]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/vr/if_vr.c
Merge OpenSSL 1.0.1h.
[FreeBSD/FreeBSD.git] / sys / dev / vr / if_vr.c
1 /*-
2  * Copyright (c) 1997, 1998
3  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *      This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35
36 /*
37  * VIA Rhine fast ethernet PCI NIC driver
38  *
39  * Supports various network adapters based on the VIA Rhine
40  * and Rhine II PCI controllers, including the D-Link DFE530TX.
41  * Datasheets are available at http://www.via.com.tw.
42  *
43  * Written by Bill Paul <wpaul@ctr.columbia.edu>
44  * Electrical Engineering Department
45  * Columbia University, New York City
46  */
47
48 /*
49  * The VIA Rhine controllers are similar in some respects to the
50  * the DEC tulip chips, except less complicated. The controller
51  * uses an MII bus and an external physical layer interface. The
52  * receiver has a one entry perfect filter and a 64-bit hash table
53  * multicast filter. Transmit and receive descriptors are similar
54  * to the tulip.
55  *
56  * Some Rhine chips has a serious flaw in its transmit DMA mechanism:
57  * transmit buffers must be longword aligned. Unfortunately,
58  * FreeBSD doesn't guarantee that mbufs will be filled in starting
59  * at longword boundaries, so we have to do a buffer copy before
60  * transmission.
61  */
62
63 #ifdef HAVE_KERNEL_OPTION_HEADERS
64 #include "opt_device_polling.h"
65 #endif
66
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/bus.h>
70 #include <sys/endian.h>
71 #include <sys/kernel.h>
72 #include <sys/malloc.h>
73 #include <sys/mbuf.h>
74 #include <sys/module.h>
75 #include <sys/rman.h>
76 #include <sys/socket.h>
77 #include <sys/sockio.h>
78 #include <sys/sysctl.h>
79 #include <sys/taskqueue.h>
80
81 #include <net/bpf.h>
82 #include <net/if.h>
83 #include <net/if_var.h>
84 #include <net/ethernet.h>
85 #include <net/if_dl.h>
86 #include <net/if_media.h>
87 #include <net/if_types.h>
88 #include <net/if_vlan_var.h>
89
90 #include <dev/mii/mii.h>
91 #include <dev/mii/miivar.h>
92
93 #include <dev/pci/pcireg.h>
94 #include <dev/pci/pcivar.h>
95
96 #include <machine/bus.h>
97
98 #include <dev/vr/if_vrreg.h>
99
100 /* "device miibus" required.  See GENERIC if you get errors here. */
101 #include "miibus_if.h"
102
103 MODULE_DEPEND(vr, pci, 1, 1, 1);
104 MODULE_DEPEND(vr, ether, 1, 1, 1);
105 MODULE_DEPEND(vr, miibus, 1, 1, 1);
106
107 /* Define to show Rx/Tx error status. */
108 #undef  VR_SHOW_ERRORS
109 #define VR_CSUM_FEATURES        (CSUM_IP | CSUM_TCP | CSUM_UDP)
110
111 /*
112  * Various supported device vendors/types, their names & quirks.
113  */
114 #define VR_Q_NEEDALIGN          (1<<0)
115 #define VR_Q_CSUM               (1<<1)
116 #define VR_Q_CAM                (1<<2)
117
118 static const struct vr_type {
119         u_int16_t               vr_vid;
120         u_int16_t               vr_did;
121         int                     vr_quirks;
122         const char              *vr_name;
123 } vr_devs[] = {
124         { VIA_VENDORID, VIA_DEVICEID_RHINE,
125             VR_Q_NEEDALIGN,
126             "VIA VT3043 Rhine I 10/100BaseTX" },
127         { VIA_VENDORID, VIA_DEVICEID_RHINE_II,
128             VR_Q_NEEDALIGN,
129             "VIA VT86C100A Rhine II 10/100BaseTX" },
130         { VIA_VENDORID, VIA_DEVICEID_RHINE_II_2,
131             0,
132             "VIA VT6102 Rhine II 10/100BaseTX" },
133         { VIA_VENDORID, VIA_DEVICEID_RHINE_III,
134             0,
135             "VIA VT6105 Rhine III 10/100BaseTX" },
136         { VIA_VENDORID, VIA_DEVICEID_RHINE_III_M,
137             VR_Q_CSUM,
138             "VIA VT6105M Rhine III 10/100BaseTX" },
139         { DELTA_VENDORID, DELTA_DEVICEID_RHINE_II,
140             VR_Q_NEEDALIGN,
141             "Delta Electronics Rhine II 10/100BaseTX" },
142         { ADDTRON_VENDORID, ADDTRON_DEVICEID_RHINE_II,
143             VR_Q_NEEDALIGN,
144             "Addtron Technology Rhine II 10/100BaseTX" },
145         { 0, 0, 0, NULL }
146 };
147
148 static int vr_probe(device_t);
149 static int vr_attach(device_t);
150 static int vr_detach(device_t);
151 static int vr_shutdown(device_t);
152 static int vr_suspend(device_t);
153 static int vr_resume(device_t);
154
155 static void vr_dmamap_cb(void *, bus_dma_segment_t *, int, int);
156 static int vr_dma_alloc(struct vr_softc *);
157 static void vr_dma_free(struct vr_softc *);
158 static __inline void vr_discard_rxbuf(struct vr_rxdesc *);
159 static int vr_newbuf(struct vr_softc *, int);
160
161 #ifndef __NO_STRICT_ALIGNMENT
162 static __inline void vr_fixup_rx(struct mbuf *);
163 #endif
164 static int vr_rxeof(struct vr_softc *);
165 static void vr_txeof(struct vr_softc *);
166 static void vr_tick(void *);
167 static int vr_error(struct vr_softc *, uint16_t);
168 static void vr_tx_underrun(struct vr_softc *);
169 static int vr_intr(void *);
170 static void vr_int_task(void *, int);
171 static void vr_start(struct ifnet *);
172 static void vr_start_locked(struct ifnet *);
173 static int vr_encap(struct vr_softc *, struct mbuf **);
174 static int vr_ioctl(struct ifnet *, u_long, caddr_t);
175 static void vr_init(void *);
176 static void vr_init_locked(struct vr_softc *);
177 static void vr_tx_start(struct vr_softc *);
178 static void vr_rx_start(struct vr_softc *);
179 static int vr_tx_stop(struct vr_softc *);
180 static int vr_rx_stop(struct vr_softc *);
181 static void vr_stop(struct vr_softc *);
182 static void vr_watchdog(struct vr_softc *);
183 static int vr_ifmedia_upd(struct ifnet *);
184 static void vr_ifmedia_sts(struct ifnet *, struct ifmediareq *);
185
186 static int vr_miibus_readreg(device_t, int, int);
187 static int vr_miibus_writereg(device_t, int, int, int);
188 static void vr_miibus_statchg(device_t);
189
190 static void vr_cam_mask(struct vr_softc *, uint32_t, int);
191 static int vr_cam_data(struct vr_softc *, int, int, uint8_t *);
192 static void vr_set_filter(struct vr_softc *);
193 static void vr_reset(const struct vr_softc *);
194 static int vr_tx_ring_init(struct vr_softc *);
195 static int vr_rx_ring_init(struct vr_softc *);
196 static void vr_setwol(struct vr_softc *);
197 static void vr_clrwol(struct vr_softc *);
198 static int vr_sysctl_stats(SYSCTL_HANDLER_ARGS);
199
200 static const struct vr_tx_threshold_table {
201         int tx_cfg;
202         int bcr_cfg;
203         int value;
204 } vr_tx_threshold_tables[] = {
205         { VR_TXTHRESH_64BYTES, VR_BCR1_TXTHRESH64BYTES, 64 },
206         { VR_TXTHRESH_128BYTES, VR_BCR1_TXTHRESH128BYTES, 128 },
207         { VR_TXTHRESH_256BYTES, VR_BCR1_TXTHRESH256BYTES, 256 },
208         { VR_TXTHRESH_512BYTES, VR_BCR1_TXTHRESH512BYTES, 512 },
209         { VR_TXTHRESH_1024BYTES, VR_BCR1_TXTHRESH1024BYTES, 1024 },
210         { VR_TXTHRESH_STORENFWD, VR_BCR1_TXTHRESHSTORENFWD, 2048 }
211 };
212
213 static device_method_t vr_methods[] = {
214         /* Device interface */
215         DEVMETHOD(device_probe,         vr_probe),
216         DEVMETHOD(device_attach,        vr_attach),
217         DEVMETHOD(device_detach,        vr_detach),
218         DEVMETHOD(device_shutdown,      vr_shutdown),
219         DEVMETHOD(device_suspend,       vr_suspend),
220         DEVMETHOD(device_resume,        vr_resume),
221
222         /* MII interface */
223         DEVMETHOD(miibus_readreg,       vr_miibus_readreg),
224         DEVMETHOD(miibus_writereg,      vr_miibus_writereg),
225         DEVMETHOD(miibus_statchg,       vr_miibus_statchg),
226
227         DEVMETHOD_END
228 };
229
230 static driver_t vr_driver = {
231         "vr",
232         vr_methods,
233         sizeof(struct vr_softc)
234 };
235
236 static devclass_t vr_devclass;
237
238 DRIVER_MODULE(vr, pci, vr_driver, vr_devclass, 0, 0);
239 DRIVER_MODULE(miibus, vr, miibus_driver, miibus_devclass, 0, 0);
240
241 static int
242 vr_miibus_readreg(device_t dev, int phy, int reg)
243 {
244         struct vr_softc         *sc;
245         int                     i;
246
247         sc = device_get_softc(dev);
248
249         /* Set the register address. */
250         CSR_WRITE_1(sc, VR_MIIADDR, reg);
251         VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_READ_ENB);
252
253         for (i = 0; i < VR_MII_TIMEOUT; i++) {
254                 DELAY(1);
255                 if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_READ_ENB) == 0)
256                         break;
257         }
258         if (i == VR_MII_TIMEOUT)
259                 device_printf(sc->vr_dev, "phy read timeout %d:%d\n", phy, reg);
260
261         return (CSR_READ_2(sc, VR_MIIDATA));
262 }
263
264 static int
265 vr_miibus_writereg(device_t dev, int phy, int reg, int data)
266 {
267         struct vr_softc         *sc;
268         int                     i;
269
270         sc = device_get_softc(dev);
271
272         /* Set the register address and data to write. */
273         CSR_WRITE_1(sc, VR_MIIADDR, reg);
274         CSR_WRITE_2(sc, VR_MIIDATA, data);
275         VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_WRITE_ENB);
276
277         for (i = 0; i < VR_MII_TIMEOUT; i++) {
278                 DELAY(1);
279                 if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_WRITE_ENB) == 0)
280                         break;
281         }
282         if (i == VR_MII_TIMEOUT)
283                 device_printf(sc->vr_dev, "phy write timeout %d:%d\n", phy,
284                     reg);
285
286         return (0);
287 }
288
289 /*
290  * In order to fiddle with the
291  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
292  * first have to put the transmit and/or receive logic in the idle state.
