit ring. If we
1982                  * don't have room, set the OACTIVE flag and wait
1983                  * for the NIC to drain the ring.
1984                  */
1985                 if (vge_encap(sc, &m_head)) {
1986                         if (m_head == NULL)
1987                                 break;
1988                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1989                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1990                         break;
1991                 }
1992
1993                 txd = &sc->vge_cdata.vge_txdesc[idx];
1994                 txd->tx_desc->vge_frag[0].vge_addrhi |= htole32(VGE_TXDESC_Q);
1995                 VGE_TX_DESC_INC(idx);
1996
1997                 enq++;
1998                 /*
1999                  * If there's a BPF listener, bounce a copy of this frame
2000                  * to him.
2001                  */
2002                 ETHER_BPF_MTAP(ifp, m_head);
2003         }
2004
2005         if (enq > 0) {
2006                 bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
2007                     sc->vge_cdata.vge_tx_ring_map,
2008                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2009                 /* Issue a transmit command. */
2010                 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
2011                 /*
2012                  * Set a timeout in case the chip goes out to lunch.
2013                  */
2014                 sc->vge_timer = 5;
2015         }
2016 }
2017
2018 static void
2019 vge_init(void *xsc)
2020 {
2021         struct vge_softc *sc = xsc;
2022
2023         VGE_LOCK(sc);
2024         vge_init_locked(sc);
2025         VGE_UNLOCK(sc);
2026 }
2027
2028 static void
2029 vge_init_locked(struct vge_softc *sc)
2030 {
2031         struct ifnet *ifp = sc->vge_ifp;
2032         int error, i;
2033
2034         VGE_LOCK_ASSERT(sc);
2035
2036         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2037                 return;
2038
2039         /*
2040          * Cancel pending I/O and free all RX/TX buffers.
2041          */
2042         vge_stop(sc);
2043         vge_reset(sc);
2044         vge_miipoll_start(sc);
2045
2046         /*
2047          * Initialize the RX and TX descriptors and mbufs.
2048          */
2049
2050         error = vge_rx_list_init(sc);
2051         if (error != 0) {
2052                 device_printf(sc->vge_dev, "no memory for Rx buffers.\n");
2053                 return;
2054         }
2055         vge_tx_list_init(sc);
2056         /* Clear MAC statistics. */
2057         vge_stats_clear(sc);
2058         /* Set our station address */
2059         for (i = 0; i < ETHER_ADDR_LEN; i++)
2060                 CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
2061
2062         /*
2063          * Set receive FIFO threshold. Also allow transmission and
2064          * reception of VLAN tagged frames.
2065          */
2066         CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
2067         CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES);
2068
2069         /* Set DMA burst length */
2070         CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
2071         CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
2072
2073         CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
2074
2075         /* Set collision backoff algorithm */
2076         CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
2077             VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
2078         CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
2079
2080         /* Disable LPSEL field in priority resolution */
2081         CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
2082
2083         /*
2084          * Load the addresses of the DMA queues into the chip.
2085          * Note that we only use one transmit queue.
2086          */
2087
2088         CSR_WRITE_4(sc, VGE_TXDESC_HIADDR,
2089             VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr));
2090         CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
2091             VGE_ADDR_LO(sc->vge_rdata.vge_tx_ring_paddr));
2092         CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
2093
2094         CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
2095             VGE_ADDR_LO(sc->vge_rdata.vge_rx_ring_paddr));
2096         CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
2097         CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
2098
2099         /* Configure interrupt moderation. */
2100         vge_intr_holdoff(sc);
2101
2102         /* Enable and wake up the RX descriptor queue */
2103         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
2104         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
2105
2106         /* Enable the TX descriptor queue */
2107         CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
2108
2109         /* Init the cam filter. */
2110         vge_cam_clear(sc);
2111
2112         /* Set up receiver filter. */
2113         vge_rxfilter(sc);
2114         vge_setvlan(sc);
2115
2116         /* Initialize pause timer. */
2117         CSR_WRITE_2(sc, VGE_TX_PAUSE_TIMER, 0xFFFF);
2118         /*
2119          * Initialize flow control parameters.
2120          *  TX XON high threshold : 48
2121          *  TX pause low threshold : 24
2122          *  Disable hald-duplex flow control
2123          */
2124         CSR_WRITE_1(sc, VGE_CRC2, 0xFF);
2125         CSR_WRITE_1(sc, VGE_CRS2, VGE_CR2_XON_ENABLE | 0x0B);
2126
2127         /* Enable jumbo frame reception (if desired) */
2128
2129         /* Start the MAC. */
2130         CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
2131         CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
2132         CSR_WRITE_1(sc, VGE_CRS0,
2133             VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
2134
2135 #ifdef DEVICE_POLLING
2136         /*
2137          * Disable interrupts except link state change if we are polling.
