]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/geom/part/g_part_bsd64.c
Stopgap fix for gcc platforms.
[FreeBSD/FreeBSD.git] / sys / geom / part / g_part_bsd64.c
1 /*-
2  * Copyright (c) 2014 Andrey V. Elsukov <ae@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <sys/param.h>
31 #include <sys/bio.h>
32 #include <sys/gsb_crc32.h>
33 #include <sys/disklabel.h>
34 #include <sys/endian.h>
35 #include <sys/gpt.h>
36 #include <sys/kernel.h>
37 #include <sys/kobj.h>
38 #include <sys/limits.h>
39 #include <sys/lock.h>
40 #include <sys/malloc.h>
41 #include <sys/mutex.h>
42 #include <sys/queue.h>
43 #include <sys/sbuf.h>
44 #include <sys/systm.h>
45 #include <sys/sysctl.h>
46 #include <geom/geom.h>
47 #include <geom/geom_int.h>
48 #include <geom/part/g_part.h>
49
50 #include "g_part_if.h"
51
52 FEATURE(geom_part_bsd64, "GEOM partitioning class for 64-bit BSD disklabels");
53
54 /* XXX: move this to sys/disklabel64.h */
55 #define DISKMAGIC64     ((uint32_t)0xc4464c59)
56 #define MAXPARTITIONS64 16
57 #define RESPARTITIONS64 32
58
59 struct disklabel64 {
60         char      d_reserved0[512];     /* reserved or unused */
61         u_int32_t d_magic;              /* the magic number */
62         u_int32_t d_crc;                /* crc32() d_magic through last part */
63         u_int32_t d_align;              /* partition alignment requirement */
64         u_int32_t d_npartitions;        /* number of partitions */
65         struct uuid d_stor_uuid;        /* unique uuid for label */
66
67         u_int64_t d_total_size;         /* total size incl everything (bytes) */
68         u_int64_t d_bbase;              /* boot area base offset (bytes) */
69                                         /* boot area is pbase - bbase */
70         u_int64_t d_pbase;              /* first allocatable offset (bytes) */
71         u_int64_t d_pstop;              /* last allocatable offset+1 (bytes) */
72         u_int64_t d_abase;              /* location of backup copy if not 0 */
73
74         u_char    d_packname[64];
75         u_char    d_reserved[64];
76
77         /*
78          * Note: offsets are relative to the base of the slice, NOT to
79          * d_pbase.  Unlike 32 bit disklabels the on-disk format for
80          * a 64 bit disklabel remains slice-relative.
81          *
82          * An uninitialized partition has a p_boffset and p_bsize of 0.
83          *
84          * If p_fstype is not supported for a live partition it is set
85          * to FS_OTHER.  This is typically the case when the filesystem
86          * is identified by its uuid.
87          */
88         struct partition64 {            /* the partition table */
89                 u_int64_t p_boffset;    /* slice relative offset, in bytes */
90                 u_int64_t p_bsize;      /* size of partition, in bytes */
91                 u_int8_t  p_fstype;
92                 u_int8_t  p_unused01;   /* reserved, must be 0 */
93                 u_int8_t  p_unused02;   /* reserved, must be 0 */
94                 u_int8_t  p_unused03;   /* reserved, must be 0 */
95                 u_int32_t p_unused04;   /* reserved, must be 0 */
96                 u_int32_t p_unused05;   /* reserved, must be 0 */
97                 u_int32_t p_unused06;   /* reserved, must be 0 */
98                 struct uuid p_type_uuid;/* mount type as UUID */
99                 struct uuid p_stor_uuid;/* unique uuid for storage */
100         } d_partitions[MAXPARTITIONS64];/* actually may be more */
101 };
102
103 struct g_part_bsd64_table {
104         struct g_part_table     base;
105
106         uint32_t                d_align;
107         uint64_t                d_bbase;
108         uint64_t                d_abase;
109         struct uuid             d_stor_uuid;
110         char                    d_reserved0[512];
111         u_char                  d_packname[64];
112         u_char                  d_reserved[64];
113 };
114
115 struct g_part_bsd64_entry {
116         struct g_part_entry     base;
117
118         uint8_t                 fstype;
119         struct uuid             type_uuid;
120         struct uuid             stor_uuid;
121 };
122
123 static int g_part_bsd64_add(struct g_part_table *, struct g_part_entry *,
124     struct g_part_parms *);
125 static int g_part_bsd64_bootcode(struct g_part_table *, struct g_part_parms *);
126 static int g_part_bsd64_create(struct g_part_table *, struct g_part_parms *);