293  */
294 static void
295 vr_miibus_statchg(device_t dev)
296 {
297         struct vr_softc         *sc;
298         struct mii_data         *mii;
299         struct ifnet            *ifp;
300         int                     lfdx, mfdx;
301         uint8_t                 cr0, cr1, fc;
302
303         sc = device_get_softc(dev);
304         mii = device_get_softc(sc->vr_miibus);
305         ifp = sc->vr_ifp;
306         if (mii == NULL || ifp == NULL ||
307             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
308                 return;
309
310         sc->vr_flags &= ~(VR_F_LINK | VR_F_TXPAUSE);
311         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
312             (IFM_ACTIVE | IFM_AVALID)) {
313                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
314                 case IFM_10_T:
315                 case IFM_100_TX:
316                         sc->vr_flags |= VR_F_LINK;
317                         break;
318                 default:
319                         break;
320                 }
321         }
322
323         if ((sc->vr_flags & VR_F_LINK) != 0) {
324                 cr0 = CSR_READ_1(sc, VR_CR0);
325                 cr1 = CSR_READ_1(sc, VR_CR1);
326                 mfdx = (cr1 & VR_CR1_FULLDUPLEX) != 0;
327                 lfdx = (IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0;
328                 if (mfdx != lfdx) {
329                         if ((cr0 & (VR_CR0_TX_ON | VR_CR0_RX_ON)) != 0) {
330                                 if (vr_tx_stop(sc) != 0 ||
331                                     vr_rx_stop(sc) != 0) {
332                                         device_printf(sc->vr_dev,
333                                             "%s: Tx/Rx shutdown error -- "
334                                             "resetting\n", __func__);
335                                         sc->vr_flags |= VR_F_RESTART;
336                                         VR_UNLOCK(sc);
337                                         return;
338                                 }
339                         }
340                         if (lfdx)
341                                 cr1 |= VR_CR1_FULLDUPLEX;
342                         else
343                                 cr1 &= ~VR_CR1_FULLDUPLEX;
344                         CSR_WRITE_1(sc, VR_CR1, cr1);
345                 }
346                 fc = 0;
347                 /* Configure flow-control. */
348                 if (sc->vr_revid >= REV_ID_VT6105_A0) {
349                         fc = CSR_READ_1(sc, VR_FLOWCR1);
350                         fc &= ~(VR_FLOWCR1_TXPAUSE | VR_FLOWCR1_RXPAUSE);
351                         if ((IFM_OPTIONS(mii->mii_media_active) &
352                             IFM_ETH_RXPAUSE) != 0)
353                                 fc |= VR_FLOWCR1_RXPAUSE;
354                         if ((IFM_OPTIONS(mii->mii_media_active) &
355                             IFM_ETH_TXPAUSE) != 0) {
356                                 fc |= VR_FLOWCR1_TXPAUSE;
357                                 sc->vr_flags |= VR_F_TXPAUSE;
358                         }
359                         CSR_WRITE_1(sc, VR_FLOWCR1, fc);
360                 } else if (sc->vr_revid >= REV_ID_VT6102_A) {
361                         /* No Tx puase capability available for Rhine II. */
362                         fc = CSR_READ_1(sc, VR_MISC_CR0);
363                         fc &= ~VR_MISCCR0_RXPAUSE;
364                         if ((IFM_OPTIONS(mii->mii_media_active) &
365                             IFM_ETH_RXPAUSE) != 0)
366                                 fc |= VR_MISCCR0_RXPAUSE;
367                         CSR_WRITE_1(sc, VR_MISC_CR0, fc);
368                 }
369                 vr_rx_start(sc);
370                 vr_tx_start(sc);
371         } else {
372                 if (vr_tx_stop(sc) != 0 || vr_rx_stop(sc) != 0) {
373                         device_printf(sc->vr_dev,
374                             "%s: Tx/Rx shutdown error -- resetting\n",
375                             __func__);
376                         sc->vr_flags |= VR_F_RESTART;
377                 }
378         }
379 }
380
381
382 static void
383 vr_cam_mask(struct vr_softc *sc, uint32_t mask, int type)
384 {
385
386         if (type == VR_MCAST_CAM)
387                 CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_MCAST);
388         else
389                 CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_VLAN);
390         CSR_WRITE_4(sc, VR_CAMMASK, mask);
391         CSR_WRITE_1(sc, VR_CAMCTL, 0);
392 }
393
394 static int
395 vr_cam_data(struct vr_softc *sc, int type, int idx, uint8_t *mac)
396 {
397         int     i;
398
399         if (type == VR_MCAST_CAM) {
400                 if (idx < 0 || idx >= VR_CAM_MCAST_CNT || mac == NULL)
401                         return (EINVAL);
402                 CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_MCAST);
403         } else
404                 CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_VLAN);
405
406         /* Set CAM entry address. */
407         CSR_WRITE_1(sc, VR_CAMADDR, idx);
408         /* Set CAM entry data. */
409         if (type == VR_MCAST_CAM) {
410                 for (i = 0; i < ETHER_ADDR_LEN; i++)
411                         CSR_WRITE_1(sc, VR_MCAM0 + i, mac[i]);
412         } else {
413                 CSR_WRITE_1(sc, VR_VCAM0, mac[0]);
414                 CSR_WRITE_1(sc, VR_VCAM1, mac[1]);
415         }
416         DELAY(10);
417         /* Write CAM and wait for self-clear of VR_CAMCTL_WRITE bit. */
418         CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_WRITE);
419         for (i = 0; i < VR_TIMEOUT; i++) {
420                 DELAY(1);
421                 if ((CSR_READ_1(sc, VR_CAMCTL) & VR_CAMCTL_WRITE) == 0)
422                         break;
423         }
424
425         if (i == VR_TIMEOUT)
426                 device_printf(sc->vr_dev, "%s: setting CAM filter timeout!\n",
427                     __func__);
428         CSR_WRITE_1(sc, VR_CAMCTL, 0);
429
430         return (i == VR_TIMEOUT ? ETIMEDOUT : 0);
431 }
432
433 /*
434  * Program the 64-bit multicast hash filter.
435  */
436 static void
437 vr_set_filter(struct vr_softc *sc)
438 {
439         struct ifnet            *ifp;
440         int                     h;
441         uint32_t                hashes[2] = { 0, 0 };
442         struct ifmultiaddr      *ifma;
443         uint8_t                 rxfilt;
444         int                     error, mcnt;
445         uint32_t                cam_mask;
446
447         VR_LOCK_ASSERT(sc);
448
449         ifp = sc->vr_ifp;
450         rxfilt = CSR_READ_1(sc, VR_RXCFG);
451         rxfilt &= ~(VR_RXCFG_RX_PROMISC | VR_RXCFG_RX_BROAD |
452             VR_RXCFG_RX_MULTI);
453         if (ifp->if_flags & IFF_BROADCAST)
454                 rxfilt |= VR_RXCFG_RX_BROAD;
455         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
456                 rxfilt |= VR_RXCFG_RX_MULTI;
457                 if (ifp->if_flags & IFF_PROMISC)
458                         rxfilt |= VR_RXCFG_RX_PROMISC;
459                 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
460                 CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
461                 CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
462                 return;
463         }
464
465         /* Now program new ones. */
466         error = 0;
467         mcnt = 0;
468         if_maddr_rlock(ifp);
469         if ((sc->vr_quirks & VR_Q_CAM) != 0) {
470                 /*
471                  * For hardwares that have CAM capability, use
472                  * 32 entries multicast perfect filter.
473                  */
474                 cam_mask = 0;
475                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
476                         if (ifma->ifma_addr->sa_family != AF_LINK)
477                                 continue;
478                         error = vr_cam_data(sc, VR_MCAST_CAM, mcnt,
479                             LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
480                         if (error != 0) {
481                                 cam_mask = 0;
482                                 break;
483                         }
484                         cam_mask |= 1 << mcnt;
485                         mcnt++;
486                 }
487                 vr_cam_mask(sc, VR_MCAST_CAM, cam_mask);
488         }
489
490         if ((sc->vr_quirks & VR_Q_CAM) == 0 || error != 0) {
491                 /*
492                  * If there are too many multicast addresses or
493                  * setting multicast CAM filter failed, use hash
494                  * table based filtering.
495                  */
496                 mcnt = 0;
497                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
498                         if (ifma->ifma_addr->sa_family != AF_LINK)
499                                 continue;
500                         h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
501                             ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
502                         if (h < 32)
503                                 hashes[0] |= (1 << h);
504                         else
505                                 hashes[1] |= (1 << (h - 32));
506                         mcnt++;
507                 }
508         }
509         if_maddr_runlock(ifp);
510
511         if (mcnt > 0)
512                 rxfilt |= VR_RXCFG_RX_MULTI;
513
514         CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
515         CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
516         CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
517 }
518
519 static void
520 vr_reset(const struct vr_softc *sc)
521 {
522         int             i;
523
524         /*VR_LOCK_ASSERT(sc);*/ /* XXX: Called during attach w/o lock. */
525
526         CSR_WRITE_1(sc, VR_CR1, VR_CR1_RESET);
527         if (sc->vr_revid < REV_ID_VT6102_A) {
528                 /* VT86C100A needs more delay after reset. */
529                 DELAY(100);
530         }
531         for (i = 0; i < VR_TIMEOUT; i++) {
532                 DELAY(10);
533                 if (!(CSR_READ_1(sc, VR_CR1) & VR_CR1_RESET))
534                         break;
535         }
536         if (i == VR_TIMEOUT) {
537                 if (sc->vr_revid < REV_ID_VT6102_A)
538                         device_printf(sc->vr_dev, "reset never completed!\n");
539                 else {
540                         /* Use newer force reset command. */
541                         device_printf(sc->vr_dev,
542                             "Using force reset command.\n");
543                         VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
544                         /*
545                          * Wait a little while for the chip to get its brains
546                          * in order.
547                          */
548                         DELAY(2000);
549                 }
550         }
551
552 }
553
554 /*
555  * Probe for a VIA Rhine chip. Check the PCI vendor and device
556  * IDs against our list and return a match or NULL
557  */
558 static const struct vr_type *
559 vr_match(device_t dev)
560 {
561         const struct vr_type    *t = vr_devs;
562
563         for (t = vr_devs; t->vr_name != NULL; t++)
564                 if ((pci_get_vendor(dev) == t->vr_vid) &&
565                     (pci_get_device(dev) == t->vr_did))
566                         return (t);
567         return (NULL);
568 }
569
570 /*
571  * Probe for a VIA Rhine chip. Check the PCI vendor and device
572  * IDs against our list and return a device name if we find a match.
573  */
574 static int
575 vr_probe(device_t dev)
576 {
577         const struct vr_type    *t;
578
579         t = vr_match(dev);
580         if (t != NULL) {
581                 device_set_desc(dev, t->vr_name);
582                 return (BUS_PROBE_DEFAULT);
583         }
584         return (ENXIO);
585 }
586
587 /*
588  * Attach the interface. Allocate softc structures, do ifmedia
589  * setup and ethernet/BPF attach.
590  */
591 static int
592 vr_attach(device_t dev)
593 {
594         struct vr_softc         *sc;
595         struct ifnet            *ifp;
596         const struct vr_type    *t;
597         uint8_t                 eaddr[ETHER_ADDR_LEN];
598         int                     error, rid;
599         int                     i, phy, pmc;
600
601         sc = device_get_softc(dev);
602         sc->vr_dev = dev;
603         t = vr_match(dev);
604         KASSERT(t != NULL, ("Lost if_vr device match"));
605         sc->vr_quirks = t->vr_quirks;
606         device_printf(dev, "Quirks: 0x%x\n", sc->vr_quirks);
607
608         mtx_init(&sc->vr_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
609             MTX_DEF);
610         callout_init_mtx(&sc->vr_stat_callout, &sc->vr_mtx, 0);
611         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
612             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
613             OID_AUTO, "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
614             vr_sysctl_stats, "I", "Statistics");
615
616         error = 0;
617
618         /*
619          * Map control/status registers.
620          */
621         pci_enable_busmaster(dev);
622         sc->vr_revid = pci_get_revid(dev);
623         device_printf(dev, "Revision: 0x%x\n", sc->vr_revid);
624
625         sc->vr_res_id = PCIR_BAR(0);
626         sc->vr_res_type = SYS_RES_IOPORT;
627         sc->vr_res = bus_alloc_resource_any(dev, sc->vr_res_type,
628             &sc->vr_res_id, RF_ACTIVE);
629         if (sc->vr_res == NULL) {
630                 device_printf(dev, "couldn't map ports\n");
631                 error = ENXIO;
632                 goto fail;
633         }
634
635         /* Allocate interrupt. */
636         rid = 0;
637         sc->vr_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
638             RF_SHAREABLE | RF_ACTIVE);
639
640         if (sc->vr_irq == NULL) {
641                 device_printf(dev, "couldn't map interrupt\n");
642                 error = ENXIO;
643                 goto fail;
644         }
645
646         /* Allocate ifnet structure. */
647         ifp = sc->vr_ifp = if_alloc(IFT_ETHER);
648         if (ifp == NULL) {
649                 device_printf(dev, "couldn't allocate ifnet structure\n");
650                 error = ENOSPC;
651                 goto fail;
652         }
653         ifp->if_softc = sc;
654         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
655         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
656         ifp->if_ioctl = vr_ioctl;
657         ifp->if_start = vr_start;
658         ifp->if_init = vr_init;
659         IFQ_SET_MAXLEN(&ifp->if_snd, VR_TX_RING_CNT - 1);
660         ifp->if_snd.ifq_maxlen = VR_TX_RING_CNT - 1;
661         IFQ_SET_READY(&ifp->if_snd);
662
663         TASK_INIT(&sc->vr_inttask, 0, vr_int_task, sc);
664
665         /* Configure Tx FIFO threshold. */
666         sc->vr_txthresh = VR_TXTHRESH_MIN;
667         if (sc->vr_revid < REV_ID_VT6105_A0) {
668                 /*
669                  * Use store and forward mode for Rhine I/II.
670                  * Otherwise they produce a lot of Tx underruns and
671                  * it would take a while to get working FIFO threshold
672                  * value.
673                  */
674                 sc->vr_txthresh = VR_TXTHRESH_MAX;
675         }
676         if ((sc->vr_quirks & VR_Q_CSUM) != 0) {
677                 ifp->if_hwassist = VR_CSUM_FEATURES;
678                 ifp->if_capabilities |= IFCAP_HWCSUM;
679                 /*
680                  * To update checksum field the hardware may need to
681                  * store entire frames into FIFO before transmitting.
682                  */
683                 sc->vr_txthresh = VR_TXTHRESH_MAX;
684         }
685
686         if (sc->vr_revid >= REV_ID_VT6102_A &&
687             pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
688                 ifp->if_capabilities |= IFCAP_WOL_UCAST | IFCAP_WOL_MAGIC;
689
690         /* Rhine supports oversized VLAN frame. */
691         ifp->if_capabilities |= IFCAP_VLAN_MTU;
692         ifp->if_capenable = ifp->if_capabilities;
693 #ifdef DEVICE_POLLING
694         ifp->if_capabilities |= IFCAP_POLLING;
695 #endif
696
697         /*
698          * Windows may put the chip in suspend mode when it
699          * shuts down. Be sure to kick it in the head to wake it
700          * up again.
701          */
702         if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
703                 VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
704
705         /*
706          * Get station address. The way the Rhine chips work,
707          * you're not allowed to directly access the EEPROM once
708          * they've been programmed a special way. Consequently,
709          * we need to read the node address from the PAR0 and PAR1
710          * registers.