2138          */
2139         if (ifp->if_capenable & IFCAP_POLLING) {
2140                 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2141         } else  /* otherwise ... */
2142 #endif
2143         {
2144         /*
2145          * Enable interrupts.
2146          */
2147                 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2148         }
2149         CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2150         CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2151
2152         sc->vge_flags &= ~VGE_FLAG_LINK;
2153         vge_ifmedia_upd_locked(sc);
2154
2155         ifp->if_drv_flags |= IFF_DRV_RUNNING;
2156         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2157         callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2158 }
2159
2160 /*
2161  * Set media options.
2162  */
2163 static int
2164 vge_ifmedia_upd(struct ifnet *ifp)
2165 {
2166         struct vge_softc *sc;
2167         int error;
2168
2169         sc = ifp->if_softc;
2170         VGE_LOCK(sc);
2171         error = vge_ifmedia_upd_locked(sc);
2172         VGE_UNLOCK(sc);
2173
2174         return (error);
2175 }
2176
2177 static int
2178 vge_ifmedia_upd_locked(struct vge_softc *sc)
2179 {
2180         struct mii_data *mii;
2181         struct mii_softc *miisc;
2182         int error;
2183
2184         mii = device_get_softc(sc->vge_miibus);
2185         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2186                 PHY_RESET(miisc);
2187         vge_setmedia(sc);
2188         error = mii_mediachg(mii);
2189
2190         return (error);
2191 }
2192
2193 /*
2194  * Report current media status.
2195  */
2196 static void
2197 vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2198 {
2199         struct vge_softc *sc;
2200         struct mii_data *mii;
2201
2202         sc = ifp->if_softc;
2203         mii = device_get_softc(sc->vge_miibus);
2204
2205         VGE_LOCK(sc);
2206         if ((ifp->if_flags & IFF_UP) == 0) {
2207                 VGE_UNLOCK(sc);
2208                 return;
2209         }
2210         mii_pollstat(mii);
2211         ifmr->ifm_active = mii->mii_media_active;
2212         ifmr->ifm_status = mii->mii_media_status;
2213         VGE_UNLOCK(sc);
2214 }
2215
2216 static void
2217 vge_setmedia(struct vge_softc *sc)
2218 {
2219         struct mii_data *mii;
2220         struct ifmedia_entry *ife;
2221
2222         mii = device_get_softc(sc->vge_miibus);
2223         ife = mii->mii_media.ifm_cur;
2224
2225         /*
2226          * If the user manually selects a media mode, we need to turn
2227          * on the forced MAC mode bit in the DIAGCTL register. If the
2228          * user happens to choose a full duplex mode, we also need to
2229          * set the 'force full duplex' bit. This applies only to
2230          * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2231          * mode is disabled, and in 1000baseT mode, full duplex is
2232          * always implied, so we turn on the forced mode bit but leave
2233          * the FDX bit cleared.
2234          */
2235
2236         switch (IFM_SUBTYPE(ife->ifm_media)) {
2237         case IFM_AUTO:
2238                 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2239                 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2240                 break;
2241         case IFM_1000_T:
2242                 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2243                 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2244                 break;
2245         case IFM_100_TX:
2246         case IFM_10_T:
2247                 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2248                 if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2249                         CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2250                 } else {
2251                         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2252                 }
2253                 break;
2254         default:
2255                 device_printf(sc->vge_dev, "unknown media type: %x\n",
2256                     IFM_SUBTYPE(ife->ifm_media));
2257                 break;
2258         }
2259 }
2260
2261 static int
2262 vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2263 {
2264         struct vge_softc *sc = ifp->if_softc;
2265         struct ifreq *ifr = (struct ifreq *) data;
2266         struct mii_data *mii;
2267         int error = 0, mask;
2268
2269         switch (command) {
2270         case SIOCSIFMTU:
2271                 VGE_LOCK(sc);
2272                 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > VGE_JUMBO_MTU)
2273                         error = EINVAL;
2274                 else if (ifp->if_mtu != ifr->ifr_mtu) {
2275                         if (ifr->ifr_mtu > ETHERMTU &&
2276                             (sc->vge_flags & VGE_FLAG_JUMBO) == 0)
2277                                 error = EINVAL;
2278                         else
2279                                 ifp->if_mtu = ifr->ifr_mtu;
2280                 }
2281                 VGE_UNLOCK(sc);
2282                 break;
2283         case SIOCSIFFLAGS:
2284                 VGE_LOCK(sc);
2285                 if ((ifp->if_flags & IFF_UP) != 0) {
2286                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2287                             ((ifp->if_flags ^ sc->vge_if_flags) &
2288                             (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2289                                 vge_rxfilter(sc);
