]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/vge/if_vge.c
Update to ELF Tool Chain r3668
[FreeBSD/FreeBSD.git] / sys / dev / vge / if_vge.c
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 2004
5  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *      This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37
38 /*
39  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
40  *
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Networking Software Engineer
43  * Wind River Systems
44  */
45
46 /*
47  * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
48  * combines a tri-speed ethernet MAC and PHY, with the following
49  * features:
50  *
51  *      o Jumbo frame support up to 16K
52  *      o Transmit and receive flow control
53  *      o IPv4 checksum offload
54  *      o VLAN tag insertion and stripping
55  *      o TCP large send
56  *      o 64-bit multicast hash table filter
57  *      o 64 entry CAM filter
58  *      o 16K RX FIFO and 48K TX FIFO memory
59  *      o Interrupt moderation
60  *
61  * The VT6122 supports up to four transmit DMA queues. The descriptors
62  * in the transmit ring can address up to 7 data fragments; frames which
63  * span more than 7 data buffers must be coalesced, but in general the
64  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
65  * long. The receive descriptors address only a single buffer.
66  *
67  * There are two peculiar design issues with the VT6122. One is that
68  * receive data buffers must be aligned on a 32-bit boundary. This is
69  * not a problem where the VT6122 is used as a LOM device in x86-based
70  * systems, but on architectures that generate unaligned access traps, we
71  * have to do some copying.
72  *
73  * The other issue has to do with the way 64-bit addresses are handled.
74  * The DMA descriptors only allow you to specify 48 bits of addressing
75  * information. The remaining 16 bits are specified using one of the
76  * I/O registers. If you only have a 32-bit system, then this isn't
77  * an issue, but if you have a 64-bit system and more than 4GB of
78  * memory, you must have to make sure your network data buffers reside
79  * in the same 48-bit 'segment.'
80  *
81  * Special thanks to Ryan Fu at VIA Networking for providing documentation
82  * and sample NICs for testing.
83  */
84
85 #ifdef HAVE_KERNEL_OPTION_HEADERS
86 #include "opt_device_polling.h"
87 #endif
88
89 #include <sys/param.h>
90 #include <sys/endian.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/module.h>
96 #include <sys/kernel.h>
97 #include <sys/socket.h>
98 #include <sys/sysctl.h>
99
100 #include <net/if.h>
101 #include <net/if_arp.h>
102 #include <net/ethernet.h>
103 #include <net/if_dl.h>
104 #include <net/if_var.h>
105 #include <net/if_media.h>
106 #include <net/if_types.h>
107 #include <net/if_vlan_var.h>
108
109 #include <net/bpf.h>
110
111 #include <machine/bus.h>
112 #include <machine/resource.h>
113 #include <sys/bus.h>
114 #include <sys/rman.h>
115
116 #include <dev/mii/mii.h>
117 #include <dev/mii/miivar.h>
118
119 #include <dev/pci/pcireg.h>
120 #include <dev/pci/pcivar.h>
121
122 MODULE_DEPEND(vge, pci, 1, 1, 1);
123 MODULE_DEPEND(vge, ether, 1, 1, 1);
124 MODULE_DEPEND(vge, miibus, 1, 1, 1);
125
126 /* "device miibus" required.  See GENERIC if you get errors here. */
127 #include "miibus_if.h"
128
129 #include <dev/vge/if_vgereg.h>
130 #include <dev/vge/if_vgevar.h>
131
132 #define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
133
134 /* Tunables */
135 static int msi_disable = 0;
136 TUNABLE_INT("hw.vge.msi_disable", &msi_disable);
137
138 /*
139  * The SQE error counter of MIB seems to report bogus value.
140  * Vendor's workaround does not seem to work on PCIe based
141  * controllers. Disable it until we find better workaround.
142  */
143 #undef VGE_ENABLE_SQEERR
144
145 /*
146  * Various supported device vendors/types and their names.
147  */
148 static struct vge_type vge_devs[] = {
149         { VIA_VENDORID, VIA_DEVICEID_61XX,
150                 "VIA Networking Velocity Gigabit Ethernet" },
151         { 0, 0, NULL }
152 };
153
154 static int      vge_attach(device_t);
155 static int      vge_detach(device_t);
156 static int      vge_probe(device_t);
157 static int      vge_resume(device_t);
158 static int      vge_shutdown(device_t);
159 static int      vge_suspend(device_t);
160
161 static void     vge_cam_clear(struct vge_softc *);
162 static int      vge_cam_set(struct vge_softc *, uint8_t *);
163 static void     vge_clrwol(struct vge_softc *);
164 static void     vge_discard_rxbuf(struct vge_softc *, int);
165 static int      vge_dma_alloc(struct vge_softc *);
166 static void     vge_dma_free(struct vge_softc *);
167 static void     vge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
168 #ifdef VGE_EEPROM
169 static void     vge_eeprom_getword(struct vge_softc *, int, uint16_t *);
170 #endif
171 static int      vge_encap(struct vge_softc *, struct mbuf **);
172 #ifndef __NO_STRICT_ALIGNMENT
173 static __inline void
174                 vge_fixup_rx(struct mbuf *);
175 #endif
176 static void     vge_freebufs(struct vge_softc *);
177 static void     vge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
178 static int      vge_ifmedia_upd(struct ifnet *);
179 static int      vge_ifmedia_upd_locked(struct vge_softc *);
180 static void     vge_init(void *);
181 static void     vge_init_locked(struct vge_softc *);
182 static void     vge_intr(void *);
183 static void     vge_intr_holdoff(struct vge_softc *);
184 static int      vge_ioctl(struct ifnet *, u_long, caddr_t);
185 static void     vge_link_statchg(void *);
186 static int      vge_miibus_readreg(device_t, int, int);
187 static int      vge_miibus_writereg(device_t, int, int, int);
188 static void     vge_miipoll_start(struct vge_softc *);
189 static void     vge_miipoll_stop(struct vge_softc *);
190 static int      vge_newbuf(struct vge_softc *, int);
191 static void     vge_read_eeprom(struct vge_softc *, caddr_t, int, int, int);
192 static void     vge_reset(struct vge_softc *);
193 static int      vge_rx_list_init(struct vge_softc *);
194 static int      vge_rxeof(struct vge_softc *, int);
195 static void     vge_rxfilter(struct vge_softc *);
196 static void     vge_setmedia(struct vge_softc *);
197 static void     vge_setvlan(struct vge_softc *);
198 static void     vge_setwol(struct vge_softc *);
199 static void     vge_start(struct ifnet *);
200 static void     vge_start_locked(struct ifnet *);
201 static void     vge_stats_clear(struct vge_softc *);
202 static void     vge_stats_update(struct vge_softc *);
203 static void     vge_stop(struct vge_softc *);
204 static void     vge_sysctl_node(struct vge_softc *);
205 static int      vge_tx_list_init(struct vge_softc *);
206 static void     vge_txeof(struct vge_softc *);
207 static void     vge_watchdog(void *);
208
209 static device_method_t vge_methods[] = {
210         /* Device interface */
211         DEVMETHOD(device_probe,         vge_probe),
212         DEVMETHOD(device_attach,        vge_attach),
213         DEVMETHOD(device_detach,        vge_detach),
214         DEVMETHOD(device_suspend,       vge_suspend),
215         DEVMETHOD(device_resume,        vge_resume),
216         DEVMETHOD(device_shutdown,      vge_shutdown),
217
218         /* MII interface */
219         DEVMETHOD(miibus_readreg,       vge_miibus_readreg),
220         DEVMETHOD(miibus_writereg,      vge_miibus_writereg),
221
222         DEVMETHOD_END
223 };
224
225 static driver_t vge_driver = {
226         "vge",
227         vge_methods,
228         sizeof(struct vge_softc)
229 };
230
231 static devclass_t vge_devclass;
232
233 DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
234 DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
235
236 #ifdef VGE_EEPROM
237 /*
238  * Read a word of data stored in the EEPROM at address 'addr.'
239  */
240 static void
241 vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t *dest)
242 {
243         int i;
244         uint16_t word = 0;
245
246         /*
247          * Enter EEPROM embedded programming mode. In order to
248          * access the EEPROM at all, we first have to set the
249          * EELOAD bit in the CHIPCFG2 register.
250          */
251         CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
252         CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
253
254         /* Select the address of the word we want to read */
255         CSR_WRITE_1(sc, VGE_EEADDR, addr);
256
257         /* Issue read command */
258         CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
259
260         /* Wait for the done bit to be set. */
261         for (i = 0; i < VGE_TIMEOUT; i++) {
262                 if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
263                         break;
264         }
265
266         if (i == VGE_TIMEOUT) {
267                 device_printf(sc->vge_dev, "EEPROM read timed out\n");
268                 *dest = 0;
269                 return;
270         }
271
272         /* Read the result */
273         word = CSR_READ_2(sc, VGE_EERDDAT);
274
275         /* Turn off EEPROM access mode. */
276         CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
277         CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
278
279         *dest = word;
280 }
281 #endif
282
283 /*
284  * Read a sequence of words from the EEPROM.
285  */
286 static void
287 vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt, int swap)
288 {
289         int i;
290 #ifdef VGE_EEPROM
291         uint16_t word = 0, *ptr;
292
293         for (i = 0; i < cnt; i++) {
294                 vge_eeprom_getword(sc, off + i, &word);
295                 ptr = (uint16_t *)(dest + (i * 2));
296                 if (swap)
297                         *ptr = ntohs(word);
298                 else
299                         *ptr = word;
300         }
301 #else
302         for (i = 0; i < ETHER_ADDR_LEN; i++)
303                 dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
304 #endif
305 }
306
307 static void
308 vge_miipoll_stop(struct vge_softc *sc)
309 {
310         int i;
311
312         CSR_WRITE_1(sc, VGE_MIICMD, 0);
313
314         for (i = 0; i < VGE_TIMEOUT; i++) {
315                 DELAY(1);
316                 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
317                         break;
318         }
319
320         if (i == VGE_TIMEOUT)
321                 device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
322 }
323
324 static void
325 vge_miipoll_start(struct vge_softc *sc)
326 {
327         int i;
328
329         /* First, make sure we're idle. */
330
331         CSR_WRITE_1(sc, VGE_MIICMD, 0);
332         CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
333
334         for (i = 0; i < VGE_TIMEOUT; i++) {
335                 DELAY(1);
336                 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
337                         break;
338         }
339
340         if (i == VGE_TIMEOUT) {
341                 device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
342                 return;
343         }
344
345         /* Now enable auto poll mode. */
346
347         CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
348
349         /* And make sure it started. */
350
351         for (i = 0; i < VGE_TIMEOUT; i++) {
352                 DELAY(1);
353                 if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
354                         break;
355         }
356
357         if (i == VGE_TIMEOUT)
358                 device_printf(sc->vge_dev, "failed to start MII autopoll\n");
359 }
360
361 static int
362 vge_miibus_readreg(device_t dev, int phy, int reg)
363 {
364         struct vge_softc *sc;
365         int i;
366         uint16_t rval = 0;
367
368         sc = device_get_softc(dev);
369
370         vge_miipoll_stop(sc);
371
372         /* Specify the register we want to read. */
373         CSR_WRITE_1(sc, VGE_MIIADDR, reg);
374
375         /* Issue read command. */
376         CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
377
378         /* Wait for the read command bit to self-clear. */
379         for (i = 0; i < VGE_TIMEOUT; i++) {
380                 DELAY(1);
381                 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
382                         break;
383         }
384
385         if (i == VGE_TIMEOUT)
386                 device_printf(sc->vge_dev, "MII read timed out\n");
387         else
388                 rval = CSR_READ_2(sc, VGE_MIIDATA);
389
390         vge_miipoll_start(sc);
391
392         return (rval);
393 }
394
395 static int
396 vge_miibus_writereg(device_t dev, int phy, int reg, int data)
397 {
398         struct vge_softc *sc;
399         int i, rval = 0;
400
401         sc = device_get_softc(dev);
402
403         vge_miipoll_stop(sc);
404
405         /* Specify the register we want to write. */
406         CSR_WRITE_1(sc, VGE_MIIADDR, reg);
407
408         /* Specify the data we want to write. */
409         CSR_WRITE_2(sc, VGE_MIIDATA, data);
410
411         /* Issue write command. */
412         CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
413
414         /* Wait for the write command bit to self-clear. */
415         for (i = 0; i < VGE_TIMEOUT; i++) {
416                 DELAY(1);
417                 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
418                         break;
419         }
420
421         if (i == VGE_TIMEOUT) {
422                 device_printf(sc->vge_dev, "MII write timed out\n");
423                 rval = EIO;
424         }
425
426         vge_miipoll_start(sc);
427
428         return (rval);
429 }
430
431 static void
432 vge_cam_clear(struct vge_softc *sc)
433 {
434         int i;
435
436         /*
437          * Turn off all the mask bits. This tells the chip
438          * that none of the entries in the CAM filter are valid.
439          * desired entries will be enabled as we fill the filter in.
