]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/xen/blkback/blkback.c
Add ELF Tool Chain's ar(1) and elfdump(1) to contrib
[FreeBSD/FreeBSD.git] / sys / dev / xen / blkback / blkback.c
1 /*-
2  * Copyright (c) 2009-2012 Spectra Logic Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions, and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    substantially similar to the "NO WARRANTY" disclaimer below
13  *    ("Disclaimer") and any redistribution must be conditioned upon
14  *    including a substantially similar Disclaimer requirement for further
15  *    binary redistribution.
16  *
17  * NO WARRANTY
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
27  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGES.
29  *
30  * Authors: Justin T. Gibbs     (Spectra Logic Corporation)
31  *          Ken Merry           (Spectra Logic Corporation)
32  */
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35
36 /**
37  * \file blkback.c
38  *
39  * \brief Device driver supporting the vending of block storage from
40  *        a FreeBSD domain to other domains.
41  */
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/malloc.h>
47
48 #include <sys/bio.h>
49 #include <sys/bus.h>
50 #include <sys/conf.h>
51 #include <sys/devicestat.h>
52 #include <sys/disk.h>
53 #include <sys/fcntl.h>
54 #include <sys/filedesc.h>
55 #include <sys/kdb.h>
56 #include <sys/module.h>
57 #include <sys/namei.h>
58 #include <sys/proc.h>
59 #include <sys/rman.h>
60 #include <sys/taskqueue.h>
61 #include <sys/types.h>
62 #include <sys/vnode.h>
63 #include <sys/mount.h>
64 #include <sys/sysctl.h>
65 #include <sys/bitstring.h>
66 #include <sys/sdt.h>
67
68 #include <geom/geom.h>
69
70 #include <machine/_inttypes.h>
71
72 #include <vm/vm.h>
73 #include <vm/vm_extern.h>
74 #include <vm/vm_kern.h>
75
76 #include <xen/xen-os.h>
77 #include <xen/blkif.h>
78 #include <xen/gnttab.h>
79 #include <xen/xen_intr.h>
80
81 #include <xen/interface/event_channel.h>
82 #include <xen/interface/grant_table.h>
83
84 #include <xen/xenbus/xenbusvar.h>
85
86 /*--------------------------- Compile-time Tunables --------------------------*/
87 /**
88  * The maximum number of shared memory ring pages we will allow in a
89  * negotiated block-front/back communication channel.  Allow enough
90  * ring space for all requests to be XBB_MAX_REQUEST_SIZE'd.
91  */
92 #define XBB_MAX_RING_PAGES              32
93
94 /**
95  * The maximum number of outstanding request blocks (request headers plus
96  * additional segment blocks) we will allow in a negotiated block-front/back
97  * communication channel.
98  */
99 #define XBB_MAX_REQUESTS                                        \
100         __CONST_RING_SIZE(blkif, PAGE_SIZE * XBB_MAX_RING_PAGES)
101
102 /**
103  * \brief Define to force all I/O to be performed on memory owned by the
104  *        backend device, with a copy-in/out to the remote domain's memory.
105  *
106  * \note  This option is currently required when this driver's domain is
107  *        operating in HVM mode on a system using an IOMMU.
108  *
109  * This driver uses Xen's grant table API to gain access to the memory of
110  * the remote domains it serves.  When our domain is operating in PV mode,
111  * the grant table mechanism directly updates our domain's page table entries
112  * to point to the physical pages of the remote domain.  This scheme guarantees
113  * that blkback and the backing devices it uses can safely perform DMA
114  * operations to satisfy requests.  In HVM mode, Xen may use a HW IOMMU to
115  * insure that our domain cannot DMA to pages owned by another domain.  As
116  * of Xen 4.0, IOMMU mappings for HVM guests are not updated via the grant
117  * table API.  For this reason, in HVM mode, we must bounce all requests into
118  * memory that is mapped into our domain at domain startup and thus has
119  * valid IOMMU mappings.
120  */
121 #define XBB_USE_BOUNCE_BUFFERS
122
123 /**
124  * \brief Define to enable rudimentary request logging to the console.
125  */
126 #undef XBB_DEBUG
127
128 /*---------------------------------- Macros ----------------------------------*/
129 /**
130  * Custom malloc type for all driver allocations.
131  */
132 static MALLOC_DEFINE(M_XENBLOCKBACK, "xbbd", "Xen Block Back Driver Data");
133
134 #ifdef XBB_DEBUG
135 #define DPRINTF(fmt, args...)                                   \
136     printf("xbb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args)
137 #else
138 #define DPRINTF(fmt, args...) do {} while(0)
139 #endif
140
141 /**
142  * The maximum mapped region size per request we will allow in a negotiated
143  * block-front/back communication channel.
144  */
145 #define XBB_MAX_REQUEST_SIZE                                    \
146         MIN(MAXPHYS, BLKIF_MAX_SEGMENTS_PER_REQUEST * PAGE_SIZE)
147
148 /**
149  * The maximum number of segments (within a request header and accompanying
150  * segment blocks) per request we will allow in a negotiated block-front/back
151  * communication channel.
152  */
153 #define XBB_MAX_SEGMENTS_PER_REQUEST                            \
154         (MIN(UIO_MAXIOV,                                        \
155              MIN(BLKIF_MAX_SEGMENTS_PER_REQUEST,                \
156                  (XBB_MAX_REQUEST_SIZE / PAGE_SIZE) + 1)))
157
158 /**
159  * The maximum number of ring pages that we can allow per request list.
160  * We limit this to the maximum number of segments per request, because
161  * that is already a reasonable number of segments to aggregate.  This
162  * number should never be smaller than XBB_MAX_SEGMENTS_PER_REQUEST,
163  * because that would leave situations where we can't dispatch even one
164  * large request.
165  */
166 #define XBB_MAX_SEGMENTS_PER_REQLIST XBB_MAX_SEGMENTS_PER_REQUEST
167
168 /*--------------------------- Forward Declarations ---------------------------*/
169 struct xbb_softc;
170 struct xbb_xen_req;
171
172 static void xbb_attach_failed(struct xbb_softc *xbb, int err, const char *fmt,
173                               ...) __attribute__((format(printf, 3, 4)));
174 static int  xbb_shutdown(struct xbb_softc *xbb);
175 static int  xbb_detach(device_t dev);
176
177 /*------------------------------ Data Structures -----------------------------*/
178
179 STAILQ_HEAD(xbb_xen_req_list, xbb_xen_req);
180
181 typedef enum {
182         XBB_REQLIST_NONE        = 0x00,
183         XBB_REQLIST_MAPPED      = 0x01
184 } xbb_reqlist_flags;
185
186 struct xbb_xen_reqlist {
187         /**
188          * Back reference to the parent block back instance for this
189          * request.  Used during bio_done handling.
190          */
191         struct xbb_softc        *xbb;
192
193         /**
194          * BLKIF_OP code for this request.
195          */
196         int                      operation;
197
198         /**
199          * Set to BLKIF_RSP_* to indicate request status.
200          *
201          * This field allows an error status to be recorded even if the
202          * delivery of this status must be deferred.  Deferred reporting
203          * is necessary, for example, when an error is detected during
204          * completion processing of one bio when other bios for this
205          * request are still outstanding.
206          */
207         int                      status;
208
209         /**
210          * Number of 512 byte sectors not transferred.
211          */
212         int                      residual_512b_sectors;
213
214         /**
215          * Starting sector number of the first request in the list.
216          */
217         off_t                    starting_sector_number;
218
219         /**
220          * If we're going to coalesce, the next contiguous sector would be
221          * this one.
222          */
223         off_t                    next_contig_sector;
224
225         /**
226          * Number of child requests in the list.
227          */
228         int                      num_children;
229
230         /**
231          * Number of I/O requests still pending on the backend.
232          */
233         int                      pendcnt;
234
235         /**
236          * Total number of segments for requests in the list.
237          */
238         int                      nr_segments;
239
240         /**
241          * Flags for this particular request list.
242          */
243         xbb_reqlist_flags        flags;
244
245         /**
246          * Kernel virtual address space reserved for this request
247          * list structure and used to map the remote domain's pages for
248          * this I/O, into our domain's address space.
249          */
250         uint8_t                 *kva;
251
252         /**
253          * Base, psuedo-physical address, corresponding to the start
254          * of this request's kva region.
255          */
256         uint64_t                 gnt_base;
257
258
259 #ifdef XBB_USE_BOUNCE_BUFFERS
260         /**
261          * Pre-allocated domain local memory used to proxy remote
262          * domain memory during I/O operations.
263          */
264         uint8_t                 *bounce;
265 #endif
266
267         /**
268          * Array of grant handles (one per page) used to map this request.
269          */
270         grant_handle_t          *gnt_handles;
271
272         /**
273          * Device statistics request ordering type (ordered or simple).
274          */
275         devstat_tag_type         ds_tag_type;
276
277         /**
278          * Device statistics request type (read, write, no_data).
279          */
280         devstat_trans_flags      ds_trans_type;
281
282         /**
283          * The start time for this request.
284          */
285         struct bintime           ds_t0;
286
287         /**
288          * Linked list of contiguous requests with the same operation type.
289          */
290         struct xbb_xen_req_list  contig_req_list;
291
292         /**
293          * Linked list links used to aggregate idle requests in the
294          * request list free pool (xbb->reqlist_free_stailq) and pending
295          * requests waiting for execution (xbb->reqlist_pending_stailq).
296          */
297         STAILQ_ENTRY(xbb_xen_reqlist) links;
298 };
299
300 STAILQ_HEAD(xbb_xen_reqlist_list, xbb_xen_reqlist);
301
302 /**
303  * \brief Object tracking an in-flight I/O from a Xen VBD consumer.
304  */
305 struct xbb_xen_req {
306         /**
307          * Linked list links used to aggregate requests into a reqlist
308          * and to store them in the request free pool.
309          */
310         STAILQ_ENTRY(xbb_xen_req) links;
311
312         /**
313          * The remote domain's identifier for this I/O request.
314          */
315         uint64_t                  id;
316
317         /**
318          * The number of pages currently mapped for this request.
319          */
320         int                       nr_pages;
321
322         /**
323          * The number of 512 byte sectors comprising this requests.
324          */
325         int                       nr_512b_sectors;
326
327         /**
328          * BLKIF_OP code for this request.
329          */
330         int                       operation;
331
332         /**
333          * Storage used for non-native ring requests.
334          */
335         blkif_request_t          ring_req_storage;
336
337         /**
338          * Pointer to the Xen request in the ring.
339          */
340         blkif_request_t         *ring_req;
341
342         /**
343          * Consumer index for this request.
344          */
345         RING_IDX                 req_ring_idx;
346
347         /**
348          * The start time for this request.
349          */
350         struct bintime           ds_t0;
351
352         /**
353          * Pointer back to our parent request list.
354          */
355         struct xbb_xen_reqlist  *reqlist;
356 };
357 SLIST_HEAD(xbb_xen_req_slist, xbb_xen_req);
358
359 /**
360  * \brief Configuration data for the shared memory request ring
361  *        used to communicate with the front-end client of this
362  *        this driver.
363  */
364 struct xbb_ring_config {
365         /** KVA address where ring memory is mapped. */
366         vm_offset_t     va;
367
368         /** The pseudo-physical address where ring memory is mapped.*/
369         uint64_t        gnt_addr;
370
371         /**
372          * Grant table handles, one per-ring page, returned by the
373          * hyperpervisor upon mapping of the ring and required to
374          * unmap it when a connection is torn down.
375          */
376         grant_handle_t  handle[XBB_MAX_RING_PAGES];
377
378         /**
379          * The device bus address returned by the hypervisor when
380          * mapping the ring and required to unmap it when a connection
381          * is torn down.
382          */
383         uint64_t        bus_addr[XBB_MAX_RING_PAGES];
384
385         /** The number of ring pages mapped for the current connection. */
386         u_int           ring_pages;
387
388         /**
389          * The grant references, one per-ring page, supplied by the
390          * front-end, allowing us to reference the ring pages in the
391          * front-end's domain and to map these pages into our own domain.
392          */
393         grant_ref_t     ring_ref[XBB_MAX_RING_PAGES];
394
395         /** The interrupt driven even channel used to signal ring events. */
396         evtchn_port_t   evtchn;
397 };
398
399 /**
400  * Per-instance connection state flags.
401  */
402 typedef enum
403 {
404         /**
405          * The front-end requested a read-only mount of the
406          * back-end device/file.
407          */
408         XBBF_READ_ONLY         = 0x01,
409
410         /** Communication with the front-end has been established. */
411         XBBF_RING_CONNECTED    = 0x02,
412
413         /**
414          * Front-end requests exist in the ring and are waiting for
415          * xbb_xen_req objects to free up.
416          */
417         XBBF_RESOURCE_SHORTAGE = 0x04,
418
419         /** Connection teardown in progress. */
420         XBBF_SHUTDOWN          = 0x08,
421
422         /** A thread is already performing shutdown processing. */
423         XBBF_IN_SHUTDOWN       = 0x10
424 } xbb_flag_t;
425
426 /** Backend device type.  */
427 typedef enum {
428         /** Backend type unknown. */
429         XBB_TYPE_NONE           = 0x00,
430
431         /**
432          * Backend type disk (access via cdev switch
433          * strategy routine).
434          */
435         XBB_TYPE_DISK           = 0x01,
436
437         /** Backend type file (access vnode operations.). */
438         XBB_TYPE_FILE           = 0x02
439 } xbb_type;
440
441 /**
442  * \brief Structure used to memoize information about a per-request
443  *        scatter-gather list.
444  *
445  * The chief benefit of using this data structure is it avoids having
446  * to reparse the possibly discontiguous S/G list in the original
447  * request.  Due to the way that the mapping of the memory backing an
448  * I/O transaction is handled by Xen, a second pass is unavoidable.
449  * At least this way the second walk is a simple array traversal.
450  *
451  * \note A single Scatter/Gather element in the block interface covers
452  *       at most 1 machine page.  In this context a sector (blkif
453  *       nomenclature, not what I'd choose) is a 512b aligned unit
454  *       of mapping within the machine page referenced by an S/G
455  *       element.
456  */
457 struct xbb_sg {
458         /** The number of 512b data chunks mapped in this S/G element. */
459         int16_t nsect;
460
461         /**
462          * The index (0 based) of the first 512b data chunk mapped
463          * in this S/G element.
464          */
465         uint8_t first_sect;
466
467         /**
468          * The index (0 based) of the last 512b data chunk mapped
469          * in this S/G element.
470          */
471         uint8_t last_sect;
472 };
473
474 /**
475  * Character device backend specific configuration data.
476  */
477 struct xbb_dev_data {
478         /** Cdev used for device backend access.  */
479         struct cdev   *cdev;
480
481         /** Cdev switch used for device backend access.  */
482         struct cdevsw *csw;
483
484         /** Used to hold a reference on opened cdev backend devices. */
485         int            dev_ref;
486 };
487
488 /**
489  * File backend specific configuration data.
490  */
491 struct xbb_file_data {
492         /** Credentials to use for vnode backed (file based) I/O. */
493         struct ucred   *cred;
494
495         /**
496          * \brief Array of io vectors used to process file based I/O.
497          *
498          * Only a single file based request is outstanding per-xbb instance,
499          * so we only need one of these.
500          */
501         struct iovec    xiovecs[XBB_MAX_SEGMENTS_PER_REQLIST];
502 #ifdef XBB_USE_BOUNCE_BUFFERS
503
504         /**
505          * \brief Array of io vectors used to handle bouncing of file reads.
506          *
507          * Vnode operations are free to modify uio data during their
508          * exectuion.  In the case of a read with bounce buffering active,
509          * we need some of the data from the original uio in order to
510          * bounce-out the read data.  This array serves as the temporary
511          * storage for this saved data.
512          */
513         struct iovec    saved_xiovecs[XBB_MAX_SEGMENTS_PER_REQLIST];
514
515         /**
516          * \brief Array of memoized bounce buffer kva offsets used
517          *        in the file based backend.
518          *
519          * Due to the way that the mapping of the memory backing an
520          * I/O transaction is handled by Xen, a second pass through
521          * the request sg elements is unavoidable. We memoize the computed
522          * bounce address here to reduce the cost of the second walk.
523          */
524         void            *xiovecs_vaddr[XBB_MAX_SEGMENTS_PER_REQLIST];
525 #endif /* XBB_USE_BOUNCE_BUFFERS */
526 };
527
528 /**
529  * Collection of backend type specific data.
530  */
531 union xbb_backend_data {
532         struct xbb_dev_data  dev;
533         struct xbb_file_data file;
534 };
535
536 /**
537  * Function signature of backend specific I/O handlers.
538  */
539 typedef int (*xbb_dispatch_t)(struct xbb_softc *xbb,
540                               struct xbb_xen_reqlist *reqlist, int operation,
541                               int flags);
542
543 /**
544  * Per-instance configuration data.
545  */
546 struct xbb_softc {
547
548         /**
549          * Task-queue used to process I/O requests.
550          */
551         struct taskqueue         *io_taskqueue;
552
553         /**
554          * Single "run the request queue" task enqueued
555          * on io_taskqueue.
556          */
557         struct task               io_task;
558
559         /** Device type for this instance. */
560         xbb_type                  device_type;
561
562         /** NewBus device corresponding to this instance. */
563         device_t                  dev;
564
565         /** Backend specific dispatch routine for this instance. */
566         xbb_dispatch_t            dispatch_io;
567
568         /** The number of requests outstanding on the backend device/file. */
569         int                       active_request_count;
570
571         /** Free pool of request tracking structures. */
572         struct xbb_xen_req_list   request_free_stailq;
573
574         /** Array, sized at connection time, of request tracking structures. */
575         struct xbb_xen_req       *requests;
576
577         /** Free pool of request list structures. */
578         struct xbb_xen_reqlist_list reqlist_free_stailq;
579
580         /** List of pending request lists awaiting execution. */
581         struct xbb_xen_reqlist_list reqlist_pending_stailq;
582
583         /** Array, sized at connection time, of request list structures. */
584         struct xbb_xen_reqlist   *request_lists;
585
586         /**
587          * Global pool of kva used for mapping remote domain ring
588          * and I/O transaction data.