711          * Reloading EEPROM also overwrites VR_CFGA, VR_CFGB,
712          * VR_CFGC and VR_CFGD such that memory mapped IO configured
713          * by driver is reset to default state.
714          */
715         VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
716         for (i = VR_TIMEOUT; i > 0; i--) {
717                 DELAY(1);
718                 if ((CSR_READ_1(sc, VR_EECSR) & VR_EECSR_LOAD) == 0)
719                         break;
720         }
721         if (i == 0)
722                 device_printf(dev, "Reloading EEPROM timeout!\n");
723         for (i = 0; i < ETHER_ADDR_LEN; i++)
724                 eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
725
726         /* Reset the adapter. */
727         vr_reset(sc);
728         /* Ack intr & disable further interrupts. */
729         CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
730         CSR_WRITE_2(sc, VR_IMR, 0);
731         if (sc->vr_revid >= REV_ID_VT6102_A)
732                 CSR_WRITE_2(sc, VR_MII_IMR, 0);
733
734         if (sc->vr_revid < REV_ID_VT6102_A) {
735                 pci_write_config(dev, VR_PCI_MODE2,
736                     pci_read_config(dev, VR_PCI_MODE2, 1) |
737                     VR_MODE2_MODE10T, 1);
738         } else {
739                 /* Report error instead of retrying forever. */
740                 pci_write_config(dev, VR_PCI_MODE2,
741                     pci_read_config(dev, VR_PCI_MODE2, 1) |
742                     VR_MODE2_PCEROPT, 1);
743                 /* Detect MII coding error. */
744                 pci_write_config(dev, VR_PCI_MODE3,
745                     pci_read_config(dev, VR_PCI_MODE3, 1) |
746                     VR_MODE3_MIION, 1);
747                 if (sc->vr_revid >= REV_ID_VT6105_LOM &&
748                     sc->vr_revid < REV_ID_VT6105M_A0)
749                         pci_write_config(dev, VR_PCI_MODE2,
750                             pci_read_config(dev, VR_PCI_MODE2, 1) |
751                             VR_MODE2_MODE10T, 1);
752                 /* Enable Memory-Read-Multiple. */
753                 if (sc->vr_revid >= REV_ID_VT6107_A1 &&
754                     sc->vr_revid < REV_ID_VT6105M_A0)
755                         pci_write_config(dev, VR_PCI_MODE2,
756                             pci_read_config(dev, VR_PCI_MODE2, 1) |
757                             VR_MODE2_MRDPL, 1);
758         }
759         /* Disable MII AUTOPOLL. */
760         VR_CLRBIT(sc, VR_MIICMD, VR_MIICMD_AUTOPOLL);
761
762         if (vr_dma_alloc(sc) != 0) {
763                 error = ENXIO;
764                 goto fail;
765         }
766
767         /* Do MII setup. */
768         if (sc->vr_revid >= REV_ID_VT6105_A0)
769                 phy = 1;
770         else
771                 phy = CSR_READ_1(sc, VR_PHYADDR) & VR_PHYADDR_MASK;
772         error = mii_attach(dev, &sc->vr_miibus, ifp, vr_ifmedia_upd,
773             vr_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY,
774             sc->vr_revid >= REV_ID_VT6102_A ? MIIF_DOPAUSE : 0);
775         if (error != 0) {
776                 device_printf(dev, "attaching PHYs failed\n");
777                 goto fail;
778         }
779
780         /* Call MI attach routine. */
781         ether_ifattach(ifp, eaddr);
782         /*
783          * Tell the upper layer(s) we support long frames.
784          * Must appear after the call to ether_ifattach() because
785          * ether_ifattach() sets ifi_hdrlen to the default value.
786          */
787         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
788
789         /* Hook interrupt last to avoid having to lock softc. */
790         error = bus_setup_intr(dev, sc->vr_irq, INTR_TYPE_NET | INTR_MPSAFE,
791             vr_intr, NULL, sc, &sc->vr_intrhand);
792
793         if (error) {
794                 device_printf(dev, "couldn't set up irq\n");
795                 ether_ifdetach(ifp);
796                 goto fail;
797         }
798
799 fail:
800         if (error)
801                 vr_detach(dev);
802
803         return (error);
804 }
805
806 /*
807  * Shutdown hardware and free up resources. This can be called any
808  * time after the mutex has been initialized. It is called in both
809  * the error case in attach and the normal detach case so it needs
810  * to be careful about only freeing resources that have actually been
811  * allocated.
812  */
813 static int
814 vr_detach(device_t dev)
815 {
816         struct vr_softc         *sc = device_get_softc(dev);
817         struct ifnet            *ifp = sc->vr_ifp;
818
819         KASSERT(mtx_initialized(&sc->vr_mtx), ("vr mutex not initialized"));
820
821 #ifdef DEVICE_POLLING
822         if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
823                 ether_poll_deregister(ifp);
824 #endif
825
826         /* These should only be active if attach succeeded. */
827         if (device_is_attached(dev)) {
828                 VR_LOCK(sc);
829                 sc->vr_flags |= VR_F_DETACHED;
830                 vr_stop(sc);
831                 VR_UNLOCK(sc);
832                 callout_drain(&sc->vr_stat_callout);
833                 taskqueue_drain(taskqueue_fast, &sc->vr_inttask);
834                 ether_ifdetach(ifp);
835         }
836         if (sc->vr_miibus)
837                 device_delete_child(dev, sc->vr_miibus);
838         bus_generic_detach(dev);
839
840         if (sc->vr_intrhand)
841                 bus_teardown_intr(dev, sc->vr_irq, sc->vr_intrhand);
842         if (sc->vr_irq)
843                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vr_irq);
844         if (sc->vr_res)
845                 bus_release_resource(dev, sc->vr_res_type, sc->vr_res_id,
846                     sc->vr_res);
847
848         if (ifp)
849                 if_free(ifp);
850
851         vr_dma_free(sc);
852
853         mtx_destroy(&sc->vr_mtx);
854
855         return (0);
856 }
857
858 struct vr_dmamap_arg {
859         bus_addr_t      vr_busaddr;
860 };
861
862 static void
863 vr_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
864 {
865         struct vr_dmamap_arg    *ctx;
866
867         if (error != 0)
868                 return;
869         ctx = arg;
870         ctx->vr_busaddr = segs[0].ds_addr;
871 }
872
873 static int
874 vr_dma_alloc(struct vr_softc *sc)
875 {
876         struct vr_dmamap_arg    ctx;
877         struct vr_txdesc        *txd;
878         struct vr_rxdesc        *rxd;
879         bus_size_t              tx_alignment;
880         int                     error, i;
881
882         /* Create parent DMA tag. */
883         error = bus_dma_tag_create(
884             bus_get_dma_tag(sc->vr_dev),        /* parent */
885             1, 0,                       /* alignment, boundary */
886             BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
887             BUS_SPACE_MAXADDR,          /* highaddr */
888             NULL, NULL,                 /* filter, filterarg */
889             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
890             0,                          /* nsegments */
891             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
892             0,                          /* flags */
893             NULL, NULL,                 /* lockfunc, lockarg */
894             &sc->vr_cdata.vr_parent_tag);
895         if (error != 0) {
896                 device_printf(sc->vr_dev, "failed to create parent DMA tag\n");
897                 goto fail;
898         }
899         /* Create tag for Tx ring. */
900         error = bus_dma_tag_create(
901             sc->vr_cdata.vr_parent_tag, /* parent */
902             VR_RING_ALIGN, 0,           /* alignment, boundary */
903             BUS_SPACE_MAXADDR,          /* lowaddr */
904             BUS_SPACE_MAXADDR,          /* highaddr */
905             NULL, NULL,                 /* filter, filterarg */
906             VR_TX_RING_SIZE,            /* maxsize */
907             1,                          /* nsegments */
908             VR_TX_RING_SIZE,            /* maxsegsize */
909             0,                          /* flags */
910             NULL, NULL,                 /* lockfunc, lockarg */
911             &sc->vr_cdata.vr_tx_ring_tag);
912         if (error != 0) {
913                 device_printf(sc->vr_dev, "failed to create Tx ring DMA tag\n");
914                 goto fail;
915         }
916
917         /* Create tag for Rx ring. */
918         error = bus_dma_tag_create(
919             sc->vr_cdata.vr_parent_tag, /* parent */
920             VR_RING_ALIGN, 0,           /* alignment, boundary */
921             BUS_SPACE_MAXADDR,          /* lowaddr */
922             BUS_SPACE_MAXADDR,          /* highaddr */
923             NULL, NULL,                 /* filter, filterarg */
924             VR_RX_RING_SIZE,            /* maxsize */
925             1,                          /* nsegments */
926             VR_RX_RING_SIZE,            /* maxsegsize */
927             0,                          /* flags */
928             NULL, NULL,                 /* lockfunc, lockarg */
929             &sc->vr_cdata.vr_rx_ring_tag);
930         if (error != 0) {
931                 device_printf(sc->vr_dev, "failed to create Rx ring DMA tag\n");
932                 goto fail;
933         }
934
935         if ((sc->vr_quirks & VR_Q_NEEDALIGN) != 0)
936                 tx_alignment = sizeof(uint32_t);
937         else
938                 tx_alignment = 1;
939         /* Create tag for Tx buffers. */
940         error = bus_dma_tag_create(
941             sc->vr_cdata.vr_parent_tag, /* parent */
942             tx_alignment, 0,            /* alignment, boundary */
943             BUS_SPACE_MAXADDR,          /* lowaddr */
944             BUS_SPACE_MAXADDR,          /* highaddr */
945             NULL, NULL,                 /* filter, filterarg */
946             MCLBYTES * VR_MAXFRAGS,     /* maxsize */
947             VR_MAXFRAGS,                /* nsegments */
948             MCLBYTES,                   /* maxsegsize */
949             0,                          /* flags */
950             NULL, NULL,                 /* lockfunc, lockarg */
951             &sc->vr_cdata.vr_tx_tag);
952         if (error != 0) {
953                 device_printf(sc->vr_dev, "failed to create Tx DMA tag\n");
954                 goto fail;
955         }
956
957         /* Create tag for Rx buffers. */
958         error = bus_dma_tag_create(
959             sc->vr_cdata.vr_parent_tag, /* parent */
960             VR_RX_ALIGN, 0,             /* alignment, boundary */
961             BUS_SPACE_MAXADDR,          /* lowaddr */
962             BUS_SPACE_MAXADDR,          /* highaddr */
963             NULL, NULL,                 /* filter, filterarg */
964             MCLBYTES,                   /* maxsize */
965             1,                          /* nsegments */
966             MCLBYTES,                   /* maxsegsize */
967             0,                          /* flags */
968             NULL, NULL,                 /* lockfunc, lockarg */
969             &sc->vr_cdata.vr_rx_tag);
970         if (error != 0) {
971                 device_printf(sc->vr_dev, "failed to create Rx DMA tag\n");
972                 goto fail;
973         }
974
975         /* Allocate DMA'able memory and load the DMA map for Tx ring. */
976         error = bus_dmamem_alloc(sc->vr_cdata.vr_tx_ring_tag,
977             (void **)&sc->vr_rdata.vr_tx_ring, BUS_DMA_WAITOK |
978             BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->vr_cdata.vr_tx_ring_map);
979         if (error != 0) {
980                 device_printf(sc->vr_dev,
981                     "failed to allocate DMA'able memory for Tx ring\n");
982                 goto fail;
983         }
984
985         ctx.vr_busaddr = 0;
986         error = bus_dmamap_load(sc->vr_cdata.vr_tx_ring_tag,
987             sc->vr_cdata.vr_tx_ring_map, sc->vr_rdata.vr_tx_ring,
988             VR_TX_RING_SIZE, vr_dmamap_cb, &ctx, 0);
989         if (error != 0 || ctx.vr_busaddr == 0) {
990                 device_printf(sc->vr_dev,
991                     "failed to load DMA'able memory for Tx ring\n");
992                 goto fail;
993         }
994         sc->vr_rdata.vr_tx_ring_paddr = ctx.vr_busaddr;
995
996         /* Allocate DMA'able memory and load the DMA map for Rx ring. */
997         error = bus_dmamem_alloc(sc->vr_cdata.vr_rx_ring_tag,
998             (void **)&sc->vr_rdata.vr_rx_ring, BUS_DMA_WAITOK |
999             BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->vr_cdata.vr_rx_ring_map);
1000         if (error != 0) {
1001                 device_printf(sc->vr_dev,
1002                     "failed to allocate DMA'able memory for Rx ring\n");
1003                 goto fail;
1004         }
1005
1006         ctx.vr_busaddr = 0;
1007         error = bus_dmamap_load(sc->vr_cdata.vr_rx_ring_tag,
1008             sc->vr_cdata.vr_rx_ring_map, sc->vr_rdata.vr_rx_ring,