2290                         else
2291                                 vge_init_locked(sc);
2292                 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2293                         vge_stop(sc);
2294                 sc->vge_if_flags = ifp->if_flags;
2295                 VGE_UNLOCK(sc);
2296                 break;
2297         case SIOCADDMULTI:
2298         case SIOCDELMULTI:
2299                 VGE_LOCK(sc);
2300                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2301                         vge_rxfilter(sc);
2302                 VGE_UNLOCK(sc);
2303                 break;
2304         case SIOCGIFMEDIA:
2305         case SIOCSIFMEDIA:
2306                 mii = device_get_softc(sc->vge_miibus);
2307                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2308                 break;
2309         case SIOCSIFCAP:
2310                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2311 #ifdef DEVICE_POLLING
2312                 if (mask & IFCAP_POLLING) {
2313                         if (ifr->ifr_reqcap & IFCAP_POLLING) {
2314                                 error = ether_poll_register(vge_poll, ifp);
2315                                 if (error)
2316                                         return (error);
2317                                 VGE_LOCK(sc);
2318                                         /* Disable interrupts */
2319                                 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2320                                 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2321                                 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2322                                 ifp->if_capenable |= IFCAP_POLLING;
2323                                 VGE_UNLOCK(sc);
2324                         } else {
2325                                 error = ether_poll_deregister(ifp);
2326                                 /* Enable interrupts. */
2327                                 VGE_LOCK(sc);
2328                                 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2329                                 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2330                                 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2331                                 ifp->if_capenable &= ~IFCAP_POLLING;
2332                                 VGE_UNLOCK(sc);
2333                         }
2334                 }
2335 #endif /* DEVICE_POLLING */
2336                 VGE_LOCK(sc);
2337                 if ((mask & IFCAP_TXCSUM) != 0 &&
2338                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2339                         ifp->if_capenable ^= IFCAP_TXCSUM;
2340                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2341                                 ifp->if_hwassist |= VGE_CSUM_FEATURES;
2342                         else
2343                                 ifp->if_hwassist &= ~VGE_CSUM_FEATURES;
2344                 }
2345                 if ((mask & IFCAP_RXCSUM) != 0 &&
2346                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2347                         ifp->if_capenable ^= IFCAP_RXCSUM;
2348                 if ((mask & IFCAP_WOL_UCAST) != 0 &&
2349                     (ifp->if_capabilities & IFCAP_WOL_UCAST) != 0)
2350                         ifp->if_capenable ^= IFCAP_WOL_UCAST;
2351                 if ((mask & IFCAP_WOL_MCAST) != 0 &&
2352                     (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2353                         ifp->if_capenable ^= IFCAP_WOL_MCAST;
2354                 if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2355                     (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2356                         ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2357                 if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2358                     (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2359                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2360                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2361                     (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
2362                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2363                         vge_setvlan(sc);
2364                 }
2365                 VGE_UNLOCK(sc);
2366                 VLAN_CAPABILITIES(ifp);
2367                 break;
2368         default:
2369                 error = ether_ioctl(ifp, command, data);
2370                 break;
2371         }
2372
2373         return (error);
2374 }
2375
2376 static void
2377 vge_watchdog(void *arg)
2378 {
2379         struct vge_softc *sc;
2380         struct ifnet *ifp;
2381
2382         sc = arg;
2383         VGE_LOCK_ASSERT(sc);
2384         vge_stats_update(sc);
2385         callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2386         if (sc->vge_timer == 0 || --sc->vge_timer > 0)
2387                 return;
2388
2389         ifp = sc->vge_ifp;
2390         if_printf(ifp, "watchdog timeout\n");
2391         if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2392
2393         vge_txeof(sc);
2394         vge_rxeof(sc, VGE_RX_DESC_CNT);
2395
2396         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2397         vge_init_locked(sc);
2398 }
2399
2400 /*
2401  * Stop the adapter and free any mbufs allocated to the
2402  * RX and TX lists.