440          */
441
442         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
443         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
444         CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
445         for (i = 0; i < 8; i++)
446                 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
447
448         /* Clear the VLAN filter too. */
449
450         CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
451         for (i = 0; i < 8; i++)
452                 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
453
454         CSR_WRITE_1(sc, VGE_CAMADDR, 0);
455         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
456         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
457
458         sc->vge_camidx = 0;
459 }
460
461 static int
462 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
463 {
464         int i, error = 0;
465
466         if (sc->vge_camidx == VGE_CAM_MAXADDRS)
467                 return (ENOSPC);
468
469         /* Select the CAM data page. */
470         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
471         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
472
473         /* Set the filter entry we want to update and enable writing. */
474         CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
475
476         /* Write the address to the CAM registers */
477         for (i = 0; i < ETHER_ADDR_LEN; i++)
478                 CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
479
480         /* Issue a write command. */
481         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
482
483         /* Wake for it to clear. */
484         for (i = 0; i < VGE_TIMEOUT; i++) {
485                 DELAY(1);
486                 if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
487                         break;
488         }
489
490         if (i == VGE_TIMEOUT) {
491                 device_printf(sc->vge_dev, "setting CAM filter failed\n");
492                 error = EIO;
493                 goto fail;
494         }
495
496         /* Select the CAM mask page. */
497         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
498         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
499
500         /* Set the mask bit that enables this filter. */
501         CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
502             1<<(sc->vge_camidx & 7));
503
504         sc->vge_camidx++;
505
506 fail:
507         /* Turn off access to CAM. */
508         CSR_WRITE_1(sc, VGE_CAMADDR, 0);
509         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
510         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
511
512         return (error);
513 }
514
515 static void
516 vge_setvlan(struct vge_softc *sc)
517 {
518         struct ifnet *ifp;
519         uint8_t cfg;
520
521         VGE_LOCK_ASSERT(sc);
522
523         ifp = sc->vge_ifp;
524         cfg = CSR_READ_1(sc, VGE_RXCFG);
525         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
526                 cfg |= VGE_VTAG_OPT2;
527         else
528                 cfg &= ~VGE_VTAG_OPT2;
529         CSR_WRITE_1(sc, VGE_RXCFG, cfg);
530 }
531
532 /*
533  * Program the multicast filter. We use the 64-entry CAM filter
534  * for perfect filtering. If there's more than 64 multicast addresses,
535  * we use the hash filter instead.
536  */
537 static void
538 vge_rxfilter(struct vge_softc *sc)
539 {
540         struct ifnet *ifp;
541         struct ifmultiaddr *ifma;
542         uint32_t h, hashes[2];
543         uint8_t rxcfg;
544         int error = 0;
545
546         VGE_LOCK_ASSERT(sc);
547
548         /* First, zot all the multicast entries. */
549         hashes[0] = 0;
550         hashes[1] = 0;
551
552         rxcfg = CSR_READ_1(sc, VGE_RXCTL);
553         rxcfg &= ~(VGE_RXCTL_RX_MCAST | VGE_RXCTL_RX_BCAST |
554             VGE_RXCTL_RX_PROMISC);
555         /*
556          * Always allow VLAN oversized frames and frames for
557          * this host.
558          */
559         rxcfg |= VGE_RXCTL_RX_GIANT | VGE_RXCTL_RX_UCAST;
560
561         ifp = sc->vge_ifp;
562         if ((ifp->if_flags & IFF_BROADCAST) != 0)
563                 rxcfg |= VGE_RXCTL_RX_BCAST;
564         if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
565                 if ((ifp->if_flags & IFF_PROMISC) != 0)
566                         rxcfg |= VGE_RXCTL_RX_PROMISC;
567                 if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
568                         hashes[0] = 0xFFFFFFFF;
569                         hashes[1] = 0xFFFFFFFF;
570                 }
571                 goto done;
572         }
573
574         vge_cam_clear(sc);
575         /* Now program new ones */
576         if_maddr_rlock(ifp);
577         CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
578                 if (ifma->ifma_addr->sa_family != AF_LINK)
579                         continue;
580                 error = vge_cam_set(sc,
581                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
582                 if (error)
583                         break;
584         }
585
586         /* If there were too many addresses, use the hash filter. */
587         if (error) {
588                 vge_cam_clear(sc);
589
590                 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
591                         if (ifma->ifma_addr->sa_family != AF_LINK)
592                                 continue;
593                         h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
594                             ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
595                         if (h < 32)
596                                 hashes[0] |= (1 << h);
597                         else
598                                 hashes[1] |= (1 << (h - 32));
599                 }
600         }
601         if_maddr_runlock(ifp);
602
603 done:
604         if (hashes[0] != 0 || hashes[1] != 0)
605                 rxcfg |= VGE_RXCTL_RX_MCAST;
606         CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
607         CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
608         CSR_WRITE_1(sc, VGE_RXCTL, rxcfg);
609 }
610
611 static void
612 vge_reset(struct vge_softc *sc)
613 {
614         int i;
615
616         CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
617
618         for (i = 0; i < VGE_TIMEOUT; i++) {
619                 DELAY(5);
620                 if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
621                         break;
622         }
623
624         if (i == VGE_TIMEOUT) {
625                 device_printf(sc->vge_dev, "soft reset timed out\n");
626                 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
627                 DELAY(2000);
628         }
629
630         DELAY(5000);
631 }
632
633 /*
634  * Probe for a VIA gigabit chip. Check the PCI vendor and device
635  * IDs against our list and return a device name if we find a match.
636  */
637 static int
638 vge_probe(device_t dev)
639 {
640         struct vge_type *t;
641
642         t = vge_devs;
643
644         while (t->vge_name != NULL) {
645                 if ((pci_get_vendor(dev) == t->vge_vid) &&
646                     (pci_get_device(dev) == t->vge_did)) {
647                         device_set_desc(dev, t->vge_name);
648                         return (BUS_PROBE_DEFAULT);
649                 }
650                 t++;
651         }
652
653         return (ENXIO);
654 }
655
656 /*
657  * Map a single buffer address.
658  */
659
660 struct vge_dmamap_arg {
661         bus_addr_t      vge_busaddr;
662 };
663
664 static void
665 vge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
666 {
667         struct vge_dmamap_arg *ctx;
668
669         if (error != 0)
670                 return;
671
672         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
673
674         ctx = (struct vge_dmamap_arg *)arg;
675         ctx->vge_busaddr = segs[0].ds_addr;
676 }
677
678 static int
679 vge_dma_alloc(struct vge_softc *sc)
680 {
681         struct vge_dmamap_arg ctx;
682         struct vge_txdesc *txd;
683         struct vge_rxdesc *rxd;
684         bus_addr_t lowaddr, tx_ring_end, rx_ring_end;
685         int error, i;
686
687         /*
688          * It seems old PCI controllers do not support DAC.  DAC
689          * configuration can be enabled by accessing VGE_CHIPCFG3
690          * register but honor EEPROM configuration instead of
691          * blindly overriding DAC configuration.  PCIe based
692          * controllers are supposed to support 64bit DMA so enable
693          * 64bit DMA on these controllers.
694          */
695         if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
696                 lowaddr = BUS_SPACE_MAXADDR;
697         else
698                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
699
700 again:
701         /* Create parent ring tag. */
702         error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
703             1, 0,                       /* algnmnt, boundary */
704             lowaddr,                    /* lowaddr */
705             BUS_SPACE_MAXADDR,          /* highaddr */
706             NULL, NULL,                 /* filter, filterarg */
707             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
708             0,                          /* nsegments */
709             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
710             0,                          /* flags */
711             NULL, NULL,                 /* lockfunc, lockarg */
712             &sc->vge_cdata.vge_ring_tag);
713         if (error != 0) {
714                 device_printf(sc->vge_dev,
715                     "could not create parent DMA tag.\n");
716                 goto fail;
717         }
718
719         /* Create tag for Tx ring. */
720         error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
721             VGE_TX_RING_ALIGN, 0,       /* algnmnt, boundary */
722             BUS_SPACE_MAXADDR,          /* lowaddr */
723             BUS_SPACE_MAXADDR,          /* highaddr */
724             NULL, NULL,                 /* filter, filterarg */
725             VGE_TX_LIST_SZ,             /* maxsize */
726             1,                          /* nsegments */
727             VGE_TX_LIST_SZ,             /* maxsegsize */
728             0,                          /* flags */
729             NULL, NULL,                 /* lockfunc, lockarg */
730             &sc->vge_cdata.vge_tx_ring_tag);
731         if (error != 0) {
732                 device_printf(sc->vge_dev,
733                     "could not allocate Tx ring DMA tag.\n");
734                 goto fail;
735         }
736
737         /* Create tag for Rx ring. */
738         error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
739             VGE_RX_RING_ALIGN, 0,       /* algnmnt, boundary */
740             BUS_SPACE_MAXADDR,          /* lowaddr */
741             BUS_SPACE_MAXADDR,          /* highaddr */
742             NULL, NULL,                 /* filter, filterarg */
743             VGE_RX_LIST_SZ,             /* maxsize */
744             1,                          /* nsegments */
745             VGE_RX_LIST_SZ,             /* maxsegsize */
746             0,                          /* flags */
747             NULL, NULL,                 /* lockfunc, lockarg */
748             &sc->vge_cdata.vge_rx_ring_tag);
749         if (error != 0) {
750                 device_printf(sc->vge_dev,
751                     "could not allocate Rx ring DMA tag.\n");
752                 goto fail;
753         }
754
755         /* Allocate DMA'able memory and load the DMA map for Tx ring. */
756         error = bus_dmamem_alloc(sc->vge_cdata.vge_tx_ring_tag,
757             (void **)&sc->vge_rdata.vge_tx_ring,
758             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
759             &sc->vge_cdata.vge_tx_ring_map);
760         if (error != 0) {
761                 device_printf(sc->vge_dev,
762                     "could not allocate DMA'able memory for Tx ring.\n");
763                 goto fail;
764         }
765
766         ctx.vge_busaddr = 0;
767         error = bus_dmamap_load(sc->vge_cdata.vge_tx_ring_tag,
768             sc->vge_cdata.vge_tx_ring_map, sc->vge_rdata.vge_tx_ring,
769             VGE_TX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
770         if (error != 0 || ctx.vge_busaddr == 0) {
771                 device_printf(sc->vge_dev,
772                     "could not load DMA'able memory for Tx ring.\n");
773                 goto fail;
774         }
775         sc->vge_rdata.vge_tx_ring_paddr = ctx.vge_busaddr;
776
777         /* Allocate DMA'able memory and load the DMA map for Rx ring. */
778         error = bus_dmamem_alloc(sc->vge_cdata.vge_rx_ring_tag,
779             (void **)&sc->vge_rdata.vge_rx_ring,
780             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
781             &sc->vge_cdata.vge_rx_ring_map);
782         if (error != 0) {
783                 device_printf(sc->vge_dev,
784                     "could not allocate DMA'able memory for Rx ring.\n");
785                 goto fail;
786         }
787
788         ctx.vge_busaddr = 0;
789         error = bus_dmamap_load(sc->vge_cdata.vge_rx_ring_tag,
790             sc->vge_cdata.vge_rx_ring_map, sc->vge_rdata.vge_rx_ring,
791             VGE_RX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
792         if (error != 0 || ctx.vge_busaddr == 0) {
793                 device_printf(sc->vge_dev,
794                     "could not load DMA'able memory for Rx ring.\n");
795                 goto fail;
796         }
797         sc->vge_rdata.vge_rx_ring_paddr = ctx.vge_busaddr;
798
799         /* Tx/Rx descriptor queue should reside within 4GB boundary. */
800         tx_ring_end = sc->vge_rdata.vge_tx_ring_paddr + VGE_TX_LIST_SZ;
801         rx_ring_end = sc->vge_rdata.vge_rx_ring_paddr + VGE_RX_LIST_SZ;
802         if ((VGE_ADDR_HI(tx_ring_end) !=
803             VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr)) ||
804             (VGE_ADDR_HI(rx_ring_end) !=
805             VGE_ADDR_HI(sc->vge_rdata.vge_rx_ring_paddr)) ||
806             VGE_ADDR_HI(tx_ring_end) != VGE_ADDR_HI(rx_ring_end)) {
807                 device_printf(sc->vge_dev, "4GB boundary crossed, "
808                     "switching to 32bit DMA address mode.\n");
809                 vge_dma_free(sc);
810                 /* Limit DMA address space to 32bit and try again. */
811                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
812                 goto again;
813         }
814
815         if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
816                 lowaddr = VGE_BUF_DMA_MAXADDR;
817         else