127 static int g_part_bsd64_destroy(struct g_part_table *, struct g_part_parms *);
128 static void g_part_bsd64_dumpconf(struct g_part_table *, struct g_part_entry *,
129     struct sbuf *, const char *);
130 static int g_part_bsd64_dumpto(struct g_part_table *, struct g_part_entry *);
131 static int g_part_bsd64_modify(struct g_part_table *, struct g_part_entry *,
132     struct g_part_parms *);
133 static const char *g_part_bsd64_name(struct g_part_table *, struct g_part_entry *,
134     char *, size_t);
135 static int g_part_bsd64_probe(struct g_part_table *, struct g_consumer *);
136 static int g_part_bsd64_read(struct g_part_table *, struct g_consumer *);
137 static const char *g_part_bsd64_type(struct g_part_table *, struct g_part_entry *,
138     char *, size_t);
139 static int g_part_bsd64_write(struct g_part_table *, struct g_consumer *);
140 static int g_part_bsd64_resize(struct g_part_table *, struct g_part_entry *,
141     struct g_part_parms *);
142
143 static kobj_method_t g_part_bsd64_methods[] = {
144         KOBJMETHOD(g_part_add,          g_part_bsd64_add),
145         KOBJMETHOD(g_part_bootcode,     g_part_bsd64_bootcode),
146         KOBJMETHOD(g_part_create,       g_part_bsd64_create),
147         KOBJMETHOD(g_part_destroy,      g_part_bsd64_destroy),
148         KOBJMETHOD(g_part_dumpconf,     g_part_bsd64_dumpconf),
149         KOBJMETHOD(g_part_dumpto,       g_part_bsd64_dumpto),
150         KOBJMETHOD(g_part_modify,       g_part_bsd64_modify),
151         KOBJMETHOD(g_part_resize,       g_part_bsd64_resize),
152         KOBJMETHOD(g_part_name,         g_part_bsd64_name),
153         KOBJMETHOD(g_part_probe,        g_part_bsd64_probe),
154         KOBJMETHOD(g_part_read,         g_part_bsd64_read),
155         KOBJMETHOD(g_part_type,         g_part_bsd64_type),
156         KOBJMETHOD(g_part_write,        g_part_bsd64_write),
157         { 0, 0 }
158 };
159
160 static struct g_part_scheme g_part_bsd64_scheme = {
161         "BSD64",
162         g_part_bsd64_methods,
163         sizeof(struct g_part_bsd64_table),
164         .gps_entrysz = sizeof(struct g_part_bsd64_entry),
165         .gps_minent = MAXPARTITIONS64,
166         .gps_maxent = MAXPARTITIONS64
167 };
168 G_PART_SCHEME_DECLARE(g_part_bsd64);
169 MODULE_VERSION(geom_part_bsd64, 0);
170
171 #define EQUUID(a, b)    (memcmp(a, b, sizeof(struct uuid)) == 0)
172 static struct uuid bsd64_uuid_unused = GPT_ENT_TYPE_UNUSED;
173 static struct uuid bsd64_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP;
174 static struct uuid bsd64_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1;
175 static struct uuid bsd64_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM;
176 static struct uuid bsd64_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD;
177 static struct uuid bsd64_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY;
178 static struct uuid bsd64_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER;
179 static struct uuid bsd64_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2;
180 static struct uuid bsd64_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT;
181 static struct uuid bsd64_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS;
182 static struct uuid bsd64_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP;
183 static struct uuid bsd64_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS;
184 static struct uuid bsd64_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM;
185 static struct uuid bsd64_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS;
186
187 struct bsd64_uuid_alias {
188         struct uuid *uuid;
189         uint8_t fstype;
190         int alias;
191 };
192 static struct bsd64_uuid_alias dfbsd_alias_match[] = {
193         { &bsd64_uuid_dfbsd_swap, FS_SWAP, G_PART_ALIAS_DFBSD_SWAP },
194         { &bsd64_uuid_dfbsd_ufs1, FS_BSDFFS, G_PART_ALIAS_DFBSD_UFS },
195         { &bsd64_uuid_dfbsd_vinum, FS_VINUM, G_PART_ALIAS_DFBSD_VINUM },
196         { &bsd64_uuid_dfbsd_ccd, FS_CCD, G_PART_ALIAS_DFBSD_CCD },
197         { &bsd64_uuid_dfbsd_legacy, FS_OTHER, G_PART_ALIAS_DFBSD_LEGACY },
198         { &bsd64_uuid_dfbsd_hammer, FS_HAMMER, G_PART_ALIAS_DFBSD_HAMMER },
199         { &bsd64_uuid_dfbsd_hammer2, FS_HAMMER2, G_PART_ALIAS_DFBSD_HAMMER2 },
200         { NULL, 0, 0}
201 };
202 static struct bsd64_uuid_alias fbsd_alias_match[] = {
203         { &bsd64_uuid_freebsd_boot, FS_OTHER, G_PART_ALIAS_FREEBSD_BOOT },