589          */
590         vm_offset_t               kva;
591
592         /** Psuedo-physical address corresponding to kva. */
593         uint64_t                  gnt_base_addr;
594
595         /** The size of the global kva pool. */
596         int                       kva_size;
597
598         /** The size of the KVA area used for request lists. */
599         int                       reqlist_kva_size;
600
601         /** The number of pages of KVA used for request lists */
602         int                       reqlist_kva_pages;
603
604         /** Bitmap of free KVA pages */
605         bitstr_t                 *kva_free;
606
607         /**
608          * \brief Cached value of the front-end's domain id.
609          * 
610          * This value is used at once for each mapped page in
611          * a transaction.  We cache it to avoid incuring the
612          * cost of an ivar access every time this is needed.
613          */
614         domid_t                   otherend_id;
615
616         /**
617          * \brief The blkif protocol abi in effect.
618          *
619          * There are situations where the back and front ends can
620          * have a different, native abi (e.g. intel x86_64 and
621          * 32bit x86 domains on the same machine).  The back-end
622          * always accomodates the front-end's native abi.  That
623          * value is pulled from the XenStore and recorded here.
624          */
625         int                       abi;
626
627         /**
628          * \brief The maximum number of requests and request lists allowed
629          *        to be in flight at a time.
630          *
631          * This value is negotiated via the XenStore.
632          */
633         u_int                     max_requests;
634
635         /**
636          * \brief The maximum number of segments (1 page per segment)
637          *        that can be mapped by a request.
638          *
639          * This value is negotiated via the XenStore.
640          */
641         u_int                     max_request_segments;
642
643         /**
644          * \brief Maximum number of segments per request list.
645          *
646          * This value is derived from and will generally be larger than
647          * max_request_segments.
648          */
649         u_int                     max_reqlist_segments;
650
651         /**
652          * The maximum size of any request to this back-end
653          * device.
654          *
655          * This value is negotiated via the XenStore.
656          */
657         u_int                     max_request_size;
658
659         /**
660          * The maximum size of any request list.  This is derived directly
661          * from max_reqlist_segments.
662          */
663         u_int                     max_reqlist_size;
664
665         /** Various configuration and state bit flags. */
666         xbb_flag_t                flags;
667
668         /** Ring mapping and interrupt configuration data. */
669         struct xbb_ring_config    ring_config;
670
671         /** Runtime, cross-abi safe, structures for ring access. */
672         blkif_back_rings_t        rings;
673
674         /** IRQ mapping for the communication ring event channel. */
675         xen_intr_handle_t         xen_intr_handle;
676
677         /**
678          * \brief Backend access mode flags (e.g. write, or read-only).
679          *
680          * This value is passed to us by the front-end via the XenStore.
681          */
682         char                     *dev_mode;
683
684         /**
685          * \brief Backend device type (e.g. "disk", "cdrom", "floppy").
686          *
687          * This value is passed to us by the front-end via the XenStore.
688          * Currently unused.
689          */
690         char                     *dev_type;
691
692         /**
693          * \brief Backend device/file identifier.
694          *
695          * This value is passed to us by the front-end via the XenStore.
696          * We expect this to be a POSIX path indicating the file or
697          * device to open.
698          */
699         char                     *dev_name;
700
701         /**
702          * Vnode corresponding to the backend device node or file
703          * we are acessing.
704          */
705         struct vnode             *vn;
706
707         union xbb_backend_data    backend;
708
709         /** The native sector size of the backend. */
710         u_int                     sector_size;
711
712         /** log2 of sector_size.  */
713         u_int                     sector_size_shift;
714
715         /** Size in bytes of the backend device or file.  */
716         off_t                     media_size;
717
718         /**
719          * \brief media_size expressed in terms of the backend native
720          *        sector size.
721          *
722          * (e.g. xbb->media_size >> xbb->sector_size_shift).
723          */
724         uint64_t                  media_num_sectors;
725
726         /**
727          * \brief Array of memoized scatter gather data computed during the
728          *        conversion of blkif ring requests to internal xbb_xen_req
729          *        structures.
730          *
731          * Ring processing is serialized so we only need one of these.
732          */
733         struct xbb_sg             xbb_sgs[XBB_MAX_SEGMENTS_PER_REQLIST];
734
735         /**
736          * Temporary grant table map used in xbb_dispatch_io().  When
737          * XBB_MAX_SEGMENTS_PER_REQLIST gets large, keeping this on the
738          * stack could cause a stack overflow.
739          */
740         struct gnttab_map_grant_ref   maps[XBB_MAX_SEGMENTS_PER_REQLIST];
741
742         /** Mutex protecting per-instance data. */
743         struct mtx                lock;
744
745         /**
746          * Resource representing allocated physical address space
747          * associated with our per-instance kva region.
748          */
749         struct resource          *pseudo_phys_res;
750
751         /** Resource id for allocated physical address space. */
752         int                       pseudo_phys_res_id;
753
754         /**
755          * I/O statistics from BlockBack dispatch down.  These are
756          * coalesced requests, and we start them right before execution.
757          */
758         struct devstat           *xbb_stats;
759
760         /**
761          * I/O statistics coming into BlockBack.  These are the requests as
762          * we get them from BlockFront.  They are started as soon as we
763          * receive a request, and completed when the I/O is complete.
764          */
765         struct devstat           *xbb_stats_in;
766
767         /** Disable sending flush to the backend */
768         int                       disable_flush;
769
770         /** Send a real flush for every N flush requests */
771         int                       flush_interval;
772
773         /** Count of flush requests in the interval */
774         int                       flush_count;
775
776         /** Don't coalesce requests if this is set */
777         int                       no_coalesce_reqs;
778
779         /** Number of requests we have received */
780         uint64_t                  reqs_received;
781
782         /** Number of requests we have completed*/
783         uint64_t                  reqs_completed;
784
785         /** Number of requests we queued but not pushed*/
786         uint64_t                  reqs_queued_for_completion;
787
788         /** Number of requests we completed with an error status*/
789         uint64_t                  reqs_completed_with_error;
790
791         /** How many forced dispatches (i.e. without coalescing) have happend */
792         uint64_t                  forced_dispatch;
793
794         /** How many normal dispatches have happend */
795         uint64_t                  normal_dispatch;
796
797         /** How many total dispatches have happend */
798         uint64_t                  total_dispatch;
799
800         /** How many times we have run out of KVA */
801         uint64_t                  kva_shortages;
802
803         /** How many times we have run out of request structures */
804         uint64_t                  request_shortages;
805 };
806
807 /*---------------------------- Request Processing ----------------------------*/
808 /**
809  * Allocate an internal transaction tracking structure from the free pool.
810  *
811  * \param xbb  Per-instance xbb configuration structure.
812  *
813  * \return  On success, a pointer to the allocated xbb_xen_req structure.
814  *          Otherwise NULL.
815  */
816 static inline struct xbb_xen_req *
817 xbb_get_req(struct xbb_softc *xbb)
818 {
819         struct xbb_xen_req *req;
820
821         req = NULL;
822
823         mtx_assert(&xbb->lock, MA_OWNED);
824
825         if ((req = STAILQ_FIRST(&xbb->request_free_stailq)) != NULL) {
826                 STAILQ_REMOVE_HEAD(&xbb->request_free_stailq, links);
827                 xbb->active_request_count++;
828         }
829
830         return (req);
831 }
832
833 /**
834  * Return an allocated transaction tracking structure to the free pool.
835  *
836  * \param xbb  Per-instance xbb configuration structure.
837  * \param req  The request structure to free.
838  */
839 static inline void
840 xbb_release_req(struct xbb_softc *xbb, struct xbb_xen_req *req)
841 {
842         mtx_assert(&xbb->lock, MA_OWNED);
843
844         STAILQ_INSERT_HEAD(&xbb->request_free_stailq, req, links);
845         xbb->active_request_count--;
846
847         KASSERT(xbb->active_request_count >= 0,
848                 ("xbb_release_req: negative active count"));
849 }
850
851 /**
852  * Return an xbb_xen_req_list of allocated xbb_xen_reqs to the free pool.
853  *
854  * \param xbb       Per-instance xbb configuration structure.
855  * \param req_list  The list of requests to free.
856  * \param nreqs     The number of items in the list.
857  */
858 static inline void
859 xbb_release_reqs(struct xbb_softc *xbb, struct xbb_xen_req_list *req_list,
860                  int nreqs)
861 {
862         mtx_assert(&xbb->lock, MA_OWNED);
863
864         STAILQ_CONCAT(&xbb->request_free_stailq, req_list);
865         xbb->active_request_count -= nreqs;
866
867         KASSERT(xbb->active_request_count >= 0,
868                 ("xbb_release_reqs: negative active count"));
869 }
870
871 /**
872  * Given a page index and 512b sector offset within that page,
873  * calculate an offset into a request's kva region.
874  *
875  * \param reqlist The request structure whose kva region will be accessed.
876  * \param pagenr  The page index used to compute the kva offset.
877  * \param sector  The 512b sector index used to compute the page relative
878  *                kva offset.
879  *
880  * \return  The computed global KVA offset.
881  */
882 static inline uint8_t *
883 xbb_reqlist_vaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
884 {
885         return (reqlist->kva + (PAGE_SIZE * pagenr) + (sector << 9));
886 }
887
888 #ifdef XBB_USE_BOUNCE_BUFFERS
889 /**
890  * Given a page index and 512b sector offset within that page,
891  * calculate an offset into a request's local bounce memory region.
892  *
893  * \param reqlist The request structure whose bounce region will be accessed.
894  * \param pagenr  The page index used to compute the bounce offset.
895  * \param sector  The 512b sector index used to compute the page relative
896  *                bounce offset.
897  *
898  * \return  The computed global bounce buffer address.
899  */
900 static inline uint8_t *
901 xbb_reqlist_bounce_addr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
902 {
903         return (reqlist->bounce + (PAGE_SIZE * pagenr) + (sector << 9));
904 }
905 #endif
906
907 /**
908  * Given a page number and 512b sector offset within that page,
909  * calculate an offset into the request's memory region that the
910  * underlying backend device/file should use for I/O.
911  *
912  * \param reqlist The request structure whose I/O region will be accessed.
913  * \param pagenr  The page index used to compute the I/O offset.
914  * \param sector  The 512b sector index used to compute the page relative
915  *                I/O offset.
916  *
917  * \return  The computed global I/O address.
918  *
919  * Depending on configuration, this will either be a local bounce buffer
920  * or a pointer to the memory mapped in from the front-end domain for
921  * this request.
922  */
923 static inline uint8_t *
924 xbb_reqlist_ioaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
925 {
926 #ifdef XBB_USE_BOUNCE_BUFFERS
927         return (xbb_reqlist_bounce_addr(reqlist, pagenr, sector));
928 #else
929         return (xbb_reqlist_vaddr(reqlist, pagenr, sector));
930 #endif
931 }
932
933 /**
934  * Given a page index and 512b sector offset within that page, calculate
935  * an offset into the local psuedo-physical address space used to map a
936  * front-end's request data into a request.
937  *
938  * \param reqlist The request list structure whose pseudo-physical region
939  *                will be accessed.
940  * \param pagenr  The page index used to compute the pseudo-physical offset.
941  * \param sector  The 512b sector index used to compute the page relative
942  *                pseudo-physical offset.
943  *
944  * \return  The computed global pseudo-phsyical address.
945  *
946  * Depending on configuration, this will either be a local bounce buffer
947  * or a pointer to the memory mapped in from the front-end domain for
948  * this request.
949  */
950 static inline uintptr_t
951 xbb_get_gntaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
952 {
953         struct xbb_softc *xbb;
954
955         xbb = reqlist->xbb;
956
957         return ((uintptr_t)(xbb->gnt_base_addr +
958                 (uintptr_t)(reqlist->kva - xbb->kva) +
959                 (PAGE_SIZE * pagenr) + (sector << 9)));
960 }
961
962 /**
963  * Get Kernel Virtual Address space for mapping requests.
964  *
965  * \param xbb         Per-instance xbb configuration structure.
966  * \param nr_pages    Number of pages needed.
967  * \param check_only  If set, check for free KVA but don't allocate it.
968  * \param have_lock   If set, xbb lock is already held.
969  *
970  * \return  On success, a pointer to the allocated KVA region.  Otherwise NULL.
971  *
972  * Note:  This should be unnecessary once we have either chaining or
973  * scatter/gather support for struct bio.  At that point we'll be able to
974  * put multiple addresses and lengths in one bio/bio chain and won't need
975  * to map everything into one virtual segment.
976  */
977 static uint8_t *
978 xbb_get_kva(struct xbb_softc *xbb, int nr_pages)
979 {
980         intptr_t first_clear;
981         intptr_t num_clear;
982         uint8_t *free_kva;
983         int      i;
984
985         KASSERT(nr_pages != 0, ("xbb_get_kva of zero length"));
986
987         first_clear = 0;
988         free_kva = NULL;
989
990         mtx_lock(&xbb->lock);
991
992         /*
993          * Look for the first available page.  If there are none, we're done.
994          */
995         bit_ffc(xbb->kva_free, xbb->reqlist_kva_pages, &first_clear);
996
997         if (first_clear == -1)
998                 goto bailout;
999
1000         /*
1001          * Starting at the first available page, look for consecutive free
1002          * pages that will satisfy the user's request.
1003          */
1004         for (i = first_clear, num_clear = 0; i < xbb->reqlist_kva_pages; i++) {
1005                 /*
1006                  * If this is true, the page is used, so we have to reset
1007                  * the number of clear pages and the first clear page
1008                  * (since it pointed to a region with an insufficient number
1009                  * of clear pages).
1010                  */
1011                 if (bit_test(xbb->kva_free, i)) {
1012                         num_clear = 0;
1013                         first_clear = -1;
1014                         continue;
1015                 }
1016
1017                 if (first_clear == -1)
1018                         first_clear = i;
1019
1020                 /*
1021                  * If this is true, we've found a large enough free region
1022                  * to satisfy the request.
1023                  */
1024                 if (++num_clear == nr_pages) {
1025
1026                         bit_nset(xbb->kva_free, first_clear,
1027                                  first_clear + nr_pages - 1);
1028
1029                         free_kva = xbb->kva +
1030                                 (uint8_t *)(first_clear * PAGE_SIZE);
1031
1032                         KASSERT(free_kva >= (uint8_t *)xbb->kva &&
1033                                 free_kva + (nr_pages * PAGE_SIZE) <=
1034                                 (uint8_t *)xbb->ring_config.va,
1035                                 ("Free KVA %p len %d out of range, "
1036                                  "kva = %#jx, ring VA = %#jx\n", free_kva,
1037                                  nr_pages * PAGE_SIZE, (uintmax_t)xbb->kva,
1038                                  (uintmax_t)xbb->ring_config.va));
1039                         break;
1040                 }
1041         }
1042
1043 bailout:
1044
1045         if (free_kva == NULL) {
1046                 xbb->flags |= XBBF_RESOURCE_SHORTAGE;
1047                 xbb->kva_shortages++;
1048         }
1049
1050         mtx_unlock(&xbb->lock);
1051
1052         return (free_kva);
1053 }
1054
1055 /**
1056  * Free allocated KVA.
1057  *
1058  * \param xbb       Per-instance xbb configuration structure.
1059  * \param kva_ptr   Pointer to allocated KVA region.  
1060  * \param nr_pages  Number of pages in the KVA region.
1061  */
1062 static void
1063 xbb_free_kva(struct xbb_softc *xbb, uint8_t *kva_ptr, int nr_pages)
1064 {
1065         intptr_t start_page;
1066
1067         mtx_assert(&xbb->lock, MA_OWNED);
1068
1069         start_page = (intptr_t)(kva_ptr - xbb->kva) >> PAGE_SHIFT;
1070         bit_nclear(xbb->kva_free, start_page, start_page + nr_pages - 1);
1071
1072 }
1073
1074 /**
1075  * Unmap the front-end pages associated with this I/O request.
1076  *
1077  * \param req  The request structure to unmap.
1078  */
1079 static void
1080 xbb_unmap_reqlist(struct xbb_xen_reqlist *reqlist)
1081 {
1082         struct gnttab_unmap_grant_ref unmap[XBB_MAX_SEGMENTS_PER_REQLIST];
1083         u_int                         i;
1084         u_int                         invcount;
1085         int                           error;
1086
1087         invcount = 0;
1088         for (i = 0; i < reqlist->nr_segments; i++) {
1089
1090                 if (reqlist->gnt_handles[i] == GRANT_REF_INVALID)
1091                         continue;
1092
1093                 unmap[invcount].host_addr    = xbb_get_gntaddr(reqlist, i, 0);
1094                 unmap[invcount].dev_bus_addr = 0;
1095                 unmap[invcount].handle       = reqlist->gnt_handles[i];
1096                 reqlist->gnt_handles[i]      = GRANT_REF_INVALID;
1097                 invcount++;
1098         }
1099
1100         error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref,
1101                                           unmap, invcount);
1102         KASSERT(error == 0, ("Grant table operation failed"));
1103 }
1104
1105 /**
1106  * Allocate an internal transaction tracking structure from the free pool.
1107  *
1108  * \param xbb  Per-instance xbb configuration structure.
1109  *
1110  * \return  On success, a pointer to the allocated xbb_xen_reqlist structure.
1111  *          Otherwise NULL.