1009             VR_RX_RING_SIZE, vr_dmamap_cb, &ctx, 0);
1010         if (error != 0 || ctx.vr_busaddr == 0) {
1011                 device_printf(sc->vr_dev,
1012                     "failed to load DMA'able memory for Rx ring\n");
1013                 goto fail;
1014         }
1015         sc->vr_rdata.vr_rx_ring_paddr = ctx.vr_busaddr;
1016
1017         /* Create DMA maps for Tx buffers. */
1018         for (i = 0; i < VR_TX_RING_CNT; i++) {
1019                 txd = &sc->vr_cdata.vr_txdesc[i];
1020                 txd->tx_m = NULL;
1021                 txd->tx_dmamap = NULL;
1022                 error = bus_dmamap_create(sc->vr_cdata.vr_tx_tag, 0,
1023                     &txd->tx_dmamap);
1024                 if (error != 0) {
1025                         device_printf(sc->vr_dev,
1026                             "failed to create Tx dmamap\n");
1027                         goto fail;
1028                 }
1029         }
1030         /* Create DMA maps for Rx buffers. */
1031         if ((error = bus_dmamap_create(sc->vr_cdata.vr_rx_tag, 0,
1032             &sc->vr_cdata.vr_rx_sparemap)) != 0) {
1033                 device_printf(sc->vr_dev,
1034                     "failed to create spare Rx dmamap\n");
1035                 goto fail;
1036         }
1037         for (i = 0; i < VR_RX_RING_CNT; i++) {
1038                 rxd = &sc->vr_cdata.vr_rxdesc[i];
1039                 rxd->rx_m = NULL;
1040                 rxd->rx_dmamap = NULL;
1041                 error = bus_dmamap_create(sc->vr_cdata.vr_rx_tag, 0,
1042                     &rxd->rx_dmamap);
1043                 if (error != 0) {
1044                         device_printf(sc->vr_dev,
1045                             "failed to create Rx dmamap\n");
1046                         goto fail;
1047                 }
1048         }
1049
1050 fail:
1051         return (error);
1052 }
1053
1054 static void
1055 vr_dma_free(struct vr_softc *sc)
1056 {
1057         struct vr_txdesc        *txd;
1058         struct vr_rxdesc        *rxd;
1059         int                     i;
1060
1061         /* Tx ring. */
1062         if (sc->vr_cdata.vr_tx_ring_tag) {
1063                 if (sc->vr_cdata.vr_tx_ring_map)
1064                         bus_dmamap_unload(sc->vr_cdata.vr_tx_ring_tag,
1065                             sc->vr_cdata.vr_tx_ring_map);
1066                 if (sc->vr_cdata.vr_tx_ring_map &&
1067                     sc->vr_rdata.vr_tx_ring)
1068                         bus_dmamem_free(sc->vr_cdata.vr_tx_ring_tag,
1069                             sc->vr_rdata.vr_tx_ring,
1070                             sc->vr_cdata.vr_tx_ring_map);
1071                 sc->vr_rdata.vr_tx_ring = NULL;
1072                 sc->vr_cdata.vr_tx_ring_map = NULL;
1073                 bus_dma_tag_destroy(sc->vr_cdata.vr_tx_ring_tag);
1074                 sc->vr_cdata.vr_tx_ring_tag = NULL;
1075         }
1076         /* Rx ring. */
1077         if (sc->vr_cdata.vr_rx_ring_tag) {
1078                 if (sc->vr_cdata.vr_rx_ring_map)
1079                         bus_dmamap_unload(sc->vr_cdata.vr_rx_ring_tag,
1080                             sc->vr_cdata.vr_rx_ring_map);
1081                 if (sc->vr_cdata.vr_rx_ring_map &&
1082                     sc->vr_rdata.vr_rx_ring)
1083                         bus_dmamem_free(sc->vr_cdata.vr_rx_ring_tag,
1084                             sc->vr_rdata.vr_rx_ring,
1085                             sc->vr_cdata.vr_rx_ring_map);
1086                 sc->vr_rdata.vr_rx_ring = NULL;
1087                 sc->vr_cdata.vr_rx_ring_map = NULL;
1088                 bus_dma_tag_destroy(sc->vr_cdata.vr_rx_ring_tag);
1089                 sc->vr_cdata.vr_rx_ring_tag = NULL;
1090         }
1091         /* Tx buffers. */
1092         if (sc->vr_cdata.vr_tx_tag) {
1093                 for (i = 0; i < VR_TX_RING_CNT; i++) {
1094                         txd = &sc->vr_cdata.vr_txdesc[i];
1095                         if (txd->tx_dmamap) {
1096                                 bus_dmamap_destroy(sc->vr_cdata.vr_tx_tag,
1097                                     txd->tx_dmamap);
1098                                 txd->tx_dmamap = NULL;
1099                         }
1100                 }
1101                 bus_dma_tag_destroy(sc->vr_cdata.vr_tx_tag);
1102                 sc->vr_cdata.vr_tx_tag = NULL;
1103         }
1104         /* Rx buffers. */
1105         if (sc->vr_cdata.vr_rx_tag) {
1106                 for (i = 0; i < VR_RX_RING_CNT; i++) {
1107                         rxd = &sc->vr_cdata.vr_rxdesc[i];
1108                         if (rxd->rx_dmamap) {
1109                                 bus_dmamap_destroy(sc->vr_cdata.vr_rx_tag,
1110                                     rxd->rx_dmamap);
1111                                 rxd->rx_dmamap = NULL;
1112                         }
1113                 }
1114                 if (sc->vr_cdata.vr_rx_sparemap) {
1115                         bus_dmamap_destroy(sc->vr_cdata.vr_rx_tag,
1116                             sc->vr_cdata.vr_rx_sparemap);
1117                         sc->vr_cdata.vr_rx_sparemap = 0;
1118                 }
1119                 bus_dma_tag_destroy(sc->vr_cdata.vr_rx_tag);
1120                 sc->vr_cdata.vr_rx_tag = NULL;
1121         }
1122
1123         if (sc->vr_cdata.vr_parent_tag) {
1124                 bus_dma_tag_destroy(sc->vr_cdata.vr_parent_tag);
1125                 sc->vr_cdata.vr_parent_tag = NULL;
1126         }
1127 }
1128
1129 /*
1130  * Initialize the transmit descriptors.
1131  */
1132 static int
1133 vr_tx_ring_init(struct vr_softc *sc)
1134 {
1135         struct vr_ring_data     *rd;
1136         struct vr_txdesc        *txd;
1137         bus_addr_t              addr;
1138         int                     i;
1139
1140         sc->vr_cdata.vr_tx_prod = 0;
1141         sc->vr_cdata.vr_tx_cons = 0;
1142         sc->vr_cdata.vr_tx_cnt = 0;
1143         sc->vr_cdata.vr_tx_pkts = 0;
1144
1145         rd = &sc->vr_rdata;
1146         bzero(rd->vr_tx_ring, VR_TX_RING_SIZE);
1147         for (i = 0; i < VR_TX_RING_CNT; i++) {
1148                 if (i == VR_TX_RING_CNT - 1)
1149                         addr = VR_TX_RING_ADDR(sc, 0);
1150                 else
1151                         addr = VR_TX_RING_ADDR(sc, i + 1);
1152                 rd->vr_tx_ring[i].vr_nextphys = htole32(VR_ADDR_LO(addr));
1153                 txd = &sc->vr_cdata.vr_txdesc[i];
1154                 txd->tx_m = NULL;
1155         }
1156
1157         bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1158             sc->vr_cdata.vr_tx_ring_map,
1159             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1160
1161         return (0);
1162 }
1163
1164 /*
1165  * Initialize the RX descriptors and allocate mbufs for them. Note that
1166  * we arrange the descriptors in a closed ring, so that the last descriptor
1167  * points back to the first.
1168  */
1169 static int
1170 vr_rx_ring_init(struct vr_softc *sc)
1171 {
1172         struct vr_ring_data     *rd;
1173         struct vr_rxdesc        *rxd;
1174         bus_addr_t              addr;
1175         int                     i;
1176
1177         sc->vr_cdata.vr_rx_cons = 0;
1178
1179         rd = &sc->vr_rdata;
1180         bzero(rd->vr_rx_ring, VR_RX_RING_SIZE);
1181         for (i = 0; i < VR_RX_RING_CNT; i++) {
1182                 rxd = &sc->vr_cdata.vr_rxdesc[i];
1183                 rxd->rx_m = NULL;
1184                 rxd->desc = &rd->vr_rx_ring[i];
1185                 if (i == VR_RX_RING_CNT - 1)
1186                         addr = VR_RX_RING_ADDR(sc, 0);
1187                 else
1188                         addr = VR_RX_RING_ADDR(sc, i + 1);
1189                 rd->vr_rx_ring[i].vr_nextphys = htole32(VR_ADDR_LO(addr));
1190                 if (vr_newbuf(sc, i) != 0)
1191                         return (ENOBUFS);
1192         }
1193
1194         bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1195             sc->vr_cdata.vr_rx_ring_map,
1196             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1197
1198         return (0);
1199 }
1200
1201 static __inline void
1202 vr_discard_rxbuf(struct vr_rxdesc *rxd)
1203 {
1204         struct vr_desc  *desc;
1205
1206         desc = rxd->desc;
1207         desc->vr_ctl = htole32(VR_RXCTL | (MCLBYTES - sizeof(uint64_t)));
1208         desc->vr_status = htole32(VR_RXSTAT_OWN);
1209 }
1210
1211 /*
1212  * Initialize an RX descriptor and attach an MBUF cluster.
1213  * Note: the length fields are only 11 bits wide, which means the
1214  * largest size we can specify is 2047. This is important because
1215  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
1216  * overflow the field and make a mess.
1217  */
1218 static int
1219 vr_newbuf(struct vr_softc *sc, int idx)
1220 {
1221         struct vr_desc          *desc;
1222         struct vr_rxdesc        *rxd;
1223         struct mbuf             *m;
1224         bus_dma_segment_t       segs[1];
1225         bus_dmamap_t            map;
1226         int                     nsegs;
1227
1228         m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1229         if (m == NULL)
1230                 return (ENOBUFS);
1231         m->m_len = m->m_pkthdr.len = MCLBYTES;
1232         m_adj(m, sizeof(uint64_t));
1233
1234         if (bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_rx_tag,
1235             sc->vr_cdata.vr_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1236                 m_freem(m);
1237                 return (ENOBUFS);
1238         }
1239         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1240
1241         rxd = &sc->vr_cdata.vr_rxdesc[idx];
1242         if (rxd->rx_m != NULL) {
1243                 bus_dmamap_sync(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap,
1244                     BUS_DMASYNC_POSTREAD);
1245                 bus_dmamap_unload(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap);
1246         }
1247         map = rxd->rx_dmamap;
1248         rxd->rx_dmamap = sc->vr_cdata.vr_rx_sparemap;
1249         sc->vr_cdata.vr_rx_sparemap = map;
1250         bus_dmamap_sync(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap,
1251             BUS_DMASYNC_PREREAD);
1252         rxd->rx_m = m;
1253         desc = rxd->desc;
1254         desc->vr_data = htole32(VR_ADDR_LO(segs[0].ds_addr));
1255         desc->vr_ctl = htole32(VR_RXCTL | segs[0].ds_len);
1256         desc->vr_status = htole32(VR_RXSTAT_OWN);
1257
1258         return (0);
1259 }
1260
1261 #ifndef __NO_STRICT_ALIGNMENT
1262 static __inline void
1263 vr_fixup_rx(struct mbuf *m)
1264 {
1265         uint16_t                *src, *dst;
1266         int                     i;
1267
1268         src = mtod(m, uint16_t *);
1269         dst = src - 1;
1270
1271         for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1272                 *dst++ = *src++;
1273
1274         m->m_data -= ETHER_ALIGN;
1275 }
1276 #endif
1277
1278 /*
1279  * A frame has been uploaded: pass the resulting mbuf chain up to
1280  * the higher level protocols.
1281  */
1282 static int
1283 vr_rxeof(struct vr_softc *sc)
1284 {
1285         struct vr_rxdesc        *rxd;
1286         struct mbuf             *m;
1287         struct ifnet            *ifp;
1288         struct vr_desc          *cur_rx;
1289         int                     cons, prog, total_len, rx_npkts;
1290         uint32_t                rxstat, rxctl;
1291
1292         VR_LOCK_ASSERT(sc);
1293         ifp = sc->vr_ifp;
1294         cons = sc->vr_cdata.vr_rx_cons;
1295         rx_npkts = 0;
1296
1297         bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1298             sc->vr_cdata.vr_rx_ring_map,
1299             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1300
1301         for (prog = 0; prog < VR_RX_RING_CNT; VR_INC(cons, VR_RX_RING_CNT)) {
1302 #ifdef DEVICE_POLLING
1303                 if (ifp->if_capenable & IFCAP_POLLING) {
1304                         if (sc->rxcycles <= 0)
1305                                 break;
1306                         sc->rxcycles--;
1307                 }
1308 #endif
1309                 cur_rx = &sc->vr_rdata.vr_rx_ring[cons];
1310                 rxstat = le32toh(cur_rx->vr_status);
1311                 rxctl = le32toh(cur_rx->vr_ctl);
1312                 if ((rxstat & VR_RXSTAT_OWN) == VR_RXSTAT_OWN)
1313                         break;
1314
1315                 prog++;
1316                 rxd = &sc->vr_cdata.vr_rxdesc[cons];
1317                 m = rxd->rx_m;
1318
1319                 /*
1320                  * If an error occurs, update stats, clear the
1321                  * status word and leave the mbuf cluster in place:
1322                  * it should simply get re-used next time this descriptor
1323                  * comes up in the ring.
1324                  * We don't support SG in Rx path yet, so discard
1325                  * partial frame.