204         { &bsd64_uuid_freebsd_swap, FS_OTHER, G_PART_ALIAS_FREEBSD_SWAP },
205         { &bsd64_uuid_freebsd_ufs, FS_OTHER, G_PART_ALIAS_FREEBSD_UFS },
206         { &bsd64_uuid_freebsd_zfs, FS_OTHER, G_PART_ALIAS_FREEBSD_ZFS },
207         { &bsd64_uuid_freebsd_vinum, FS_OTHER, G_PART_ALIAS_FREEBSD_VINUM },
208         { &bsd64_uuid_freebsd_nandfs, FS_OTHER, G_PART_ALIAS_FREEBSD_NANDFS },
209         { NULL, 0, 0}
210 };
211
212 static int
213 bsd64_parse_type(const char *type, struct g_part_bsd64_entry *entry)
214 {
215         struct uuid tmp;
216         const struct bsd64_uuid_alias *uap;
217         const char *alias;
218         char *p;
219         long lt;
220         int error;
221
222         if (type[0] == '!') {
223                 if (type[1] == '\0')
224                         return (EINVAL);
225                 lt = strtol(type + 1, &p, 0);
226                 /* The type specified as number */
227                 if (*p == '\0') {
228                         if (lt <= 0 || lt > 255)
229                                 return (EINVAL);
230                         entry->fstype = lt;
231                         entry->type_uuid = bsd64_uuid_unused;
232                         return (0);
233                 }
234                 /* The type specified as uuid */
235                 error = parse_uuid(type + 1, &tmp);
236                 if (error != 0)
237                         return (error);
238                 if (EQUUID(&tmp, &bsd64_uuid_unused))
239                         return (EINVAL);
240                 for (uap = &dfbsd_alias_match[0]; uap->uuid != NULL; uap++) {
241                         if (EQUUID(&tmp, uap->uuid)) {
242                                 /* Prefer fstype for known uuids */
243                                 entry->type_uuid = bsd64_uuid_unused;
244                                 entry->fstype = uap->fstype;
245                                 return (0);
246                         }
247                 }
248                 entry->type_uuid = tmp;
249                 entry->fstype = FS_OTHER;
250                 return (0);
251         }
252         /* The type specified as symbolic alias name */
253         for (uap = &fbsd_alias_match[0]; uap->uuid != NULL; uap++) {
254                 alias = g_part_alias_name(uap->alias);
255                 if (!strcasecmp(type, alias)) {
256                         entry->type_uuid = *uap->uuid;
257                         entry->fstype = uap->fstype;
258                         return (0);
259                 }
260         }
261         for (uap = &dfbsd_alias_match[0]; uap->uuid != NULL; uap++) {
262                 alias = g_part_alias_name(uap->alias);
263                 if (!strcasecmp(type, alias)) {
264                         entry->type_uuid = bsd64_uuid_unused;
265                         entry->fstype = uap->fstype;
266                         return (0);
267                 }
268         }
269         return (EINVAL);
270 }
271
272 static int
273 g_part_bsd64_add(struct g_part_table *basetable, struct g_part_entry *baseentry,
274     struct g_part_parms *gpp)
275 {
276         struct g_part_bsd64_entry *entry;
277
278         if (gpp->gpp_parms & G_PART_PARM_LABEL)
279                 return (EINVAL);
280
281         entry = (struct g_part_bsd64_entry *)baseentry;
282         if (bsd64_parse_type(gpp->gpp_type, entry) != 0)
283                 return (EINVAL);
284         kern_uuidgen(&entry->stor_uuid, 1);
285         return (0);
286 }
287
288 static int
289 g_part_bsd64_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp)
290 {
291
292         return (EOPNOTSUPP);
293 }
294
295 #define PALIGN_SIZE     (1024 * 1024)
296 #define PALIGN_MASK     (PALIGN_SIZE - 1)
297 #define BLKSIZE         (4 * 1024)
298 #define BOOTSIZE        (32 * 1024)
299 #define DALIGN_SIZE     (32 * 1024)
300 static int
301 g_part_bsd64_create(struct g_part_table *basetable, struct g_part_parms *gpp)
302 {
303         struct g_part_bsd64_table *table;
304         struct g_part_entry *baseentry;
305         struct g_provider *pp;
306         uint64_t blkmask, pbase;
307         uint32_t blksize, ressize;
308
309         pp = gpp->gpp_provider;
310         if (pp->mediasize < 2* PALIGN_SIZE)
311                 return (ENOSPC);
312
313         /*
314          * Use at least 4KB block size. Blksize is stored in the d_align.