2403  */
2404 static void
2405 vge_stop(struct vge_softc *sc)
2406 {
2407         struct ifnet *ifp;
2408
2409         VGE_LOCK_ASSERT(sc);
2410         ifp = sc->vge_ifp;
2411         sc->vge_timer = 0;
2412         callout_stop(&sc->vge_watchdog);
2413
2414         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2415
2416         CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2417         CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2418         CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2419         CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2420         CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2421         CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2422
2423         vge_stats_update(sc);
2424         VGE_CHAIN_RESET(sc);
2425         vge_txeof(sc);
2426         vge_freebufs(sc);
2427 }
2428
2429 /*
2430  * Device suspend routine.  Stop the interface and save some PCI
2431  * settings in case the BIOS doesn't restore them properly on
2432  * resume.
2433  */
2434 static int
2435 vge_suspend(device_t dev)
2436 {
2437         struct vge_softc *sc;
2438
2439         sc = device_get_softc(dev);
2440
2441         VGE_LOCK(sc);
2442         vge_stop(sc);
2443         vge_setwol(sc);
2444         sc->vge_flags |= VGE_FLAG_SUSPENDED;
2445         VGE_UNLOCK(sc);
2446
2447         return (0);
2448 }
2449
2450 /*
2451  * Device resume routine.  Restore some PCI settings in case the BIOS
2452  * doesn't, re-enable busmastering, and restart the interface if
2453  * appropriate.
2454  */
2455 static int
2456 vge_resume(device_t dev)
2457 {
2458         struct vge_softc *sc;
2459         struct ifnet *ifp;
2460         uint16_t pmstat;
2461
2462         sc = device_get_softc(dev);
2463         VGE_LOCK(sc);
2464         if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0) {
2465                 /* Disable PME and clear PME status. */
2466                 pmstat = pci_read_config(sc->vge_dev,
2467                     sc->vge_pmcap + PCIR_POWER_STATUS, 2);
2468                 if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2469                         pmstat &= ~PCIM_PSTAT_PMEENABLE;
2470                         pci_write_config(sc->vge_dev,
2471                             sc->vge_pmcap + PCIR_POWER_STATUS, pmstat, 2);
2472                 }
2473         }
2474         vge_clrwol(sc);
2475         /* Restart MII auto-polling. */
2476         vge_miipoll_start(sc);
2477         ifp = sc->vge_ifp;
2478         /* Reinitialize interface if necessary. */
2479         if ((ifp->if_flags & IFF_UP) != 0) {
2480                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2481                 vge_init_locked(sc);
2482         }
2483         sc->vge_flags &= ~VGE_FLAG_SUSPENDED;
2484         VGE_UNLOCK(sc);
2485
2486         return (0);
2487 }
2488
2489 /*
2490  * Stop all chip I/O so that the kernel's probe routines don't
2491  * get confused by errant DMAs when rebooting.
2492  */
2493 static int
2494 vge_shutdown(device_t dev)
2495 {
2496
2497         return (vge_suspend(dev));
2498 }
2499
2500 #define VGE_SYSCTL_STAT_ADD32(c, h, n, p, d)    \
2501             SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2502
2503 static void
2504 vge_sysctl_node(struct vge_softc *sc)
2505 {
2506         struct sysctl_ctx_list *ctx;
2507         struct sysctl_oid_list *child, *parent;
2508         struct sysctl_oid *tree;
2509         struct vge_hw_stats *stats;
2510
2511         stats = &sc->vge_stats;
2512         ctx = device_get_sysctl_ctx(sc->vge_dev);
2513         child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vge_dev));
2514
2515         SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_holdoff",
2516             CTLFLAG_RW, &sc->vge_int_holdoff, 0, "interrupt holdoff");
2517         SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_coal_pkt",
2518             CTLFLAG_RW, &sc->vge_rx_coal_pkt, 0, "rx coalescing packet");
2519         SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_coal_pkt",
2520             CTLFLAG_RW, &sc->vge_tx_coal_pkt, 0, "tx coalescing packet");
2521
2522         /* Pull in device tunables. */
2523         sc->vge_int_holdoff = VGE_INT_HOLDOFF_DEFAULT;
2524         resource_int_value(device_get_name(sc->vge_dev),
2525             device_get_unit(sc->vge_dev), "int_holdoff", &sc->vge_int_holdoff);
2526         sc->vge_rx_coal_pkt = VGE_RX_COAL_PKT_DEFAULT;
2527         resource_int_value(device_get_name(sc->vge_dev),
2528             device_get_unit(sc->vge_dev), "rx_coal_pkt", &sc->vge_rx_coal_pkt);
2529         sc->vge_tx_coal_pkt = VGE_TX_COAL_PKT_DEFAULT;
2530         resource_int_value(device_get_name(sc->vge_dev),
2531             device_get_unit(sc->vge_dev), "tx_coal_pkt", &sc->vge_tx_coal_pkt);
2532
2533         tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
2534             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "VGE statistics");