818                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
819         /* Create parent buffer tag. */
820         error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
821             1, 0,                       /* algnmnt, boundary */
822             lowaddr,                    /* lowaddr */
823             BUS_SPACE_MAXADDR,          /* highaddr */
824             NULL, NULL,                 /* filter, filterarg */
825             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
826             0,                          /* nsegments */
827             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
828             0,                          /* flags */
829             NULL, NULL,                 /* lockfunc, lockarg */
830             &sc->vge_cdata.vge_buffer_tag);
831         if (error != 0) {
832                 device_printf(sc->vge_dev,
833                     "could not create parent buffer DMA tag.\n");
834                 goto fail;
835         }
836
837         /* Create tag for Tx buffers. */
838         error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
839             1, 0,                       /* algnmnt, boundary */
840             BUS_SPACE_MAXADDR,          /* lowaddr */
841             BUS_SPACE_MAXADDR,          /* highaddr */
842             NULL, NULL,                 /* filter, filterarg */
843             MCLBYTES * VGE_MAXTXSEGS,   /* maxsize */
844             VGE_MAXTXSEGS,              /* nsegments */
845             MCLBYTES,                   /* maxsegsize */
846             0,                          /* flags */
847             NULL, NULL,                 /* lockfunc, lockarg */
848             &sc->vge_cdata.vge_tx_tag);
849         if (error != 0) {
850                 device_printf(sc->vge_dev, "could not create Tx DMA tag.\n");
851                 goto fail;
852         }
853
854         /* Create tag for Rx buffers. */
855         error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
856             VGE_RX_BUF_ALIGN, 0,        /* algnmnt, boundary */
857             BUS_SPACE_MAXADDR,          /* lowaddr */
858             BUS_SPACE_MAXADDR,          /* highaddr */
859             NULL, NULL,                 /* filter, filterarg */
860             MCLBYTES,                   /* maxsize */
861             1,                          /* nsegments */
862             MCLBYTES,                   /* maxsegsize */
863             0,                          /* flags */
864             NULL, NULL,                 /* lockfunc, lockarg */
865             &sc->vge_cdata.vge_rx_tag);
866         if (error != 0) {
867                 device_printf(sc->vge_dev, "could not create Rx DMA tag.\n");
868                 goto fail;
869         }
870
871         /* Create DMA maps for Tx buffers. */
872         for (i = 0; i < VGE_TX_DESC_CNT; i++) {
873                 txd = &sc->vge_cdata.vge_txdesc[i];
874                 txd->tx_m = NULL;
875                 txd->tx_dmamap = NULL;
876                 error = bus_dmamap_create(sc->vge_cdata.vge_tx_tag, 0,
877                     &txd->tx_dmamap);
878                 if (error != 0) {
879                         device_printf(sc->vge_dev,
880                             "could not create Tx dmamap.\n");
881                         goto fail;
882                 }
883         }
884         /* Create DMA maps for Rx buffers. */
885         if ((error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
886             &sc->vge_cdata.vge_rx_sparemap)) != 0) {
887                 device_printf(sc->vge_dev,
888                     "could not create spare Rx dmamap.\n");
889                 goto fail;
890         }
891         for (i = 0; i < VGE_RX_DESC_CNT; i++) {
892                 rxd = &sc->vge_cdata.vge_rxdesc[i];
893                 rxd->rx_m = NULL;
894                 rxd->rx_dmamap = NULL;
895                 error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
896                     &rxd->rx_dmamap);
897                 if (error != 0) {
898                         device_printf(sc->vge_dev,
899                             "could not create Rx dmamap.\n");
900                         goto fail;
901                 }
902         }
903
904 fail:
905         return (error);
906 }
907
908 static void
909 vge_dma_free(struct vge_softc *sc)
910 {
911         struct vge_txdesc *txd;
912         struct vge_rxdesc *rxd;
913         int i;
914
915         /* Tx ring. */
916         if (sc->vge_cdata.vge_tx_ring_tag != NULL) {
917                 if (sc->vge_rdata.vge_tx_ring_paddr)
918                         bus_dmamap_unload(sc->vge_cdata.vge_tx_ring_tag,
919                             sc->vge_cdata.vge_tx_ring_map);
920                 if (sc->vge_rdata.vge_tx_ring)
921                         bus_dmamem_free(sc->vge_cdata.vge_tx_ring_tag,
922                             sc->vge_rdata.vge_tx_ring,
923                             sc->vge_cdata.vge_tx_ring_map);
924                 sc->vge_rdata.vge_tx_ring = NULL;
925                 sc->vge_rdata.vge_tx_ring_paddr = 0;
926                 bus_dma_tag_destroy(sc->vge_cdata.vge_tx_ring_tag);
927                 sc->vge_cdata.vge_tx_ring_tag = NULL;
928         }
929         /* Rx ring. */
930         if (sc->vge_cdata.vge_rx_ring_tag != NULL) {
931                 if (sc->vge_rdata.vge_rx_ring_paddr)
932                         bus_dmamap_unload(sc->vge_cdata.vge_rx_ring_tag,
933                             sc->vge_cdata.vge_rx_ring_map);
934                 if (sc->vge_rdata.vge_rx_ring)
935                         bus_dmamem_free(sc->vge_cdata.vge_rx_ring_tag,
936                             sc->vge_rdata.vge_rx_ring,
937                             sc->vge_cdata.vge_rx_ring_map);
938                 sc->vge_rdata.vge_rx_ring = NULL;
939                 sc->vge_rdata.vge_rx_ring_paddr = 0;
940                 bus_dma_tag_destroy(sc->vge_cdata.vge_rx_ring_tag);
941                 sc->vge_cdata.vge_rx_ring_tag = NULL;
942         }
943         /* Tx buffers. */
944         if (sc->vge_cdata.vge_tx_tag != NULL) {
945                 for (i = 0; i < VGE_TX_DESC_CNT; i++) {
946                         txd = &sc->vge_cdata.vge_txdesc[i];
947                         if (txd->tx_dmamap != NULL) {
948                                 bus_dmamap_destroy(sc->vge_cdata.vge_tx_tag,
949                                     txd->tx_dmamap);
950                                 txd->tx_dmamap = NULL;
951                         }
952                 }
953                 bus_dma_tag_destroy(sc->vge_cdata.vge_tx_tag);
954                 sc->vge_cdata.vge_tx_tag = NULL;
955         }
956         /* Rx buffers. */
957         if (sc->vge_cdata.vge_rx_tag != NULL) {
958                 for (i = 0; i < VGE_RX_DESC_CNT; i++) {
959                         rxd = &sc->vge_cdata.vge_rxdesc[i];
960                         if (rxd->rx_dmamap != NULL) {
961                                 bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
962                                     rxd->rx_dmamap);
963                                 rxd->rx_dmamap = NULL;
964                         }
965                 }
966                 if (sc->vge_cdata.vge_rx_sparemap != NULL) {
967                         bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
968                             sc->vge_cdata.vge_rx_sparemap);
969                         sc->vge_cdata.vge_rx_sparemap = NULL;
970                 }
971                 bus_dma_tag_destroy(sc->vge_cdata.vge_rx_tag);
972                 sc->vge_cdata.vge_rx_tag = NULL;
973         }
974
975         if (sc->vge_cdata.vge_buffer_tag != NULL) {
976                 bus_dma_tag_destroy(sc->vge_cdata.vge_buffer_tag);
977                 sc->vge_cdata.vge_buffer_tag = NULL;
978         }
979         if (sc->vge_cdata.vge_ring_tag != NULL) {
980                 bus_dma_tag_destroy(sc->vge_cdata.vge_ring_tag);
981                 sc->vge_cdata.vge_ring_tag = NULL;
982         }
983 }
984
985 /*
986  * Attach the interface. Allocate softc structures, do ifmedia
987  * setup and ethernet/BPF attach.
988  */
989 static int
990 vge_attach(device_t dev)
991 {
992         u_char eaddr[ETHER_ADDR_LEN];
993         struct vge_softc *sc;
994         struct ifnet *ifp;
995         int error = 0, cap, i, msic, rid;
996
997         sc = device_get_softc(dev);
998         sc->vge_dev = dev;
999
1000         mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1001             MTX_DEF);
1002         callout_init_mtx(&sc->vge_watchdog, &sc->vge_mtx, 0);
1003
1004         /*
1005          * Map control/status registers.
1006          */
1007         pci_enable_busmaster(dev);
1008
1009         rid = PCIR_BAR(1);
1010         sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1011             RF_ACTIVE);
1012
1013         if (sc->vge_res == NULL) {
1014                 device_printf(dev, "couldn't map ports/memory\n");
1015                 error = ENXIO;
1016                 goto fail;
1017         }
1018
1019         if (pci_find_cap(dev, PCIY_EXPRESS, &cap) == 0) {
1020                 sc->vge_flags |= VGE_FLAG_PCIE;
1021                 sc->vge_expcap = cap;
1022         } else
1023                 sc->vge_flags |= VGE_FLAG_JUMBO;
1024         if (pci_find_cap(dev, PCIY_PMG, &cap) == 0) {
1025                 sc->vge_flags |= VGE_FLAG_PMCAP;
1026                 sc->vge_pmcap = cap;
1027         }
1028         rid = 0;
1029         msic = pci_msi_count(dev);
1030         if (msi_disable == 0 && msic > 0) {
1031                 msic = 1;
1032                 if (pci_alloc_msi(dev, &msic) == 0) {
1033                         if (msic == 1) {
1034                                 sc->vge_flags |= VGE_FLAG_MSI;
1035                                 device_printf(dev, "Using %d MSI message\n",
1036                                     msic);
1037                                 rid = 1;
1038                         } else
1039                                 pci_release_msi(dev);
1040                 }
1041         }
1042
1043         /* Allocate interrupt */
1044         sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1045             ((sc->vge_flags & VGE_FLAG_MSI) ? 0 : RF_SHAREABLE) | RF_ACTIVE);
1046         if (sc->vge_irq == NULL) {
1047                 device_printf(dev, "couldn't map interrupt\n");
1048                 error = ENXIO;
1049                 goto fail;
1050         }
1051
1052         /* Reset the adapter. */
1053         vge_reset(sc);
1054         /* Reload EEPROM. */
1055         CSR_WRITE_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
1056         for (i = 0; i < VGE_TIMEOUT; i++) {
1057                 DELAY(5);
1058                 if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
1059                         break;
1060         }
1061         if (i == VGE_TIMEOUT)
1062                 device_printf(dev, "EEPROM reload timed out\n");
1063         /*
1064          * Clear PACPI as EEPROM reload will set the bit. Otherwise
1065          * MAC will receive magic packet which in turn confuses
1066          * controller.
1067          */
1068         CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
1069
1070         /*
1071          * Get station address from the EEPROM.
1072          */
1073         vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
1074         /*
1075          * Save configured PHY address.
1076          * It seems the PHY address of PCIe controllers just
1077          * reflects media jump strapping status so we assume the
1078          * internal PHY address of PCIe controller is at 1.
1079          */
1080         if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
1081                 sc->vge_phyaddr = 1;
1082         else
1083                 sc->vge_phyaddr = CSR_READ_1(sc, VGE_MIICFG) &
1084                     VGE_MIICFG_PHYADDR;
1085         /* Clear WOL and take hardware from powerdown. */
1086         vge_clrwol(sc);
1087         vge_sysctl_node(sc);
1088         error = vge_dma_alloc(sc);
1089         if (error)
1090                 goto fail;
1091
1092         ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
1093         if (ifp == NULL) {
1094                 device_printf(dev, "can not if_alloc()\n");
1095                 error = ENOSPC;
1096                 goto fail;
1097         }
1098
1099         vge_miipoll_start(sc);
1100         /* Do MII setup */
1101         error = mii_attach(dev, &sc->vge_miibus, ifp, vge_ifmedia_upd,
1102             vge_ifmedia_sts, BMSR_DEFCAPMASK, sc->vge_phyaddr, MII_OFFSET_ANY,
1103             MIIF_DOPAUSE);
1104         if (error != 0) {
1105                 device_printf(dev, "attaching PHYs failed\n");
1106                 goto fail;
1107         }
1108
1109         ifp->if_softc = sc;
1110         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1111         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1112         ifp->if_ioctl = vge_ioctl;
1113         ifp->if_capabilities = IFCAP_VLAN_MTU;
1114         ifp->if_start = vge_start;
1115         ifp->if_hwassist = VGE_CSUM_FEATURES;
1116         ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM |
1117             IFCAP_VLAN_HWTAGGING;
1118         if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0)
1119                 ifp->if_capabilities |= IFCAP_WOL;
1120         ifp->if_capenable = ifp->if_capabilities;
1121 #ifdef DEVICE_POLLING
1122         ifp->if_capabilities |= IFCAP_POLLING;
1123 #endif
1124         ifp->if_init = vge_init;
1125         IFQ_SET_MAXLEN(&ifp->if_snd, VGE_TX_DESC_CNT - 1);
1126         ifp->if_snd.ifq_drv_maxlen = VGE_TX_DESC_CNT - 1;
1127         IFQ_SET_READY(&ifp->if_snd);
1128
1129         /*
1130          * Call MI attach routine.
1131          */
1132         ether_ifattach(ifp, eaddr);
1133
1134         /* Tell the upper layer(s) we support long frames. */
1135         ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1136
1137         /* Hook interrupt last to avoid having to lock softc */
1138         error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1139             NULL, vge_intr, sc, &sc->vge_intrhand);
1140
1141         if (error) {
1142                 device_printf(dev, "couldn't set up irq\n");
1143                 ether_ifdetach(ifp);
1144                 goto fail;
1145         }
1146
1147 fail:
1148         if (error)
1149                 vge_detach(dev);
1150
1151         return (error);
1152 }
1153
1154 /*
1155  * Shutdown hardware and free up resources. This can be called any
1156  * time after the mutex has been initialized. It is called in both
1157  * the error case in attach and the normal detach case so it needs
1158  * to be careful about only freeing resources that have actually been
1159  * allocated.