315          * XXX: Actually it is used just for calculate d_bbase and used
316          * for better alignment in bsdlabel64(8).
317          */
318         blksize = pp->sectorsize < BLKSIZE ? BLKSIZE: pp->sectorsize;
319         blkmask = blksize - 1;
320         /* Reserve enough space for RESPARTITIONS64 partitions. */
321         ressize = offsetof(struct disklabel64, d_partitions[RESPARTITIONS64]);
322         ressize = (ressize + blkmask) & ~blkmask;
323         /*
324          * Reserve enough space for bootcode and align first allocatable
325          * offset to PALIGN_SIZE.
326          * XXX: Currently DragonFlyBSD has 32KB bootcode, but the size could
327          * be bigger, because it is possible change it (it is equal pbase-bbase)
328          * in the bsdlabel64(8).
329          */
330         pbase = ressize + ((BOOTSIZE + blkmask) & ~blkmask);
331         pbase = (pbase + PALIGN_MASK) & ~PALIGN_MASK;
332         /*
333          * Take physical offset into account and make first allocatable
334          * offset 32KB aligned to the start of the physical disk.
335          * XXX: Actually there are no such restrictions, this is how
336          * DragonFlyBSD behaves.
337          */
338         pbase += DALIGN_SIZE - pp->stripeoffset % DALIGN_SIZE;
339
340         table = (struct g_part_bsd64_table *)basetable;
341         table->d_align = blksize;
342         table->d_bbase = ressize / pp->sectorsize;
343         table->d_abase = ((pp->mediasize - ressize) &
344             ~blkmask) / pp->sectorsize;
345         kern_uuidgen(&table->d_stor_uuid, 1);
346         basetable->gpt_first = pbase / pp->sectorsize;
347         basetable->gpt_last = table->d_abase - 1; /* XXX */
348         /*
349          * Create 'c' partition and make it internal, so user will not be
350          * able use it.
351          */
352         baseentry = g_part_new_entry(basetable, RAW_PART + 1, 0, 0);
353         baseentry->gpe_internal = 1;
354         return (0);
355 }
356
357 static int
358 g_part_bsd64_destroy(struct g_part_table *basetable, struct g_part_parms *gpp)
359 {
360         struct g_provider *pp;
361
362         pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
363         if (pp->sectorsize > offsetof(struct disklabel64, d_magic))
364                 basetable->gpt_smhead |= 1;
365         else
366                 basetable->gpt_smhead |= 3;
367         return (0);
368 }
369
370 static void
371 g_part_bsd64_dumpconf(struct g_part_table *basetable,
372     struct g_part_entry *baseentry, struct sbuf *sb, const char *indent)
373 {
374         struct g_part_bsd64_table *table;
375         struct g_part_bsd64_entry *entry;
376         char buf[sizeof(table->d_packname)];
377
378         entry = (struct g_part_bsd64_entry *)baseentry;
379         if (indent == NULL) {
380                 /* conftxt: libdisk compatibility */
381                 sbuf_printf(sb, " xs BSD64 xt %u", entry->fstype);
382         } else if (entry != NULL) {
383                 /* confxml: partition entry information */
384                 sbuf_printf(sb, "%s<rawtype>%u</rawtype>\n", indent,
385                     entry->fstype);
386                 if (!EQUUID(&bsd64_uuid_unused, &entry->type_uuid)) {
387                         sbuf_printf(sb, "%s<type_uuid>", indent);
388                         sbuf_printf_uuid(sb, &entry->type_uuid);
389                         sbuf_cat(sb, "</type_uuid>\n");
390                 }
391                 sbuf_printf(sb, "%s<stor_uuid>", indent);
392                 sbuf_printf_uuid(sb, &entry->stor_uuid);
393                 sbuf_cat(sb, "</stor_uuid>\n");
394         } else {
395                 /* confxml: scheme information */
396                 table = (struct g_part_bsd64_table *)basetable;
397                 sbuf_printf(sb, "%s<bootbase>%ju</bootbase>\n", indent,