2535         parent = SYSCTL_CHILDREN(tree);
2536
2537         /* Rx statistics. */
2538         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
2539             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX MAC statistics");
2540         child = SYSCTL_CHILDREN(tree);
2541         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames",
2542             &stats->rx_frames, "frames");
2543         VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2544             &stats->rx_good_frames, "Good frames");
2545         VGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2546             &stats->rx_fifo_oflows, "FIFO overflows");
2547         VGE_SYSCTL_STAT_ADD32(ctx, child, "runts",
2548             &stats->rx_runts, "Too short frames");
2549         VGE_SYSCTL_STAT_ADD32(ctx, child, "runts_errs",
2550             &stats->rx_runts_errs, "Too short frames with errors");
2551         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2552             &stats->rx_pkts_64, "64 bytes frames");
2553         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2554             &stats->rx_pkts_65_127, "65 to 127 bytes frames");
2555         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2556             &stats->rx_pkts_128_255, "128 to 255 bytes frames");
2557         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2558             &stats->rx_pkts_256_511, "256 to 511 bytes frames");
2559         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2560             &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
2561         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2562             &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
2563         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
2564             &stats->rx_pkts_1519_max, "1519 to max frames");
2565         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max_errs",
2566             &stats->rx_pkts_1519_max_errs, "1519 to max frames with error");
2567         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2568             &stats->rx_jumbos, "Jumbo frames");
2569         VGE_SYSCTL_STAT_ADD32(ctx, child, "crcerrs",
2570             &stats->rx_crcerrs, "CRC errors");
2571         VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2572             &stats->rx_pause_frames, "CRC errors");
2573         VGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2574             &stats->rx_alignerrs, "Alignment errors");
2575         VGE_SYSCTL_STAT_ADD32(ctx, child, "nobufs",
2576             &stats->rx_nobufs, "Frames with no buffer event");
2577         VGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2578             &stats->rx_symerrs, "Frames with symbol errors");
2579         VGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2580             &stats->rx_lenerrs, "Frames with length mismatched");
2581
2582         /* Tx statistics. */
2583         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
2584             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX MAC statistics");
2585         child = SYSCTL_CHILDREN(tree);
2586         VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2587             &stats->tx_good_frames, "Good frames");
2588         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2589             &stats->tx_pkts_64, "64 bytes frames");
2590         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2591             &stats->tx_pkts_65_127, "65 to 127 bytes frames");
2592         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2593             &stats->tx_pkts_128_255, "128 to 255 bytes frames");
2594         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2595             &stats->tx_pkts_256_511, "256 to 511 bytes frames");
2596         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2597             &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
2598         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2599             &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
2600         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2601             &stats->tx_jumbos, "Jumbo frames");
2602         VGE_SYSCTL_STAT_ADD32(ctx, child, "colls",
2603             &stats->tx_colls, "Collisions");
2604         VGE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2605             &stats->tx_latecolls, "Late collisions");
2606         VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2607             &stats->tx_pause, "Pause frames");
2608 #ifdef VGE_ENABLE_SQEERR
2609         VGE_SYSCTL_STAT_ADD32(ctx, child, "sqeerrs",
2610             &stats->tx_sqeerrs, "SQE errors");
2611 #endif
2612         /* Clear MAC statistics. */
2613         vge_stats_clear(sc);
2614 }
2615
2616 #undef  VGE_SYSCTL_STAT_ADD32
2617
2618 static void
2619 vge_stats_clear(struct vge_softc *sc)
2620 {
2621         int i;
2622
2623         CSR_WRITE_1(sc, VGE_MIBCSR,