1326                  */
1327                 if ((rxstat & VR_RXSTAT_RX_OK) == 0 ||
1328                     (rxstat & (VR_RXSTAT_FIRSTFRAG | VR_RXSTAT_LASTFRAG)) !=
1329                     (VR_RXSTAT_FIRSTFRAG | VR_RXSTAT_LASTFRAG)) {
1330                         ifp->if_ierrors++;
1331                         sc->vr_stat.rx_errors++;
1332                         if (rxstat & VR_RXSTAT_CRCERR)
1333                                 sc->vr_stat.rx_crc_errors++;
1334                         if (rxstat & VR_RXSTAT_FRAMEALIGNERR)
1335                                 sc->vr_stat.rx_alignment++;
1336                         if (rxstat & VR_RXSTAT_FIFOOFLOW)
1337                                 sc->vr_stat.rx_fifo_overflows++;
1338                         if (rxstat & VR_RXSTAT_GIANT)
1339                                 sc->vr_stat.rx_giants++;
1340                         if (rxstat & VR_RXSTAT_RUNT)
1341                                 sc->vr_stat.rx_runts++;
1342                         if (rxstat & VR_RXSTAT_BUFFERR)
1343                                 sc->vr_stat.rx_no_buffers++;
1344 #ifdef  VR_SHOW_ERRORS
1345                         device_printf(sc->vr_dev, "%s: receive error = 0x%b\n",
1346                             __func__, rxstat & 0xff, VR_RXSTAT_ERR_BITS);
1347 #endif
1348                         vr_discard_rxbuf(rxd);
1349                         continue;
1350                 }
1351
1352                 if (vr_newbuf(sc, cons) != 0) {
1353                         ifp->if_iqdrops++;
1354                         sc->vr_stat.rx_errors++;
1355                         sc->vr_stat.rx_no_mbufs++;
1356                         vr_discard_rxbuf(rxd);
1357                         continue;
1358                 }
1359
1360                 /*
1361                  * XXX The VIA Rhine chip includes the CRC with every
1362                  * received frame, and there's no way to turn this
1363                  * behavior off (at least, I can't find anything in
1364                  * the manual that explains how to do it) so we have
1365                  * to trim off the CRC manually.
1366                  */
1367                 total_len = VR_RXBYTES(rxstat);
1368                 total_len -= ETHER_CRC_LEN;
1369                 m->m_pkthdr.len = m->m_len = total_len;
1370 #ifndef __NO_STRICT_ALIGNMENT
1371                 /*
1372                  * RX buffers must be 32-bit aligned.
1373                  * Ignore the alignment problems on the non-strict alignment
1374                  * platform. The performance hit incurred due to unaligned
1375                  * accesses is much smaller than the hit produced by forcing
1376                  * buffer copies all the time.
1377                  */
1378                 vr_fixup_rx(m);
1379 #endif
1380                 m->m_pkthdr.rcvif = ifp;
1381                 ifp->if_ipackets++;
1382                 sc->vr_stat.rx_ok++;
1383                 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
1384                     (rxstat & VR_RXSTAT_FRAG) == 0 &&
1385                     (rxctl & VR_RXCTL_IP) != 0) {
1386                         /* Checksum is valid for non-fragmented IP packets. */
1387                         m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1388                         if ((rxctl & VR_RXCTL_IPOK) == VR_RXCTL_IPOK) {
1389                                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1390                                 if (rxctl & (VR_RXCTL_TCP | VR_RXCTL_UDP)) {
1391                                         m->m_pkthdr.csum_flags |=
1392                                             CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1393                                         if ((rxctl & VR_RXCTL_TCPUDPOK) != 0)
1394                                                 m->m_pkthdr.csum_data = 0xffff;
1395                                 }
1396                         }
1397                 }
1398                 VR_UNLOCK(sc);
1399                 (*ifp->if_input)(ifp, m);
1400                 VR_LOCK(sc);
1401                 rx_npkts++;
1402         }
1403
1404         if (prog > 0) {
1405                 /*
1406                  * Let controller know how many number of RX buffers
1407                  * are posted but avoid expensive register access if
1408                  * TX pause capability was not negotiated with link
1409                  * partner.
1410                  */
1411                 if ((sc->vr_flags & VR_F_TXPAUSE) != 0) {
1412                         if (prog >= VR_RX_RING_CNT)
1413                                 prog = VR_RX_RING_CNT - 1;
1414                         CSR_WRITE_1(sc, VR_FLOWCR0, prog);
1415                 }
1416                 sc->vr_cdata.vr_rx_cons = cons;
1417                 bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1418                     sc->vr_cdata.vr_rx_ring_map,
1419                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1420         }
1421         return (rx_npkts);
1422 }
1423
1424 /*
1425  * A frame was downloaded to the chip. It's safe for us to clean up
1426  * the list buffers.
1427  */
1428 static void
1429 vr_txeof(struct vr_softc *sc)
1430 {
1431         struct vr_txdesc        *txd;
1432         struct vr_desc          *cur_tx;
1433         struct ifnet            *ifp;
1434         uint32_t                txctl, txstat;
1435         int                     cons, prod;
1436
1437         VR_LOCK_ASSERT(sc);
1438
1439         cons = sc->vr_cdata.vr_tx_cons;
1440         prod = sc->vr_cdata.vr_tx_prod;
1441         if (cons == prod)
1442                 return;
1443
1444         bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1445             sc->vr_cdata.vr_tx_ring_map,
1446             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1447
1448         ifp = sc->vr_ifp;
1449         /*
1450          * Go through our tx list and free mbufs for those
1451          * frames that have been transmitted.
1452          */
1453         for (; cons != prod; VR_INC(cons, VR_TX_RING_CNT)) {
1454                 cur_tx = &sc->vr_rdata.vr_tx_ring[cons];
1455                 txctl = le32toh(cur_tx->vr_ctl);
1456                 txstat = le32toh(cur_tx->vr_status);
1457                 if ((txstat & VR_TXSTAT_OWN) == VR_TXSTAT_OWN)
1458                         break;
1459
1460                 sc->vr_cdata.vr_tx_cnt--;
1461                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1462                 /* Only the first descriptor in the chain is valid. */
1463                 if ((txctl & VR_TXCTL_FIRSTFRAG) == 0)
1464                         continue;
1465
1466                 txd = &sc->vr_cdata.vr_txdesc[cons];
1467                 KASSERT(txd->tx_m != NULL, ("%s: accessing NULL mbuf!\n",
1468                     __func__));
1469
1470                 if ((txstat & VR_TXSTAT_ERRSUM) != 0) {
1471                         ifp->if_oerrors++;
1472                         sc->vr_stat.tx_errors++;
1473                         if ((txstat & VR_TXSTAT_ABRT) != 0) {
1474                                 /* Give up and restart Tx. */
1475                                 sc->vr_stat.tx_abort++;
1476                                 bus_dmamap_sync(sc->vr_cdata.vr_tx_tag,
1477                                     txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1478                                 bus_dmamap_unload(sc->vr_cdata.vr_tx_tag,
1479                                     txd->tx_dmamap);
1480                                 m_freem(txd->tx_m);
1481                                 txd->tx_m = NULL;
1482                                 VR_INC(cons, VR_TX_RING_CNT);
1483                                 sc->vr_cdata.vr_tx_cons = cons;
1484                                 if (vr_tx_stop(sc) != 0) {
1485                                         device_printf(sc->vr_dev,
1486                                             "%s: Tx shutdown error -- "
1487                                             "resetting\n", __func__);
1488                                         sc->vr_flags |= VR_F_RESTART;
1489                                         return;
1490                                 }
1491                                 vr_tx_start(sc);
1492                                 break;
1493                         }
1494                         if ((sc->vr_revid < REV_ID_VT3071_A &&
1495                             (txstat & VR_TXSTAT_UNDERRUN)) ||
1496                             (txstat & (VR_TXSTAT_UDF | VR_TXSTAT_TBUFF))) {
1497                                 sc->vr_stat.tx_underrun++;
1498                                 /* Retry and restart Tx. */
1499                                 sc->vr_cdata.vr_tx_cnt++;
1500                                 sc->vr_cdata.vr_tx_cons = cons;
1501                                 cur_tx->vr_status = htole32(VR_TXSTAT_OWN);
1502                                 bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1503                                     sc->vr_cdata.vr_tx_ring_map,
1504                                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1505                                 vr_tx_underrun(sc);
1506                                 return;
1507                         }
1508                         if ((txstat & VR_TXSTAT_DEFER) != 0) {
1509                                 ifp->if_collisions++;
1510                                 sc->vr_stat.tx_collisions++;
1511                         }
1512                         if ((txstat & VR_TXSTAT_LATECOLL) != 0) {
1513                                 ifp->if_collisions++;
1514                                 sc->vr_stat.tx_late_collisions++;
1515                         }
1516                 } else {
1517                         sc->vr_stat.tx_ok++;
1518                         ifp->if_opackets++;
1519                 }
1520
1521                 bus_dmamap_sync(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1522                     BUS_DMASYNC_POSTWRITE);
1523                 bus_dmamap_unload(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap);
1524                 if (sc->vr_revid < REV_ID_VT3071_A) {
1525                         ifp->if_collisions +=
1526                             (txstat & VR_TXSTAT_COLLCNT) >> 3;
1527                         sc->vr_stat.tx_collisions +=
1528                             (txstat & VR_TXSTAT_COLLCNT) >> 3;
1529                 } else {
1530                         ifp->if_collisions += (txstat & 0x0f);
1531                         sc->vr_stat.tx_collisions += (txstat & 0x0f);
1532                 }
1533                 m_freem(txd->tx_m);
1534                 txd->tx_m = NULL;
1535         }
1536
1537         sc->vr_cdata.vr_tx_cons = cons;
1538         if (sc->vr_cdata.vr_tx_cnt == 0)
1539                 sc->vr_watchdog_timer = 0;
1540 }
1541
1542 static void
1543 vr_tick(void *xsc)
1544 {
1545         struct vr_softc         *sc;
1546         struct mii_data         *mii;
1547
1548         sc = (struct vr_softc *)xsc;
1549
1550         VR_LOCK_ASSERT(sc);
1551
1552         if ((sc->vr_flags & VR_F_RESTART) != 0) {
1553                 device_printf(sc->vr_dev, "restarting\n");
1554                 sc->vr_stat.num_restart++;
1555                 sc->vr_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1556                 vr_init_locked(sc);
1557                 sc->vr_flags &= ~VR_F_RESTART;
1558         }
1559
1560         mii = device_get_softc(sc->vr_miibus);
1561         mii_tick(mii);
1562         if ((sc->vr_flags & VR_F_LINK) == 0)
1563                 vr_miibus_statchg(sc->vr_dev);
1564         vr_watchdog(sc);
1565         callout_reset(&sc->vr_stat_callout, hz, vr_tick, sc);
1566 }
1567
1568 #ifdef DEVICE_POLLING
1569 static poll_handler_t vr_poll;
1570 static poll_handler_t vr_poll_locked;
1571
1572 static int
1573 vr_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1574 {
1575         struct vr_softc *sc;
1576         int rx_npkts;
1577
1578         sc = ifp->if_softc;
1579         rx_npkts = 0;
1580
1581         VR_LOCK(sc);
1582         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1583                 rx_npkts = vr_poll_locked(ifp, cmd, count);
1584         VR_UNLOCK(sc);
1585         return (rx_npkts);
1586 }
1587
1588 static int
1589 vr_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
1590 {
1591         struct vr_softc *sc;
1592         int rx_npkts;
1593
1594         sc = ifp->if_softc;
1595
1596         VR_LOCK_ASSERT(sc);
1597
1598         sc->rxcycles = count;
1599         rx_npkts = vr_rxeof(sc);
1600         vr_txeof(sc);
1601         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1602                 vr_start_locked(ifp);
1603
1604         if (cmd == POLL_AND_CHECK_STATUS) {
1605                 uint16_t status;
1606
1607                 /* Also check status register. */
1608                 status = CSR_READ_2(sc, VR_ISR);
1609                 if (status)
1610                         CSR_WRITE_2(sc, VR_ISR, status);
1611
1612                 if ((status & VR_INTRS) == 0)
1613                         return (rx_npkts);
1614
1615                 if ((status & (VR_ISR_BUSERR | VR_ISR_LINKSTAT2 |
1616                     VR_ISR_STATSOFLOW)) != 0) {
1617                         if (vr_error(sc, status) != 0)
1618                                 return (rx_npkts);
1619                 }
1620                 if ((status & (VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW)) != 0) {
1621 #ifdef  VR_SHOW_ERRORS
1622                         device_printf(sc->vr_dev, "%s: receive error : 0x%b\n",
1623                             __func__, status, VR_ISR_ERR_BITS);
1624 #endif
1625                         vr_rx_start(sc);
1626                 }
1627         }
1628         return (rx_npkts);
1629 }
1630 #endif /* DEVICE_POLLING */
1631
1632 /* Back off the transmit threshold. */
1633 static void
1634 vr_tx_underrun(struct vr_softc *sc)
1635 {
1636         int     thresh;
1637
1638         device_printf(sc->vr_dev, "Tx underrun -- ");
1639         if (sc->vr_txthresh < VR_TXTHRESH_MAX) {
1640                 thresh = sc->vr_txthresh;