398                     (uintmax_t)table->d_bbase);
399                 if (table->d_abase)
400                         sbuf_printf(sb, "%s<backupbase>%ju</backupbase>\n",
401                             indent, (uintmax_t)table->d_abase);
402                 sbuf_printf(sb, "%s<stor_uuid>", indent);
403                 sbuf_printf_uuid(sb, &table->d_stor_uuid);
404                 sbuf_cat(sb, "</stor_uuid>\n");
405                 sbuf_printf(sb, "%s<label>", indent);
406                 strncpy(buf, table->d_packname, sizeof(buf) - 1);
407                 buf[sizeof(buf) - 1] = '\0';
408                 g_conf_cat_escaped(sb, buf);
409                 sbuf_cat(sb, "</label>\n");
410         }
411 }
412
413 static int
414 g_part_bsd64_dumpto(struct g_part_table *table, struct g_part_entry *baseentry)
415 {
416         struct g_part_bsd64_entry *entry;
417
418         /* Allow dumping to a swap partition. */
419         entry = (struct g_part_bsd64_entry *)baseentry;
420         if (entry->fstype == FS_SWAP ||
421             EQUUID(&entry->type_uuid, &bsd64_uuid_dfbsd_swap) ||
422             EQUUID(&entry->type_uuid, &bsd64_uuid_freebsd_swap))
423                 return (1);
424         return (0);
425 }
426
427 static int
428 g_part_bsd64_modify(struct g_part_table *basetable,
429     struct g_part_entry *baseentry, struct g_part_parms *gpp)
430 {
431         struct g_part_bsd64_entry *entry;
432
433         if (gpp->gpp_parms & G_PART_PARM_LABEL)
434                 return (EINVAL);
435
436         entry = (struct g_part_bsd64_entry *)baseentry;
437         if (gpp->gpp_parms & G_PART_PARM_TYPE)
438                 return (bsd64_parse_type(gpp->gpp_type, entry));
439         return (0);
440 }
441
442 static int
443 g_part_bsd64_resize(struct g_part_table *basetable,
444     struct g_part_entry *baseentry, struct g_part_parms *gpp)
445 {
446         struct g_part_bsd64_table *table;
447         struct g_provider *pp;
448
449         if (baseentry == NULL) {
450                 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
451                 table = (struct g_part_bsd64_table *)basetable;
452                 table->d_abase =
453                     rounddown2(pp->mediasize - table->d_bbase * pp->sectorsize,
454                         table->d_align) / pp->sectorsize;
455                 basetable->gpt_last = table->d_abase - 1;
456                 return (0);
457         }
458         baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1;
459         return (0);
460 }
461
462 static const char *
463 g_part_bsd64_name(struct g_part_table *table, struct g_part_entry *baseentry,
464     char *buf, size_t bufsz)
465 {
466
467         snprintf(buf, bufsz, "%c", 'a' + baseentry->gpe_index - 1);
468         return (buf);
469 }
470
471 static int
472 g_part_bsd64_probe(struct g_part_table *table, struct g_consumer *cp)
473 {
474         struct g_provider *pp;
475         uint32_t v;
476         int error;
477         u_char *buf;
478
479         pp = cp->provider;
480         if (pp->mediasize < 2 * PALIGN_SIZE)
481                 return (ENOSPC);
482         v = rounddown2(pp->sectorsize + offsetof(struct disklabel64, d_magic),
483                        pp->sectorsize);
484         buf = g_read_data(cp, 0, v, &error);
485         if (buf == NULL)
486                 return (error);
487         v = le32dec(buf + offsetof(struct disklabel64, d_magic));
488         g_free(buf);
489         return (v == DISKMAGIC64 ? G_PART_PROBE_PRI_HIGH: ENXIO);
490 }
491
492 static int
493 g_part_bsd64_read(struct g_part_table *basetable, struct g_consumer *cp)
494 {
495         struct g_part_bsd64_table *table;
496         struct g_part_bsd64_entry *entry;
497         struct g_part_entry *baseentry;
498         struct g_provider *pp;
499         struct disklabel64 *dlp;
500         uint64_t v64, sz;
501         uint32_t v32;