1112  */
1113 static inline struct xbb_xen_reqlist *
1114 xbb_get_reqlist(struct xbb_softc *xbb)
1115 {
1116         struct xbb_xen_reqlist *reqlist;
1117
1118         reqlist = NULL;
1119
1120         mtx_assert(&xbb->lock, MA_OWNED);
1121
1122         if ((reqlist = STAILQ_FIRST(&xbb->reqlist_free_stailq)) != NULL) {
1123
1124                 STAILQ_REMOVE_HEAD(&xbb->reqlist_free_stailq, links);
1125                 reqlist->flags = XBB_REQLIST_NONE;
1126                 reqlist->kva = NULL;
1127                 reqlist->status = BLKIF_RSP_OKAY;
1128                 reqlist->residual_512b_sectors = 0;
1129                 reqlist->num_children = 0;
1130                 reqlist->nr_segments = 0;
1131                 STAILQ_INIT(&reqlist->contig_req_list);
1132         }
1133
1134         return (reqlist);
1135 }
1136
1137 /**
1138  * Return an allocated transaction tracking structure to the free pool.
1139  *
1140  * \param xbb        Per-instance xbb configuration structure.
1141  * \param req        The request list structure to free.
1142  * \param wakeup     If set, wakeup the work thread if freeing this reqlist
1143  *                   during a resource shortage condition.
1144  */
1145 static inline void
1146 xbb_release_reqlist(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
1147                     int wakeup)
1148 {
1149
1150         mtx_assert(&xbb->lock, MA_OWNED);
1151
1152         if (wakeup) {
1153                 wakeup = xbb->flags & XBBF_RESOURCE_SHORTAGE;
1154                 xbb->flags &= ~XBBF_RESOURCE_SHORTAGE;
1155         }
1156
1157         if (reqlist->kva != NULL)
1158                 xbb_free_kva(xbb, reqlist->kva, reqlist->nr_segments);
1159
1160         xbb_release_reqs(xbb, &reqlist->contig_req_list, reqlist->num_children);
1161
1162         STAILQ_INSERT_TAIL(&xbb->reqlist_free_stailq, reqlist, links);
1163
1164         if ((xbb->flags & XBBF_SHUTDOWN) != 0) {
1165                 /*
1166                  * Shutdown is in progress.  See if we can
1167                  * progress further now that one more request
1168                  * has completed and been returned to the
1169                  * free pool.
1170                  */
1171                 xbb_shutdown(xbb);
1172         }
1173
1174         if (wakeup != 0)
1175                 taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task); 
1176 }
1177
1178 /**
1179  * Request resources and do basic request setup.
1180  *
1181  * \param xbb          Per-instance xbb configuration structure.
1182  * \param reqlist      Pointer to reqlist pointer.
1183  * \param ring_req     Pointer to a block ring request.
1184  * \param ring_index   The ring index of this request.
1185  *
1186  * \return  0 for success, non-zero for failure.
1187  */
1188 static int
1189 xbb_get_resources(struct xbb_softc *xbb, struct xbb_xen_reqlist **reqlist,
1190                   blkif_request_t *ring_req, RING_IDX ring_idx)
1191 {
1192         struct xbb_xen_reqlist *nreqlist;
1193         struct xbb_xen_req     *nreq;
1194
1195         nreqlist = NULL;
1196         nreq     = NULL;
1197
1198         mtx_lock(&xbb->lock);
1199
1200         /*
1201          * We don't allow new resources to be allocated if we're in the
1202          * process of shutting down.
1203          */
1204         if ((xbb->flags & XBBF_SHUTDOWN) != 0) {
1205                 mtx_unlock(&xbb->lock);
1206                 return (1);
1207         }
1208
1209         /*
1210          * Allocate a reqlist if the caller doesn't have one already.
1211          */
1212         if (*reqlist == NULL) {
1213                 nreqlist = xbb_get_reqlist(xbb);
1214                 if (nreqlist == NULL)
1215                         goto bailout_error;
1216         }
1217
1218         /* We always allocate a request. */
1219         nreq = xbb_get_req(xbb);
1220         if (nreq == NULL)
1221                 goto bailout_error;
1222
1223         mtx_unlock(&xbb->lock);
1224
1225         if (*reqlist == NULL) {
1226                 *reqlist = nreqlist;
1227                 nreqlist->operation = ring_req->operation;
1228                 nreqlist->starting_sector_number = ring_req->sector_number;
1229                 STAILQ_INSERT_TAIL(&xbb->reqlist_pending_stailq, nreqlist,
1230                                    links);
1231         }
1232
1233         nreq->reqlist = *reqlist;
1234         nreq->req_ring_idx = ring_idx;
1235         nreq->id = ring_req->id;
1236         nreq->operation = ring_req->operation;
1237
1238         if (xbb->abi != BLKIF_PROTOCOL_NATIVE) {
1239                 bcopy(ring_req, &nreq->ring_req_storage, sizeof(*ring_req));
1240                 nreq->ring_req = &nreq->ring_req_storage;
1241         } else {
1242                 nreq->ring_req = ring_req;
1243         }
1244
1245         binuptime(&nreq->ds_t0);
1246         devstat_start_transaction(xbb->xbb_stats_in, &nreq->ds_t0);
1247         STAILQ_INSERT_TAIL(&(*reqlist)->contig_req_list, nreq, links);
1248         (*reqlist)->num_children++;
1249         (*reqlist)->nr_segments += ring_req->nr_segments;
1250
1251         return (0);
1252
1253 bailout_error:
1254
1255         /*
1256          * We're out of resources, so set the shortage flag.  The next time
1257          * a request is released, we'll try waking up the work thread to
1258          * see if we can allocate more resources.
1259          */
1260         xbb->flags |= XBBF_RESOURCE_SHORTAGE;
1261         xbb->request_shortages++;
1262
1263         if (nreq != NULL)
1264                 xbb_release_req(xbb, nreq);
1265
1266         if (nreqlist != NULL)
1267                 xbb_release_reqlist(xbb, nreqlist, /*wakeup*/ 0);
1268
1269         mtx_unlock(&xbb->lock);
1270
1271         return (1);
1272 }
1273
1274 /**
1275  * Create and queue a response to a blkif request.
1276  * 
1277  * \param xbb     Per-instance xbb configuration structure.
1278  * \param req     The request structure to which to respond.
1279  * \param status  The status code to report.  See BLKIF_RSP_*
1280  *                in sys/xen/interface/io/blkif.h.
1281  */
1282 static void
1283 xbb_queue_response(struct xbb_softc *xbb, struct xbb_xen_req *req, int status)
1284 {
1285         blkif_response_t *resp;
1286
1287         /*
1288          * The mutex is required here, and should be held across this call
1289          * until after the subsequent call to xbb_push_responses().  This
1290          * is to guarantee that another context won't queue responses and
1291          * push them while we're active.
1292          *
1293          * That could lead to the other end being notified of responses
1294          * before the resources have been freed on this end.  The other end
1295          * would then be able to queue additional I/O, and we may run out
1296          * of resources because we haven't freed them all yet.
1297          */
1298         mtx_assert(&xbb->lock, MA_OWNED);
1299
1300         /*
1301          * Place on the response ring for the relevant domain.
1302          * For now, only the spacing between entries is different
1303          * in the different ABIs, not the response entry layout.
1304          */
1305         switch (xbb->abi) {
1306         case BLKIF_PROTOCOL_NATIVE:
1307                 resp = RING_GET_RESPONSE(&xbb->rings.native,
1308                                          xbb->rings.native.rsp_prod_pvt);
1309                 break;
1310         case BLKIF_PROTOCOL_X86_32:
1311                 resp = (blkif_response_t *)
1312                     RING_GET_RESPONSE(&xbb->rings.x86_32,
1313                                       xbb->rings.x86_32.rsp_prod_pvt);
1314                 break;
1315         case BLKIF_PROTOCOL_X86_64:
1316                 resp = (blkif_response_t *)
1317                     RING_GET_RESPONSE(&xbb->rings.x86_64,
1318                                       xbb->rings.x86_64.rsp_prod_pvt);
1319                 break;
1320         default:
1321                 panic("Unexpected blkif protocol ABI.");
1322         }
1323
1324         resp->id        = req->id;
1325         resp->operation = req->operation;
1326         resp->status    = status;
1327
1328         if (status != BLKIF_RSP_OKAY)
1329                 xbb->reqs_completed_with_error++;
1330
1331         xbb->rings.common.rsp_prod_pvt++;
1332
1333         xbb->reqs_queued_for_completion++;
1334
1335 }
1336
1337 /**
1338  * Send queued responses to blkif requests.
1339  * 
1340  * \param xbb            Per-instance xbb configuration structure.
1341  * \param run_taskqueue  Flag that is set to 1 if the taskqueue
1342  *                       should be run, 0 if it does not need to be run.
1343  * \param notify         Flag that is set to 1 if the other end should be
1344  *                       notified via irq, 0 if the other end should not be
1345  *                       notified.
1346  */
1347 static void
1348 xbb_push_responses(struct xbb_softc *xbb, int *run_taskqueue, int *notify)
1349 {
1350         int more_to_do;
1351
1352         /*
1353          * The mutex is required here.
1354          */
1355         mtx_assert(&xbb->lock, MA_OWNED);
1356
1357         more_to_do = 0;
1358
1359         RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&xbb->rings.common, *notify);
1360
1361         if (xbb->rings.common.rsp_prod_pvt == xbb->rings.common.req_cons) {
1362
1363                 /*
1364                  * Tail check for pending requests. Allows frontend to avoid
1365                  * notifications if requests are already in flight (lower
1366                  * overheads and promotes batching).
1367                  */
1368                 RING_FINAL_CHECK_FOR_REQUESTS(&xbb->rings.common, more_to_do);
1369         } else if (RING_HAS_UNCONSUMED_REQUESTS(&xbb->rings.common)) {
1370
1371                 more_to_do = 1;
1372         }
1373
1374         xbb->reqs_completed += xbb->reqs_queued_for_completion;
1375         xbb->reqs_queued_for_completion = 0;
1376
1377         *run_taskqueue = more_to_do;
1378 }
1379
1380 /**
1381  * Complete a request list.
1382  *
1383  * \param xbb        Per-instance xbb configuration structure.
1384  * \param reqlist    Allocated internal request list structure.
1385  */
1386 static void
1387 xbb_complete_reqlist(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist)
1388 {
1389         struct xbb_xen_req *nreq;
1390         off_t               sectors_sent;
1391         int                 notify, run_taskqueue;
1392
1393         sectors_sent = 0;
1394
1395         if (reqlist->flags & XBB_REQLIST_MAPPED)
1396                 xbb_unmap_reqlist(reqlist);
1397
1398         mtx_lock(&xbb->lock);
1399
1400         /*
1401          * All I/O is done, send the response. A lock is not necessary
1402          * to protect the request list, because all requests have
1403          * completed.  Therefore this is the only context accessing this
1404          * reqlist right now.  However, in order to make sure that no one
1405          * else queues responses onto the queue or pushes them to the other
1406          * side while we're active, we need to hold the lock across the
1407          * calls to xbb_queue_response() and xbb_push_responses().
1408          */
1409         STAILQ_FOREACH(nreq, &reqlist->contig_req_list, links) {
1410                 off_t cur_sectors_sent;
1411
1412                 /* Put this response on the ring, but don't push yet */
1413                 xbb_queue_response(xbb, nreq, reqlist->status);
1414
1415                 /* We don't report bytes sent if there is an error. */
1416                 if (reqlist->status == BLKIF_RSP_OKAY)
1417                         cur_sectors_sent = nreq->nr_512b_sectors;
1418                 else
1419                         cur_sectors_sent = 0;
1420
1421                 sectors_sent += cur_sectors_sent;
1422
1423                 devstat_end_transaction(xbb->xbb_stats_in,
1424                                         /*bytes*/cur_sectors_sent << 9,
1425                                         reqlist->ds_tag_type,
1426                                         reqlist->ds_trans_type,
1427                                         /*now*/NULL,
1428                                         /*then*/&nreq->ds_t0);
1429         }
1430
1431         /*
1432          * Take out any sectors not sent.  If we wind up negative (which
1433          * might happen if an error is reported as well as a residual), just
1434          * report 0 sectors sent.
1435          */
1436         sectors_sent -= reqlist->residual_512b_sectors;
1437         if (sectors_sent < 0)
1438                 sectors_sent = 0;
1439
1440         devstat_end_transaction(xbb->xbb_stats,
1441                                 /*bytes*/ sectors_sent << 9,
1442                                 reqlist->ds_tag_type,
1443                                 reqlist->ds_trans_type,
1444                                 /*now*/NULL,
1445                                 /*then*/&reqlist->ds_t0);
1446
1447         xbb_release_reqlist(xbb, reqlist, /*wakeup*/ 1);
1448
1449         xbb_push_responses(xbb, &run_taskqueue, &notify);
1450
1451         mtx_unlock(&xbb->lock);
1452
1453         if (run_taskqueue)
1454                 taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task); 
1455
1456         if (notify)
1457                 xen_intr_signal(xbb->xen_intr_handle);
1458 }
1459
1460 /**
1461  * Completion handler for buffer I/O requests issued by the device
1462  * backend driver.
1463  *
1464  * \param bio  The buffer I/O request on which to perform completion
1465  *             processing.
1466  */
1467 static void
1468 xbb_bio_done(struct bio *bio)
1469 {
1470         struct xbb_softc       *xbb;
1471         struct xbb_xen_reqlist *reqlist;
1472
1473         reqlist = bio->bio_caller1;
1474         xbb     = reqlist->xbb;
1475
1476         reqlist->residual_512b_sectors += bio->bio_resid >> 9;
1477
1478         /*
1479          * This is a bit imprecise.  With aggregated I/O a single
1480          * request list can contain multiple front-end requests and
1481          * a multiple bios may point to a single request.  By carefully
1482          * walking the request list, we could map residuals and errors
1483          * back to the original front-end request, but the interface
1484          * isn't sufficiently rich for us to properly report the error.
1485          * So, we just treat the entire request list as having failed if an
1486          * error occurs on any part.  And, if an error occurs, we treat
1487          * the amount of data transferred as 0.
1488          *
1489          * For residuals, we report it on the overall aggregated device,
1490          * but not on the individual requests, since we don't currently
1491          * do the work to determine which front-end request to which the
1492          * residual applies.
1493          */
1494         if (bio->bio_error) {
1495                 DPRINTF("BIO returned error %d for operation on device %s\n",
1496                         bio->bio_error, xbb->dev_name);
1497                 reqlist->status = BLKIF_RSP_ERROR;
1498
1499                 if (bio->bio_error == ENXIO
1500                  && xenbus_get_state(xbb->dev) == XenbusStateConnected) {
1501
1502                         /*
1503                          * Backend device has disappeared.  Signal the
1504                          * front-end that we (the device proxy) want to
1505                          * go away.
1506                          */
1507                         xenbus_set_state(xbb->dev, XenbusStateClosing);
1508                 }
1509         }
1510
1511 #ifdef XBB_USE_BOUNCE_BUFFERS
1512         if (bio->bio_cmd == BIO_READ) {
1513                 vm_offset_t kva_offset;
1514
1515                 kva_offset = (vm_offset_t)bio->bio_data
1516                            - (vm_offset_t)reqlist->bounce;
1517                 memcpy((uint8_t *)reqlist->kva + kva_offset,
1518                        bio->bio_data, bio->bio_bcount);
1519         }
1520 #endif /* XBB_USE_BOUNCE_BUFFERS */
1521
1522         /*
1523          * Decrement the pending count for the request list.  When we're
1524          * done with the requests, send status back for all of them.
1525          */
1526         if (atomic_fetchadd_int(&reqlist->pendcnt, -1) == 1)
1527                 xbb_complete_reqlist(xbb, reqlist);
1528
1529         g_destroy_bio(bio);
1530 }
1531
1532 /**
1533  * Parse a blkif request into an internal request structure and send
1534  * it to the backend for processing.
1535  *
1536  * \param xbb       Per-instance xbb configuration structure.
1537  * \param reqlist   Allocated internal request list structure.
1538  *
1539  * \return          On success, 0.  For resource shortages, non-zero.
1540  *  
1541  * This routine performs the backend common aspects of request parsing
1542  * including compiling an internal request structure, parsing the S/G
1543  * list and any secondary ring requests in which they may reside, and
1544  * the mapping of front-end I/O pages into our domain.
1545  */
1546 static int
1547 xbb_dispatch_io(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist)
1548 {
1549         struct xbb_sg                *xbb_sg;
1550         struct gnttab_map_grant_ref  *map;
1551         struct blkif_request_segment *sg;
1552         struct blkif_request_segment *last_block_sg;
1553         struct xbb_xen_req           *nreq;
1554         u_int                         nseg;
1555         u_int                         seg_idx;
1556         u_int                         block_segs;
1557         int                           nr_sects;
1558         int                           total_sects;
1559         int                           operation;
1560         uint8_t                       bio_flags;
1561         int                           error;
1562
1563         reqlist->ds_tag_type = DEVSTAT_TAG_SIMPLE;
1564         bio_flags            = 0;
1565         total_sects          = 0;
1566         nr_sects             = 0;
1567
1568         /*
1569          * First determine whether we have enough free KVA to satisfy this
1570          * request list.  If not, tell xbb_run_queue() so it can go to
1571          * sleep until we have more KVA.
1572          */
1573         reqlist->kva = NULL;
1574         if (reqlist->nr_segments != 0) {
1575                 reqlist->kva = xbb_get_kva(xbb, reqlist->nr_segments);
1576                 if (reqlist->kva == NULL) {
1577                         /*
1578                          * If we're out of KVA, return ENOMEM.