1641                 sc->vr_txthresh++;
1642                 if (sc->vr_txthresh >= VR_TXTHRESH_MAX) {
1643                         sc->vr_txthresh = VR_TXTHRESH_MAX;
1644                         printf("using store and forward mode\n");
1645                 } else
1646                         printf("increasing Tx threshold(%d -> %d)\n",
1647                             vr_tx_threshold_tables[thresh].value,
1648                             vr_tx_threshold_tables[thresh + 1].value);
1649         } else
1650                 printf("\n");
1651         sc->vr_stat.tx_underrun++;
1652         if (vr_tx_stop(sc) != 0) {
1653                 device_printf(sc->vr_dev, "%s: Tx shutdown error -- "
1654                     "resetting\n", __func__);
1655                 sc->vr_flags |= VR_F_RESTART;
1656                 return;
1657         }
1658         vr_tx_start(sc);
1659 }
1660
1661 static int
1662 vr_intr(void *arg)
1663 {
1664         struct vr_softc         *sc;
1665         uint16_t                status;
1666
1667         sc = (struct vr_softc *)arg;
1668
1669         status = CSR_READ_2(sc, VR_ISR);
1670         if (status == 0 || status == 0xffff || (status & VR_INTRS) == 0)
1671                 return (FILTER_STRAY);
1672
1673         /* Disable interrupts. */
1674         CSR_WRITE_2(sc, VR_IMR, 0x0000);
1675
1676         taskqueue_enqueue_fast(taskqueue_fast, &sc->vr_inttask);
1677
1678         return (FILTER_HANDLED);
1679 }
1680
1681 static void
1682 vr_int_task(void *arg, int npending)
1683 {
1684         struct vr_softc         *sc;
1685         struct ifnet            *ifp;
1686         uint16_t                status;
1687
1688         sc = (struct vr_softc *)arg;
1689
1690         VR_LOCK(sc);
1691
1692         if ((sc->vr_flags & VR_F_SUSPENDED) != 0)
1693                 goto done_locked;
1694
1695         status = CSR_READ_2(sc, VR_ISR);
1696         ifp = sc->vr_ifp;
1697 #ifdef DEVICE_POLLING
1698         if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1699                 goto done_locked;
1700 #endif
1701
1702         /* Suppress unwanted interrupts. */
1703         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
1704             (sc->vr_flags & VR_F_RESTART) != 0) {
1705                 CSR_WRITE_2(sc, VR_IMR, 0);
1706                 CSR_WRITE_2(sc, VR_ISR, status);
1707                 goto done_locked;
1708         }
1709
1710         for (; (status & VR_INTRS) != 0;) {
1711                 CSR_WRITE_2(sc, VR_ISR, status);
1712                 if ((status & (VR_ISR_BUSERR | VR_ISR_LINKSTAT2 |
1713                     VR_ISR_STATSOFLOW)) != 0) {
1714                         if (vr_error(sc, status) != 0) {
1715                                 VR_UNLOCK(sc);
1716                                 return;
1717                         }
1718                 }
1719                 vr_rxeof(sc);
1720                 if ((status & (VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW)) != 0) {
1721 #ifdef  VR_SHOW_ERRORS
1722                         device_printf(sc->vr_dev, "%s: receive error = 0x%b\n",
1723                             __func__, status, VR_ISR_ERR_BITS);
1724 #endif
1725                         /* Restart Rx if RxDMA SM was stopped. */
1726                         vr_rx_start(sc);
1727                 }
1728                 vr_txeof(sc);
1729
1730                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1731                         vr_start_locked(ifp);
1732
1733                 status = CSR_READ_2(sc, VR_ISR);
1734         }
1735
1736         /* Re-enable interrupts. */
1737         CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1738
1739 done_locked:
1740         VR_UNLOCK(sc);
1741 }
1742
1743 static int
1744 vr_error(struct vr_softc *sc, uint16_t status)
1745 {
1746         uint16_t pcis;
1747
1748         status &= VR_ISR_BUSERR | VR_ISR_LINKSTAT2 | VR_ISR_STATSOFLOW;
1749         if ((status & VR_ISR_BUSERR) != 0) {
1750                 status &= ~VR_ISR_BUSERR;
1751                 sc->vr_stat.bus_errors++;
1752                 /* Disable further interrupts. */
1753                 CSR_WRITE_2(sc, VR_IMR, 0);
1754                 pcis = pci_read_config(sc->vr_dev, PCIR_STATUS, 2);
1755                 device_printf(sc->vr_dev, "PCI bus error(0x%04x) -- "
1756                     "resetting\n", pcis);
1757                 pci_write_config(sc->vr_dev, PCIR_STATUS, pcis, 2);
1758                 sc->vr_flags |= VR_F_RESTART;
1759                 return (EAGAIN);
1760         }
1761         if ((status & VR_ISR_LINKSTAT2) != 0) {
1762                 /* Link state change, duplex changes etc. */
1763                 status &= ~VR_ISR_LINKSTAT2;
1764         }
1765         if ((status & VR_ISR_STATSOFLOW) != 0) {
1766                 status &= ~VR_ISR_STATSOFLOW;
1767                 if (sc->vr_revid >= REV_ID_VT6105M_A0) {
1768                         /* Update MIB counters. */
1769                 }
1770         }
1771
1772         if (status != 0)
1773                 device_printf(sc->vr_dev,
1774                     "unhandled interrupt, status = 0x%04x\n", status);
1775         return (0);
1776 }
1777
1778 /*
1779  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1780  * pointers to the fragment pointers.
1781  */
1782 static int
1783 vr_encap(struct vr_softc *sc, struct mbuf **m_head)
1784 {
1785         struct vr_txdesc        *txd;
1786         struct vr_desc          *desc;
1787         struct mbuf             *m;
1788         bus_dma_segment_t       txsegs[VR_MAXFRAGS];
1789         uint32_t                csum_flags, txctl;
1790         int                     error, i, nsegs, prod, si;
1791         int                     padlen;
1792
1793         VR_LOCK_ASSERT(sc);
1794
1795         M_ASSERTPKTHDR((*m_head));
1796
1797         /*
1798          * Some VIA Rhine wants packet buffers to be longword
1799          * aligned, but very often our mbufs aren't. Rather than
1800          * waste time trying to decide when to copy and when not
1801          * to copy, just do it all the time.
1802          */
1803         if ((sc->vr_quirks & VR_Q_NEEDALIGN) != 0) {
1804                 m = m_defrag(*m_head, M_NOWAIT);
1805                 if (m == NULL) {
1806                         m_freem(*m_head);
1807                         *m_head = NULL;
1808                         return (ENOBUFS);
1809                 }
1810                 *m_head = m;
1811         }
1812
1813         /*
1814          * The Rhine chip doesn't auto-pad, so we have to make
1815          * sure to pad short frames out to the minimum frame length
1816          * ourselves.
1817          */
1818         if ((*m_head)->m_pkthdr.len < VR_MIN_FRAMELEN) {
1819                 m = *m_head;
1820                 padlen = VR_MIN_FRAMELEN - m->m_pkthdr.len;
1821                 if (M_WRITABLE(m) == 0) {
1822                         /* Get a writable copy. */
1823                         m = m_dup(*m_head, M_NOWAIT);
1824                         m_freem(*m_head);
1825                         if (m == NULL) {
1826                                 *m_head = NULL;
1827                                 return (ENOBUFS);
1828                         }
1829                         *m_head = m;
1830                 }
1831                 if (m->m_next != NULL || M_TRAILINGSPACE(m) < padlen) {
1832                         m = m_defrag(m, M_NOWAIT);
1833                         if (m == NULL) {
1834                                 m_freem(*m_head);
1835                                 *m_head = NULL;
1836                                 return (ENOBUFS);
1837                         }
1838                 }
1839                 /*
1840                  * Manually pad short frames, and zero the pad space
1841                  * to avoid leaking data.
1842                  */
1843                 bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1844                 m->m_pkthdr.len += padlen;
1845                 m->m_len = m->m_pkthdr.len;
1846                 *m_head = m;
1847         }
1848
1849         prod = sc->vr_cdata.vr_tx_prod;
1850         txd = &sc->vr_cdata.vr_txdesc[prod];
1851         error = bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1852             *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1853         if (error == EFBIG) {
1854                 m = m_collapse(*m_head, M_NOWAIT, VR_MAXFRAGS);
1855                 if (m == NULL) {
1856                         m_freem(*m_head);
1857                         *m_head = NULL;
1858                         return (ENOBUFS);
1859                 }
1860                 *m_head = m;
1861                 error = bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_tx_tag,
1862                     txd->tx_dmamap, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1863                 if (error != 0) {
1864                         m_freem(*m_head);
1865                         *m_head = NULL;
1866                         return (error);
1867                 }
1868         } else if (error != 0)
1869                 return (error);
1870         if (nsegs == 0) {
1871                 m_freem(*m_head);
1872                 *m_head = NULL;
1873                 return (EIO);
1874         }
1875
1876         /* Check number of available descriptors. */
1877         if (sc->vr_cdata.vr_tx_cnt + nsegs >= (VR_TX_RING_CNT - 1)) {
1878                 bus_dmamap_unload(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap);
1879                 return (ENOBUFS);
1880         }
1881
1882         txd->tx_m = *m_head;
1883         bus_dmamap_sync(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1884             BUS_DMASYNC_PREWRITE);
1885
1886         /* Set checksum offload. */
1887         csum_flags = 0;
1888         if (((*m_head)->m_pkthdr.csum_flags & VR_CSUM_FEATURES) != 0) {
1889                 if ((*m_head)->m_pkthdr.csum_flags & CSUM_IP)
1890                         csum_flags |= VR_TXCTL_IPCSUM;
1891                 if ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP)
1892                         csum_flags |= VR_TXCTL_TCPCSUM;
1893                 if ((*m_head)->m_pkthdr.csum_flags & CSUM_UDP)
1894                         csum_flags |= VR_TXCTL_UDPCSUM;
1895         }
1896
1897         /*
1898          * Quite contrary to datasheet for VIA Rhine, VR_TXCTL_TLINK bit
1899          * is required for all descriptors regardless of single or
1900          * multiple buffers. Also VR_TXSTAT_OWN bit is valid only for
1901          * the first descriptor for a multi-fragmented frames. Without
1902          * that VIA Rhine chip generates Tx underrun interrupts and can't
1903          * send any frames.
1904          */
1905         si = prod;
1906         for (i = 0; i < nsegs; i++) {
1907                 desc = &sc->vr_rdata.vr_tx_ring[prod];
1908                 desc->vr_status = 0;
1909                 txctl = txsegs[i].ds_len | VR_TXCTL_TLINK | csum_flags;
1910                 if (i == 0)
1911                         txctl |= VR_TXCTL_FIRSTFRAG;
1912                 desc->vr_ctl = htole32(txctl);
1913                 desc->vr_data = htole32(VR_ADDR_LO(txsegs[i].ds_addr));
1914                 sc->vr_cdata.vr_tx_cnt++;
1915                 VR_INC(prod, VR_TX_RING_CNT);
1916         }
1917         /* Update producer index. */
1918         sc->vr_cdata.vr_tx_prod = prod;
1919
1920         prod = (prod + VR_TX_RING_CNT - 1) % VR_TX_RING_CNT;
1921         desc = &sc->vr_rdata.vr_tx_ring[prod];
1922
1923         /*
1924          * Set EOP on the last desciptor and reuqest Tx completion
1925          * interrupt for every VR_TX_INTR_THRESH-th frames.
1926          */
1927         VR_INC(sc->vr_cdata.vr_tx_pkts, VR_TX_INTR_THRESH);
1928         if (sc->vr_cdata.vr_tx_pkts == 0)
1929                 desc->vr_ctl |= htole32(VR_TXCTL_LASTFRAG | VR_TXCTL_FINT);
1930         else
1931                 desc->vr_ctl |= htole32(VR_TXCTL_LASTFRAG);
1932
1933         /* Lastly turn the first descriptor ownership to hardware. */
1934         desc = &sc->vr_rdata.vr_tx_ring[si];
1935         desc->vr_status |= htole32(VR_TXSTAT_OWN);
1936
1937         /* Sync descriptors. */
1938         bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1939             sc->vr_cdata.vr_tx_ring_map,
1940             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1941
1942         return (0);
1943 }
1944
1945 static void
1946 vr_start(struct ifnet *ifp)
1947 {
1948         struct vr_softc         *sc;
1949
1950         sc = ifp->if_softc;
1951         VR_LOCK(sc);
1952         vr_start_locked(ifp);
1953         VR_UNLOCK(sc);
1954 }
1955
1956 static void
1957 vr_start_locked(struct ifnet *ifp)
1958 {
1959         struct vr_softc         *sc;
1960         struct mbuf             *m_head;
1961         int                     enq;
1962
1963         sc = ifp->if_softc;
1964
1965         VR_LOCK_ASSERT(sc);
1966
1967         if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1968             IFF_DRV_RUNNING || (sc->vr_flags & VR_F_LINK) == 0)
1969                 return;
1970
1971         for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1972             sc->vr_cdata.vr_tx_cnt < VR_TX_RING_CNT - 2; ) {
1973                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1974                 if (m_head == NULL)
1975                         break;
1976                 /*
1977                  * Pack the data into the transmit ring. If we
1978                  * don't have room, set the OACTIVE flag and wait
1979                  * for the NIC to drain the ring.
1980                  */
1981                 if (vr_encap(sc, &m_head)) {
1982                         if (m_head == NULL)
1983                                 break;
1984                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1985                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1986                         break;
1987                 }
1988
1989                 enq++;
1990                 /*
1991                  * If there's a BPF listener, bounce a copy of this frame
1992                  * to him.