1160  */
1161 static int
1162 vge_detach(device_t dev)
1163 {
1164         struct vge_softc *sc;
1165         struct ifnet *ifp;
1166
1167         sc = device_get_softc(dev);
1168         KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1169         ifp = sc->vge_ifp;
1170
1171 #ifdef DEVICE_POLLING
1172         if (ifp->if_capenable & IFCAP_POLLING)
1173                 ether_poll_deregister(ifp);
1174 #endif
1175
1176         /* These should only be active if attach succeeded */
1177         if (device_is_attached(dev)) {
1178                 ether_ifdetach(ifp);
1179                 VGE_LOCK(sc);
1180                 vge_stop(sc);
1181                 VGE_UNLOCK(sc);
1182                 callout_drain(&sc->vge_watchdog);
1183         }
1184         if (sc->vge_miibus)
1185                 device_delete_child(dev, sc->vge_miibus);
1186         bus_generic_detach(dev);
1187
1188         if (sc->vge_intrhand)
1189                 bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1190         if (sc->vge_irq)
1191                 bus_release_resource(dev, SYS_RES_IRQ,
1192                     sc->vge_flags & VGE_FLAG_MSI ? 1 : 0, sc->vge_irq);
1193         if (sc->vge_flags & VGE_FLAG_MSI)
1194                 pci_release_msi(dev);
1195         if (sc->vge_res)
1196                 bus_release_resource(dev, SYS_RES_MEMORY,
1197                     PCIR_BAR(1), sc->vge_res);
1198         if (ifp)
1199                 if_free(ifp);
1200
1201         vge_dma_free(sc);
1202         mtx_destroy(&sc->vge_mtx);
1203
1204         return (0);
1205 }
1206
1207 static void
1208 vge_discard_rxbuf(struct vge_softc *sc, int prod)
1209 {
1210         struct vge_rxdesc *rxd;
1211         int i;
1212
1213         rxd = &sc->vge_cdata.vge_rxdesc[prod];
1214         rxd->rx_desc->vge_sts = 0;
1215         rxd->rx_desc->vge_ctl = 0;
1216
1217         /*
1218          * Note: the manual fails to document the fact that for
1219          * proper opration, the driver needs to replentish the RX
1220          * DMA ring 4 descriptors at a time (rather than one at a
1221          * time, like most chips). We can allocate the new buffers
1222          * but we should not set the OWN bits until we're ready
1223          * to hand back 4 of them in one shot.
1224          */
1225         if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1226                 for (i = VGE_RXCHUNK; i > 0; i--) {
1227                         rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1228                         rxd = rxd->rxd_prev;
1229                 }
1230                 sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1231         }
1232 }
1233
1234 static int
1235 vge_newbuf(struct vge_softc *sc, int prod)
1236 {
1237         struct vge_rxdesc *rxd;
1238         struct mbuf *m;
1239         bus_dma_segment_t segs[1];
1240         bus_dmamap_t map;
1241         int i, nsegs;
1242
1243         m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1244         if (m == NULL)
1245                 return (ENOBUFS);
1246         /*
1247          * This is part of an evil trick to deal with strict-alignment
1248          * architectures. The VIA chip requires RX buffers to be aligned
1249          * on 32-bit boundaries, but that will hose strict-alignment
1250          * architectures. To get around this, we leave some empty space
1251          * at the start of each buffer and for non-strict-alignment hosts,
1252          * we copy the buffer back two bytes to achieve word alignment.
1253          * This is slightly more efficient than allocating a new buffer,
1254          * copying the contents, and discarding the old buffer.
1255          */
1256         m->m_len = m->m_pkthdr.len = MCLBYTES;
1257         m_adj(m, VGE_RX_BUF_ALIGN);
1258
1259         if (bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_rx_tag,
1260             sc->vge_cdata.vge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1261                 m_freem(m);
1262                 return (ENOBUFS);
1263         }
1264         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1265
1266         rxd = &sc->vge_cdata.vge_rxdesc[prod];
1267         if (rxd->rx_m != NULL) {
1268                 bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1269                     BUS_DMASYNC_POSTREAD);
1270                 bus_dmamap_unload(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap);
1271         }
1272         map = rxd->rx_dmamap;
1273         rxd->rx_dmamap = sc->vge_cdata.vge_rx_sparemap;
1274         sc->vge_cdata.vge_rx_sparemap = map;
1275         bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1276             BUS_DMASYNC_PREREAD);
1277         rxd->rx_m = m;
1278
1279         rxd->rx_desc->vge_sts = 0;
1280         rxd->rx_desc->vge_ctl = 0;
1281         rxd->rx_desc->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
1282         rxd->rx_desc->vge_addrhi = htole32(VGE_ADDR_HI(segs[0].ds_addr) |
1283             (VGE_BUFLEN(segs[0].ds_len) << 16) | VGE_RXDESC_I);
1284
1285         /*
1286          * Note: the manual fails to document the fact that for
1287          * proper operation, the driver needs to replenish the RX
1288          * DMA ring 4 descriptors at a time (rather than one at a
1289          * time, like most chips). We can allocate the new buffers
1290          * but we should not set the OWN bits until we're ready
1291          * to hand back 4 of them in one shot.
1292          */
1293         if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1294                 for (i = VGE_RXCHUNK; i > 0; i--) {
1295                         rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1296                         rxd = rxd->rxd_prev;
1297                 }
1298                 sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1299         }
1300
1301         return (0);
1302 }
1303
1304 static int
1305 vge_tx_list_init(struct vge_softc *sc)
1306 {
1307         struct vge_ring_data *rd;
1308         struct vge_txdesc *txd;
1309         int i;
1310
1311         VGE_LOCK_ASSERT(sc);
1312
1313         sc->vge_cdata.vge_tx_prodidx = 0;
1314         sc->vge_cdata.vge_tx_considx = 0;
1315         sc->vge_cdata.vge_tx_cnt = 0;
1316
1317         rd = &sc->vge_rdata;
1318         bzero(rd->vge_tx_ring, VGE_TX_LIST_SZ);
1319         for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1320                 txd = &sc->vge_cdata.vge_txdesc[i];
1321                 txd->tx_m = NULL;
1322                 txd->tx_desc = &rd->vge_tx_ring[i];
1323         }
1324
1325         bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1326             sc->vge_cdata.vge_tx_ring_map,
1327             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1328
1329         return (0);
1330 }
1331
1332 static int
1333 vge_rx_list_init(struct vge_softc *sc)
1334 {
1335         struct vge_ring_data *rd;
1336         struct vge_rxdesc *rxd;
1337         int i;
1338
1339         VGE_LOCK_ASSERT(sc);
1340
1341         sc->vge_cdata.vge_rx_prodidx = 0;
1342         sc->vge_cdata.vge_head = NULL;
1343         sc->vge_cdata.vge_tail = NULL;
1344         sc->vge_cdata.vge_rx_commit = 0;
1345
1346         rd = &sc->vge_rdata;
1347         bzero(rd->vge_rx_ring, VGE_RX_LIST_SZ);
1348         for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1349                 rxd = &sc->vge_cdata.vge_rxdesc[i];
1350                 rxd->rx_m = NULL;
1351                 rxd->rx_desc = &rd->vge_rx_ring[i];
1352                 if (i == 0)
1353                         rxd->rxd_prev =
1354                             &sc->vge_cdata.vge_rxdesc[VGE_RX_DESC_CNT - 1];
1355                 else
1356                         rxd->rxd_prev = &sc->vge_cdata.vge_rxdesc[i - 1];
1357                 if (vge_newbuf(sc, i) != 0)
1358                         return (ENOBUFS);
1359         }
1360
1361         bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1362             sc->vge_cdata.vge_rx_ring_map,
1363             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1364
1365         sc->vge_cdata.vge_rx_commit = 0;
1366
1367         return (0);
1368 }
1369
1370 static void
1371 vge_freebufs(struct vge_softc *sc)
1372 {
1373         struct vge_txdesc *txd;
1374         struct vge_rxdesc *rxd;
1375         struct ifnet *ifp;
1376         int i;
1377
1378         VGE_LOCK_ASSERT(sc);
1379
1380         ifp = sc->vge_ifp;
1381         /*
1382          * Free RX and TX mbufs still in the queues.
1383          */
1384         for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1385                 rxd = &sc->vge_cdata.vge_rxdesc[i];
1386                 if (rxd->rx_m != NULL) {
1387                         bus_dmamap_sync(sc->vge_cdata.vge_rx_tag,
1388                             rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
1389                         bus_dmamap_unload(sc->vge_cdata.vge_rx_tag,
1390                             rxd->rx_dmamap);
1391                         m_freem(rxd->rx_m);
1392                         rxd->rx_m = NULL;
1393                 }
1394         }
1395
1396         for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1397                 txd = &sc->vge_cdata.vge_txdesc[i];
1398                 if (txd->tx_m != NULL) {
1399                         bus_dmamap_sync(sc->vge_cdata.vge_tx_tag,
1400                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1401                         bus_dmamap_unload(sc->vge_cdata.vge_tx_tag,
1402                             txd->tx_dmamap);
1403                         m_freem(txd->tx_m);
1404                         txd->tx_m = NULL;
1405                         if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1406                 }
1407         }
1408 }
1409
1410 #ifndef __NO_STRICT_ALIGNMENT
1411 static __inline void
1412 vge_fixup_rx(struct mbuf *m)
1413 {
1414         int i;
1415         uint16_t *src, *dst;
1416
1417         src = mtod(m, uint16_t *);
1418         dst = src - 1;
1419
1420         for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1421                 *dst++ = *src++;
1422
1423         m->m_data -= ETHER_ALIGN;
1424 }
1425 #endif
1426
1427 /*
1428  * RX handler. We support the reception of jumbo frames that have
1429  * been fragmented across multiple 2K mbuf cluster buffers.
1430  */
1431 static int
1432 vge_rxeof(struct vge_softc *sc, int count)
1433 {
1434         struct mbuf *m;
1435         struct ifnet *ifp;
1436         int prod, prog, total_len;
1437         struct vge_rxdesc *rxd;
1438         struct vge_rx_desc *cur_rx;
1439         uint32_t rxstat, rxctl;
1440
1441         VGE_LOCK_ASSERT(sc);
1442
1443         ifp = sc->vge_ifp;
1444
1445         bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1446             sc->vge_cdata.vge_rx_ring_map,
1447             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1448
1449         prod = sc->vge_cdata.vge_rx_prodidx;
1450         for (prog = 0; count > 0 &&
1451             (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1452             VGE_RX_DESC_INC(prod)) {
1453                 cur_rx = &sc->vge_rdata.vge_rx_ring[prod];
1454                 rxstat = le32toh(cur_rx->vge_sts);
1455                 if ((rxstat & VGE_RDSTS_OWN) != 0)
1456                         break;
1457                 count--;
1458                 prog++;
1459                 rxctl = le32toh(cur_rx->vge_ctl);
1460                 total_len = VGE_RXBYTES(rxstat);
1461                 rxd = &sc->vge_cdata.vge_rxdesc[prod];
1462                 m = rxd->rx_m;
1463
1464                 /*
1465                  * If the 'start of frame' bit is set, this indicates
1466                  * either the first fragment in a multi-fragment receive,
1467                  * or an intermediate fragment. Either way, we want to
1468                  * accumulate the buffers.
1469                  */
1470                 if ((rxstat & VGE_RXPKT_SOF) != 0) {
1471                         if (vge_newbuf(sc, prod) != 0) {
1472                                 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1473                                 VGE_CHAIN_RESET(sc);
1474                                 vge_discard_rxbuf(sc, prod);
1475                                 continue;
1476                         }
1477                         m->m_len = MCLBYTES - VGE_RX_BUF_ALIGN;
1478                         if (sc->vge_cdata.vge_head == NULL) {
1479                                 sc->vge_cdata.vge_head = m;
1480                                 sc->vge_cdata.vge_tail = m;
1481                         } else {
1482                                 m->m_flags &= ~M_PKTHDR;
1483                                 sc->vge_cdata.vge_tail->m_next = m;
1484                                 sc->vge_cdata.vge_tail = m;
1485                         }
1486                         continue;
1487                 }
1488
1489                 /*
1490                  * Bad/error frames will have the RXOK bit cleared.
1491                  * However, there's one error case we want to allow:
1492                  * if a VLAN tagged frame arrives and the chip can't
1493                  * match it against the CAM filter, it considers this
1494                  * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1495                  * We don't want to drop the frame though: our VLAN
1496                  * filtering is done in software.
1497                  * We also want to receive bad-checksummed frames and
1498                  * and frames with bad-length.
1499                  */
1500                 if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
1501                     (rxstat & (VGE_RDSTS_VIDM | VGE_RDSTS_RLERR |
1502                     VGE_RDSTS_CSUMERR)) == 0) {
1503                         if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1504                         /*
1505                          * If this is part of a multi-fragment packet,
1506                          * discard all the pieces.