1579                          */
1580                         return (ENOMEM);
1581                 }
1582         }
1583
1584         binuptime(&reqlist->ds_t0);
1585         devstat_start_transaction(xbb->xbb_stats, &reqlist->ds_t0);
1586
1587         switch (reqlist->operation) {
1588         case BLKIF_OP_WRITE_BARRIER:
1589                 bio_flags       |= BIO_ORDERED;
1590                 reqlist->ds_tag_type = DEVSTAT_TAG_ORDERED;
1591                 /* FALLTHROUGH */
1592         case BLKIF_OP_WRITE:
1593                 operation = BIO_WRITE;
1594                 reqlist->ds_trans_type = DEVSTAT_WRITE;
1595                 if ((xbb->flags & XBBF_READ_ONLY) != 0) {
1596                         DPRINTF("Attempt to write to read only device %s\n",
1597                                 xbb->dev_name);
1598                         reqlist->status = BLKIF_RSP_ERROR;
1599                         goto send_response;
1600                 }
1601                 break;
1602         case BLKIF_OP_READ:
1603                 operation = BIO_READ;
1604                 reqlist->ds_trans_type = DEVSTAT_READ;
1605                 break;
1606         case BLKIF_OP_FLUSH_DISKCACHE:
1607                 /*
1608                  * If this is true, the user has requested that we disable
1609                  * flush support.  So we just complete the requests
1610                  * successfully.
1611                  */
1612                 if (xbb->disable_flush != 0) {
1613                         goto send_response;
1614                 }
1615
1616                 /*
1617                  * The user has requested that we only send a real flush
1618                  * for every N flush requests.  So keep count, and either
1619                  * complete the request immediately or queue it for the
1620                  * backend.
1621                  */
1622                 if (xbb->flush_interval != 0) {
1623                         if (++(xbb->flush_count) < xbb->flush_interval) {
1624                                 goto send_response;
1625                         } else
1626                                 xbb->flush_count = 0;
1627                 }
1628
1629                 operation = BIO_FLUSH;
1630                 reqlist->ds_tag_type = DEVSTAT_TAG_ORDERED;
1631                 reqlist->ds_trans_type = DEVSTAT_NO_DATA;
1632                 goto do_dispatch;
1633                 /*NOTREACHED*/
1634         default:
1635                 DPRINTF("error: unknown block io operation [%d]\n",
1636                         reqlist->operation);
1637                 reqlist->status = BLKIF_RSP_ERROR;
1638                 goto send_response;
1639         }
1640
1641         reqlist->xbb  = xbb;
1642         xbb_sg        = xbb->xbb_sgs;
1643         map           = xbb->maps;
1644         seg_idx       = 0;
1645
1646         STAILQ_FOREACH(nreq, &reqlist->contig_req_list, links) {
1647                 blkif_request_t         *ring_req;
1648                 RING_IDX                 req_ring_idx;
1649                 u_int                    req_seg_idx;
1650
1651                 ring_req              = nreq->ring_req;
1652                 req_ring_idx          = nreq->req_ring_idx;
1653                 nr_sects              = 0;
1654                 nseg                  = ring_req->nr_segments;
1655                 nreq->nr_pages        = nseg;
1656                 nreq->nr_512b_sectors = 0;
1657                 req_seg_idx           = 0;
1658                 sg                    = NULL;
1659
1660                 /* Check that number of segments is sane. */
1661                 if (__predict_false(nseg == 0)
1662                  || __predict_false(nseg > xbb->max_request_segments)) {
1663                         DPRINTF("Bad number of segments in request (%d)\n",
1664                                 nseg);
1665                         reqlist->status = BLKIF_RSP_ERROR;
1666                         goto send_response;
1667                 }
1668
1669                 block_segs    = nseg;
1670                 sg            = ring_req->seg;
1671                 last_block_sg = sg + block_segs;
1672
1673                 while (sg < last_block_sg) {
1674                         KASSERT(seg_idx <
1675                                 XBB_MAX_SEGMENTS_PER_REQLIST,
1676                                 ("seg_idx %d is too large, max "
1677                                 "segs %d\n", seg_idx,
1678                                 XBB_MAX_SEGMENTS_PER_REQLIST));
1679
1680                         xbb_sg->first_sect = sg->first_sect;
1681                         xbb_sg->last_sect  = sg->last_sect;
1682                         xbb_sg->nsect =
1683                             (int8_t)(sg->last_sect -
1684                             sg->first_sect + 1);
1685
1686                         if ((sg->last_sect >= (PAGE_SIZE >> 9))
1687                          || (xbb_sg->nsect <= 0)) {
1688                                 reqlist->status = BLKIF_RSP_ERROR;
1689                                 goto send_response;
1690                         }
1691
1692                         nr_sects += xbb_sg->nsect;
1693                         map->host_addr = xbb_get_gntaddr(reqlist,
1694                                                 seg_idx, /*sector*/0);
1695                         KASSERT(map->host_addr + PAGE_SIZE <=
1696                                 xbb->ring_config.gnt_addr,
1697                                 ("Host address %#jx len %d overlaps "
1698                                  "ring address %#jx\n",
1699                                 (uintmax_t)map->host_addr, PAGE_SIZE,
1700                                 (uintmax_t)xbb->ring_config.gnt_addr));
1701
1702                         map->flags     = GNTMAP_host_map;
1703                         map->ref       = sg->gref;
1704                         map->dom       = xbb->otherend_id;
1705                         if (operation == BIO_WRITE)
1706                                 map->flags |= GNTMAP_readonly;
1707                         sg++;
1708                         map++;
1709                         xbb_sg++;
1710                         seg_idx++;
1711                         req_seg_idx++;
1712                 }
1713
1714                 /* Convert to the disk's sector size */
1715                 nreq->nr_512b_sectors = nr_sects;
1716                 nr_sects = (nr_sects << 9) >> xbb->sector_size_shift;
1717                 total_sects += nr_sects;
1718
1719                 if ((nreq->nr_512b_sectors &
1720                     ((xbb->sector_size >> 9) - 1)) != 0) {
1721                         device_printf(xbb->dev, "%s: I/O size (%d) is not "
1722                                       "a multiple of the backing store sector "
1723                                       "size (%d)\n", __func__,
1724                                       nreq->nr_512b_sectors << 9,
1725                                       xbb->sector_size);
1726                         reqlist->status = BLKIF_RSP_ERROR;
1727                         goto send_response;
1728                 }
1729         }
1730
1731         error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref,
1732                                           xbb->maps, reqlist->nr_segments);
1733         if (error != 0)
1734                 panic("Grant table operation failed (%d)", error);
1735
1736         reqlist->flags |= XBB_REQLIST_MAPPED;
1737
1738         for (seg_idx = 0, map = xbb->maps; seg_idx < reqlist->nr_segments;
1739              seg_idx++, map++){
1740
1741                 if (__predict_false(map->status != 0)) {
1742                         DPRINTF("invalid buffer -- could not remap "
1743                                 "it (%d)\n", map->status);
1744                         DPRINTF("Mapping(%d): Host Addr 0x%lx, flags "
1745                                 "0x%x ref 0x%x, dom %d\n", seg_idx,
1746                                 map->host_addr, map->flags, map->ref,
1747                                 map->dom);
1748                         reqlist->status = BLKIF_RSP_ERROR;
1749                         goto send_response;
1750                 }
1751
1752                 reqlist->gnt_handles[seg_idx] = map->handle;
1753         }
1754         if (reqlist->starting_sector_number + total_sects >
1755             xbb->media_num_sectors) {
1756
1757                 DPRINTF("%s of [%" PRIu64 ",%" PRIu64 "] "
1758                         "extends past end of device %s\n",
1759                         operation == BIO_READ ? "read" : "write",
1760                         reqlist->starting_sector_number,
1761                         reqlist->starting_sector_number + total_sects,
1762                         xbb->dev_name); 
1763                 reqlist->status = BLKIF_RSP_ERROR;
1764                 goto send_response;
1765         }
1766
1767 do_dispatch:
1768
1769         error = xbb->dispatch_io(xbb,
1770                                  reqlist,
1771                                  operation,
1772                                  bio_flags);
1773
1774         if (error != 0) {
1775                 reqlist->status = BLKIF_RSP_ERROR;
1776                 goto send_response;
1777         }
1778
1779         return (0);
1780
1781 send_response:
1782
1783         xbb_complete_reqlist(xbb, reqlist);
1784
1785         return (0);
1786 }
1787
1788 static __inline int
1789 xbb_count_sects(blkif_request_t *ring_req)
1790 {
1791         int i;
1792         int cur_size = 0;
1793
1794         for (i = 0; i < ring_req->nr_segments; i++) {
1795                 int nsect;
1796
1797                 nsect = (int8_t)(ring_req->seg[i].last_sect -
1798                         ring_req->seg[i].first_sect + 1);
1799                 if (nsect <= 0)
1800                         break;
1801
1802                 cur_size += nsect;
1803         }
1804
1805         return (cur_size);
1806 }
1807
1808 /**
1809  * Process incoming requests from the shared communication ring in response
1810  * to a signal on the ring's event channel.
1811  *
1812  * \param context  Callback argument registerd during task initialization -
1813  *                 the xbb_softc for this instance.
1814  * \param pending  The number of taskqueue_enqueue events that have
1815  *                 occurred since this handler was last run.
1816  */
1817 static void
1818 xbb_run_queue(void *context, int pending)
1819 {
1820         struct xbb_softc       *xbb;
1821         blkif_back_rings_t     *rings;
1822         RING_IDX                rp;
1823         uint64_t                cur_sector;
1824         int                     cur_operation;
1825         struct xbb_xen_reqlist *reqlist;
1826
1827
1828         xbb   = (struct xbb_softc *)context;
1829         rings = &xbb->rings;
1830
1831         /*
1832          * Work gather and dispatch loop.  Note that we have a bias here
1833          * towards gathering I/O sent by blockfront.  We first gather up
1834          * everything in the ring, as long as we have resources.  Then we
1835          * dispatch one request, and then attempt to gather up any
1836          * additional requests that have come in while we were dispatching
1837          * the request.
1838          *
1839          * This allows us to get a clearer picture (via devstat) of how
1840          * many requests blockfront is queueing to us at any given time.
1841          */
1842         for (;;) {
1843                 int retval;
1844
1845                 /*
1846                  * Initialize reqlist to the last element in the pending
1847                  * queue, if there is one.  This allows us to add more
1848                  * requests to that request list, if we have room.
1849                  */
1850                 reqlist = STAILQ_LAST(&xbb->reqlist_pending_stailq,
1851                                       xbb_xen_reqlist, links);
1852                 if (reqlist != NULL) {
1853                         cur_sector = reqlist->next_contig_sector;
1854                         cur_operation = reqlist->operation;
1855                 } else {
1856                         cur_operation = 0;
1857                         cur_sector    = 0;
1858                 }
1859
1860                 /*
1861                  * Cache req_prod to avoid accessing a cache line shared
1862                  * with the frontend.
1863                  */
1864                 rp = rings->common.sring->req_prod;
1865
1866                 /* Ensure we see queued requests up to 'rp'. */
1867                 rmb();
1868
1869                 /**
1870                  * Run so long as there is work to consume and the generation
1871                  * of a response will not overflow the ring.
1872                  *
1873                  * @note There's a 1 to 1 relationship between requests and
1874                  *       responses, so an overflow should never occur.  This
1875                  *       test is to protect our domain from digesting bogus
1876                  *       data.  Shouldn't we log this?
1877                  */
1878                 while (rings->common.req_cons != rp
1879                     && RING_REQUEST_CONS_OVERFLOW(&rings->common,
1880                                                   rings->common.req_cons) == 0){
1881                         blkif_request_t         ring_req_storage;
1882                         blkif_request_t        *ring_req;
1883                         int                     cur_size;
1884
1885                         switch (xbb->abi) {
1886                         case BLKIF_PROTOCOL_NATIVE:
1887                                 ring_req = RING_GET_REQUEST(&xbb->rings.native,
1888                                     rings->common.req_cons);
1889                                 break;
1890                         case BLKIF_PROTOCOL_X86_32:
1891                         {
1892                                 struct blkif_x86_32_request *ring_req32;
1893
1894                                 ring_req32 = RING_GET_REQUEST(
1895                                     &xbb->rings.x86_32, rings->common.req_cons);
1896                                 blkif_get_x86_32_req(&ring_req_storage,
1897                                                      ring_req32);
1898                                 ring_req = &ring_req_storage;
1899                                 break;
1900                         }
1901                         case BLKIF_PROTOCOL_X86_64:
1902                         {
1903                                 struct blkif_x86_64_request *ring_req64;
1904
1905                                 ring_req64 =RING_GET_REQUEST(&xbb->rings.x86_64,
1906                                     rings->common.req_cons);
1907                                 blkif_get_x86_64_req(&ring_req_storage,
1908                                                      ring_req64);
1909                                 ring_req = &ring_req_storage;
1910                                 break;
1911                         }
1912                         default:
1913                                 panic("Unexpected blkif protocol ABI.");
1914                                 /* NOTREACHED */
1915                         } 
1916
1917                         /*
1918                          * Check for situations that would require closing
1919                          * off this I/O for further coalescing:
1920                          *  - Coalescing is turned off.
1921                          *  - Current I/O is out of sequence with the previous
1922                          *    I/O.
1923                          *  - Coalesced I/O would be too large.
1924                          */
1925                         if ((reqlist != NULL)
1926                          && ((xbb->no_coalesce_reqs != 0)
1927                           || ((xbb->no_coalesce_reqs == 0)
1928                            && ((ring_req->sector_number != cur_sector)
1929                             || (ring_req->operation != cur_operation)
1930                             || ((ring_req->nr_segments + reqlist->nr_segments) >
1931                                  xbb->max_reqlist_segments))))) {
1932                                 reqlist = NULL;
1933                         }
1934
1935                         /*
1936                          * Grab and check for all resources in one shot.
1937                          * If we can't get all of the resources we need,
1938                          * the shortage is noted and the thread will get
1939                          * woken up when more resources are available.
1940                          */
1941                         retval = xbb_get_resources(xbb, &reqlist, ring_req,
1942                                                    xbb->rings.common.req_cons);
1943
1944                         if (retval != 0) {
1945                                 /*
1946                                  * Resource shortage has been recorded.
1947                                  * We'll be scheduled to run once a request
1948                                  * object frees up due to a completion.
1949                                  */
1950                                 break;
1951                         }
1952
1953                         /*
1954                          * Signify that we can overwrite this request with
1955                          * a response by incrementing our consumer index.
1956                          * The response won't be generated until after
1957                          * we've already consumed all necessary data out
1958                          * of the version of the request in the ring buffer
1959                          * (for native mode).  We must update the consumer
1960                          * index  before issueing back-end I/O so there is
1961                          * no possibility that it will complete and a
1962                          * response be generated before we make room in 
1963                          * the queue for that response.
1964                          */
1965                         xbb->rings.common.req_cons++;
1966                         xbb->reqs_received++;
1967
1968                         cur_size = xbb_count_sects(ring_req);
1969                         cur_sector = ring_req->sector_number + cur_size;
1970                         reqlist->next_contig_sector = cur_sector;
1971                         cur_operation = ring_req->operation;
1972                 }
1973
1974                 /* Check for I/O to dispatch */
1975                 reqlist = STAILQ_FIRST(&xbb->reqlist_pending_stailq);
1976                 if (reqlist == NULL) {
1977                         /*
1978                          * We're out of work to do, put the task queue to
1979                          * sleep.
1980                          */
1981                         break;
1982                 }
1983
1984                 /*
1985                  * Grab the first request off the queue and attempt
1986                  * to dispatch it.
1987                  */
1988                 STAILQ_REMOVE_HEAD(&xbb->reqlist_pending_stailq, links);
1989
1990                 retval = xbb_dispatch_io(xbb, reqlist);
1991                 if (retval != 0) {
1992                         /*
1993                          * xbb_dispatch_io() returns non-zero only when
1994                          * there is a resource shortage.  If that's the
1995                          * case, re-queue this request on the head of the
1996                          * queue, and go to sleep until we have more
1997                          * resources.
1998                          */
1999                         STAILQ_INSERT_HEAD(&xbb->reqlist_pending_stailq,
2000                                            reqlist, links);
2001                         break;
2002                 } else {
2003                         /*
2004                          * If we still have anything on the queue after
2005                          * removing the head entry, that is because we
2006                          * met one of the criteria to create a new
2007                          * request list (outlined above), and we'll call
2008                          * that a forced dispatch for statistical purposes.
2009                          *
2010                          * Otherwise, if there is only one element on the
2011                          * queue, we coalesced everything available on
2012                          * the ring and we'll call that a normal dispatch.
2013                          */
2014                         reqlist = STAILQ_FIRST(&xbb->reqlist_pending_stailq);
2015
2016                         if (reqlist != NULL)
2017                                 xbb->forced_dispatch++;
2018                         else
2019                                 xbb->normal_dispatch++;
2020
2021                         xbb->total_dispatch++;
2022                 }
2023         }
2024 }
2025
2026 /**
2027  * Interrupt handler bound to the shared ring's event channel.
2028  *
2029  * \param arg  Callback argument registerd during event channel
2030  *             binding - the xbb_softc for this instance.
2031  */
2032 static int
2033 xbb_filter(void *arg)
2034 {
2035         struct xbb_softc *xbb;
2036
2037         /* Defer to taskqueue thread. */
2038         xbb = (struct xbb_softc *)arg;
2039         taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task); 
2040
2041         return (FILTER_HANDLED);
2042 }
2043
2044 SDT_PROVIDER_DEFINE(xbb);
2045 SDT_PROBE_DEFINE1(xbb, kernel, xbb_dispatch_dev, flush, "int");
2046 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_dev, read, "int", "uint64_t",
2047                   "uint64_t");
2048 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_dev, write, "int",
2049                   "uint64_t", "uint64_t");
2050
2051 /*----------------------------- Backend Handlers -----------------------------*/
2052 /**
2053  * Backend handler for character device access.