1993                  */
1994                 ETHER_BPF_MTAP(ifp, m_head);
1995         }
1996
1997         if (enq > 0) {
1998                 /* Tell the chip to start transmitting. */
1999                 VR_SETBIT(sc, VR_CR0, VR_CR0_TX_GO);
2000                 /* Set a timeout in case the chip goes out to lunch. */
2001                 sc->vr_watchdog_timer = 5;
2002         }
2003 }
2004
2005 static void
2006 vr_init(void *xsc)
2007 {
2008         struct vr_softc         *sc;
2009
2010         sc = (struct vr_softc *)xsc;
2011         VR_LOCK(sc);
2012         vr_init_locked(sc);
2013         VR_UNLOCK(sc);
2014 }
2015
2016 static void
2017 vr_init_locked(struct vr_softc *sc)
2018 {
2019         struct ifnet            *ifp;
2020         struct mii_data         *mii;
2021         bus_addr_t              addr;
2022         int                     i;
2023
2024         VR_LOCK_ASSERT(sc);
2025
2026         ifp = sc->vr_ifp;
2027         mii = device_get_softc(sc->vr_miibus);
2028
2029         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2030                 return;
2031
2032         /* Cancel pending I/O and free all RX/TX buffers. */
2033         vr_stop(sc);
2034         vr_reset(sc);
2035
2036         /* Set our station address. */
2037         for (i = 0; i < ETHER_ADDR_LEN; i++)
2038                 CSR_WRITE_1(sc, VR_PAR0 + i, IF_LLADDR(sc->vr_ifp)[i]);
2039
2040         /* Set DMA size. */
2041         VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
2042         VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
2043
2044         /*
2045          * BCR0 and BCR1 can override the RXCFG and TXCFG registers,
2046          * so we must set both.
2047          */
2048         VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
2049         VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTHRESH128BYTES);
2050
2051         VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
2052         VR_SETBIT(sc, VR_BCR1, vr_tx_threshold_tables[sc->vr_txthresh].bcr_cfg);
2053
2054         VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
2055         VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
2056
2057         VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
2058         VR_SETBIT(sc, VR_TXCFG, vr_tx_threshold_tables[sc->vr_txthresh].tx_cfg);
2059
2060         /* Init circular RX list. */
2061         if (vr_rx_ring_init(sc) != 0) {
2062                 device_printf(sc->vr_dev,
2063                     "initialization failed: no memory for rx buffers\n");
2064                 vr_stop(sc);
2065                 return;
2066         }
2067
2068         /* Init tx descriptors. */
2069         vr_tx_ring_init(sc);
2070
2071         if ((sc->vr_quirks & VR_Q_CAM) != 0) {
2072                 uint8_t vcam[2] = { 0, 0 };
2073
2074                 /* Disable VLAN hardware tag insertion/stripping. */
2075                 VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TXTAGEN | VR_TXCFG_RXTAGCTL);
2076                 /* Disable VLAN hardware filtering. */
2077                 VR_CLRBIT(sc, VR_BCR1, VR_BCR1_VLANFILT_ENB);
2078                 /* Disable all CAM entries. */
2079                 vr_cam_mask(sc, VR_MCAST_CAM, 0);
2080                 vr_cam_mask(sc, VR_VLAN_CAM, 0);
2081                 /* Enable the first VLAN CAM. */
2082                 vr_cam_data(sc, VR_VLAN_CAM, 0, vcam);
2083                 vr_cam_mask(sc, VR_VLAN_CAM, 1);
2084         }
2085
2086         /*
2087          * Set up receive filter.
2088          */
2089         vr_set_filter(sc);
2090
2091         /*
2092          * Load the address of the RX ring.
2093          */
2094         addr = VR_RX_RING_ADDR(sc, 0);
2095         CSR_WRITE_4(sc, VR_RXADDR, VR_ADDR_LO(addr));
2096         /*
2097          * Load the address of the TX ring.
2098          */
2099         addr = VR_TX_RING_ADDR(sc, 0);
2100         CSR_WRITE_4(sc, VR_TXADDR, VR_ADDR_LO(addr));
2101         /* Default : full-duplex, no Tx poll. */
2102         CSR_WRITE_1(sc, VR_CR1, VR_CR1_FULLDUPLEX | VR_CR1_TX_NOPOLL);
2103
2104         /* Set flow-control parameters for Rhine III. */
2105         if (sc->vr_revid >= REV_ID_VT6105_A0) {
2106                 /*
2107                  * Configure Rx buffer count available for incoming
2108                  * packet.
2109                  * Even though data sheet says almost nothing about
2110                  * this register, this register should be updated
2111                  * whenever driver adds new RX buffers to controller.
2112                  * Otherwise, XON frame is not sent to link partner
2113                  * even if controller has enough RX buffers and you
2114                  * would be isolated from network.
2115                  * The controller is not smart enough to know number
2116                  * of available RX buffers so driver have to let
2117                  * controller know how many RX buffers are posted.
2118                  * In other words, this register works like a residue
2119                  * counter for RX buffers and should be initialized
2120                  * to the number of total RX buffers  - 1 before
2121                  * enabling RX MAC.  Note, this register is 8bits so
2122                  * it effectively limits the maximum number of RX
2123                  * buffer to be configured by controller is 255.
2124                  */
2125                 CSR_WRITE_1(sc, VR_FLOWCR0, VR_RX_RING_CNT - 1);
2126                 /*
2127                  * Tx pause low threshold : 8 free receive buffers
2128                  * Tx pause XON high threshold : 24 free receive buffers
2129                  */
2130                 CSR_WRITE_1(sc, VR_FLOWCR1,
2131                     VR_FLOWCR1_TXLO8 | VR_FLOWCR1_TXHI24 | VR_FLOWCR1_XONXOFF);
2132                 /* Set Tx pause timer. */
2133                 CSR_WRITE_2(sc, VR_PAUSETIMER, 0xffff);
2134         }
2135
2136         /* Enable receiver and transmitter. */
2137         CSR_WRITE_1(sc, VR_CR0,
2138             VR_CR0_START | VR_CR0_TX_ON | VR_CR0_RX_ON | VR_CR0_RX_GO);
2139
2140         CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
2141 #ifdef DEVICE_POLLING
2142         /*
2143          * Disable interrupts if we are polling.
2144          */
2145         if (ifp->if_capenable & IFCAP_POLLING)
2146                 CSR_WRITE_2(sc, VR_IMR, 0);
2147         else
2148 #endif
2149         /*
2150          * Enable interrupts and disable MII intrs.
2151          */
2152         CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
2153         if (sc->vr_revid > REV_ID_VT6102_A)
2154                 CSR_WRITE_2(sc, VR_MII_IMR, 0);
2155
2156         ifp->if_drv_flags |= IFF_DRV_RUNNING;
2157         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2158
2159         sc->vr_flags &= ~(VR_F_LINK | VR_F_TXPAUSE);
2160         mii_mediachg(mii);
2161
2162         callout_reset(&sc->vr_stat_callout, hz, vr_tick, sc);
2163 }
2164
2165 /*
2166  * Set media options.
2167  */
2168 static int
2169 vr_ifmedia_upd(struct ifnet *ifp)
2170 {
2171         struct vr_softc         *sc;
2172         struct mii_data         *mii;
2173         struct mii_softc        *miisc;
2174         int                     error;
2175
2176         sc = ifp->if_softc;
2177         VR_LOCK(sc);
2178         mii = device_get_softc(sc->vr_miibus);
2179         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2180                 PHY_RESET(miisc);
2181         sc->vr_flags &= ~(VR_F_LINK | VR_F_TXPAUSE);
2182         error = mii_mediachg(mii);
2183         VR_UNLOCK(sc);
2184
2185         return (error);
2186 }
2187
2188 /*
2189  * Report current media status.
2190  */
2191 static void
2192 vr_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2193 {
2194         struct vr_softc         *sc;
2195         struct mii_data         *mii;
2196
2197         sc = ifp->if_softc;
2198         mii = device_get_softc(sc->vr_miibus);
2199         VR_LOCK(sc);
2200         if ((ifp->if_flags & IFF_UP) == 0) {
2201                 VR_UNLOCK(sc);
2202                 return;
2203         }
2204         mii_pollstat(mii);
2205         ifmr->ifm_active = mii->mii_media_active;
2206         ifmr->ifm_status = mii->mii_media_status;
2207         VR_UNLOCK(sc);
2208 }
2209
2210 static int
2211 vr_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2212 {
2213         struct vr_softc         *sc;
2214         struct ifreq            *ifr;
2215         struct mii_data         *mii;
2216         int                     error, mask;
2217
2218         sc = ifp->if_softc;
2219         ifr = (struct ifreq *)data;
2220         error = 0;
2221
2222         switch (command) {
2223         case SIOCSIFFLAGS:
2224                 VR_LOCK(sc);
2225                 if (ifp->if_flags & IFF_UP) {
2226                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2227                                 if ((ifp->if_flags ^ sc->vr_if_flags) &
2228                                     (IFF_PROMISC | IFF_ALLMULTI))
2229                                         vr_set_filter(sc);
2230                         } else {
2231                                 if ((sc->vr_flags & VR_F_DETACHED) == 0)
2232                                         vr_init_locked(sc);
2233                         }
2234                 } else {
2235                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2236                                 vr_stop(sc);
2237                 }
2238                 sc->vr_if_flags = ifp->if_flags;
2239                 VR_UNLOCK(sc);
2240                 break;
2241         case SIOCADDMULTI:
2242         case SIOCDELMULTI:
2243                 VR_LOCK(sc);
2244                 vr_set_filter(sc);
2245                 VR_UNLOCK(sc);
2246                 break;
2247         case SIOCGIFMEDIA:
2248         case SIOCSIFMEDIA:
2249                 mii = device_get_softc(sc->vr_miibus);
2250                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2251                 break;
2252         case SIOCSIFCAP:
2253                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2254 #ifdef DEVICE_POLLING
2255                 if (mask & IFCAP_POLLING) {
2256                         if (ifr->ifr_reqcap & IFCAP_POLLING) {
2257                                 error = ether_poll_register(vr_poll, ifp);
2258                                 if (error != 0)
2259                                         break;
2260                                 VR_LOCK(sc);
2261                                 /* Disable interrupts. */
2262                                 CSR_WRITE_2(sc, VR_IMR, 0x0000);
2263                                 ifp->if_capenable |= IFCAP_POLLING;
2264                                 VR_UNLOCK(sc);
2265                         } else {
2266                                 error = ether_poll_deregister(ifp);
2267                                 /* Enable interrupts. */
2268                                 VR_LOCK(sc);
2269                                 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
2270                                 ifp->if_capenable &= ~IFCAP_POLLING;
2271                                 VR_UNLOCK(sc);
2272                         }
2273                 }
2274 #endif /* DEVICE_POLLING */
2275                 if ((mask & IFCAP_TXCSUM) != 0 &&
2276                     (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
2277                         ifp->if_capenable ^= IFCAP_TXCSUM;
2278                         if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
2279                                 ifp->if_hwassist |= VR_CSUM_FEATURES;
2280                         else
2281                                 ifp->if_hwassist &= ~VR_CSUM_FEATURES;
2282                 }
2283                 if ((mask & IFCAP_RXCSUM) != 0 &&
2284                     (IFCAP_RXCSUM & ifp->if_capabilities) != 0)
2285                         ifp->if_capenable ^= IFCAP_RXCSUM;
2286                 if ((mask & IFCAP_WOL_UCAST) != 0 &&
2287                     (ifp->if_capabilities & IFCAP_WOL_UCAST) != 0)
2288                         ifp->if_capenable ^= IFCAP_WOL_UCAST;
2289                 if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2290                     (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2291                         ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2292                 break;
2293         default:
2294                 error = ether_ioctl(ifp, command, data);
2295                 break;
2296         }
2297
2298         return (error);
2299 }
2300
2301 static void
2302 vr_watchdog(struct vr_softc *sc)
2303 {
2304         struct ifnet            *ifp;
2305
2306         VR_LOCK_ASSERT(sc);
2307
2308         if (sc->vr_watchdog_timer == 0 || --sc->vr_watchdog_timer)
2309                 return;
2310
2311         ifp = sc->vr_ifp;
2312         /*
2313          * Reclaim first as we don't request interrupt for every packets.