2624             CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FREEZE);
2625         CSR_WRITE_1(sc, VGE_MIBCSR,
2626             CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_CLR);
2627         for (i = VGE_TIMEOUT; i > 0; i--) {
2628                 DELAY(1);
2629                 if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_CLR) == 0)
2630                         break;
2631         }
2632         if (i == 0)
2633                 device_printf(sc->vge_dev, "MIB clear timed out!\n");
2634         CSR_WRITE_1(sc, VGE_MIBCSR, CSR_READ_1(sc, VGE_MIBCSR) &
2635             ~VGE_MIBCSR_FREEZE);
2636 }
2637
2638 static void
2639 vge_stats_update(struct vge_softc *sc)
2640 {
2641         struct vge_hw_stats *stats;
2642         struct ifnet *ifp;
2643         uint32_t mib[VGE_MIB_CNT], val;
2644         int i;
2645
2646         VGE_LOCK_ASSERT(sc);
2647
2648         stats = &sc->vge_stats;
2649         ifp = sc->vge_ifp;
2650
2651         CSR_WRITE_1(sc, VGE_MIBCSR,
2652             CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FLUSH);
2653         for (i = VGE_TIMEOUT; i > 0; i--) {
2654                 DELAY(1);
2655                 if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_FLUSH) == 0)
2656                         break;
2657         }
2658         if (i == 0) {
2659                 device_printf(sc->vge_dev, "MIB counter dump timed out!\n");
2660                 vge_stats_clear(sc);
2661                 return;
2662         }
2663
2664         bzero(mib, sizeof(mib));
2665 reset_idx:
2666         /* Set MIB read index to 0. */
2667         CSR_WRITE_1(sc, VGE_MIBCSR,
2668             CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_RINI);
2669         for (i = 0; i < VGE_MIB_CNT; i++) {
2670                 val = CSR_READ_4(sc, VGE_MIBDATA);
2671                 if (i != VGE_MIB_DATA_IDX(val)) {
2672                         /* Reading interrupted. */
2673                         goto reset_idx;
2674                 }
2675                 mib[i] = val & VGE_MIB_DATA_MASK;
2676         }
2677
2678         /* Rx stats. */
2679         stats->rx_frames += mib[VGE_MIB_RX_FRAMES];
2680         stats->rx_good_frames += mib[VGE_MIB_RX_GOOD_FRAMES];
2681         stats->rx_fifo_oflows += mib[VGE_MIB_RX_FIFO_OVERRUNS];
2682         stats->rx_runts += mib[VGE_MIB_RX_RUNTS];
2683         stats->rx_runts_errs += mib[VGE_MIB_RX_RUNTS_ERRS];
2684         stats->rx_pkts_64 += mib[VGE_MIB_RX_PKTS_64];
2685         stats->rx_pkts_65_127 += mib[VGE_MIB_RX_PKTS_65_127];
2686         stats->rx_pkts_128_255 += mib[VGE_MIB_RX_PKTS_128_255];
2687         stats->rx_pkts_256_511 += mib[VGE_MIB_RX_PKTS_256_511];
2688         stats->rx_pkts_512_1023 += mib[VGE_MIB_RX_PKTS_512_1023];
2689         stats->rx_pkts_1024_1518 += mib[VGE_MIB_RX_PKTS_1024_1518];
2690         stats->rx_pkts_1519_max += mib[VGE_MIB_RX_PKTS_1519_MAX];
2691         stats->rx_pkts_1519_max_errs += mib[VGE_MIB_RX_PKTS_1519_MAX_ERRS];
2692         stats->rx_jumbos += mib[VGE_MIB_RX_JUMBOS];
2693         stats->rx_crcerrs += mib[VGE_MIB_RX_CRCERRS];
2694         stats->rx_pause_frames += mib[VGE_MIB_RX_PAUSE];
2695         stats->rx_alignerrs += mib[VGE_MIB_RX_ALIGNERRS];
2696         stats->rx_nobufs += mib[VGE_MIB_RX_NOBUFS];
2697         stats->rx_symerrs += mib[VGE_MIB_RX_SYMERRS];
2698         stats->rx_lenerrs += mib[VGE_MIB_RX_LENERRS];
2699
2700         /* Tx stats. */
2701         stats->tx_good_frames += mib[VGE_MIB_TX_GOOD_FRAMES];
2702         stats->tx_pkts_64 += mib[VGE_MIB_TX_PKTS_64];
2703         stats->tx_pkts_65_127 += mib[VGE_MIB_TX_PKTS_65_127];
2704         stats->tx_pkts_128_255 += mib[VGE_MIB_TX_PKTS_128_255];
2705         stats->tx_pkts_256_511 += mib[VGE_MIB_TX_PKTS_256_511];
2706         stats->tx_pkts_512_1023 += mib[VGE_MIB_TX_PKTS_512_1023];
2707         stats->tx_pkts_1024_1518 += mib[VGE_MIB_TX_PKTS_1024_1518];
2708         stats->tx_jumbos += mib[VGE_MIB_TX_JUMBOS];
2709         stats->tx_colls += mib[VGE_MIB_TX_COLLS];
2710         stats->tx_pause += mib[VGE_MIB_TX_PAUSE];
2711 #ifdef VGE_ENABLE_SQEERR
2712         stats->tx_sqeerrs += mib[VGE_MIB_TX_SQEERRS];
2713 #endif
2714         stats->tx_latecolls += mib[VGE_MIB_TX_LATECOLLS];
2715
2716         /* Update counters in ifnet. */
2717         if_inc_counter(ifp, IFCOUNTER_OPACKETS, mib[VGE_MIB_TX_GOOD_FRAMES]);
2718
2719         if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2720             mib[VGE_MIB_TX_COLLS] + mib[VGE_MIB_TX_LATECOLLS]);
2721
2722         if_inc_counter(ifp, IFCOUNTER_OERRORS,
2723             mib[VGE_MIB_TX_COLLS] + mib[VGE_MIB_TX_LATECOLLS]);
2724
2725         if_inc_counter(ifp, IFCOUNTER_IPACKETS, mib[VGE_MIB_RX_GOOD_FRAMES]);
2726
2727         if_inc_counter(ifp, IFCOUNTER_IERRORS,
2728             mib[VGE_MIB_RX_FIFO_OVERRUNS] +
2729             mib[VGE_MIB_RX_RUNTS] +
2730             mib[VGE_MIB_RX_RUNTS_ERRS] +
2731             mib[VGE_MIB_RX_CRCERRS] +