2054  *
2055  * \param xbb        Per-instance xbb configuration structure.
2056  * \param reqlist    Allocated internal request list structure.
2057  * \param operation  BIO_* I/O operation code.
2058  * \param bio_flags  Additional bio_flag data to pass to any generated
2059  *                   bios (e.g. BIO_ORDERED)..
2060  *
2061  * \return  0 for success, errno codes for failure.
2062  */
2063 static int
2064 xbb_dispatch_dev(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
2065                  int operation, int bio_flags)
2066 {
2067         struct xbb_dev_data *dev_data;
2068         struct bio          *bios[XBB_MAX_SEGMENTS_PER_REQLIST];
2069         off_t                bio_offset;
2070         struct bio          *bio;
2071         struct xbb_sg       *xbb_sg;
2072         u_int                nbio;
2073         u_int                bio_idx;
2074         u_int                nseg;
2075         u_int                seg_idx;
2076         int                  error;
2077
2078         dev_data   = &xbb->backend.dev;
2079         bio_offset = (off_t)reqlist->starting_sector_number
2080                    << xbb->sector_size_shift;
2081         error      = 0;
2082         nbio       = 0;
2083         bio_idx    = 0;
2084
2085         if (operation == BIO_FLUSH) {
2086                 bio = g_new_bio();
2087                 if (__predict_false(bio == NULL)) {
2088                         DPRINTF("Unable to allocate bio for BIO_FLUSH\n");
2089                         error = ENOMEM;
2090                         return (error);
2091                 }
2092
2093                 bio->bio_cmd     = BIO_FLUSH;
2094                 bio->bio_flags  |= BIO_ORDERED;
2095                 bio->bio_dev     = dev_data->cdev;
2096                 bio->bio_offset  = 0;
2097                 bio->bio_data    = 0;
2098                 bio->bio_done    = xbb_bio_done;
2099                 bio->bio_caller1 = reqlist;
2100                 bio->bio_pblkno  = 0;
2101
2102                 reqlist->pendcnt = 1;
2103
2104                 SDT_PROBE1(xbb, kernel, xbb_dispatch_dev, flush,
2105                            device_get_unit(xbb->dev));
2106
2107                 (*dev_data->csw->d_strategy)(bio);
2108
2109                 return (0);
2110         }
2111
2112         xbb_sg = xbb->xbb_sgs;
2113         bio    = NULL;
2114         nseg = reqlist->nr_segments;
2115
2116         for (seg_idx = 0; seg_idx < nseg; seg_idx++, xbb_sg++) {
2117
2118                 /*
2119                  * KVA will not be contiguous, so any additional
2120                  * I/O will need to be represented in a new bio.
2121                  */
2122                 if ((bio != NULL)
2123                  && (xbb_sg->first_sect != 0)) {
2124                         if ((bio->bio_length & (xbb->sector_size - 1)) != 0) {
2125                                 printf("%s: Discontiguous I/O request "
2126                                        "from domain %d ends on "
2127                                        "non-sector boundary\n",
2128                                        __func__, xbb->otherend_id);
2129                                 error = EINVAL;
2130                                 goto fail_free_bios;
2131                         }
2132                         bio = NULL;
2133                 }
2134
2135                 if (bio == NULL) {
2136                         /*
2137                          * Make sure that the start of this bio is
2138                          * aligned to a device sector.
2139                          */
2140                         if ((bio_offset & (xbb->sector_size - 1)) != 0){
2141                                 printf("%s: Misaligned I/O request "
2142                                        "from domain %d\n", __func__,
2143                                        xbb->otherend_id);
2144                                 error = EINVAL;
2145                                 goto fail_free_bios;
2146                         }
2147
2148                         bio = bios[nbio++] = g_new_bio();
2149                         if (__predict_false(bio == NULL)) {
2150                                 error = ENOMEM;
2151                                 goto fail_free_bios;
2152                         }
2153                         bio->bio_cmd     = operation;
2154                         bio->bio_flags  |= bio_flags;
2155                         bio->bio_dev     = dev_data->cdev;
2156                         bio->bio_offset  = bio_offset;
2157                         bio->bio_data    = xbb_reqlist_ioaddr(reqlist, seg_idx,
2158                                                 xbb_sg->first_sect);
2159                         bio->bio_done    = xbb_bio_done;
2160                         bio->bio_caller1 = reqlist;
2161                         bio->bio_pblkno  = bio_offset >> xbb->sector_size_shift;
2162                 }
2163
2164                 bio->bio_length += xbb_sg->nsect << 9;
2165                 bio->bio_bcount  = bio->bio_length;
2166                 bio_offset      += xbb_sg->nsect << 9;
2167
2168                 if (xbb_sg->last_sect != (PAGE_SIZE - 512) >> 9) {
2169
2170                         if ((bio->bio_length & (xbb->sector_size - 1)) != 0) {
2171                                 printf("%s: Discontiguous I/O request "
2172                                        "from domain %d ends on "
2173                                        "non-sector boundary\n",
2174                                        __func__, xbb->otherend_id);
2175                                 error = EINVAL;
2176                                 goto fail_free_bios;
2177                         }
2178                         /*
2179                          * KVA will not be contiguous, so any additional
2180                          * I/O will need to be represented in a new bio.
2181                          */
2182                         bio = NULL;
2183                 }
2184         }
2185
2186         reqlist->pendcnt = nbio;
2187
2188         for (bio_idx = 0; bio_idx < nbio; bio_idx++)
2189         {
2190 #ifdef XBB_USE_BOUNCE_BUFFERS
2191                 vm_offset_t kva_offset;
2192
2193                 kva_offset = (vm_offset_t)bios[bio_idx]->bio_data
2194                            - (vm_offset_t)reqlist->bounce;
2195                 if (operation == BIO_WRITE) {
2196                         memcpy(bios[bio_idx]->bio_data,
2197                                (uint8_t *)reqlist->kva + kva_offset,
2198                                bios[bio_idx]->bio_bcount);
2199                 }
2200 #endif
2201                 if (operation == BIO_READ) {
2202                         SDT_PROBE3(xbb, kernel, xbb_dispatch_dev, read,
2203                                    device_get_unit(xbb->dev),
2204                                    bios[bio_idx]->bio_offset,
2205                                    bios[bio_idx]->bio_length);
2206                 } else if (operation == BIO_WRITE) {
2207                         SDT_PROBE3(xbb, kernel, xbb_dispatch_dev, write,
2208                                    device_get_unit(xbb->dev),
2209                                    bios[bio_idx]->bio_offset,
2210                                    bios[bio_idx]->bio_length);
2211                 }
2212                 (*dev_data->csw->d_strategy)(bios[bio_idx]);
2213         }
2214
2215         return (error);
2216
2217 fail_free_bios:
2218         for (bio_idx = 0; bio_idx < (nbio-1); bio_idx++)
2219                 g_destroy_bio(bios[bio_idx]);
2220         
2221         return (error);
2222 }
2223
2224 SDT_PROBE_DEFINE1(xbb, kernel, xbb_dispatch_file, flush, "int");
2225 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_file, read, "int", "uint64_t",
2226                   "uint64_t");
2227 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_file, write, "int",
2228                   "uint64_t", "uint64_t");
2229
2230 /**
2231  * Backend handler for file access.
2232  *
2233  * \param xbb        Per-instance xbb configuration structure.
2234  * \param reqlist    Allocated internal request list.
2235  * \param operation  BIO_* I/O operation code.
2236  * \param flags      Additional bio_flag data to pass to any generated bios
2237  *                   (e.g. BIO_ORDERED)..
2238  *
2239  * \return  0 for success, errno codes for failure.
2240  */
2241 static int
2242 xbb_dispatch_file(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
2243                   int operation, int flags)
2244 {
2245         struct xbb_file_data *file_data;
2246         u_int                 seg_idx;
2247         u_int                 nseg;
2248         off_t                 sectors_sent;
2249         struct uio            xuio;
2250         struct xbb_sg        *xbb_sg;
2251         struct iovec         *xiovec;
2252 #ifdef XBB_USE_BOUNCE_BUFFERS
2253         void                **p_vaddr;
2254         int                   saved_uio_iovcnt;
2255 #endif /* XBB_USE_BOUNCE_BUFFERS */
2256         int                   error;
2257
2258         file_data = &xbb->backend.file;
2259         sectors_sent = 0;
2260         error = 0;
2261         bzero(&xuio, sizeof(xuio));
2262
2263         switch (operation) {
2264         case BIO_READ:
2265                 xuio.uio_rw = UIO_READ;
2266                 break;
2267         case BIO_WRITE:
2268                 xuio.uio_rw = UIO_WRITE;
2269                 break;
2270         case BIO_FLUSH: {
2271                 struct mount *mountpoint;
2272
2273                 SDT_PROBE1(xbb, kernel, xbb_dispatch_file, flush,
2274                            device_get_unit(xbb->dev));
2275
2276                 (void) vn_start_write(xbb->vn, &mountpoint, V_WAIT);
2277
2278                 vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2279                 error = VOP_FSYNC(xbb->vn, MNT_WAIT, curthread);
2280                 VOP_UNLOCK(xbb->vn, 0);
2281
2282                 vn_finished_write(mountpoint);
2283
2284                 goto bailout_send_response;
2285                 /* NOTREACHED */
2286         }
2287         default:
2288                 panic("invalid operation %d", operation);
2289                 /* NOTREACHED */
2290         }
2291         xuio.uio_offset = (vm_offset_t)reqlist->starting_sector_number
2292                         << xbb->sector_size_shift;
2293         xuio.uio_segflg = UIO_SYSSPACE;
2294         xuio.uio_iov = file_data->xiovecs;
2295         xuio.uio_iovcnt = 0;
2296         xbb_sg = xbb->xbb_sgs;
2297         nseg = reqlist->nr_segments;
2298
2299         for (xiovec = NULL, seg_idx = 0; seg_idx < nseg; seg_idx++, xbb_sg++) {
2300
2301                 /*
2302                  * If the first sector is not 0, the KVA will
2303                  * not be contiguous and we'll need to go on
2304                  * to another segment.
2305                  */
2306                 if (xbb_sg->first_sect != 0)
2307                         xiovec = NULL;
2308
2309                 if (xiovec == NULL) {
2310                         xiovec = &file_data->xiovecs[xuio.uio_iovcnt];
2311                         xiovec->iov_base = xbb_reqlist_ioaddr(reqlist,
2312                             seg_idx, xbb_sg->first_sect);
2313 #ifdef XBB_USE_BOUNCE_BUFFERS
2314                         /*
2315                          * Store the address of the incoming
2316                          * buffer at this particular offset
2317                          * as well, so we can do the copy
2318                          * later without having to do more
2319                          * work to recalculate this address.
2320                          */
2321                         p_vaddr = &file_data->xiovecs_vaddr[xuio.uio_iovcnt];
2322                         *p_vaddr = xbb_reqlist_vaddr(reqlist, seg_idx,
2323                             xbb_sg->first_sect);
2324 #endif /* XBB_USE_BOUNCE_BUFFERS */
2325                         xiovec->iov_len = 0;
2326                         xuio.uio_iovcnt++;
2327                 }
2328
2329                 xiovec->iov_len += xbb_sg->nsect << 9;
2330
2331                 xuio.uio_resid += xbb_sg->nsect << 9;
2332
2333                 /*
2334                  * If the last sector is not the full page
2335                  * size count, the next segment will not be
2336                  * contiguous in KVA and we need a new iovec.
2337                  */
2338                 if (xbb_sg->last_sect != (PAGE_SIZE - 512) >> 9)
2339                         xiovec = NULL;
2340         }
2341
2342         xuio.uio_td = curthread;
2343
2344 #ifdef XBB_USE_BOUNCE_BUFFERS
2345         saved_uio_iovcnt = xuio.uio_iovcnt;
2346
2347         if (operation == BIO_WRITE) {
2348                 /* Copy the write data to the local buffer. */
2349                 for (seg_idx = 0, p_vaddr = file_data->xiovecs_vaddr,
2350                      xiovec = xuio.uio_iov; seg_idx < xuio.uio_iovcnt;
2351                      seg_idx++, xiovec++, p_vaddr++) {
2352
2353                         memcpy(xiovec->iov_base, *p_vaddr, xiovec->iov_len);
2354                 }
2355         } else {
2356                 /*
2357                  * We only need to save off the iovecs in the case of a
2358                  * read, because the copy for the read happens after the
2359                  * VOP_READ().  (The uio will get modified in that call
2360                  * sequence.)
2361                  */
2362                 memcpy(file_data->saved_xiovecs, xuio.uio_iov,
2363                        xuio.uio_iovcnt * sizeof(xuio.uio_iov[0]));
2364         }
2365 #endif /* XBB_USE_BOUNCE_BUFFERS */
2366
2367         switch (operation) {
2368         case BIO_READ:
2369
2370                 SDT_PROBE3(xbb, kernel, xbb_dispatch_file, read,
2371                            device_get_unit(xbb->dev), xuio.uio_offset,
2372                            xuio.uio_resid);
2373
2374                 vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2375
2376                 /*
2377                  * UFS pays attention to IO_DIRECT for reads.  If the
2378                  * DIRECTIO option is configured into the kernel, it calls
2379                  * ffs_rawread().  But that only works for single-segment
2380                  * uios with user space addresses.  In our case, with a
2381                  * kernel uio, it still reads into the buffer cache, but it
2382                  * will just try to release the buffer from the cache later
2383                  * on in ffs_read().
2384                  *
2385                  * ZFS does not pay attention to IO_DIRECT for reads.
2386                  *
2387                  * UFS does not pay attention to IO_SYNC for reads.
2388                  *
2389                  * ZFS pays attention to IO_SYNC (which translates into the
2390                  * Solaris define FRSYNC for zfs_read()) for reads.  It
2391                  * attempts to sync the file before reading.
2392                  *
2393                  * So, to attempt to provide some barrier semantics in the
2394                  * BIO_ORDERED case, set both IO_DIRECT and IO_SYNC.  
2395                  */
2396                 error = VOP_READ(xbb->vn, &xuio, (flags & BIO_ORDERED) ? 
2397                                  (IO_DIRECT|IO_SYNC) : 0, file_data->cred);
2398
2399                 VOP_UNLOCK(xbb->vn, 0);
2400                 break;
2401         case BIO_WRITE: {
2402                 struct mount *mountpoint;
2403
2404                 SDT_PROBE3(xbb, kernel, xbb_dispatch_file, write,
2405                            device_get_unit(xbb->dev), xuio.uio_offset,
2406                            xuio.uio_resid);
2407
2408                 (void)vn_start_write(xbb->vn, &mountpoint, V_WAIT);
2409
2410                 vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2411
2412                 /*
2413                  * UFS pays attention to IO_DIRECT for writes.  The write
2414                  * is done asynchronously.  (Normally the write would just
2415                  * get put into cache.
2416                  *
2417                  * UFS pays attention to IO_SYNC for writes.  It will
2418                  * attempt to write the buffer out synchronously if that
2419                  * flag is set.
2420                  *
2421                  * ZFS does not pay attention to IO_DIRECT for writes.
2422                  *
2423                  * ZFS pays attention to IO_SYNC (a.k.a. FSYNC or FRSYNC)
2424                  * for writes.  It will flush the transaction from the
2425                  * cache before returning.
2426                  *
2427                  * So if we've got the BIO_ORDERED flag set, we want
2428                  * IO_SYNC in either the UFS or ZFS case.
2429                  */
2430                 error = VOP_WRITE(xbb->vn, &xuio, (flags & BIO_ORDERED) ?
2431                                   IO_SYNC : 0, file_data->cred);
2432                 VOP_UNLOCK(xbb->vn, 0);
2433
2434                 vn_finished_write(mountpoint);
2435
2436                 break;
2437         }
2438         default:
2439                 panic("invalid operation %d", operation);
2440                 /* NOTREACHED */
2441         }
2442
2443 #ifdef XBB_USE_BOUNCE_BUFFERS
2444         /* We only need to copy here for read operations */
2445         if (operation == BIO_READ) {
2446
2447                 for (seg_idx = 0, p_vaddr = file_data->xiovecs_vaddr,
2448                      xiovec = file_data->saved_xiovecs;
2449                      seg_idx < saved_uio_iovcnt; seg_idx++,
2450                      xiovec++, p_vaddr++) {
2451
2452                         /*
2453                          * Note that we have to use the copy of the 
2454                          * io vector we made above.  uiomove() modifies
2455                          * the uio and its referenced vector as uiomove
2456                          * performs the copy, so we can't rely on any
2457                          * state from the original uio.
2458                          */
2459                         memcpy(*p_vaddr, xiovec->iov_base, xiovec->iov_len);
2460                 }
2461         }
2462 #endif /* XBB_USE_BOUNCE_BUFFERS */
2463
2464 bailout_send_response:
2465
2466         if (error != 0)
2467                 reqlist->status = BLKIF_RSP_ERROR;
2468
2469         xbb_complete_reqlist(xbb, reqlist);
2470
2471         return (0);
2472 }
2473
2474 /*--------------------------- Backend Configuration --------------------------*/
2475 /**
2476  * Close and cleanup any backend device/file specific state for this
2477  * block back instance. 
2478  *
2479  * \param xbb  Per-instance xbb configuration structure.