2314          */
2315         vr_txeof(sc);
2316         if (sc->vr_cdata.vr_tx_cnt == 0)
2317                 return;
2318
2319         if ((sc->vr_flags & VR_F_LINK) == 0) {
2320                 if (bootverbose)
2321                         if_printf(sc->vr_ifp, "watchdog timeout "
2322                            "(missed link)\n");
2323                 ifp->if_oerrors++;
2324                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2325                 vr_init_locked(sc);
2326                 return;
2327         }
2328
2329         ifp->if_oerrors++;
2330         if_printf(ifp, "watchdog timeout\n");
2331
2332         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2333         vr_init_locked(sc);
2334
2335         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2336                 vr_start_locked(ifp);
2337 }
2338
2339 static void
2340 vr_tx_start(struct vr_softc *sc)
2341 {
2342         bus_addr_t      addr;
2343         uint8_t         cmd;
2344
2345         cmd = CSR_READ_1(sc, VR_CR0);
2346         if ((cmd & VR_CR0_TX_ON) == 0) {
2347                 addr = VR_TX_RING_ADDR(sc, sc->vr_cdata.vr_tx_cons);
2348                 CSR_WRITE_4(sc, VR_TXADDR, VR_ADDR_LO(addr));
2349                 cmd |= VR_CR0_TX_ON;
2350                 CSR_WRITE_1(sc, VR_CR0, cmd);
2351         }
2352         if (sc->vr_cdata.vr_tx_cnt != 0) {
2353                 sc->vr_watchdog_timer = 5;
2354                 VR_SETBIT(sc, VR_CR0, VR_CR0_TX_GO);
2355         }
2356 }
2357
2358 static void
2359 vr_rx_start(struct vr_softc *sc)
2360 {
2361         bus_addr_t      addr;
2362         uint8_t         cmd;
2363
2364         cmd = CSR_READ_1(sc, VR_CR0);
2365         if ((cmd & VR_CR0_RX_ON) == 0) {
2366                 addr = VR_RX_RING_ADDR(sc, sc->vr_cdata.vr_rx_cons);
2367                 CSR_WRITE_4(sc, VR_RXADDR, VR_ADDR_LO(addr));
2368                 cmd |= VR_CR0_RX_ON;
2369                 CSR_WRITE_1(sc, VR_CR0, cmd);
2370         }
2371         CSR_WRITE_1(sc, VR_CR0, cmd | VR_CR0_RX_GO);
2372 }
2373
2374 static int
2375 vr_tx_stop(struct vr_softc *sc)
2376 {
2377         int             i;
2378         uint8_t         cmd;
2379
2380         cmd = CSR_READ_1(sc, VR_CR0);
2381         if ((cmd & VR_CR0_TX_ON) != 0) {
2382                 cmd &= ~VR_CR0_TX_ON;
2383                 CSR_WRITE_1(sc, VR_CR0, cmd);
2384                 for (i = VR_TIMEOUT; i > 0; i--) {
2385                         DELAY(5);
2386                         cmd = CSR_READ_1(sc, VR_CR0);
2387                         if ((cmd & VR_CR0_TX_ON) == 0)
2388                                 break;
2389                 }
2390                 if (i == 0)
2391                         return (ETIMEDOUT);
2392         }
2393         return (0);
2394 }
2395
2396 static int
2397 vr_rx_stop(struct vr_softc *sc)
2398 {
2399         int             i;
2400         uint8_t         cmd;
2401
2402         cmd = CSR_READ_1(sc, VR_CR0);
2403         if ((cmd & VR_CR0_RX_ON) != 0) {
2404                 cmd &= ~VR_CR0_RX_ON;
2405                 CSR_WRITE_1(sc, VR_CR0, cmd);
2406                 for (i = VR_TIMEOUT; i > 0; i--) {
2407                         DELAY(5);
2408                         cmd = CSR_READ_1(sc, VR_CR0);
2409                         if ((cmd & VR_CR0_RX_ON) == 0)
2410                                 break;
2411                 }
2412                 if (i == 0)
2413                         return (ETIMEDOUT);
2414         }
2415         return (0);
2416 }
2417
2418 /*
2419  * Stop the adapter and free any mbufs allocated to the
2420  * RX and TX lists.
2421  */
2422 static void
2423 vr_stop(struct vr_softc *sc)
2424 {
2425         struct vr_txdesc        *txd;
2426         struct vr_rxdesc        *rxd;
2427         struct ifnet            *ifp;
2428         int                     i;
2429
2430         VR_LOCK_ASSERT(sc);
2431
2432         ifp = sc->vr_ifp;
2433         sc->vr_watchdog_timer = 0;
2434
2435         callout_stop(&sc->vr_stat_callout);
2436         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2437
2438         CSR_WRITE_1(sc, VR_CR0, VR_CR0_STOP);
2439         if (vr_rx_stop(sc) != 0)
2440                 device_printf(sc->vr_dev, "%s: Rx shutdown error\n", __func__);
2441         if (vr_tx_stop(sc) != 0)
2442                 device_printf(sc->vr_dev, "%s: Tx shutdown error\n", __func__);
2443         /* Clear pending interrupts. */
2444         CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
2445         CSR_WRITE_2(sc, VR_IMR, 0x0000);
2446         CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
2447         CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
2448
2449         /*
2450          * Free RX and TX mbufs still in the queues.
2451          */
2452         for (i = 0; i < VR_RX_RING_CNT; i++) {
2453                 rxd = &sc->vr_cdata.vr_rxdesc[i];
2454                 if (rxd->rx_m != NULL) {
2455                         bus_dmamap_sync(sc->vr_cdata.vr_rx_tag,
2456                             rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2457                         bus_dmamap_unload(sc->vr_cdata.vr_rx_tag,
2458                             rxd->rx_dmamap);
2459                         m_freem(rxd->rx_m);
2460                         rxd->rx_m = NULL;
2461                 }
2462         }
2463         for (i = 0; i < VR_TX_RING_CNT; i++) {
2464                 txd = &sc->vr_cdata.vr_txdesc[i];
2465                 if (txd->tx_m != NULL) {
2466                         bus_dmamap_sync(sc->vr_cdata.vr_tx_tag,
2467                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2468                         bus_dmamap_unload(sc->vr_cdata.vr_tx_tag,
2469                             txd->tx_dmamap);
2470                         m_freem(txd->tx_m);
2471                         txd->tx_m = NULL;
2472                 }
2473         }
2474 }
2475
2476 /*
2477  * Stop all chip I/O so that the kernel's probe routines don't
2478  * get confused by errant DMAs when rebooting.
2479  */
2480 static int
2481 vr_shutdown(device_t dev)
2482 {
2483
2484         return (vr_suspend(dev));
2485 }
2486
2487 static int
2488 vr_suspend(device_t dev)
2489 {
2490         struct vr_softc         *sc;
2491
2492         sc = device_get_softc(dev);
2493
2494         VR_LOCK(sc);
2495         vr_stop(sc);
2496         vr_setwol(sc);
2497         sc->vr_flags |= VR_F_SUSPENDED;
2498         VR_UNLOCK(sc);
2499
2500         return (0);
2501 }
2502
2503 static int
2504 vr_resume(device_t dev)
2505 {
2506         struct vr_softc         *sc;
2507         struct ifnet            *ifp;
2508
2509         sc = device_get_softc(dev);
2510
2511         VR_LOCK(sc);
2512         ifp = sc->vr_ifp;
2513         vr_clrwol(sc);
2514         vr_reset(sc);
2515         if (ifp->if_flags & IFF_UP)
2516                 vr_init_locked(sc);
2517
2518         sc->vr_flags &= ~VR_F_SUSPENDED;
2519         VR_UNLOCK(sc);
2520
2521         return (0);
2522 }
2523
2524 static void
2525 vr_setwol(struct vr_softc *sc)
2526 {
2527         struct ifnet            *ifp;
2528         int                     pmc;
2529         uint16_t                pmstat;
2530         uint8_t                 v;
2531
2532         VR_LOCK_ASSERT(sc);
2533
2534         if (sc->vr_revid < REV_ID_VT6102_A ||
2535             pci_find_cap(sc->vr_dev, PCIY_PMG, &pmc) != 0)
2536                 return;
2537
2538         ifp = sc->vr_ifp;
2539
2540         /* Clear WOL configuration. */
2541         CSR_WRITE_1(sc, VR_WOLCR_CLR, 0xFF);
2542         CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_SAB | VR_WOLCFG_SAM);
2543         CSR_WRITE_1(sc, VR_PWRCSR_CLR, 0xFF);
2544         CSR_WRITE_1(sc, VR_PWRCFG_CLR, VR_PWRCFG_WOLEN);
2545         if (sc->vr_revid > REV_ID_VT6105_B0) {
2546                 /* Newer Rhine III supports two additional patterns. */
2547                 CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_PATTERN_PAGE);
2548                 CSR_WRITE_1(sc, VR_TESTREG_CLR, 3);
2549                 CSR_WRITE_1(sc, VR_PWRCSR1_CLR, 3);
2550         }
2551         if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2552                 CSR_WRITE_1(sc, VR_WOLCR_SET, VR_WOLCR_UCAST);
2553         if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2554                 CSR_WRITE_1(sc, VR_WOLCR_SET, VR_WOLCR_MAGIC);
2555         /*
2556          * It seems that multicast wakeup frames require programming pattern
2557          * registers and valid CRC as well as pattern mask for each pattern.
2558          * While it's possible to setup such a pattern it would complicate
2559          * WOL configuration so ignore multicast wakeup frames.
2560          */
2561         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
2562                 CSR_WRITE_1(sc, VR_WOLCFG_SET, VR_WOLCFG_SAB | VR_WOLCFG_SAM);
2563                 v = CSR_READ_1(sc, VR_STICKHW);
2564                 CSR_WRITE_1(sc, VR_STICKHW, v | VR_STICKHW_WOL_ENB);
2565                 CSR_WRITE_1(sc, VR_PWRCFG_SET, VR_PWRCFG_WOLEN);
2566         }
2567
2568         /* Put hardware into sleep. */
2569         v = CSR_READ_1(sc, VR_STICKHW);
2570         v |= VR_STICKHW_DS0 | VR_STICKHW_DS1;
2571         CSR_WRITE_1(sc, VR_STICKHW, v);
2572
2573         /* Request PME if WOL is requested. */
2574         pmstat = pci_read_config(sc->vr_dev, pmc + PCIR_POWER_STATUS, 2);
2575         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2576         if ((ifp->if_capenable & IFCAP_WOL) != 0)
2577                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2578         pci_write_config(sc->vr_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2579 }
2580
2581 static void
2582 vr_clrwol(struct vr_softc *sc)
2583 {
2584         uint8_t                 v;
2585
2586         VR_LOCK_ASSERT(sc);
2587
2588         if (sc->vr_revid < REV_ID_VT6102_A)
2589                 return;
2590
2591         /* Take hardware out of sleep. */
2592         v = CSR_READ_1(sc, VR_STICKHW);
2593         v &= ~(VR_STICKHW_DS0 | VR_STICKHW_DS1 | VR_STICKHW_WOL_ENB);
2594         CSR_WRITE_1(sc, VR_STICKHW, v);
2595
2596         /* Clear WOL configuration as WOL may interfere normal operation. */
2597         CSR_WRITE_1(sc, VR_WOLCR_CLR, 0xFF);
2598         CSR_WRITE_1(sc, VR_WOLCFG_CLR,
2599             VR_WOLCFG_SAB | VR_WOLCFG_SAM | VR_WOLCFG_PMEOVR);
2600         CSR_WRITE_1(sc, VR_PWRCSR_CLR, 0xFF);
2601         CSR_WRITE_1(sc, VR_PWRCFG_CLR, VR_PWRCFG_WOLEN);
2602         if (sc->vr_revid > REV_ID_VT6105_B0) {
2603                 /* Newer Rhine III supports two additional patterns. */
2604                 CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_PATTERN_PAGE);
2605                 CSR_WRITE_1(sc, VR_TESTREG_CLR, 3);
2606                 CSR_WRITE_1(sc, VR_PWRCSR1_CLR, 3);
2607         }
2608 }
2609
2610 static int
2611 vr_sysctl_stats(SYSCTL_HANDLER_ARGS)
2612 {
2613         struct vr_softc         *sc;
2614         struct vr_statistics    *stat;
2615         int                     error;
2616         int                     result;
2617
2618         result = -1;
2619         error = sysctl_handle_int(oidp, &result, 0, req);
2620
2621         if (error != 0 || req->newptr == NULL)
2622                 return (error);
2623
2624         if (result == 1) {
2625                 sc = (struct vr_softc *)arg1;
2626                 stat = &sc->vr_stat;
2627
2628                 printf("%s statistics:\n", device_get_nameunit(sc->vr_dev));
2629                 printf("Outbound good frames : %ju\n",
2630                     (uintmax_t)stat->tx_ok);
2631                 printf("Inbound good frames : %ju\n",
2632                     (uintmax_t)stat->rx_ok);
2633                 printf("Outbound errors : %u\n", stat->tx_errors);
2634                 printf("Inbound errors : %u\n", stat->rx_errors);
2635                 printf("Inbound no buffers : %u\n", stat->rx_no_buffers);
2636                 printf("Inbound no mbuf clusters: %d\n", stat->rx_no_mbufs);
2637                 printf("Inbound FIFO overflows : %d\n",
2638                     stat->rx_fifo_overflows);
2639                 printf("Inbound CRC errors : %u\n", stat->rx_crc_errors);
2640                 printf("Inbound frame alignment errors : %u\n",
2641                     stat->rx_alignment);
2642                 printf("Inbound giant frames : %u\n", stat->rx_giants);
2643                 printf("Inbound runt frames : %u\n", stat->rx_runts);
2644                 printf("Outbound aborted with excessive collisions : %u\n",
2645                     stat->tx_abort);
2646                 printf("Outbound collisions : %u\n", stat->tx_collisions);
2647                 printf("Outbound late collisions : %u\n",
2648                     stat->tx_late_collisions);
2649                 printf("Outbound underrun : %u\n", stat->tx_underrun);
2650                 printf("PCI bus errors : %u\n", stat->bus_errors);
2651                 printf("driver restarted due to Rx/Tx shutdown failure : %u\n",
2652                     stat->num_restart);
2653         }
2654
2655         return (error);
2656 }