502         int error, index;
503         u_char *buf;
504
505         pp = cp->provider;
506         table = (struct g_part_bsd64_table *)basetable;
507         v32 = roundup2(sizeof(struct disklabel64), pp->sectorsize);
508         buf = g_read_data(cp, 0, v32, &error);
509         if (buf == NULL)
510                 return (error);
511
512         dlp = (struct disklabel64 *)buf;
513         basetable->gpt_entries = le32toh(dlp->d_npartitions);
514         if (basetable->gpt_entries > MAXPARTITIONS64 ||
515             basetable->gpt_entries < 1)
516                 goto invalid_label;
517         v32 = le32toh(dlp->d_crc);
518         dlp->d_crc = 0;
519         if (crc32(&dlp->d_magic, offsetof(struct disklabel64,
520             d_partitions[basetable->gpt_entries]) -
521             offsetof(struct disklabel64, d_magic)) != v32)
522                 goto invalid_label;
523         table->d_align = le32toh(dlp->d_align);
524         if (table->d_align == 0 || (table->d_align & (pp->sectorsize - 1)))
525                 goto invalid_label;
526         if (le64toh(dlp->d_total_size) > pp->mediasize)
527                 goto invalid_label;
528         v64 = le64toh(dlp->d_pbase);
529         if (v64 % pp->sectorsize)
530                 goto invalid_label;
531         basetable->gpt_first = v64 / pp->sectorsize;
532         v64 = le64toh(dlp->d_pstop);
533         if (v64 % pp->sectorsize)
534                 goto invalid_label;
535         basetable->gpt_last = v64 / pp->sectorsize;
536         basetable->gpt_isleaf = 1;
537         v64 = le64toh(dlp->d_bbase);
538         if (v64 % pp->sectorsize)
539                 goto invalid_label;
540         table->d_bbase = v64 / pp->sectorsize;
541         v64 = le64toh(dlp->d_abase);
542         if (v64 % pp->sectorsize)
543                 goto invalid_label;
544         table->d_abase = v64 / pp->sectorsize;
545         le_uuid_dec(&dlp->d_stor_uuid, &table->d_stor_uuid);
546         for (index = basetable->gpt_entries - 1; index >= 0; index--) {
547                 if (index == RAW_PART) {
548                         /* Skip 'c' partition. */
549                         baseentry = g_part_new_entry(basetable,
550                             index + 1, 0, 0);
551                         baseentry->gpe_internal = 1;
552                         continue;
553                 }
554                 v64 = le64toh(dlp->d_partitions[index].p_boffset);
555                 sz = le64toh(dlp->d_partitions[index].p_bsize);
556                 if (sz == 0 && v64 == 0)
557                         continue;
558                 if (sz == 0 || (v64 % pp->sectorsize) || (sz % pp->sectorsize))
559                         goto invalid_label;
560                 baseentry = g_part_new_entry(basetable, index + 1,
561                     v64 / pp->sectorsize, (v64 + sz) / pp->sectorsize - 1);
562                 entry = (struct g_part_bsd64_entry *)baseentry;
563                 le_uuid_dec(&dlp->d_partitions[index].p_type_uuid,
564                     &entry->type_uuid);
565                 le_uuid_dec(&dlp->d_partitions[index].p_stor_uuid,
566                     &entry->stor_uuid);
567                 entry->fstype = dlp->d_partitions[index].p_fstype;
568         }
569         bcopy(dlp->d_reserved0, table->d_reserved0,
570             sizeof(table->d_reserved0));
571         bcopy(dlp->d_packname, table->d_packname, sizeof(table->d_packname));
572         bcopy(dlp->d_reserved, table->d_reserved, sizeof(table->d_reserved));
573         g_free(buf);
574         return (0);
575
576 invalid_label:
577         g_free(buf);
578         return (EINVAL);
579 }
580
581 static const char *
582 g_part_bsd64_type(struct g_part_table *basetable, struct g_part_entry *baseentry,
583     char *buf, size_t bufsz)
584 {
585         struct g_part_bsd64_entry *entry;
586         struct bsd64_uuid_alias *uap;