2480  */
2481 static void
2482 xbb_close_backend(struct xbb_softc *xbb)
2483 {
2484         DROP_GIANT();
2485         DPRINTF("closing dev=%s\n", xbb->dev_name);
2486         if (xbb->vn) {
2487                 int flags = FREAD;
2488
2489                 if ((xbb->flags & XBBF_READ_ONLY) == 0)
2490                         flags |= FWRITE;
2491
2492                 switch (xbb->device_type) {
2493                 case XBB_TYPE_DISK:
2494                         if (xbb->backend.dev.csw) {
2495                                 dev_relthread(xbb->backend.dev.cdev,
2496                                               xbb->backend.dev.dev_ref);
2497                                 xbb->backend.dev.csw  = NULL;
2498                                 xbb->backend.dev.cdev = NULL;
2499                         }
2500                         break;
2501                 case XBB_TYPE_FILE:
2502                         break;
2503                 case XBB_TYPE_NONE:
2504                 default:
2505                         panic("Unexpected backend type.");
2506                         break;
2507                 }
2508
2509                 (void)vn_close(xbb->vn, flags, NOCRED, curthread);
2510                 xbb->vn = NULL;
2511
2512                 switch (xbb->device_type) {
2513                 case XBB_TYPE_DISK:
2514                         break;
2515                 case XBB_TYPE_FILE:
2516                         if (xbb->backend.file.cred != NULL) {
2517                                 crfree(xbb->backend.file.cred);
2518                                 xbb->backend.file.cred = NULL;
2519                         }
2520                         break;
2521                 case XBB_TYPE_NONE:
2522                 default:
2523                         panic("Unexpected backend type.");
2524                         break;
2525                 }
2526         }
2527         PICKUP_GIANT();
2528 }
2529
2530 /**
2531  * Open a character device to be used for backend I/O.
2532  *
2533  * \param xbb  Per-instance xbb configuration structure.
2534  *
2535  * \return  0 for success, errno codes for failure.
2536  */
2537 static int
2538 xbb_open_dev(struct xbb_softc *xbb)
2539 {
2540         struct vattr   vattr;
2541         struct cdev   *dev;
2542         struct cdevsw *devsw;
2543         int            error;
2544
2545         xbb->device_type = XBB_TYPE_DISK;
2546         xbb->dispatch_io = xbb_dispatch_dev;
2547         xbb->backend.dev.cdev = xbb->vn->v_rdev;
2548         xbb->backend.dev.csw = dev_refthread(xbb->backend.dev.cdev,
2549                                              &xbb->backend.dev.dev_ref);
2550         if (xbb->backend.dev.csw == NULL)
2551                 panic("Unable to retrieve device switch");
2552
2553         error = VOP_GETATTR(xbb->vn, &vattr, NOCRED);
2554         if (error) {
2555                 xenbus_dev_fatal(xbb->dev, error, "error getting "
2556                                  "vnode attributes for device %s",
2557                                  xbb->dev_name);
2558                 return (error);
2559         }
2560
2561
2562         dev = xbb->vn->v_rdev;
2563         devsw = dev->si_devsw;
2564         if (!devsw->d_ioctl) {
2565                 xenbus_dev_fatal(xbb->dev, ENODEV, "no d_ioctl for "
2566                                  "device %s!", xbb->dev_name);
2567                 return (ENODEV);
2568         }
2569
2570         error = devsw->d_ioctl(dev, DIOCGSECTORSIZE,
2571                                (caddr_t)&xbb->sector_size, FREAD,
2572                                curthread);
2573         if (error) {
2574                 xenbus_dev_fatal(xbb->dev, error,
2575                                  "error calling ioctl DIOCGSECTORSIZE "
2576                                  "for device %s", xbb->dev_name);
2577                 return (error);
2578         }
2579
2580         error = devsw->d_ioctl(dev, DIOCGMEDIASIZE,
2581                                (caddr_t)&xbb->media_size, FREAD,
2582                                curthread);
2583         if (error) {
2584                 xenbus_dev_fatal(xbb->dev, error,
2585                                  "error calling ioctl DIOCGMEDIASIZE "
2586                                  "for device %s", xbb->dev_name);
2587                 return (error);
2588         }
2589
2590         return (0);
2591 }
2592
2593 /**
2594  * Open a file to be used for backend I/O.
2595  *
2596  * \param xbb  Per-instance xbb configuration structure.
2597  *
2598  * \return  0 for success, errno codes for failure.
2599  */
2600 static int
2601 xbb_open_file(struct xbb_softc *xbb)
2602 {
2603         struct xbb_file_data *file_data;
2604         struct vattr          vattr;
2605         int                   error;
2606
2607         file_data = &xbb->backend.file;
2608         xbb->device_type = XBB_TYPE_FILE;
2609         xbb->dispatch_io = xbb_dispatch_file;
2610         error = VOP_GETATTR(xbb->vn, &vattr, curthread->td_ucred);
2611         if (error != 0) {
2612                 xenbus_dev_fatal(xbb->dev, error,
2613                                  "error calling VOP_GETATTR()"
2614                                  "for file %s", xbb->dev_name);
2615                 return (error);
2616         }
2617
2618         /*
2619          * Verify that we have the ability to upgrade to exclusive
2620          * access on this file so we can trap errors at open instead
2621          * of reporting them during first access.
2622          */
2623         if (VOP_ISLOCKED(xbb->vn) != LK_EXCLUSIVE) {
2624                 vn_lock(xbb->vn, LK_UPGRADE | LK_RETRY);
2625                 if (xbb->vn->v_iflag & VI_DOOMED) {
2626                         error = EBADF;
2627                         xenbus_dev_fatal(xbb->dev, error,
2628                                          "error locking file %s",
2629                                          xbb->dev_name);
2630
2631                         return (error);
2632                 }
2633         }
2634
2635         file_data->cred = crhold(curthread->td_ucred);
2636         xbb->media_size = vattr.va_size;
2637
2638         /*
2639          * XXX KDM vattr.va_blocksize may be larger than 512 bytes here.
2640          * With ZFS, it is 131072 bytes.  Block sizes that large don't work
2641          * with disklabel and UFS on FreeBSD at least.  Large block sizes
2642          * may not work with other OSes as well.  So just export a sector
2643          * size of 512 bytes, which should work with any OS or
2644          * application.  Since our backing is a file, any block size will
2645          * work fine for the backing store.
2646          */
2647 #if 0
2648         xbb->sector_size = vattr.va_blocksize;
2649 #endif
2650         xbb->sector_size = 512;
2651
2652         /*
2653          * Sanity check.  The media size has to be at least one
2654          * sector long.
2655          */
2656         if (xbb->media_size < xbb->sector_size) {
2657                 error = EINVAL;
2658                 xenbus_dev_fatal(xbb->dev, error,
2659                                  "file %s size %ju < block size %u",
2660                                  xbb->dev_name,
2661                                  (uintmax_t)xbb->media_size,
2662                                  xbb->sector_size);
2663         }
2664         return (error);
2665 }
2666
2667 /**
2668  * Open the backend provider for this connection.
2669  *
2670  * \param xbb  Per-instance xbb configuration structure.
2671  *
2672  * \return  0 for success, errno codes for failure.
2673  */
2674 static int
2675 xbb_open_backend(struct xbb_softc *xbb)
2676 {
2677         struct nameidata nd;
2678         int              flags;
2679         int              error;
2680
2681         flags = FREAD;
2682         error = 0;
2683
2684         DPRINTF("opening dev=%s\n", xbb->dev_name);
2685
2686         if (rootvnode == NULL) {
2687                 xenbus_dev_fatal(xbb->dev, ENOENT,
2688                                  "Root file system not mounted");
2689                 return (ENOENT);
2690         }
2691
2692         if ((xbb->flags & XBBF_READ_ONLY) == 0)
2693                 flags |= FWRITE;
2694
2695         pwd_ensure_dirs();
2696
2697  again:
2698         NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, xbb->dev_name, curthread);
2699         error = vn_open(&nd, &flags, 0, NULL);
2700         if (error) {
2701                 /*
2702                  * This is the only reasonable guess we can make as far as
2703                  * path if the user doesn't give us a fully qualified path.
2704                  * If they want to specify a file, they need to specify the
2705                  * full path.
2706                  */
2707                 if (xbb->dev_name[0] != '/') {
2708                         char *dev_path = "/dev/";
2709                         char *dev_name;
2710
2711                         /* Try adding device path at beginning of name */
2712                         dev_name = malloc(strlen(xbb->dev_name)
2713                                         + strlen(dev_path) + 1,
2714                                           M_XENBLOCKBACK, M_NOWAIT);
2715                         if (dev_name) {
2716                                 sprintf(dev_name, "%s%s", dev_path,
2717                                         xbb->dev_name);
2718                                 free(xbb->dev_name, M_XENBLOCKBACK);
2719                                 xbb->dev_name = dev_name;
2720                                 goto again;
2721                         }
2722                 }
2723                 xenbus_dev_fatal(xbb->dev, error, "error opening device %s",
2724                                  xbb->dev_name);
2725                 return (error);
2726         }
2727
2728         NDFREE(&nd, NDF_ONLY_PNBUF);
2729                 
2730         xbb->vn = nd.ni_vp;
2731
2732         /* We only support disks and files. */
2733         if (vn_isdisk(xbb->vn, &error)) {
2734                 error = xbb_open_dev(xbb);
2735         } else if (xbb->vn->v_type == VREG) {
2736                 error = xbb_open_file(xbb);
2737         } else {
2738                 error = EINVAL;
2739                 xenbus_dev_fatal(xbb->dev, error, "%s is not a disk "
2740                                  "or file", xbb->dev_name);
2741         }
2742         VOP_UNLOCK(xbb->vn, 0);
2743
2744         if (error != 0) {
2745                 xbb_close_backend(xbb);
2746                 return (error);
2747         }
2748
2749         xbb->sector_size_shift = fls(xbb->sector_size) - 1;
2750         xbb->media_num_sectors = xbb->media_size >> xbb->sector_size_shift;
2751
2752         DPRINTF("opened %s=%s sector_size=%u media_size=%" PRId64 "\n",
2753                 (xbb->device_type == XBB_TYPE_DISK) ? "dev" : "file",
2754                 xbb->dev_name, xbb->sector_size, xbb->media_size);
2755
2756         return (0);
2757 }
2758
2759 /*------------------------ Inter-Domain Communication ------------------------*/
2760 /**
2761  * Free dynamically allocated KVA or pseudo-physical address allocations.
2762  *
2763  * \param xbb  Per-instance xbb configuration structure.
2764  */
2765 static void
2766 xbb_free_communication_mem(struct xbb_softc *xbb)
2767 {
2768         if (xbb->kva != 0) {
2769                 if (xbb->pseudo_phys_res != NULL) {
2770                         xenmem_free(xbb->dev, xbb->pseudo_phys_res_id,
2771                             xbb->pseudo_phys_res);
2772                         xbb->pseudo_phys_res = NULL;
2773                 }
2774         }
2775         xbb->kva = 0;
2776         xbb->gnt_base_addr = 0;
2777         if (xbb->kva_free != NULL) {
2778                 free(xbb->kva_free, M_XENBLOCKBACK);
2779                 xbb->kva_free = NULL;
2780         }
2781 }
2782
2783 /**
2784  * Cleanup all inter-domain communication mechanisms.
2785  *
2786  * \param xbb  Per-instance xbb configuration structure.
2787  */
2788 static int
2789 xbb_disconnect(struct xbb_softc *xbb)
2790 {
2791         struct gnttab_unmap_grant_ref  ops[XBB_MAX_RING_PAGES];
2792         struct gnttab_unmap_grant_ref *op;
2793         u_int                          ring_idx;
2794         int                            error;
2795
2796         DPRINTF("\n");
2797
2798         if ((xbb->flags & XBBF_RING_CONNECTED) == 0)
2799                 return (0);
2800
2801         xen_intr_unbind(&xbb->xen_intr_handle);
2802
2803         mtx_unlock(&xbb->lock);
2804         taskqueue_drain(xbb->io_taskqueue, &xbb->io_task); 
2805         mtx_lock(&xbb->lock);
2806
2807         /*
2808          * No new interrupts can generate work, but we must wait
2809          * for all currently active requests to drain.
2810          */
2811         if (xbb->active_request_count != 0)
2812                 return (EAGAIN);
2813         
2814         for (ring_idx = 0, op = ops;
2815              ring_idx < xbb->ring_config.ring_pages;
2816              ring_idx++, op++) {
2817
2818                 op->host_addr    = xbb->ring_config.gnt_addr
2819                                  + (ring_idx * PAGE_SIZE);
2820                 op->dev_bus_addr = xbb->ring_config.bus_addr[ring_idx];
2821                 op->handle       = xbb->ring_config.handle[ring_idx];
2822         }
2823
2824         error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, ops,
2825                                           xbb->ring_config.ring_pages);
2826         if (error != 0)
2827                 panic("Grant table op failed (%d)", error);
2828
2829         xbb_free_communication_mem(xbb);
2830
2831         if (xbb->requests != NULL) {
2832                 free(xbb->requests, M_XENBLOCKBACK);
2833                 xbb->requests = NULL;
2834         }
2835
2836         if (xbb->request_lists != NULL) {
2837                 struct xbb_xen_reqlist *reqlist;
2838                 int i;
2839
2840                 /* There is one request list for ever allocated request. */
2841                 for (i = 0, reqlist = xbb->request_lists;
2842                      i < xbb->max_requests; i++, reqlist++){
2843 #ifdef XBB_USE_BOUNCE_BUFFERS
2844                         if (reqlist->bounce != NULL) {
2845                                 free(reqlist->bounce, M_XENBLOCKBACK);
2846                                 reqlist->bounce = NULL;
2847                         }
2848 #endif
2849                         if (reqlist->gnt_handles != NULL) {
2850                                 free(reqlist->gnt_handles, M_XENBLOCKBACK);
2851                                 reqlist->gnt_handles = NULL;
2852                         }
2853                 }
2854                 free(xbb->request_lists, M_XENBLOCKBACK);
2855                 xbb->request_lists = NULL;
2856         }
2857
2858         xbb->flags &= ~XBBF_RING_CONNECTED;
2859         return (0);
2860 }
2861
2862 /**
2863  * Map shared memory ring into domain local address space, initialize
2864  * ring control structures, and bind an interrupt to the event channel
2865  * used to notify us of ring changes.
2866  *
2867  * \param xbb  Per-instance xbb configuration structure.
2868  */
2869 static int
2870 xbb_connect_ring(struct xbb_softc *xbb)
2871 {
2872         struct gnttab_map_grant_ref  gnts[XBB_MAX_RING_PAGES];
2873         struct gnttab_map_grant_ref *gnt;
2874         u_int                        ring_idx;
2875         int                          error;
2876
2877         if ((xbb->flags & XBBF_RING_CONNECTED) != 0)
2878                 return (0);
2879
2880         /*
2881          * Kva for our ring is at the tail of the region of kva allocated
2882          * by xbb_alloc_communication_mem().
2883          */
2884         xbb->ring_config.va = xbb->kva
2885                             + (xbb->kva_size
2886                              - (xbb->ring_config.ring_pages * PAGE_SIZE));
2887         xbb->ring_config.gnt_addr = xbb->gnt_base_addr
2888                                   + (xbb->kva_size
2889                                    - (xbb->ring_config.ring_pages * PAGE_SIZE));
2890
2891         for (ring_idx = 0, gnt = gnts;
2892              ring_idx < xbb->ring_config.ring_pages;
2893              ring_idx++, gnt++) {
2894
2895                 gnt->host_addr = xbb->ring_config.gnt_addr
2896                                + (ring_idx * PAGE_SIZE);
2897                 gnt->flags     = GNTMAP_host_map;
2898                 gnt->ref       = xbb->ring_config.ring_ref[ring_idx];
2899                 gnt->dom       = xbb->otherend_id;
2900         }
2901
2902         error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, gnts,
2903                                           xbb->ring_config.ring_pages);
2904         if (error)
2905                 panic("blkback: Ring page grant table op failed (%d)", error);
2906
2907         for (ring_idx = 0, gnt = gnts;
2908              ring_idx < xbb->ring_config.ring_pages;
2909              ring_idx++, gnt++) {
2910                 if (gnt->status != 0) {
2911                         xbb->ring_config.va = 0;
2912                         xenbus_dev_fatal(xbb->dev, EACCES,
2913                                          "Ring shared page mapping failed. "
2914                                          "Status %d.", gnt->status);
2915                         return (EACCES);
2916                 }
2917                 xbb->ring_config.handle[ring_idx]   = gnt->handle;
2918                 xbb->ring_config.bus_addr[ring_idx] = gnt->dev_bus_addr;
2919         }
2920
2921         /* Initialize the ring based on ABI. */
2922         switch (xbb->abi) {
2923         case BLKIF_PROTOCOL_NATIVE:
2924         {
2925                 blkif_sring_t *sring;
2926                 sring = (blkif_sring_t *)xbb->ring_config.va;
2927                 BACK_RING_INIT(&xbb->rings.native, sring,
2928                                xbb->ring_config.ring_pages * PAGE_SIZE);
2929                 break;
2930         }
2931         case BLKIF_PROTOCOL_X86_32:
2932         {
2933                 blkif_x86_32_sring_t *sring_x86_32;
2934                 sring_x86_32 = (blkif_x86_32_sring_t *)xbb->ring_config.va;
2935                 BACK_RING_INIT(&xbb->rings.x86_32, sring_x86_32,
2936                                xbb->ring_config.ring_pages * PAGE_SIZE);
2937                 break;
2938         }
2939         case BLKIF_PROTOCOL_X86_64:
2940         {
2941                 blkif_x86_64_sring_t *sring_x86_64;
2942                 sring_x86_64 = (blkif_x86_64_sring_t *)xbb->ring_config.va;
2943                 BACK_RING_INIT(&xbb->rings.x86_64, sring_x86_64,
2944                                xbb->ring_config.ring_pages * PAGE_SIZE);
2945                 break;
2946         }
2947         default:
2948                 panic("Unexpected blkif protocol ABI.");
2949         }
2950
2951         xbb->flags |= XBBF_RING_CONNECTED;
2952
2953         error = xen_intr_bind_remote_port(xbb->dev,
2954                                           xbb->otherend_id,
2955                                           xbb->ring_config.evtchn,
2956                                           xbb_filter,
2957                                           /*ithread_handler*/NULL,
2958                                           /*arg*/xbb,
2959                                           INTR_TYPE_BIO | INTR_MPSAFE,
2960                                           &xbb->xen_intr_handle);
2961         if (error) {
2962                 (void)xbb_disconnect(xbb);
2963                 xenbus_dev_fatal(xbb->dev, error, "binding event channel");
2964                 return (error);
2965         }
2966
2967         DPRINTF("rings connected!\n");
2968
2969         return 0;
2970 }
2971
2972 /* Needed to make bit_alloc() macro work */
2973 #define calloc(count, size) malloc((count)*(size), M_XENBLOCKBACK,      \
2974                                    M_NOWAIT|M_ZERO);
2975
2976 /**
2977  * Size KVA and pseudo-physical address allocations based on negotiated
2978  * values for the size and number of I/O requests, and the size of our
2979  * communication ring.