2732             mib[VGE_MIB_RX_ALIGNERRS] +
2733             mib[VGE_MIB_RX_NOBUFS] +
2734             mib[VGE_MIB_RX_SYMERRS] +
2735             mib[VGE_MIB_RX_LENERRS]);
2736 }
2737
2738 static void
2739 vge_intr_holdoff(struct vge_softc *sc)
2740 {
2741         uint8_t intctl;
2742
2743         VGE_LOCK_ASSERT(sc);
2744
2745         /*
2746          * Set Tx interrupt supression threshold.
2747          * It's possible to use single-shot timer in VGE_CRS1 register
2748          * in Tx path such that driver can remove most of Tx completion
2749          * interrupts. However this requires additional access to
2750          * VGE_CRS1 register to reload the timer in addintion to
2751          * activating Tx kick command. Another downside is we don't know
2752          * what single-shot timer value should be used in advance so
2753          * reclaiming transmitted mbufs could be delayed a lot which in
2754          * turn slows down Tx operation.
2755          */
2756         CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_TXSUPPTHR);
2757         CSR_WRITE_1(sc, VGE_TXSUPPTHR, sc->vge_tx_coal_pkt);
2758
2759         /* Set Rx interrupt suppresion threshold. */
2760         CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2761         CSR_WRITE_1(sc, VGE_RXSUPPTHR, sc->vge_rx_coal_pkt);
2762
2763         intctl = CSR_READ_1(sc, VGE_INTCTL1);
2764         intctl &= ~VGE_INTCTL_SC_RELOAD;
2765         intctl |= VGE_INTCTL_HC_RELOAD;
2766         if (sc->vge_tx_coal_pkt <= 0)
2767                 intctl |= VGE_INTCTL_TXINTSUP_DISABLE;
2768         else
2769                 intctl &= ~VGE_INTCTL_TXINTSUP_DISABLE;
2770         if (sc->vge_rx_coal_pkt <= 0)
2771                 intctl |= VGE_INTCTL_RXINTSUP_DISABLE;
2772         else
2773                 intctl &= ~VGE_INTCTL_RXINTSUP_DISABLE;
2774         CSR_WRITE_1(sc, VGE_INTCTL1, intctl);
2775         CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_HOLDOFF);
2776         if (sc->vge_int_holdoff > 0) {
2777                 /* Set interrupt holdoff timer. */
2778                 CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2779                 CSR_WRITE_1(sc, VGE_INTHOLDOFF,
2780                     VGE_INT_HOLDOFF_USEC(sc->vge_int_holdoff));
2781                 /* Enable holdoff timer. */
2782                 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2783         }
2784 }
2785
2786 static void
2787 vge_setlinkspeed(struct vge_softc *sc)
2788 {
2789         struct mii_data *mii;
2790         int aneg, i;
2791
2792         VGE_LOCK_ASSERT(sc);
2793
2794         mii = device_get_softc(sc->vge_miibus);
2795         mii_pollstat(mii);
2796         aneg = 0;
2797         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
2798             (IFM_ACTIVE | IFM_AVALID)) {
2799                 switch IFM_SUBTYPE(mii->mii_media_active) {
2800                 case IFM_10_T:
2801                 case IFM_100_TX:
2802                         return;
2803                 case IFM_1000_T:
2804                         aneg++;
2805                 default:
2806                         break;
2807                 }
2808         }
2809         /* Clear forced MAC speed/duplex configuration. */
2810         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2811         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2812         vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_100T2CR, 0);
2813         vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_ANAR,
2814             ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
2815         vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2816             BMCR_AUTOEN | BMCR_STARTNEG);
2817         DELAY(1000);
2818         if (aneg != 0) {
2819                 /* Poll link state until vge(4) get a 10/100 link. */
2820                 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
2821                         mii_pollstat(mii);
2822                         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
2823                             == (IFM_ACTIVE | IFM_AVALID)) {
2824                                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
2825                                 case IFM_10_T:
2826                                 case IFM_100_TX:
2827                                         return;
2828                                 default:
2829                                         break;
2830                                 }
2831                         }
2832                         VGE_UNLOCK(sc);
2833                         pause("vgelnk", hz);
2834                         VGE_LOCK(sc);
2835                 }
2836                 if (i == MII_ANEGTICKS_GIGE)
2837                         device_printf(sc->vge_dev, "establishing link failed, "
2838                             "WOL may not work!");
2839         }
2840         /*
2841          * No link, force MAC to have 100Mbps, full-duplex link.