587
588         entry = (struct g_part_bsd64_entry *)baseentry;
589         if (entry->fstype != FS_OTHER) {
590                 for (uap = &dfbsd_alias_match[0]; uap->uuid != NULL; uap++)
591                         if (uap->fstype == entry->fstype)
592                                 return (g_part_alias_name(uap->alias));
593         } else {
594                 for (uap = &fbsd_alias_match[0]; uap->uuid != NULL; uap++)
595                         if (EQUUID(uap->uuid, &entry->type_uuid))
596                                 return (g_part_alias_name(uap->alias));
597                 for (uap = &dfbsd_alias_match[0]; uap->uuid != NULL; uap++)
598                         if (EQUUID(uap->uuid, &entry->type_uuid))
599                                 return (g_part_alias_name(uap->alias));
600         }
601         if (EQUUID(&bsd64_uuid_unused, &entry->type_uuid))
602                 snprintf(buf, bufsz, "!%d", entry->fstype);
603         else {
604                 buf[0] = '!';
605                 snprintf_uuid(buf + 1, bufsz - 1, &entry->type_uuid);
606         }
607         return (buf);
608 }
609
610 static int
611 g_part_bsd64_write(struct g_part_table *basetable, struct g_consumer *cp)
612 {
613         struct g_provider *pp;
614         struct g_part_entry *baseentry;
615         struct g_part_bsd64_entry *entry;
616         struct g_part_bsd64_table *table;
617         struct disklabel64 *dlp;
618         uint32_t v, sz;
619         int error, index;
620
621         pp = cp->provider;
622         table = (struct g_part_bsd64_table *)basetable;
623         sz = roundup2(sizeof(struct disklabel64), pp->sectorsize);
624         dlp = g_malloc(sz, M_WAITOK | M_ZERO);
625
626         memcpy(dlp->d_reserved0, table->d_reserved0,
627             sizeof(table->d_reserved0));
628         memcpy(dlp->d_packname, table->d_packname, sizeof(table->d_packname));
629         memcpy(dlp->d_reserved, table->d_reserved, sizeof(table->d_reserved));
630         le32enc(&dlp->d_magic, DISKMAGIC64);
631         le32enc(&dlp->d_align, table->d_align);
632         le32enc(&dlp->d_npartitions, basetable->gpt_entries);
633         le_uuid_enc(&dlp->d_stor_uuid, &table->d_stor_uuid);
634         le64enc(&dlp->d_total_size, pp->mediasize);
635         le64enc(&dlp->d_bbase, table->d_bbase * pp->sectorsize);
636         le64enc(&dlp->d_pbase, basetable->gpt_first * pp->sectorsize);
637         le64enc(&dlp->d_pstop, basetable->gpt_last * pp->sectorsize);
638         le64enc(&dlp->d_abase, table->d_abase * pp->sectorsize);
639
640         LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
641                 if (baseentry->gpe_deleted)
642                         continue;
643                 index = baseentry->gpe_index - 1;
644                 entry = (struct g_part_bsd64_entry *)baseentry;
645                 if (index == RAW_PART)
646                         continue;
647                 le64enc(&dlp->d_partitions[index].p_boffset,
648                     baseentry->gpe_start * pp->sectorsize);
649                 le64enc(&dlp->d_partitions[index].p_bsize, pp->sectorsize *
650                     (baseentry->gpe_end - baseentry->gpe_start + 1));
651                 dlp->d_partitions[index].p_fstype = entry->fstype;
652                 le_uuid_enc(&dlp->d_partitions[index].p_type_uuid,
653                     &entry->type_uuid);
654                 le_uuid_enc(&dlp->d_partitions[index].p_stor_uuid,
655                     &entry->stor_uuid);
656         }
657         /* Calculate checksum. */
658         v = offsetof(struct disklabel64,
659             d_partitions[basetable->gpt_entries]) -
660             offsetof(struct disklabel64, d_magic);
661         le32enc(&dlp->d_crc, crc32(&dlp->d_magic, v));
662         error = g_write_data(cp, 0, dlp, sz);
663         g_free(dlp);
664         return (error);
665 }
666