2980  *
2981  * \param xbb  Per-instance xbb configuration structure.
2982  *
2983  * These address spaces are used to dynamically map pages in the
2984  * front-end's domain into our own.
2985  */
2986 static int
2987 xbb_alloc_communication_mem(struct xbb_softc *xbb)
2988 {
2989         xbb->reqlist_kva_pages = xbb->max_requests * xbb->max_request_segments;
2990         xbb->reqlist_kva_size = xbb->reqlist_kva_pages * PAGE_SIZE;
2991         xbb->kva_size = xbb->reqlist_kva_size +
2992                         (xbb->ring_config.ring_pages * PAGE_SIZE);
2993
2994         xbb->kva_free = bit_alloc(xbb->reqlist_kva_pages);
2995         if (xbb->kva_free == NULL)
2996                 return (ENOMEM);
2997
2998         DPRINTF("%s: kva_size = %d, reqlist_kva_size = %d\n",
2999                 device_get_nameunit(xbb->dev), xbb->kva_size,
3000                 xbb->reqlist_kva_size);
3001         /*
3002          * Reserve a range of pseudo physical memory that we can map
3003          * into kva.  These pages will only be backed by machine
3004          * pages ("real memory") during the lifetime of front-end requests
3005          * via grant table operations.
3006          */
3007         xbb->pseudo_phys_res_id = 0;
3008         xbb->pseudo_phys_res = xenmem_alloc(xbb->dev, &xbb->pseudo_phys_res_id,
3009             xbb->kva_size);
3010         if (xbb->pseudo_phys_res == NULL) {
3011                 xbb->kva = 0;
3012                 return (ENOMEM);
3013         }
3014         xbb->kva = (vm_offset_t)rman_get_virtual(xbb->pseudo_phys_res);
3015         xbb->gnt_base_addr = rman_get_start(xbb->pseudo_phys_res);
3016
3017         DPRINTF("%s: kva: %#jx, gnt_base_addr: %#jx\n",
3018                 device_get_nameunit(xbb->dev), (uintmax_t)xbb->kva,
3019                 (uintmax_t)xbb->gnt_base_addr); 
3020         return (0);
3021 }
3022
3023 /**
3024  * Collect front-end information from the XenStore.
3025  *
3026  * \param xbb  Per-instance xbb configuration structure.
3027  */
3028 static int
3029 xbb_collect_frontend_info(struct xbb_softc *xbb)
3030 {
3031         char        protocol_abi[64];
3032         const char *otherend_path;
3033         int         error;
3034         u_int       ring_idx;
3035         u_int       ring_page_order;
3036         size_t      ring_size;
3037
3038         otherend_path = xenbus_get_otherend_path(xbb->dev);
3039
3040         /*
3041          * Protocol defaults valid even if all negotiation fails.
3042          */
3043         xbb->ring_config.ring_pages = 1;
3044         xbb->max_request_segments   = BLKIF_MAX_SEGMENTS_PER_REQUEST;
3045         xbb->max_request_size       = xbb->max_request_segments * PAGE_SIZE;
3046
3047         /*
3048          * Mandatory data (used in all versions of the protocol) first.
3049          */
3050         error = xs_scanf(XST_NIL, otherend_path,
3051                          "event-channel", NULL, "%" PRIu32,
3052                          &xbb->ring_config.evtchn);
3053         if (error != 0) {
3054                 xenbus_dev_fatal(xbb->dev, error,
3055                                  "Unable to retrieve event-channel information "
3056                                  "from frontend %s.  Unable to connect.",
3057                                  xenbus_get_otherend_path(xbb->dev));
3058                 return (error);
3059         }
3060
3061         /*
3062          * These fields are initialized to legacy protocol defaults
3063          * so we only need to fail if reading the updated value succeeds
3064          * and the new value is outside of its allowed range.
3065          *
3066          * \note xs_gather() returns on the first encountered error, so
3067          *       we must use independant calls in order to guarantee
3068          *       we don't miss information in a sparsly populated front-end
3069          *       tree.
3070          *
3071          * \note xs_scanf() does not update variables for unmatched
3072          *       fields.
3073          */
3074         ring_page_order = 0;
3075         xbb->max_requests = 32;
3076
3077         (void)xs_scanf(XST_NIL, otherend_path,
3078                        "ring-page-order", NULL, "%u",
3079                        &ring_page_order);
3080         xbb->ring_config.ring_pages = 1 << ring_page_order;
3081         ring_size = PAGE_SIZE * xbb->ring_config.ring_pages;
3082         xbb->max_requests = BLKIF_MAX_RING_REQUESTS(ring_size);
3083
3084         if (xbb->ring_config.ring_pages > XBB_MAX_RING_PAGES) {
3085                 xenbus_dev_fatal(xbb->dev, EINVAL,
3086                                  "Front-end specified ring-pages of %u "
3087                                  "exceeds backend limit of %u.  "
3088                                  "Unable to connect.",
3089                                  xbb->ring_config.ring_pages,
3090                                  XBB_MAX_RING_PAGES);
3091                 return (EINVAL);
3092         }
3093
3094         if (xbb->ring_config.ring_pages == 1) {
3095                 error = xs_gather(XST_NIL, otherend_path,
3096                                   "ring-ref", "%" PRIu32,
3097                                   &xbb->ring_config.ring_ref[0],
3098                                   NULL);
3099                 if (error != 0) {
3100                         xenbus_dev_fatal(xbb->dev, error,
3101                                          "Unable to retrieve ring information "
3102                                          "from frontend %s.  Unable to "
3103                                          "connect.",
3104                                          xenbus_get_otherend_path(xbb->dev));
3105                         return (error);
3106                 }
3107         } else {
3108                 /* Multi-page ring format. */
3109                 for (ring_idx = 0; ring_idx < xbb->ring_config.ring_pages;
3110                      ring_idx++) {
3111                         char ring_ref_name[]= "ring_refXX";
3112
3113                         snprintf(ring_ref_name, sizeof(ring_ref_name),
3114                                  "ring-ref%u", ring_idx);
3115                         error = xs_scanf(XST_NIL, otherend_path,
3116                                          ring_ref_name, NULL, "%" PRIu32,
3117                                          &xbb->ring_config.ring_ref[ring_idx]);
3118                         if (error != 0) {
3119                                 xenbus_dev_fatal(xbb->dev, error,
3120                                                  "Failed to retriev grant "
3121                                                  "reference for page %u of "
3122                                                  "shared ring.  Unable "
3123                                                  "to connect.", ring_idx);
3124                                 return (error);
3125                         }
3126                 }
3127         }
3128
3129         error = xs_gather(XST_NIL, otherend_path,
3130                           "protocol", "%63s", protocol_abi,
3131                           NULL); 
3132         if (error != 0
3133          || !strcmp(protocol_abi, XEN_IO_PROTO_ABI_NATIVE)) {
3134                 /*
3135                  * Assume native if the frontend has not
3136                  * published ABI data or it has published and
3137                  * matches our own ABI.
3138                  */
3139                 xbb->abi = BLKIF_PROTOCOL_NATIVE;
3140         } else if (!strcmp(protocol_abi, XEN_IO_PROTO_ABI_X86_32)) {
3141
3142                 xbb->abi = BLKIF_PROTOCOL_X86_32;
3143         } else if (!strcmp(protocol_abi, XEN_IO_PROTO_ABI_X86_64)) {
3144
3145                 xbb->abi = BLKIF_PROTOCOL_X86_64;
3146         } else {
3147
3148                 xenbus_dev_fatal(xbb->dev, EINVAL,
3149                                  "Unknown protocol ABI (%s) published by "
3150                                  "frontend.  Unable to connect.", protocol_abi);
3151                 return (EINVAL);
3152         }
3153         return (0);
3154 }
3155
3156 /**
3157  * Allocate per-request data structures given request size and number
3158  * information negotiated with the front-end.
3159  *
3160  * \param xbb  Per-instance xbb configuration structure.
3161  */
3162 static int
3163 xbb_alloc_requests(struct xbb_softc *xbb)
3164 {
3165         struct xbb_xen_req *req;
3166         struct xbb_xen_req *last_req;
3167
3168         /*
3169          * Allocate request book keeping datastructures.
3170          */
3171         xbb->requests = malloc(xbb->max_requests * sizeof(*xbb->requests),
3172                                M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3173         if (xbb->requests == NULL) {
3174                 xenbus_dev_fatal(xbb->dev, ENOMEM, 
3175                                   "Unable to allocate request structures");
3176                 return (ENOMEM);
3177         }
3178
3179         req      = xbb->requests;
3180         last_req = &xbb->requests[xbb->max_requests - 1];
3181         STAILQ_INIT(&xbb->request_free_stailq);
3182         while (req <= last_req) {
3183                 STAILQ_INSERT_TAIL(&xbb->request_free_stailq, req, links);
3184                 req++;
3185         }
3186         return (0);
3187 }
3188
3189 static int
3190 xbb_alloc_request_lists(struct xbb_softc *xbb)
3191 {
3192         struct xbb_xen_reqlist *reqlist;
3193         int                     i;
3194
3195         /*
3196          * If no requests can be merged, we need 1 request list per
3197          * in flight request.
3198          */
3199         xbb->request_lists = malloc(xbb->max_requests *
3200                 sizeof(*xbb->request_lists), M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3201         if (xbb->request_lists == NULL) {
3202                 xenbus_dev_fatal(xbb->dev, ENOMEM, 
3203                                   "Unable to allocate request list structures");
3204                 return (ENOMEM);
3205         }
3206
3207         STAILQ_INIT(&xbb->reqlist_free_stailq);
3208         STAILQ_INIT(&xbb->reqlist_pending_stailq);
3209         for (i = 0; i < xbb->max_requests; i++) {
3210                 int seg;
3211
3212                 reqlist      = &xbb->request_lists[i];
3213
3214                 reqlist->xbb = xbb;
3215
3216 #ifdef XBB_USE_BOUNCE_BUFFERS
3217                 reqlist->bounce = malloc(xbb->max_reqlist_size,
3218                                          M_XENBLOCKBACK, M_NOWAIT);
3219                 if (reqlist->bounce == NULL) {
3220                         xenbus_dev_fatal(xbb->dev, ENOMEM, 
3221                                          "Unable to allocate request "
3222                                          "bounce buffers");
3223                         return (ENOMEM);
3224                 }
3225 #endif /* XBB_USE_BOUNCE_BUFFERS */
3226
3227                 reqlist->gnt_handles = malloc(xbb->max_reqlist_segments *
3228                                               sizeof(*reqlist->gnt_handles),
3229                                               M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3230                 if (reqlist->gnt_handles == NULL) {
3231                         xenbus_dev_fatal(xbb->dev, ENOMEM,
3232                                           "Unable to allocate request "
3233                                           "grant references");
3234                         return (ENOMEM);
3235                 }
3236
3237                 for (seg = 0; seg < xbb->max_reqlist_segments; seg++)
3238                         reqlist->gnt_handles[seg] = GRANT_REF_INVALID;
3239
3240                 STAILQ_INSERT_TAIL(&xbb->reqlist_free_stailq, reqlist, links);
3241         }
3242         return (0);
3243 }
3244
3245 /**
3246  * Supply information about the physical device to the frontend
3247  * via XenBus.
3248  *
3249  * \param xbb  Per-instance xbb configuration structure.
3250  */
3251 static int
3252 xbb_publish_backend_info(struct xbb_softc *xbb)
3253 {
3254         struct xs_transaction xst;
3255         const char           *our_path;
3256         const char           *leaf;
3257         int                   error;
3258
3259         our_path = xenbus_get_node(xbb->dev);
3260         while (1) {
3261                 error = xs_transaction_start(&xst);
3262                 if (error != 0) {
3263                         xenbus_dev_fatal(xbb->dev, error,
3264                                          "Error publishing backend info "
3265                                          "(start transaction)");
3266                         return (error);
3267                 }
3268
3269                 leaf = "sectors";
3270                 error = xs_printf(xst, our_path, leaf,
3271                                   "%"PRIu64, xbb->media_num_sectors);
3272                 if (error != 0)
3273                         break;
3274
3275                 /* XXX Support all VBD attributes here. */
3276                 leaf = "info";
3277                 error = xs_printf(xst, our_path, leaf, "%u",
3278                                   xbb->flags & XBBF_READ_ONLY
3279                                 ? VDISK_READONLY : 0);
3280                 if (error != 0)
3281                         break;
3282
3283                 leaf = "sector-size";
3284                 error = xs_printf(xst, our_path, leaf, "%u",
3285                                   xbb->sector_size);
3286                 if (error != 0)
3287                         break;
3288
3289                 error = xs_transaction_end(xst, 0);
3290                 if (error == 0) {
3291                         return (0);
3292                 } else if (error != EAGAIN) {
3293                         xenbus_dev_fatal(xbb->dev, error, "ending transaction");
3294                         return (error);
3295                 }
3296         }
3297
3298         xenbus_dev_fatal(xbb->dev, error, "writing %s/%s",
3299                         our_path, leaf);
3300         xs_transaction_end(xst, 1);
3301         return (error);
3302 }
3303
3304 /**
3305  * Connect to our blkfront peer now that it has completed publishing
3306  * its configuration into the XenStore.
3307  *
3308  * \param xbb  Per-instance xbb configuration structure.
3309  */
3310 static void
3311 xbb_connect(struct xbb_softc *xbb)
3312 {
3313         int error;
3314
3315         if (xenbus_get_state(xbb->dev) == XenbusStateConnected)
3316                 return;
3317
3318         if (xbb_collect_frontend_info(xbb) != 0)
3319                 return;
3320
3321         xbb->flags &= ~XBBF_SHUTDOWN;
3322
3323         /*
3324          * We limit the maximum number of reqlist segments to the maximum
3325          * number of segments in the ring, or our absolute maximum,
3326          * whichever is smaller.
3327          */
3328         xbb->max_reqlist_segments = MIN(xbb->max_request_segments *
3329                 xbb->max_requests, XBB_MAX_SEGMENTS_PER_REQLIST);
3330
3331         /*
3332          * The maximum size is simply a function of the number of segments
3333          * we can handle.
3334          */
3335         xbb->max_reqlist_size = xbb->max_reqlist_segments * PAGE_SIZE;
3336
3337         /* Allocate resources whose size depends on front-end configuration. */
3338         error = xbb_alloc_communication_mem(xbb);
3339         if (error != 0) {
3340                 xenbus_dev_fatal(xbb->dev, error,
3341                                  "Unable to allocate communication memory");
3342                 return;
3343         }
3344
3345         error = xbb_alloc_requests(xbb);
3346         if (error != 0) {
3347                 /* Specific errors are reported by xbb_alloc_requests(). */
3348                 return;
3349         }
3350
3351         error = xbb_alloc_request_lists(xbb);
3352         if (error != 0) {
3353                 /* Specific errors are reported by xbb_alloc_request_lists(). */
3354                 return;
3355         }
3356
3357         /*
3358          * Connect communication channel.
3359          */
3360         error = xbb_connect_ring(xbb);
3361         if (error != 0) {
3362                 /* Specific errors are reported by xbb_connect_ring(). */
3363                 return;
3364         }
3365         
3366         if (xbb_publish_backend_info(xbb) != 0) {
3367                 /*
3368                  * If we can't publish our data, we cannot participate
3369                  * in this connection, and waiting for a front-end state
3370                  * change will not help the situation.
3371                  */
3372                 (void)xbb_disconnect(xbb);
3373                 return;
3374         }
3375
3376         /* Ready for I/O. */
3377         xenbus_set_state(xbb->dev, XenbusStateConnected);
3378 }
3379
3380 /*-------------------------- Device Teardown Support -------------------------*/
3381 /**
3382  * Perform device shutdown functions.
3383  *
3384  * \param xbb  Per-instance xbb configuration structure.
3385  *
3386  * Mark this instance as shutting down, wait for any active I/O on the
3387  * backend device/file to drain, disconnect from the front-end, and notify
3388  * any waiters (e.g. a thread invoking our detach method) that detach can
3389  * now proceed.
3390  */
3391 static int
3392 xbb_shutdown(struct xbb_softc *xbb)
3393 {
3394         XenbusState frontState;
3395         int         error;
3396
3397         DPRINTF("\n");
3398
3399         /*
3400          * Due to the need to drop our mutex during some
3401          * xenbus operations, it is possible for two threads
3402          * to attempt to close out shutdown processing at
3403          * the same time.  Tell the caller that hits this
3404          * race to try back later. 