2842          * This is the last resort and may/may not work.
2843          */
2844         mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
2845         mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
2846 }
2847
2848 static void
2849 vge_setwol(struct vge_softc *sc)
2850 {
2851         struct ifnet *ifp;
2852         uint16_t pmstat;
2853         uint8_t val;
2854
2855         VGE_LOCK_ASSERT(sc);
2856
2857         if ((sc->vge_flags & VGE_FLAG_PMCAP) == 0) {
2858                 /* No PME capability, PHY power down. */
2859                 vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2860                     BMCR_PDOWN);
2861                 vge_miipoll_stop(sc);
2862                 return;
2863         }
2864
2865         ifp = sc->vge_ifp;
2866
2867         /* Clear WOL on pattern match. */
2868         CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2869         /* Disable WOL on magic/unicast packet. */
2870         CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2871         CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2872             VGE_WOLCFG_PMEOVR);
2873         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
2874                 vge_setlinkspeed(sc);
2875                 val = 0;
2876                 if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2877                         val |= VGE_WOLCR1_UCAST;
2878                 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2879                         val |= VGE_WOLCR1_MAGIC;
2880                 CSR_WRITE_1(sc, VGE_WOLCR1S, val);
2881                 val = 0;
2882                 if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2883                         val |= VGE_WOLCFG_SAM | VGE_WOLCFG_SAB;
2884                 CSR_WRITE_1(sc, VGE_WOLCFGS, val | VGE_WOLCFG_PMEOVR);
2885                 /* Disable MII auto-polling. */
2886                 vge_miipoll_stop(sc);
2887         }
2888         CSR_SETBIT_1(sc, VGE_DIAGCTL,
2889             VGE_DIAGCTL_MACFORCE | VGE_DIAGCTL_FDXFORCE);
2890         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2891
2892         /* Clear WOL status on pattern match. */
2893         CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2894         CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2895
2896         val = CSR_READ_1(sc, VGE_PWRSTAT);
2897         val |= VGE_STICKHW_SWPTAG;
2898         CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2899         /* Put hardware into sleep. */
2900         val = CSR_READ_1(sc, VGE_PWRSTAT);
2901         val |= VGE_STICKHW_DS0 | VGE_STICKHW_DS1;
2902         CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2903         /* Request PME if WOL is requested. */
2904         pmstat = pci_read_config(sc->vge_dev, sc->vge_pmcap +
2905             PCIR_POWER_STATUS, 2);
2906         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2907         if ((ifp->if_capenable & IFCAP_WOL) != 0)
2908                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2909         pci_write_config(sc->vge_dev, sc->vge_pmcap + PCIR_POWER_STATUS,
2910             pmstat, 2);
2911 }
2912
2913 static void
2914 vge_clrwol(struct vge_softc *sc)
2915 {
2916         uint8_t val;
2917
2918         val = CSR_READ_1(sc, VGE_PWRSTAT);
2919         val &= ~VGE_STICKHW_SWPTAG;
2920         CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2921         /* Disable WOL and clear power state indicator. */
2922         val = CSR_READ_1(sc, VGE_PWRSTAT);
2923         val &= ~(VGE_STICKHW_DS0 | VGE_STICKHW_DS1);
2924         CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2925
2926         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2927         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2928
2929         /* Clear WOL on pattern match. */
2930         CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2931         /* Disable WOL on magic/unicast packet. */
2932         CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2933         CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2934             VGE_WOLCFG_PMEOVR);
2935         /* Clear WOL status on pattern match. */
2936         CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2937         CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2938 }