1507                          */
1508                         VGE_CHAIN_RESET(sc);
1509                         vge_discard_rxbuf(sc, prod);
1510                         continue;
1511                 }
1512
1513                 if (vge_newbuf(sc, prod) != 0) {
1514                         if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1515                         VGE_CHAIN_RESET(sc);
1516                         vge_discard_rxbuf(sc, prod);
1517                         continue;
1518                 }
1519
1520                 /* Chain received mbufs. */
1521                 if (sc->vge_cdata.vge_head != NULL) {
1522                         m->m_len = total_len % (MCLBYTES - VGE_RX_BUF_ALIGN);
1523                         /*
1524                          * Special case: if there's 4 bytes or less
1525                          * in this buffer, the mbuf can be discarded:
1526                          * the last 4 bytes is the CRC, which we don't
1527                          * care about anyway.
1528                          */
1529                         if (m->m_len <= ETHER_CRC_LEN) {
1530                                 sc->vge_cdata.vge_tail->m_len -=
1531                                     (ETHER_CRC_LEN - m->m_len);
1532                                 m_freem(m);
1533                         } else {
1534                                 m->m_len -= ETHER_CRC_LEN;
1535                                 m->m_flags &= ~M_PKTHDR;
1536                                 sc->vge_cdata.vge_tail->m_next = m;
1537                         }
1538                         m = sc->vge_cdata.vge_head;
1539                         m->m_flags |= M_PKTHDR;
1540                         m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1541                 } else {
1542                         m->m_flags |= M_PKTHDR;
1543                         m->m_pkthdr.len = m->m_len =
1544                             (total_len - ETHER_CRC_LEN);
1545                 }
1546
1547 #ifndef __NO_STRICT_ALIGNMENT
1548                 vge_fixup_rx(m);
1549 #endif
1550                 m->m_pkthdr.rcvif = ifp;
1551
1552                 /* Do RX checksumming if enabled */
1553                 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
1554                     (rxctl & VGE_RDCTL_FRAG) == 0) {
1555                         /* Check IP header checksum */
1556                         if ((rxctl & VGE_RDCTL_IPPKT) != 0)
1557                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1558                         if ((rxctl & VGE_RDCTL_IPCSUMOK) != 0)
1559                                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1560
1561                         /* Check TCP/UDP checksum */
1562                         if (rxctl & (VGE_RDCTL_TCPPKT | VGE_RDCTL_UDPPKT) &&
1563                             rxctl & VGE_RDCTL_PROTOCSUMOK) {
1564                                 m->m_pkthdr.csum_flags |=
1565                                     CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1566                                 m->m_pkthdr.csum_data = 0xffff;
1567                         }
1568                 }
1569
1570                 if ((rxstat & VGE_RDSTS_VTAG) != 0) {
1571                         /*
1572                          * The 32-bit rxctl register is stored in little-endian.
1573                          * However, the 16-bit vlan tag is stored in big-endian,
1574                          * so we have to byte swap it.
1575                          */
1576                         m->m_pkthdr.ether_vtag =
1577                             bswap16(rxctl & VGE_RDCTL_VLANID);
1578                         m->m_flags |= M_VLANTAG;
1579                 }
1580
1581                 VGE_UNLOCK(sc);
1582                 (*ifp->if_input)(ifp, m);
1583                 VGE_LOCK(sc);
1584                 sc->vge_cdata.vge_head = NULL;
1585                 sc->vge_cdata.vge_tail = NULL;
1586         }
1587
1588         if (prog > 0) {
1589                 sc->vge_cdata.vge_rx_prodidx = prod;
1590                 bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1591                     sc->vge_cdata.vge_rx_ring_map,
1592                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1593                 /* Update residue counter. */
1594                 if (sc->vge_cdata.vge_rx_commit != 0) {
1595                         CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT,
1596                             sc->vge_cdata.vge_rx_commit);
1597                         sc->vge_cdata.vge_rx_commit = 0;
1598                 }
1599         }
1600         return (prog);
1601 }
1602
1603 static void
1604 vge_txeof(struct vge_softc *sc)
1605 {
1606         struct ifnet *ifp;
1607         struct vge_tx_desc *cur_tx;
1608         struct vge_txdesc *txd;
1609         uint32_t txstat;
1610         int cons, prod;
1611
1612         VGE_LOCK_ASSERT(sc);
1613
1614         ifp = sc->vge_ifp;
1615
1616         if (sc->vge_cdata.vge_tx_cnt == 0)
1617                 return;
1618
1619         bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1620             sc->vge_cdata.vge_tx_ring_map,
1621             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1622
1623         /*
1624          * Go through our tx list and free mbufs for those
1625          * frames that have been transmitted.
1626          */
1627         cons = sc->vge_cdata.vge_tx_considx;
1628         prod = sc->vge_cdata.vge_tx_prodidx;
1629         for (; cons != prod; VGE_TX_DESC_INC(cons)) {
1630                 cur_tx = &sc->vge_rdata.vge_tx_ring[cons];
1631                 txstat = le32toh(cur_tx->vge_sts);
1632                 if ((txstat & VGE_TDSTS_OWN) != 0)
1633                         break;
1634                 sc->vge_cdata.vge_tx_cnt--;
1635                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1636
1637                 txd = &sc->vge_cdata.vge_txdesc[cons];
1638                 bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1639                     BUS_DMASYNC_POSTWRITE);
1640                 bus_dmamap_unload(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap);
1641
1642                 KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1643                     __func__));
1644                 m_freem(txd->tx_m);
1645                 txd->tx_m = NULL;
1646                 txd->tx_desc->vge_frag[0].vge_addrhi = 0;
1647         }
1648         bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1649             sc->vge_cdata.vge_tx_ring_map,
1650             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1651         sc->vge_cdata.vge_tx_considx = cons;
1652         if (sc->vge_cdata.vge_tx_cnt == 0)
1653                 sc->vge_timer = 0;
1654 }
1655
1656 static void
1657 vge_link_statchg(void *xsc)
1658 {
1659         struct vge_softc *sc;
1660         struct ifnet *ifp;
1661         uint8_t physts;
1662
1663         sc = xsc;
1664         ifp = sc->vge_ifp;
1665         VGE_LOCK_ASSERT(sc);
1666
1667         physts = CSR_READ_1(sc, VGE_PHYSTS0);
1668         if ((physts & VGE_PHYSTS_RESETSTS) == 0) {
1669                 if ((physts & VGE_PHYSTS_LINK) == 0) {
1670                         sc->vge_flags &= ~VGE_FLAG_LINK;
1671                         if_link_state_change(sc->vge_ifp,
1672                             LINK_STATE_DOWN);
1673                 } else {
1674                         sc->vge_flags |= VGE_FLAG_LINK;
1675                         if_link_state_change(sc->vge_ifp,
1676                             LINK_STATE_UP);
1677                         CSR_WRITE_1(sc, VGE_CRC2, VGE_CR2_FDX_TXFLOWCTL_ENABLE |
1678                             VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1679                         if ((physts & VGE_PHYSTS_FDX) != 0) {
1680                                 if ((physts & VGE_PHYSTS_TXFLOWCAP) != 0)
1681                                         CSR_WRITE_1(sc, VGE_CRS2,
1682                                             VGE_CR2_FDX_TXFLOWCTL_ENABLE);
1683                                 if ((physts & VGE_PHYSTS_RXFLOWCAP) != 0)
1684                                         CSR_WRITE_1(sc, VGE_CRS2,
1685                                             VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1686                         }
1687                         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1688                                 vge_start_locked(ifp);
1689                 }
1690         }
1691         /*
1692          * Restart MII auto-polling because link state change interrupt
1693          * will disable it.
1694          */
1695         vge_miipoll_start(sc);
1696 }
1697
1698 #ifdef DEVICE_POLLING
1699 static int
1700 vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1701 {
1702         struct vge_softc *sc = ifp->if_softc;
1703         int rx_npkts = 0;
1704
1705         VGE_LOCK(sc);
1706         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1707                 goto done;
1708
1709         rx_npkts = vge_rxeof(sc, count);
1710         vge_txeof(sc);
1711
1712         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1713                 vge_start_locked(ifp);
1714
1715         if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1716                 uint32_t       status;
1717                 status = CSR_READ_4(sc, VGE_ISR);
1718                 if (status == 0xFFFFFFFF)
1719                         goto done;
1720                 if (status)
1721                         CSR_WRITE_4(sc, VGE_ISR, status);
1722
1723                 /*
1724                  * XXX check behaviour on receiver stalls.
1725                  */
1726
1727                 if (status & VGE_ISR_TXDMA_STALL ||
1728                     status & VGE_ISR_RXDMA_STALL) {
1729                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1730                         vge_init_locked(sc);
1731                 }
1732
1733                 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1734                         vge_rxeof(sc, count);
1735                         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1736                         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1737                 }
1738         }
1739 done:
1740         VGE_UNLOCK(sc);
1741         return (rx_npkts);
1742 }
1743 #endif /* DEVICE_POLLING */
1744
1745 static void
1746 vge_intr(void *arg)
1747 {
1748         struct vge_softc *sc;
1749         struct ifnet *ifp;
1750         uint32_t status;
1751
1752         sc = arg;
1753         VGE_LOCK(sc);
1754
1755         ifp = sc->vge_ifp;
1756         if ((sc->vge_flags & VGE_FLAG_SUSPENDED) != 0 ||
1757             (ifp->if_flags & IFF_UP) == 0) {
1758                 VGE_UNLOCK(sc);
1759                 return;
1760         }
1761
1762 #ifdef DEVICE_POLLING
1763         if  (ifp->if_capenable & IFCAP_POLLING) {
1764                 status = CSR_READ_4(sc, VGE_ISR);
1765                 CSR_WRITE_4(sc, VGE_ISR, status);
1766                 if (status != 0xFFFFFFFF && (status & VGE_ISR_LINKSTS) != 0)
1767                         vge_link_statchg(sc);
1768                 VGE_UNLOCK(sc);
1769                 return;
1770         }
1771 #endif
1772
1773         /* Disable interrupts */
1774         CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1775         status = CSR_READ_4(sc, VGE_ISR);
1776         CSR_WRITE_4(sc, VGE_ISR, status | VGE_ISR_HOLDOFF_RELOAD);
1777         /* If the card has gone away the read returns 0xffff. */
1778         if (status == 0xFFFFFFFF || (status & VGE_INTRS) == 0)
1779                 goto done;
1780         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1781                 if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1782                         vge_rxeof(sc, VGE_RX_DESC_CNT);
1783                 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1784                         vge_rxeof(sc, VGE_RX_DESC_CNT);
1785                         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1786                         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1787                 }
1788
1789                 if (status & (VGE_ISR_TXOK0|VGE_ISR_TXOK_HIPRIO))
1790                         vge_txeof(sc);
1791
1792                 if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) {
1793                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1794                         vge_init_locked(sc);
1795                 }
1796
1797                 if (status & VGE_ISR_LINKSTS)
1798                         vge_link_statchg(sc);
1799         }
1800 done:
1801         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1802                 /* Re-enable interrupts */
1803                 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1804
1805                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1806                         vge_start_locked(ifp);
1807         }
1808         VGE_UNLOCK(sc);
1809 }
1810
1811 static int
1812 vge_encap(struct vge_softc *sc, struct mbuf **m_head)
1813 {
1814         struct vge_txdesc *txd;
1815         struct vge_tx_frag *frag;
1816         struct mbuf *m;
1817         bus_dma_segment_t txsegs[VGE_MAXTXSEGS];
1818         int error, i, nsegs, padlen;
1819         uint32_t cflags;
1820
1821         VGE_LOCK_ASSERT(sc);
1822
1823         M_ASSERTPKTHDR((*m_head));
1824
1825         /* Argh. This chip does not autopad short frames. */
1826         if ((*m_head)->m_pkthdr.len < VGE_MIN_FRAMELEN) {
1827                 m = *m_head;
1828                 padlen = VGE_MIN_FRAMELEN - m->m_pkthdr.len;
1829                 if (M_WRITABLE(m) == 0) {
1830                         /* Get a writable copy. */
1831                         m = m_dup(*m_head, M_NOWAIT);
1832                         m_freem(*m_head);
1833                         if (m == NULL) {
1834                                 *m_head = NULL;
1835                                 return (ENOBUFS);
1836                         }
1837                         *m_head = m;
1838                 }
1839                 if (M_TRAILINGSPACE(m) < padlen) {
1840                         m = m_defrag(m, M_NOWAIT);
1841                         if (m == NULL) {
1842                                 m_freem(*m_head);
1843                                 *m_head = NULL;
1844                                 return (ENOBUFS);
1845                         }
1846                 }
1847                 /*
1848                  * Manually pad short frames, and zero the pad space
1849                  * to avoid leaking data.