3405          */
3406         if ((xbb->flags & XBBF_IN_SHUTDOWN) != 0)
3407                 return (EAGAIN);
3408
3409         xbb->flags |= XBBF_IN_SHUTDOWN;
3410         mtx_unlock(&xbb->lock);
3411
3412         if (xenbus_get_state(xbb->dev) < XenbusStateClosing)
3413                 xenbus_set_state(xbb->dev, XenbusStateClosing);
3414
3415         frontState = xenbus_get_otherend_state(xbb->dev);
3416         mtx_lock(&xbb->lock);
3417         xbb->flags &= ~XBBF_IN_SHUTDOWN;
3418
3419         /* The front can submit I/O until entering the closed state. */
3420         if (frontState < XenbusStateClosed)
3421                 return (EAGAIN);
3422
3423         DPRINTF("\n");
3424
3425         /* Indicate shutdown is in progress. */
3426         xbb->flags |= XBBF_SHUTDOWN;
3427
3428         /* Disconnect from the front-end. */
3429         error = xbb_disconnect(xbb);
3430         if (error != 0) {
3431                 /*
3432                  * Requests still outstanding.  We'll be called again
3433                  * once they complete.
3434                  */
3435                 KASSERT(error == EAGAIN,
3436                         ("%s: Unexpected xbb_disconnect() failure %d",
3437                          __func__, error));
3438
3439                 return (error);
3440         }
3441
3442         DPRINTF("\n");
3443
3444         /* Indicate to xbb_detach() that is it safe to proceed. */
3445         wakeup(xbb);
3446
3447         return (0);
3448 }
3449
3450 /**
3451  * Report an attach time error to the console and Xen, and cleanup
3452  * this instance by forcing immediate detach processing.
3453  *
3454  * \param xbb  Per-instance xbb configuration structure.
3455  * \param err  Errno describing the error.
3456  * \param fmt  Printf style format and arguments
3457  */
3458 static void
3459 xbb_attach_failed(struct xbb_softc *xbb, int err, const char *fmt, ...)
3460 {
3461         va_list ap;
3462         va_list ap_hotplug;
3463
3464         va_start(ap, fmt);
3465         va_copy(ap_hotplug, ap);
3466         xs_vprintf(XST_NIL, xenbus_get_node(xbb->dev),
3467                   "hotplug-error", fmt, ap_hotplug);
3468         va_end(ap_hotplug);
3469         xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3470                   "hotplug-status", "error");
3471
3472         xenbus_dev_vfatal(xbb->dev, err, fmt, ap);
3473         va_end(ap);
3474
3475         xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3476                   "online", "0");
3477         xbb_detach(xbb->dev);
3478 }
3479
3480 /*---------------------------- NewBus Entrypoints ----------------------------*/
3481 /**
3482  * Inspect a XenBus device and claim it if is of the appropriate type.
3483  * 
3484  * \param dev  NewBus device object representing a candidate XenBus device.
3485  *
3486  * \return  0 for success, errno codes for failure.
3487  */
3488 static int
3489 xbb_probe(device_t dev)
3490 {
3491  
3492         if (!strcmp(xenbus_get_type(dev), "vbd")) {
3493                 device_set_desc(dev, "Backend Virtual Block Device");
3494                 device_quiet(dev);
3495                 return (0);
3496         }
3497
3498         return (ENXIO);
3499 }
3500
3501 /**
3502  * Setup sysctl variables to control various Block Back parameters.
3503  *
3504  * \param xbb  Xen Block Back softc.
3505  *
3506  */
3507 static void
3508 xbb_setup_sysctl(struct xbb_softc *xbb)
3509 {
3510         struct sysctl_ctx_list *sysctl_ctx = NULL;
3511         struct sysctl_oid      *sysctl_tree = NULL;
3512         
3513         sysctl_ctx = device_get_sysctl_ctx(xbb->dev);
3514         if (sysctl_ctx == NULL)
3515                 return;
3516
3517         sysctl_tree = device_get_sysctl_tree(xbb->dev);
3518         if (sysctl_tree == NULL)
3519                 return;
3520
3521         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3522                        "disable_flush", CTLFLAG_RW, &xbb->disable_flush, 0,
3523                        "fake the flush command");
3524
3525         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3526                        "flush_interval", CTLFLAG_RW, &xbb->flush_interval, 0,
3527                        "send a real flush for N flush requests");
3528
3529         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3530                        "no_coalesce_reqs", CTLFLAG_RW, &xbb->no_coalesce_reqs,0,
3531                        "Don't coalesce contiguous requests");
3532
3533         SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3534                          "reqs_received", CTLFLAG_RW, &xbb->reqs_received,
3535                          "how many I/O requests we have received");
3536
3537         SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3538                          "reqs_completed", CTLFLAG_RW, &xbb->reqs_completed,
3539                          "how many I/O requests have been completed");
3540
3541         SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3542                          "reqs_queued_for_completion", CTLFLAG_RW,
3543                          &xbb->reqs_queued_for_completion,
3544                          "how many I/O requests queued but not yet pushed");
3545
3546         SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3547                          "reqs_completed_with_error", CTLFLAG_RW,
3548                          &xbb->reqs_completed_with_error,
3549                          "how many I/O requests completed with error status");
3550
3551         SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3552                          "forced_dispatch", CTLFLAG_RW, &xbb->forced_dispatch,
3553                          "how many I/O dispatches were forced");
3554
3555         SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3556                          "normal_dispatch", CTLFLAG_RW, &xbb->normal_dispatch,
3557                          "how many I/O dispatches were normal");
3558
3559         SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3560                          "total_dispatch", CTLFLAG_RW, &xbb->total_dispatch,
3561                          "total number of I/O dispatches");
3562
3563         SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3564                          "kva_shortages", CTLFLAG_RW, &xbb->kva_shortages,
3565                          "how many times we have run out of KVA");
3566
3567         SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3568                          "request_shortages", CTLFLAG_RW,
3569                          &xbb->request_shortages,
3570                          "how many times we have run out of requests");
3571
3572         SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3573                         "max_requests", CTLFLAG_RD, &xbb->max_requests, 0,
3574                         "maximum outstanding requests (negotiated)");
3575
3576         SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3577                         "max_request_segments", CTLFLAG_RD,
3578                         &xbb->max_request_segments, 0,
3579                         "maximum number of pages per requests (negotiated)");
3580
3581         SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3582                         "max_request_size", CTLFLAG_RD,
3583                         &xbb->max_request_size, 0,
3584                         "maximum size in bytes of a request (negotiated)");
3585
3586         SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3587                         "ring_pages", CTLFLAG_RD,
3588                         &xbb->ring_config.ring_pages, 0,
3589                         "communication channel pages (negotiated)");
3590 }
3591
3592 /**
3593  * Attach to a XenBus device that has been claimed by our probe routine.
3594  *
3595  * \param dev  NewBus device object representing this Xen Block Back instance.
3596  *
3597  * \return  0 for success, errno codes for failure.
3598  */
3599 static int
3600 xbb_attach(device_t dev)
3601 {
3602         struct xbb_softc        *xbb;
3603         int                      error;
3604         u_int                    max_ring_page_order;
3605
3606         DPRINTF("Attaching to %s\n", xenbus_get_node(dev));
3607
3608         /*
3609          * Basic initialization.
3610          * After this block it is safe to call xbb_detach()
3611          * to clean up any allocated data for this instance.
3612          */
3613         xbb = device_get_softc(dev);
3614         xbb->dev = dev;
3615         xbb->otherend_id = xenbus_get_otherend_id(dev);
3616         TASK_INIT(&xbb->io_task, /*priority*/0, xbb_run_queue, xbb);
3617         mtx_init(&xbb->lock, device_get_nameunit(dev), NULL, MTX_DEF);
3618
3619         /*
3620          * Publish protocol capabilities for consumption by the
3621          * front-end.
3622          */
3623         error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3624                           "feature-barrier", "1");
3625         if (error) {
3626                 xbb_attach_failed(xbb, error, "writing %s/feature-barrier",
3627                                   xenbus_get_node(xbb->dev));
3628                 return (error);
3629         }
3630
3631         error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3632                           "feature-flush-cache", "1");
3633         if (error) {
3634                 xbb_attach_failed(xbb, error, "writing %s/feature-flush-cache",
3635                                   xenbus_get_node(xbb->dev));
3636                 return (error);
3637         }
3638
3639         max_ring_page_order = flsl(XBB_MAX_RING_PAGES) - 1;
3640         error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3641                           "max-ring-page-order", "%u", max_ring_page_order);
3642         if (error) {
3643                 xbb_attach_failed(xbb, error, "writing %s/max-ring-page-order",
3644                                   xenbus_get_node(xbb->dev));
3645                 return (error);
3646         }
3647
3648         /* Collect physical device information. */
3649         error = xs_gather(XST_NIL, xenbus_get_otherend_path(xbb->dev),
3650                           "device-type", NULL, &xbb->dev_type,
3651                           NULL);
3652         if (error != 0)
3653                 xbb->dev_type = NULL;
3654
3655         error = xs_gather(XST_NIL, xenbus_get_node(dev),
3656                           "mode", NULL, &xbb->dev_mode,
3657                           "params", NULL, &xbb->dev_name,
3658                           NULL);
3659         if (error != 0) {
3660                 xbb_attach_failed(xbb, error, "reading backend fields at %s",
3661                                   xenbus_get_node(dev));
3662                 return (ENXIO);
3663         }
3664
3665         /* Parse fopen style mode flags. */
3666         if (strchr(xbb->dev_mode, 'w') == NULL)
3667                 xbb->flags |= XBBF_READ_ONLY;
3668
3669         /*
3670          * Verify the physical device is present and can support
3671          * the desired I/O mode.
3672          */
3673         DROP_GIANT();
3674         error = xbb_open_backend(xbb);
3675         PICKUP_GIANT();
3676         if (error != 0) {
3677                 xbb_attach_failed(xbb, error, "Unable to open %s",
3678                                   xbb->dev_name);
3679                 return (ENXIO);
3680         }
3681
3682         /* Use devstat(9) for recording statistics. */
3683         xbb->xbb_stats = devstat_new_entry("xbb", device_get_unit(xbb->dev),
3684                                            xbb->sector_size,
3685                                            DEVSTAT_ALL_SUPPORTED,
3686                                            DEVSTAT_TYPE_DIRECT
3687                                          | DEVSTAT_TYPE_IF_OTHER,
3688                                            DEVSTAT_PRIORITY_OTHER);
3689
3690         xbb->xbb_stats_in = devstat_new_entry("xbbi", device_get_unit(xbb->dev),
3691                                               xbb->sector_size,
3692                                               DEVSTAT_ALL_SUPPORTED,
3693                                               DEVSTAT_TYPE_DIRECT
3694                                             | DEVSTAT_TYPE_IF_OTHER,
3695                                               DEVSTAT_PRIORITY_OTHER);
3696         /*
3697          * Setup sysctl variables.
3698          */
3699         xbb_setup_sysctl(xbb);
3700
3701         /*
3702          * Create a taskqueue for doing work that must occur from a
3703          * thread context.
3704          */
3705         xbb->io_taskqueue = taskqueue_create_fast(device_get_nameunit(dev),
3706                                                   M_NOWAIT,
3707                                                   taskqueue_thread_enqueue,
3708                                                   /*contxt*/&xbb->io_taskqueue);
3709         if (xbb->io_taskqueue == NULL) {
3710                 xbb_attach_failed(xbb, error, "Unable to create taskqueue");
3711                 return (ENOMEM);
3712         }
3713
3714         taskqueue_start_threads(&xbb->io_taskqueue,
3715                                 /*num threads*/1,
3716                                 /*priority*/PWAIT,
3717                                 /*thread name*/
3718                                 "%s taskq", device_get_nameunit(dev));
3719
3720         /* Update hot-plug status to satisfy xend. */
3721         error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3722                           "hotplug-status", "connected");
3723         if (error) {
3724                 xbb_attach_failed(xbb, error, "writing %s/hotplug-status",
3725                                   xenbus_get_node(xbb->dev));
3726                 return (error);
3727         }
3728
3729         /* Tell the front end that we are ready to connect. */
3730         xenbus_set_state(dev, XenbusStateInitWait);
3731
3732         return (0);
3733 }
3734
3735 /**
3736  * Detach from a block back device instance.
3737  *
3738  * \param dev  NewBus device object representing this Xen Block Back instance.
3739  *
3740  * \return  0 for success, errno codes for failure.
3741  * 
3742  * \note A block back device may be detached at any time in its life-cycle,
3743  *       including part way through the attach process.  For this reason,
3744  *       initialization order and the intialization state checks in this
3745  *       routine must be carefully coupled so that attach time failures
3746  *       are gracefully handled.
3747  */
3748 static int
3749 xbb_detach(device_t dev)
3750 {
3751         struct xbb_softc *xbb;
3752
3753         DPRINTF("\n");
3754
3755         xbb = device_get_softc(dev);
3756         mtx_lock(&xbb->lock);
3757         while (xbb_shutdown(xbb) == EAGAIN) {
3758                 msleep(xbb, &xbb->lock, /*wakeup prio unchanged*/0,
3759                        "xbb_shutdown", 0);
3760         }
3761         mtx_unlock(&xbb->lock);
3762
3763         DPRINTF("\n");
3764
3765         if (xbb->io_taskqueue != NULL)
3766                 taskqueue_free(xbb->io_taskqueue);
3767
3768         if (xbb->xbb_stats != NULL)
3769                 devstat_remove_entry(xbb->xbb_stats);
3770
3771         if (xbb->xbb_stats_in != NULL)
3772                 devstat_remove_entry(xbb->xbb_stats_in);
3773
3774         xbb_close_backend(xbb);
3775
3776         if (xbb->dev_mode != NULL) {
3777                 free(xbb->dev_mode, M_XENSTORE);
3778                 xbb->dev_mode = NULL;
3779         }
3780
3781         if (xbb->dev_type != NULL) {
3782                 free(xbb->dev_type, M_XENSTORE);
3783                 xbb->dev_type = NULL;
3784         }
3785
3786         if (xbb->dev_name != NULL) {
3787                 free(xbb->dev_name, M_XENSTORE);
3788                 xbb->dev_name = NULL;
3789         }
3790
3791         mtx_destroy(&xbb->lock);
3792         return (0);
3793 }
3794
3795 /**
3796  * Prepare this block back device for suspension of this VM.
3797  * 
3798  * \param dev  NewBus device object representing this Xen Block Back instance.
3799  *
3800  * \return  0 for success, errno codes for failure.
3801  */
3802 static int
3803 xbb_suspend(device_t dev)
3804 {
3805 #ifdef NOT_YET
3806         struct xbb_softc *sc = device_get_softc(dev);
3807
3808         /* Prevent new requests being issued until we fix things up. */
3809         mtx_lock(&sc->xb_io_lock);
3810         sc->connected = BLKIF_STATE_SUSPENDED;
3811         mtx_unlock(&sc->xb_io_lock);
3812 #endif
3813
3814         return (0);
3815 }
3816
3817 /**
3818  * Perform any processing required to recover from a suspended state.
3819  * 
3820  * \param dev  NewBus device object representing this Xen Block Back instance.
3821  *
3822  * \return  0 for success, errno codes for failure.
3823  */
3824 static int
3825 xbb_resume(device_t dev)
3826 {
3827         return (0);
3828 }
3829
3830 /**
3831  * Handle state changes expressed via the XenStore by our front-end peer.
3832  *
3833  * \param dev             NewBus device object representing this Xen
3834  *                        Block Back instance.
3835  * \param frontend_state  The new state of the front-end.
3836  *
3837  * \return  0 for success, errno codes for failure.
3838  */
3839 static void
3840 xbb_frontend_changed(device_t dev, XenbusState frontend_state)
3841 {
3842         struct xbb_softc *xbb = device_get_softc(dev);
3843
3844         DPRINTF("frontend_state=%s, xbb_state=%s\n",
3845                 xenbus_strstate(frontend_state),
3846                 xenbus_strstate(xenbus_get_state(xbb->dev)));
3847
3848         switch (frontend_state) {
3849         case XenbusStateInitialising:
3850                 break;
3851         case XenbusStateInitialised:
3852         case XenbusStateConnected:
3853                 xbb_connect(xbb);
3854                 break;
3855         case XenbusStateClosing:
3856         case XenbusStateClosed:
3857                 mtx_lock(&xbb->lock);
3858                 xbb_shutdown(xbb);
3859                 mtx_unlock(&xbb->lock);
3860                 if (frontend_state == XenbusStateClosed)
3861                         xenbus_set_state(xbb->dev, XenbusStateClosed);
3862                 break;
3863         default:
3864                 xenbus_dev_fatal(xbb->dev, EINVAL, "saw state %d at frontend",
3865                                  frontend_state);
3866                 break;
3867         }
3868 }
3869
3870 /*---------------------------- NewBus Registration ---------------------------*/
3871 static device_method_t xbb_methods[] = {
3872         /* Device interface */
3873         DEVMETHOD(device_probe,         xbb_probe),
3874         DEVMETHOD(device_attach,        xbb_attach),
3875         DEVMETHOD(device_detach,        xbb_detach),
3876         DEVMETHOD(device_shutdown,      bus_generic_shutdown),
3877         DEVMETHOD(device_suspend,       xbb_suspend),
3878         DEVMETHOD(device_resume,        xbb_resume),
3879
3880         /* Xenbus interface */
3881         DEVMETHOD(xenbus_otherend_changed, xbb_frontend_changed),
3882
3883         { 0, 0 }
3884 };
3885
3886 static driver_t xbb_driver = {
3887         "xbbd",
3888         xbb_methods,
3889         sizeof(struct xbb_softc),
3890 };
3891 devclass_t xbb_devclass;
3892
3893 DRIVER_MODULE(xbbd, xenbusb_back, xbb_driver, xbb_devclass, 0, 0);