1850                  */
1851                 bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1852                 m->m_pkthdr.len += padlen;
1853                 m->m_len = m->m_pkthdr.len;
1854                 *m_head = m;
1855         }
1856
1857         txd = &sc->vge_cdata.vge_txdesc[sc->vge_cdata.vge_tx_prodidx];
1858
1859         error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1860             txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1861         if (error == EFBIG) {
1862                 m = m_collapse(*m_head, M_NOWAIT, VGE_MAXTXSEGS);
1863                 if (m == NULL) {
1864                         m_freem(*m_head);
1865                         *m_head = NULL;
1866                         return (ENOMEM);
1867                 }
1868                 *m_head = m;
1869                 error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1870                     txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1871                 if (error != 0) {
1872                         m_freem(*m_head);
1873                         *m_head = NULL;
1874                         return (error);
1875                 }
1876         } else if (error != 0)
1877                 return (error);
1878         bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1879             BUS_DMASYNC_PREWRITE);
1880
1881         m = *m_head;
1882         cflags = 0;
1883
1884         /* Configure checksum offload. */
1885         if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1886                 cflags |= VGE_TDCTL_IPCSUM;
1887         if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1888                 cflags |= VGE_TDCTL_TCPCSUM;
1889         if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1890                 cflags |= VGE_TDCTL_UDPCSUM;
1891
1892         /* Configure VLAN. */
1893         if ((m->m_flags & M_VLANTAG) != 0)
1894                 cflags |= m->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG;
1895         txd->tx_desc->vge_sts = htole32(m->m_pkthdr.len << 16);
1896         /*
1897          * XXX
1898          * Velocity family seems to support TSO but no information
1899          * for MSS configuration is available. Also the number of
1900          * fragments supported by a descriptor is too small to hold
1901          * entire 64KB TCP/IP segment. Maybe VGE_TD_LS_MOF,
1902          * VGE_TD_LS_SOF and VGE_TD_LS_EOF could be used to build
1903          * longer chain of buffers but no additional information is
1904          * available.
1905          *
1906          * When telling the chip how many segments there are, we
1907          * must use nsegs + 1 instead of just nsegs. Darned if I
1908          * know why. This also means we can't use the last fragment
1909          * field of Tx descriptor.
1910          */
1911         txd->tx_desc->vge_ctl = htole32(cflags | ((nsegs + 1) << 28) |
1912             VGE_TD_LS_NORM);
1913         for (i = 0; i < nsegs; i++) {
1914                 frag = &txd->tx_desc->vge_frag[i];
1915                 frag->vge_addrlo = htole32(VGE_ADDR_LO(txsegs[i].ds_addr));
1916                 frag->vge_addrhi = htole32(VGE_ADDR_HI(txsegs[i].ds_addr) |
1917                     (VGE_BUFLEN(txsegs[i].ds_len) << 16));
1918         }
1919
1920         sc->vge_cdata.vge_tx_cnt++;
1921         VGE_TX_DESC_INC(sc->vge_cdata.vge_tx_prodidx);
1922
1923         /*
1924          * Finally request interrupt and give the first descriptor
1925          * ownership to hardware.
1926          */
1927         txd->tx_desc->vge_ctl |= htole32(VGE_TDCTL_TIC);
1928         txd->tx_desc->vge_sts |= htole32(VGE_TDSTS_OWN);
1929         txd->tx_m = m;
1930
1931         return (0);
1932 }
1933
1934 /*
1935  * Main transmit routine.
1936  */
1937
1938 static void
1939 vge_start(struct ifnet *ifp)
1940 {
1941         struct vge_softc *sc;
1942
1943         sc = ifp->if_softc;
1944         VGE_LOCK(sc);
1945         vge_start_locked(ifp);
1946         VGE_UNLOCK(sc);
1947 }
1948
1949
1950 static void
1951 vge_start_locked(struct ifnet *ifp)
1952 {
1953         struct vge_softc *sc;
1954         struct vge_txdesc *txd;
1955         struct mbuf *m_head;
1956         int enq, idx;
1957
1958         sc = ifp->if_softc;
1959
1960         VGE_LOCK_ASSERT(sc);
1961
1962         if ((sc->vge_flags & VGE_FLAG_LINK) == 0 ||
1963             (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1964             IFF_DRV_RUNNING)
1965                 return;
1966
1967         idx = sc->vge_cdata.vge_tx_prodidx;
1968         VGE_TX_DESC_DEC(idx);
1969         for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1970             sc->vge_cdata.vge_tx_cnt < VGE_TX_DESC_CNT - 1; ) {
1971                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1972                 if (m_head == NULL)
1973                         break;
1974                 /*
1975                  * Pack the data into the transmit ring. If we
1976                  * don't have room, set the OACTIVE flag and wait
1977                  * for the NIC to drain the ring.
1978                  */
1979                 if (vge_encap(sc, &m_head)) {
1980                         if (m_head == NULL)
1981                                 break;
1982                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1983                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1984                         break;
1985                 }
1986
1987                 txd = &sc->vge_cdata.vge_txdesc[idx];
1988                 txd->tx_desc->vge_frag[0].vge_addrhi |= htole32(VGE_TXDESC_Q);
1989                 VGE_TX_DESC_INC(idx);
1990
1991                 enq++;
1992                 /*
1993                  * If there's a BPF listener, bounce a copy of this frame
1994                  * to him.
1995                  */
1996                 ETHER_BPF_MTAP(ifp, m_head);
1997         }
1998
1999         if (enq > 0) {
2000                 bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
2001                     sc->vge_cdata.vge_tx_ring_map,
2002                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2003                 /* Issue a transmit command. */
2004                 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
2005                 /*
2006                  * Set a timeout in case the chip goes out to lunch.
2007                  */
2008                 sc->vge_timer = 5;
2009         }
2010 }
2011
2012 static void
2013 vge_init(void *xsc)
2014 {
2015         struct vge_softc *sc = xsc;
2016
2017         VGE_LOCK(sc);
2018         vge_init_locked(sc);
2019         VGE_UNLOCK(sc);
2020 }
2021
2022 static void
2023 vge_init_locked(struct vge_softc *sc)
2024 {
2025         struct ifnet *ifp = sc->vge_ifp;
2026         int error, i;
2027
2028         VGE_LOCK_ASSERT(sc);
2029
2030         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2031                 return;
2032
2033         /*
2034          * Cancel pending I/O and free all RX/TX buffers.
2035          */
2036         vge_stop(sc);
2037         vge_reset(sc);
2038         vge_miipoll_start(sc);
2039
2040         /*
2041          * Initialize the RX and TX descriptors and mbufs.
2042          */
2043
2044         error = vge_rx_list_init(sc);
2045         if (error != 0) {
2046                 device_printf(sc->vge_dev, "no memory for Rx buffers.\n");
2047                 return;
2048         }
2049         vge_tx_list_init(sc);
2050         /* Clear MAC statistics. */
2051         vge_stats_clear(sc);
2052         /* Set our station address */
2053         for (i = 0; i < ETHER_ADDR_LEN; i++)
2054                 CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
2055
2056         /*
2057          * Set receive FIFO threshold. Also allow transmission and
2058          * reception of VLAN tagged frames.
2059          */
2060         CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
2061         CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES);
2062
2063         /* Set DMA burst length */
2064         CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
2065         CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
2066
2067         CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
2068
2069         /* Set collision backoff algorithm */
2070         CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
2071             VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
2072         CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
2073
2074         /* Disable LPSEL field in priority resolution */
2075         CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
2076
2077         /*
2078          * Load the addresses of the DMA queues into the chip.
2079          * Note that we only use one transmit queue.
2080          */
2081
2082         CSR_WRITE_4(sc, VGE_TXDESC_HIADDR,
2083             VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr));
2084         CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
2085             VGE_ADDR_LO(sc->vge_rdata.vge_tx_ring_paddr));
2086         CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
2087
2088         CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
2089             VGE_ADDR_LO(sc->vge_rdata.vge_rx_ring_paddr));
2090         CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
2091         CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
2092
2093         /* Configure interrupt moderation. */
2094         vge_intr_holdoff(sc);
2095
2096         /* Enable and wake up the RX descriptor queue */
2097         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
2098         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
2099
2100         /* Enable the TX descriptor queue */
2101         CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
2102
2103         /* Init the cam filter. */
2104         vge_cam_clear(sc);
2105
2106         /* Set up receiver filter. */
2107         vge_rxfilter(sc);
2108         vge_setvlan(sc);
2109
2110         /* Initialize pause timer. */
2111         CSR_WRITE_2(sc, VGE_TX_PAUSE_TIMER, 0xFFFF);
2112         /*
2113          * Initialize flow control parameters.
2114          *  TX XON high threshold : 48
2115          *  TX pause low threshold : 24
2116          *  Disable hald-duplex flow control
2117          */
2118         CSR_WRITE_1(sc, VGE_CRC2, 0xFF);
2119         CSR_WRITE_1(sc, VGE_CRS2, VGE_CR2_XON_ENABLE | 0x0B);
2120
2121         /* Enable jumbo frame reception (if desired) */
2122
2123         /* Start the MAC. */
2124         CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
2125         CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
2126         CSR_WRITE_1(sc, VGE_CRS0,
2127             VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
2128
2129 #ifdef DEVICE_POLLING
2130         /*
2131          * Disable interrupts except link state change if we are polling.
2132          */
2133         if (ifp->if_capenable & IFCAP_POLLING) {
2134                 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2135         } else  /* otherwise ... */
2136 #endif
2137         {
2138         /*
2139          * Enable interrupts.
2140          */
2141                 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2142         }
2143         CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2144         CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2145
2146         sc->vge_flags &= ~VGE_FLAG_LINK;
2147         vge_ifmedia_upd_locked(sc);
2148
2149         ifp->if_drv_flags |= IFF_DRV_RUNNING;
2150         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2151         callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2152 }
2153
2154 /*
2155  * Set media options.
2156  */
2157 static int
2158 vge_ifmedia_upd(struct ifnet *ifp)
2159 {
2160         struct vge_softc *sc;
2161         int error;
2162
2163         sc = ifp->if_softc;
2164         VGE_LOCK(sc);
2165         error = vge_ifmedia_upd_locked(sc);
2166         VGE_UNLOCK(sc);
2167
2168         return (error);
2169 }
2170
2171 static int
2172 vge_ifmedia_upd_locked(struct vge_softc *sc)
2173 {
2174         struct mii_data *mii;
2175         struct mii_softc *miisc;
2176         int error;
2177
2178         mii = device_get_softc(sc->vge_miibus);
2179         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2180                 PHY_RESET(miisc);
2181         vge_setmedia(sc);
2182         error = mii_mediachg(mii);
2183
2184         return (error);
2185 }
2186
2187 /*
2188  * Report current media status.
2189  */
2190 static void
2191 vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2192 {
2193         struct vge_softc *sc;
2194         struct mii_data *mii;
2195
2196         sc = ifp->if_softc;
2197         mii = device_get_softc(sc->vge_miibus);
2198
2199         VGE_LOCK(sc);
2200         if ((ifp->if_flags & IFF_UP) == 0) {
2201                 VGE_UNLOCK(sc);
2202                 return;
2203         }
2204         mii_pollstat(mii);
2205         ifmr->ifm_active = mii->mii_media_active;
2206         ifmr->ifm_status = mii->mii_media_status;
2207         VGE_UNLOCK(sc);
2208 }
2209
2210 static void
2211 vge_setmedia(struct vge_softc *sc)
2212 {
2213         struct mii_data *mii;
2214         struct ifmedia_entry *ife;
2215
2216         mii = device_get_softc(sc->vge_miibus);
2217         ife = mii->mii_media.ifm_cur;
2218
2219         /*
2220          * If the user manually selects a media mode, we need to turn
2221          * on the forced MAC mode bit in the DIAGCTL register. If the
2222          * user happens to choose a full duplex mode, we also need to
2223          * set the 'force full duplex' bit. This applies only to
2224          * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2225          * mode is disabled, and in 1000baseT mode, full duplex is
2226          * always implied, so we turn on the forced mode bit but leave
2227          * the FDX bit cleared.
2228          */
2229
2230         switch (IFM_SUBTYPE(ife->ifm_media)) {
2231         case IFM_AUTO:
2232                 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2233                 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2234                 break;
2235         case IFM_1000_T:
2236                 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2237                 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2238                 break;
2239         case IFM_100_TX:
2240         case IFM_10_T:
2241                 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2242                 if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2243                         CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2244                 } else {
2245                         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2246                 }
2247                 break;
2248         default:
2249                 device_printf(sc->vge_dev, "unknown media type: %x\n",
2250                     IFM_SUBTYPE(ife->ifm_media));
2251                 break;
2252         }
2253 }
2254
2255 static int
2256 vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2257 {
2258         struct vge_softc *sc = ifp->if_softc;
2259         struct ifreq *ifr = (struct ifreq *) data;
2260         struct mii_data *mii;
2261         int error = 0, mask;
2262
2263         switch (command) {
2264         case SIOCSIFMTU:
2265                 VGE_LOCK(sc);
2266                 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > VGE_JUMBO_MTU)
2267                         error = EINVAL;
2268                 else if (ifp->if_mtu != ifr->ifr_mtu) {
2269                         if (ifr->ifr_mtu > ETHERMTU &&
2270                             (sc->vge_flags & VGE_FLAG_JUMBO) == 0)
2271                                 error = EINVAL;
2272                         else
2273                                 ifp->if_mtu = ifr->ifr_mtu;
2274                 }
2275                 VGE_UNLOCK(sc);
2276                 break;
2277         case SIOCSIFFLAGS:
2278                 VGE_LOCK(sc);
2279                 if ((ifp->if_flags & IFF_UP) != 0) {
2280                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2281                             ((ifp->if_flags ^ sc->vge_if_flags) &
2282                             (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2283                                 vge_rxfilter(sc);
2284                         else
2285                                 vge_init_locked(sc);
2286                 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2287                         vge_stop(sc);
2288                 sc->vge_if_flags = ifp->if_flags;
2289                 VGE_UNLOCK(sc);
2290                 break;
2291         case SIOCADDMULTI:
2292         case SIOCDELMULTI:
2293                 VGE_LOCK(sc);
2294                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2295                         vge_rxfilter(sc);
2296                 VGE_UNLOCK(sc);
2297                 break;
2298         case SIOCGIFMEDIA:
2299         case SIOCSIFMEDIA:
2300                 mii = device_get_softc(sc->vge_miibus);
2301                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2302                 break;
2303         case SIOCSIFCAP:
2304                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2305 #ifdef DEVICE_POLLING
2306                 if (mask & IFCAP_POLLING) {
2307                         if (ifr->ifr_reqcap & IFCAP_POLLING) {
2308                                 error = ether_poll_register(vge_poll, ifp);
2309                                 if (error)
2310                                         return (error);
2311                                 VGE_LOCK(sc);
2312                                         /* Disable interrupts */
2313                                 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2314                                 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2315                                 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2316                                 ifp->if_capenable |= IFCAP_POLLING;
2317                                 VGE_UNLOCK(sc);
2318                         } else {
2319                                 error = ether_poll_deregister(ifp);
2320                                 /* Enable interrupts. */
2321                                 VGE_LOCK(sc);
2322                                 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2323                                 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2324                                 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2325                                 ifp->if_capenable &= ~IFCAP_POLLING;
2326                                 VGE_UNLOCK(sc);
2327                         }
2328                 }
2329 #endif /* DEVICE_POLLING */
2330                 VGE_LOCK(sc);
2331                 if ((mask & IFCAP_TXCSUM) != 0 &&
2332                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2333                         ifp->if_capenable ^= IFCAP_TXCSUM;
2334                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2335                                 ifp->if_hwassist |= VGE_CSUM_FEATURES;
2336                         else
2337                                 ifp->if_hwassist &= ~VGE_CSUM_FEATURES;
2338                 }
2339                 if ((mask & IFCAP_RXCSUM) != 0 &&
2340                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2341                         ifp->if_capenable ^= IFCAP_RXCSUM;
2342                 if ((mask & IFCAP_WOL_UCAST) != 0 &&
2343                     (ifp->if_capabilities & IFCAP_WOL_UCAST) != 0)
2344                         ifp->if_capenable ^= IFCAP_WOL_UCAST;
2345                 if ((mask & IFCAP_WOL_MCAST) != 0 &&
2346                     (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2347                         ifp->if_capenable ^= IFCAP_WOL_MCAST;
2348                 if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2349                     (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2350                         ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2351                 if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2352                     (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2353                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2354                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2355                     (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
2356                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2357                         vge_setvlan(sc);
2358                 }
2359                 VGE_UNLOCK(sc);
2360                 VLAN_CAPABILITIES(ifp);
2361                 break;
2362         default:
2363                 error = ether_ioctl(ifp, command, data);
2364                 break;
2365         }
2366
2367         return (error);
2368 }
2369
2370 static void
2371 vge_watchdog(void *arg)
2372 {
2373         struct vge_softc *sc;
2374         struct ifnet *ifp;
2375
2376         sc = arg;
2377         VGE_LOCK_ASSERT(sc);
2378         vge_stats_update(sc);
2379         callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2380         if (sc->vge_timer == 0 || --sc->vge_timer > 0)
2381                 return;
2382
2383         ifp = sc->vge_ifp;
2384         if_printf(ifp, "watchdog timeout\n");
2385         if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2386
2387         vge_txeof(sc);
2388         vge_rxeof(sc, VGE_RX_DESC_CNT);
2389
2390         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2391         vge_init_locked(sc);
2392 }
2393
2394 /*
2395  * Stop the adapter and free any mbufs allocated to the
2396  * RX and TX lists.
2397  */
2398 static void
2399 vge_stop(struct vge_softc *sc)
2400 {
2401         struct ifnet *ifp;
2402
2403         VGE_LOCK_ASSERT(sc);
2404         ifp = sc->vge_ifp;
2405         sc->vge_timer = 0;
2406         callout_stop(&sc->vge_watchdog);
2407
2408         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2409
2410         CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2411         CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2412         CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2413         CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2414         CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2415         CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2416
2417         vge_stats_update(sc);
2418         VGE_CHAIN_RESET(sc);
2419         vge_txeof(sc);
2420         vge_freebufs(sc);
2421 }
2422
2423 /*
2424  * Device suspend routine.  Stop the interface and save some PCI
2425  * settings in case the BIOS doesn't restore them properly on
2426  * resume.
2427  */
2428 static int
2429 vge_suspend(device_t dev)
2430 {
2431         struct vge_softc *sc;
2432
2433         sc = device_get_softc(dev);
2434
2435         VGE_LOCK(sc);
2436         vge_stop(sc);
2437         vge_setwol(sc);
2438         sc->vge_flags |= VGE_FLAG_SUSPENDED;
2439         VGE_UNLOCK(sc);
2440
2441         return (0);
2442 }
2443
2444 /*
2445  * Device resume routine.  Restore some PCI settings in case the BIOS
2446  * doesn't, re-enable busmastering, and restart the interface if
2447  * appropriate.
2448  */
2449 static int
2450 vge_resume(device_t dev)
2451 {
2452         struct vge_softc *sc;
2453         struct ifnet *ifp;
2454         uint16_t pmstat;
2455
2456         sc = device_get_softc(dev);
2457         VGE_LOCK(sc);
2458         if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0) {
2459                 /* Disable PME and clear PME status. */
2460                 pmstat = pci_read_config(sc->vge_dev,
2461                     sc->vge_pmcap + PCIR_POWER_STATUS, 2);
2462                 if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2463                         pmstat &= ~PCIM_PSTAT_PMEENABLE;
2464                         pci_write_config(sc->vge_dev,
2465                             sc->vge_pmcap + PCIR_POWER_STATUS, pmstat, 2);
2466                 }
2467         }
2468         vge_clrwol(sc);
2469         /* Restart MII auto-polling. */
2470         vge_miipoll_start(sc);
2471         ifp = sc->vge_ifp;
2472         /* Reinitialize interface if necessary. */
2473         if ((ifp->if_flags & IFF_UP) != 0) {
2474                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2475                 vge_init_locked(sc);
2476         }
2477         sc->vge_flags &= ~VGE_FLAG_SUSPENDED;
2478         VGE_UNLOCK(sc);
2479
2480         return (0);
2481 }
2482
2483 /*
2484  * Stop all chip I/O so that the kernel's probe routines don't
2485  * get confused by errant DMAs when rebooting.
2486  */
2487 static int
2488 vge_shutdown(device_t dev)
2489 {
2490
2491         return (vge_suspend(dev));
2492 }
2493
2494 #define VGE_SYSCTL_STAT_ADD32(c, h, n, p, d)    \
2495             SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2496
2497 static void
2498 vge_sysctl_node(struct vge_softc *sc)
2499 {
2500         struct sysctl_ctx_list *ctx;
2501         struct sysctl_oid_list *child, *parent;
2502         struct sysctl_oid *tree;
2503         struct vge_hw_stats *stats;
2504
2505         stats = &sc->vge_stats;
2506         ctx = device_get_sysctl_ctx(sc->vge_dev);
2507         child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vge_dev));
2508
2509         SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_holdoff",
2510             CTLFLAG_RW, &sc->vge_int_holdoff, 0, "interrupt holdoff");
2511         SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_coal_pkt",
2512             CTLFLAG_RW, &sc->vge_rx_coal_pkt, 0, "rx coalescing packet");
2513         SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_coal_pkt",
2514             CTLFLAG_RW, &sc->vge_tx_coal_pkt, 0, "tx coalescing packet");
2515
2516         /* Pull in device tunables. */
2517         sc->vge_int_holdoff = VGE_INT_HOLDOFF_DEFAULT;
2518         resource_int_value(device_get_name(sc->vge_dev),
2519             device_get_unit(sc->vge_dev), "int_holdoff", &sc->vge_int_holdoff);
2520         sc->vge_rx_coal_pkt = VGE_RX_COAL_PKT_DEFAULT;
2521         resource_int_value(device_get_name(sc->vge_dev),
2522             device_get_unit(sc->vge_dev), "rx_coal_pkt", &sc->vge_rx_coal_pkt);
2523         sc->vge_tx_coal_pkt = VGE_TX_COAL_PKT_DEFAULT;
2524         resource_int_value(device_get_name(sc->vge_dev),
2525             device_get_unit(sc->vge_dev), "tx_coal_pkt", &sc->vge_tx_coal_pkt);
2526
2527         tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2528             NULL, "VGE statistics");
2529         parent = SYSCTL_CHILDREN(tree);
2530
2531         /* Rx statistics. */
2532         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
2533             NULL, "RX MAC statistics");
2534         child = SYSCTL_CHILDREN(tree);
2535         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames",
2536             &stats->rx_frames, "frames");
2537         VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2538             &stats->rx_good_frames, "Good frames");
2539         VGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2540             &stats->rx_fifo_oflows, "FIFO overflows");
2541         VGE_SYSCTL_STAT_ADD32(ctx, child, "runts",
2542             &stats->rx_runts, "Too short frames");
2543         VGE_SYSCTL_STAT_ADD32(ctx, child, "runts_errs",
2544             &stats->rx_runts_errs, "Too short frames with errors");
2545         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2546             &stats->rx_pkts_64, "64 bytes frames");
2547         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2548             &stats->rx_pkts_65_127, "65 to 127 bytes frames");
2549         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2550             &stats->rx_pkts_128_255, "128 to 255 bytes frames");
2551         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2552             &stats->rx_pkts_256_511, "256 to 511 bytes frames");
2553         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2554             &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
2555         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2556             &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
2557         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
2558             &stats->rx_pkts_1519_max, "1519 to max frames");
2559         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max_errs",
2560             &stats->rx_pkts_1519_max_errs, "1519 to max frames with error");
2561         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2562             &stats->rx_jumbos, "Jumbo frames");
2563         VGE_SYSCTL_STAT_ADD32(ctx, child, "crcerrs",
2564             &stats->rx_crcerrs, "CRC errors");
2565         VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2566             &stats->rx_pause_frames, "CRC errors");
2567         VGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2568             &stats->rx_alignerrs, "Alignment errors");
2569         VGE_SYSCTL_STAT_ADD32(ctx, child, "nobufs",
2570             &stats->rx_nobufs, "Frames with no buffer event");
2571         VGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2572             &stats->rx_symerrs, "Frames with symbol errors");
2573         VGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2574             &stats->rx_lenerrs, "Frames with length mismatched");
2575
2576         /* Tx statistics. */
2577         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
2578             NULL, "TX MAC statistics");
2579         child = SYSCTL_CHILDREN(tree);
2580         VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2581             &stats->tx_good_frames, "Good frames");
2582         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2583             &stats->tx_pkts_64, "64 bytes frames");
2584         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2585             &stats->tx_pkts_65_127, "65 to 127 bytes frames");
2586         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2587             &stats->tx_pkts_128_255, "128 to 255 bytes frames");
2588         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2589             &stats->tx_pkts_256_511, "256 to 511 bytes frames");
2590         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2591             &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
2592         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2593             &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
2594         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2595             &stats->tx_jumbos, "Jumbo frames");
2596         VGE_SYSCTL_STAT_ADD32(ctx, child, "colls",
2597             &stats->tx_colls, "Collisions");
2598         VGE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2599             &stats->tx_latecolls, "Late collisions");
2600         VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2601             &stats->tx_pause, "Pause frames");
2602 #ifdef VGE_ENABLE_SQEERR
2603         VGE_SYSCTL_STAT_ADD32(ctx, child, "sqeerrs",
2604             &stats->tx_sqeerrs, "SQE errors");
2605 #endif
2606         /* Clear MAC statistics. */
2607         vge_stats_clear(sc);
2608 }
2609
2610 #undef  VGE_SYSCTL_STAT_ADD32
2611
2612 static void
2613 vge_stats_clear(struct vge_softc *sc)
2614 {
2615         int i;
2616
2617         CSR_WRITE_1(sc, VGE_MIBCSR,
2618             CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FREEZE);
2619         CSR_WRITE_1(sc, VGE_MIBCSR,
2620             CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_CLR);
2621         for (i = VGE_TIMEOUT; i > 0; i--) {
2622                 DELAY(1);
2623                 if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_CLR) == 0)
2624                         break;
2625         }
2626         if (i == 0)
2627                 device_printf(sc->vge_dev, "MIB clear timed out!\n");
2628         CSR_WRITE_1(sc, VGE_MIBCSR, CSR_READ_1(sc, VGE_MIBCSR) &
2629             ~VGE_MIBCSR_FREEZE);
2630 }
2631
2632 static void
2633 vge_stats_update(struct vge_softc *sc)
2634 {
2635         struct vge_hw_stats *stats;
2636         struct ifnet *ifp;
2637         uint32_t mib[VGE_MIB_CNT], val;
2638         int i;
2639
2640         VGE_LOCK_ASSERT(sc);
2641
2642         stats = &sc->vge_stats;
2643         ifp = sc->vge_ifp;
2644
2645         CSR_WRITE_1(sc, VGE_MIBCSR,
2646             CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FLUSH);
2647         for (i = VGE_TIMEOUT; i > 0; i--) {
2648                 DELAY(1);
2649                 if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_FLUSH) == 0)
2650                         break;
2651         }
2652         if (i == 0) {
2653                 device_printf(sc->vge_dev, "MIB counter dump timed out!\n");
2654                 vge_stats_clear(sc);
2655                 return;
2656         }
2657
2658         bzero(mib, sizeof(mib));
2659 reset_idx:
2660         /* Set MIB read index to 0. */
2661         CSR_WRITE_1(sc, VGE_MIBCSR,
2662             CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_RINI);
2663         for (i = 0; i < VGE_MIB_CNT; i++) {
2664                 val = CSR_READ_4(sc, VGE_MIBDATA);
2665                 if (i != VGE_MIB_DATA_IDX(val)) {
2666                         /* Reading interrupted. */
2667                         goto reset_idx;
2668                 }
2669                 mib[i] = val & VGE_MIB_DATA_MASK;
2670         }
2671
2672         /* Rx stats. */
2673         stats->rx_frames += mib[VGE_MIB_RX_FRAMES];
2674         stats->rx_good_frames += mib[VGE_MIB_RX_GOOD_FRAMES];
2675         stats->rx_fifo_oflows += mib[VGE_MIB_RX_FIFO_OVERRUNS];
2676         stats->rx_runts += mib[VGE_MIB_RX_RUNTS];
2677         stats->rx_runts_errs += mib[VGE_MIB_RX_RUNTS_ERRS];
2678         stats->rx_pkts_64 += mib[VGE_MIB_RX_PKTS_64];
2679         stats->rx_pkts_65_127 += mib[VGE_MIB_RX_PKTS_65_127];
2680         stats->rx_pkts_128_255 += mib[VGE_MIB_RX_PKTS_128_255];
2681         stats->rx_pkts_256_511 += mib[VGE_MIB_RX_PKTS_256_511];
2682         stats->rx_pkts_512_1023 += mib[VGE_MIB_RX_PKTS_512_1023];
2683         stats->rx_pkts_1024_1518 += mib[VGE_MIB_RX_PKTS_1024_1518];
2684         stats->rx_pkts_1519_max += mib[VGE_MIB_RX_PKTS_1519_MAX];
2685         stats->rx_pkts_1519_max_errs += mib[VGE_MIB_RX_PKTS_1519_MAX_ERRS];
2686         stats->rx_jumbos += mib[VGE_MIB_RX_JUMBOS];
2687         stats->rx_crcerrs += mib[VGE_MIB_RX_CRCERRS];
2688         stats->rx_pause_frames += mib[VGE_MIB_RX_PAUSE];
2689         stats->rx_alignerrs += mib[VGE_MIB_RX_ALIGNERRS];
2690         stats->rx_nobufs += mib[VGE_MIB_RX_NOBUFS];
2691         stats->rx_symerrs += mib[VGE_MIB_RX_SYMERRS];
2692         stats->rx_lenerrs += mib[VGE_MIB_RX_LENERRS];
2693
2694         /* Tx stats. */
2695         stats->tx_good_frames += mib[VGE_MIB_TX_GOOD_FRAMES];
2696         stats->tx_pkts_64 += mib[VGE_MIB_TX_PKTS_64];
2697         stats->tx_pkts_65_127 += mib[VGE_MIB_TX_PKTS_65_127];
2698         stats->tx_pkts_128_255 += mib[VGE_MIB_TX_PKTS_128_255];
2699         stats->tx_pkts_256_511 += mib[VGE_MIB_TX_PKTS_256_511];
2700         stats->tx_pkts_512_1023 += mib[VGE_MIB_TX_PKTS_512_1023];
2701         stats->tx_pkts_1024_1518 += mib[VGE_MIB_TX_PKTS_1024_1518];
2702         stats->tx_jumbos += mib[VGE_MIB_TX_JUMBOS];
2703         stats->tx_colls += mib[VGE_MIB_TX_COLLS];
2704         stats->tx_pause += mib[VGE_MIB_TX_PAUSE];
2705 #ifdef VGE_ENABLE_SQEERR
2706         stats->tx_sqeerrs += mib[VGE_MIB_TX_SQEERRS];
2707 #endif
2708         stats->tx_latecolls += mib[VGE_MIB_TX_LATECOLLS];
2709
2710         /* Update counters in ifnet. */
2711         if_inc_counter(ifp, IFCOUNTER_OPACKETS, mib[VGE_MIB_TX_GOOD_FRAMES]);
2712
2713         if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2714             mib[VGE_MIB_TX_COLLS] + mib[VGE_MIB_TX_LATECOLLS]);
2715
2716         if_inc_counter(ifp, IFCOUNTER_OERRORS,
2717             mib[VGE_MIB_TX_COLLS] + mib[VGE_MIB_TX_LATECOLLS]);
2718
2719         if_inc_counter(ifp, IFCOUNTER_IPACKETS, mib[VGE_MIB_RX_GOOD_FRAMES]);
2720
2721         if_inc_counter(ifp, IFCOUNTER_IERRORS,
2722             mib[VGE_MIB_RX_FIFO_OVERRUNS] +
2723             mib[VGE_MIB_RX_RUNTS] +
2724             mib[VGE_MIB_RX_RUNTS_ERRS] +
2725             mib[VGE_MIB_RX_CRCERRS] +
2726             mib[VGE_MIB_RX_ALIGNERRS] +
2727             mib[VGE_MIB_RX_NOBUFS] +
2728             mib[VGE_MIB_RX_SYMERRS] +
2729             mib[VGE_MIB_RX_LENERRS]);
2730 }
2731
2732 static void
2733 vge_intr_holdoff(struct vge_softc *sc)
2734 {
2735         uint8_t intctl;
2736
2737         VGE_LOCK_ASSERT(sc);
2738
2739         /*
2740          * Set Tx interrupt supression threshold.
2741          * It's possible to use single-shot timer in VGE_CRS1 register
2742          * in Tx path such that driver can remove most of Tx completion
2743          * interrupts. However this requires additional access to
2744          * VGE_CRS1 register to reload the timer in addintion to
2745          * activating Tx kick command. Another downside is we don't know
2746          * what single-shot timer value should be used in advance so
2747          * reclaiming transmitted mbufs could be delayed a lot which in
2748          * turn slows down Tx operation.
2749          */
2750         CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_TXSUPPTHR);
2751         CSR_WRITE_1(sc, VGE_TXSUPPTHR, sc->vge_tx_coal_pkt);
2752
2753         /* Set Rx interrupt suppresion threshold. */
2754         CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2755         CSR_WRITE_1(sc, VGE_RXSUPPTHR, sc->vge_rx_coal_pkt);
2756
2757         intctl = CSR_READ_1(sc, VGE_INTCTL1);
2758         intctl &= ~VGE_INTCTL_SC_RELOAD;
2759         intctl |= VGE_INTCTL_HC_RELOAD;
2760         if (sc->vge_tx_coal_pkt <= 0)
2761                 intctl |= VGE_INTCTL_TXINTSUP_DISABLE;
2762         else
2763                 intctl &= ~VGE_INTCTL_TXINTSUP_DISABLE;
2764         if (sc->vge_rx_coal_pkt <= 0)
2765                 intctl |= VGE_INTCTL_RXINTSUP_DISABLE;
2766         else
2767                 intctl &= ~VGE_INTCTL_RXINTSUP_DISABLE;
2768         CSR_WRITE_1(sc, VGE_INTCTL1, intctl);
2769         CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_HOLDOFF);
2770         if (sc->vge_int_holdoff > 0) {
2771                 /* Set interrupt holdoff timer. */
2772                 CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2773                 CSR_WRITE_1(sc, VGE_INTHOLDOFF,
2774                     VGE_INT_HOLDOFF_USEC(sc->vge_int_holdoff));
2775                 /* Enable holdoff timer. */
2776                 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2777         }
2778 }
2779
2780 static void
2781 vge_setlinkspeed(struct vge_softc *sc)
2782 {
2783         struct mii_data *mii;
2784         int aneg, i;
2785
2786         VGE_LOCK_ASSERT(sc);
2787
2788         mii = device_get_softc(sc->vge_miibus);
2789         mii_pollstat(mii);
2790         aneg = 0;
2791         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
2792             (IFM_ACTIVE | IFM_AVALID)) {
2793                 switch IFM_SUBTYPE(mii->mii_media_active) {
2794                 case IFM_10_T:
2795                 case IFM_100_TX:
2796                         return;
2797                 case IFM_1000_T:
2798                         aneg++;
2799                 default:
2800                         break;
2801                 }
2802         }
2803         /* Clear forced MAC speed/duplex configuration. */
2804         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2805         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2806         vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_100T2CR, 0);
2807         vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_ANAR,
2808             ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
2809         vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2810             BMCR_AUTOEN | BMCR_STARTNEG);
2811         DELAY(1000);
2812         if (aneg != 0) {
2813                 /* Poll link state until vge(4) get a 10/100 link. */
2814                 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
2815                         mii_pollstat(mii);
2816                         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
2817                             == (IFM_ACTIVE | IFM_AVALID)) {
2818                                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
2819                                 case IFM_10_T:
2820                                 case IFM_100_TX:
2821                                         return;
2822                                 default:
2823                                         break;
2824                                 }
2825                         }
2826                         VGE_UNLOCK(sc);
2827                         pause("vgelnk", hz);
2828                         VGE_LOCK(sc);
2829                 }
2830                 if (i == MII_ANEGTICKS_GIGE)
2831                         device_printf(sc->vge_dev, "establishing link failed, "
2832                             "WOL may not work!");
2833         }
2834         /*
2835          * No link, force MAC to have 100Mbps, full-duplex link.
2836          * This is the last resort and may/may not work.
2837          */
2838         mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
2839         mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
2840 }
2841
2842 static void
2843 vge_setwol(struct vge_softc *sc)
2844 {
2845         struct ifnet *ifp;
2846         uint16_t pmstat;
2847         uint8_t val;
2848
2849         VGE_LOCK_ASSERT(sc);
2850
2851         if ((sc->vge_flags & VGE_FLAG_PMCAP) == 0) {
2852                 /* No PME capability, PHY power down. */
2853                 vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2854                     BMCR_PDOWN);
2855                 vge_miipoll_stop(sc);
2856                 return;
2857         }
2858
2859         ifp = sc->vge_ifp;
2860
2861         /* Clear WOL on pattern match. */
2862         CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2863         /* Disable WOL on magic/unicast packet. */
2864         CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2865         CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2866             VGE_WOLCFG_PMEOVR);
2867         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
2868                 vge_setlinkspeed(sc);
2869                 val = 0;
2870                 if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2871                         val |= VGE_WOLCR1_UCAST;
2872                 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2873                         val |= VGE_WOLCR1_MAGIC;
2874                 CSR_WRITE_1(sc, VGE_WOLCR1S, val);
2875                 val = 0;
2876                 if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2877                         val |= VGE_WOLCFG_SAM | VGE_WOLCFG_SAB;
2878                 CSR_WRITE_1(sc, VGE_WOLCFGS, val | VGE_WOLCFG_PMEOVR);
2879                 /* Disable MII auto-polling. */
2880                 vge_miipoll_stop(sc);
2881         }
2882         CSR_SETBIT_1(sc, VGE_DIAGCTL,
2883             VGE_DIAGCTL_MACFORCE | VGE_DIAGCTL_FDXFORCE);
2884         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2885
2886         /* Clear WOL status on pattern match. */
2887         CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2888         CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2889
2890         val = CSR_READ_1(sc, VGE_PWRSTAT);
2891         val |= VGE_STICKHW_SWPTAG;
2892         CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2893         /* Put hardware into sleep. */
2894         val = CSR_READ_1(sc, VGE_PWRSTAT);
2895         val |= VGE_STICKHW_DS0 | VGE_STICKHW_DS1;
2896         CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2897         /* Request PME if WOL is requested. */
2898         pmstat = pci_read_config(sc->vge_dev, sc->vge_pmcap +
2899             PCIR_POWER_STATUS, 2);
2900         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2901         if ((ifp->if_capenable & IFCAP_WOL) != 0)
2902                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2903         pci_write_config(sc->vge_dev, sc->vge_pmcap + PCIR_POWER_STATUS,
2904             pmstat, 2);
2905 }
2906
2907 static void
2908 vge_clrwol(struct vge_softc *sc)
2909 {
2910         uint8_t val;
2911
2912         val = CSR_READ_1(sc, VGE_PWRSTAT);
2913         val &= ~VGE_STICKHW_SWPTAG;
2914         CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2915         /* Disable WOL and clear power state indicator. */
2916         val = CSR_READ_1(sc, VGE_PWRSTAT);
2917         val &= ~(VGE_STICKHW_DS0 | VGE_STICKHW_DS1);
2918         CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2919
2920         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2921         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2922
2923         /* Clear WOL on pattern match. */
2924         CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2925         /* Disable WOL on magic/unicast packet. */
2926         CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2927         CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2928             VGE_WOLCFG_PMEOVR);
2929         /* Clear WOL status on pattern match. */
2930         CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2931         CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2932 }