]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/geom/part/g_part_gpt.c
MFC r351797: (Optional) Allow more nesting of GEOM partitioning schemes
[FreeBSD/FreeBSD.git] / sys / geom / part / g_part_gpt.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/bio.h>
34 #include <sys/diskmbr.h>
35 #include <sys/endian.h>
36 #include <sys/gpt.h>
37 #include <sys/kernel.h>
38 #include <sys/kobj.h>
39 #include <sys/limits.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/mutex.h>
43 #include <sys/queue.h>
44 #include <sys/sbuf.h>
45 #include <sys/systm.h>
46 #include <sys/sysctl.h>
47 #include <sys/uuid.h>
48 #include <geom/geom.h>
49 #include <geom/geom_int.h>
50 #include <geom/part/g_part.h>
51
52 #include "g_part_if.h"
53
54 FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support");
55
56 SYSCTL_DECL(_kern_geom_part);
57 static SYSCTL_NODE(_kern_geom_part, OID_AUTO, gpt, CTLFLAG_RW, 0,
58     "GEOM_PART_GPT GUID Partition Table");
59
60 static u_int allow_nesting = 0;
61 SYSCTL_UINT(_kern_geom_part_gpt, OID_AUTO, allow_nesting,
62     CTLFLAG_RWTUN, &allow_nesting, 0, "Allow GPT to be nested inside other schemes");
63
64 CTASSERT(offsetof(struct gpt_hdr, padding) == 92);
65 CTASSERT(sizeof(struct gpt_ent) == 128);
66
67 #define EQUUID(a,b)     (memcmp(a, b, sizeof(struct uuid)) == 0)
68
69 #define MBRSIZE         512
70
71 enum gpt_elt {
72         GPT_ELT_PRIHDR,
73         GPT_ELT_PRITBL,
74         GPT_ELT_SECHDR,
75         GPT_ELT_SECTBL,
76         GPT_ELT_COUNT
77 };
78
79 enum gpt_state {
80         GPT_STATE_UNKNOWN,      /* Not determined. */
81         GPT_STATE_MISSING,      /* No signature found. */
82         GPT_STATE_CORRUPT,      /* Checksum mismatch. */
83         GPT_STATE_INVALID,      /* Nonconformant/invalid. */
84         GPT_STATE_OK            /* Perfectly fine. */
85 };
86
87 struct g_part_gpt_table {
88         struct g_part_table     base;
89         u_char                  mbr[MBRSIZE];
90         struct gpt_hdr          *hdr;
91         quad_t                  lba[GPT_ELT_COUNT];
92         enum gpt_state          state[GPT_ELT_COUNT];
93         int                     bootcamp;
94 };
95
96 struct g_part_gpt_entry {
97         struct g_part_entry     base;
98         struct gpt_ent          ent;
99 };
100
101 static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t);
102 static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t);
103 static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *);
104
105 static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *,
106     struct g_part_parms *);
107 static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *);
108 static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *);
109 static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *);
110 static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *,
111     struct sbuf *, const char *);
112 static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *);
113 static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *,
114     struct g_part_parms *);
115 static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *,
116     char *, size_t);
117 static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *);
118 static int g_part_gpt_read(struct g_part_table *, struct g_consumer *);
119 static int g_part_gpt_setunset(struct g_part_table *table,
120     struct g_part_entry *baseentry, const char *attrib, unsigned int set);
121 static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *,
122     char *, size_t);
123 static int g_part_gpt_write(struct g_part_table *, struct g_consumer *);
124 static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *,
125     struct g_part_parms *);
126 static int g_part_gpt_recover(struct g_part_table *);
127
128 static kobj_method_t g_part_gpt_methods[] = {
129         KOBJMETHOD(g_part_add,          g_part_gpt_add),
130         KOBJMETHOD(g_part_bootcode,     g_part_gpt_bootcode),
131         KOBJMETHOD(g_part_create,       g_part_gpt_create),
132         KOBJMETHOD(g_part_destroy,      g_part_gpt_destroy),
133         KOBJMETHOD(g_part_dumpconf,     g_part_gpt_dumpconf),
134         KOBJMETHOD(g_part_dumpto,       g_part_gpt_dumpto),
135         KOBJMETHOD(g_part_modify,       g_part_gpt_modify),
136         KOBJMETHOD(g_part_resize,       g_part_gpt_resize),
137         KOBJMETHOD(g_part_name,         g_part_gpt_name),
138         KOBJMETHOD(g_part_probe,        g_part_gpt_probe),
139         KOBJMETHOD(g_part_read,         g_part_gpt_read),
140         KOBJMETHOD(g_part_recover,      g_part_gpt_recover),
141         KOBJMETHOD(g_part_setunset,     g_part_gpt_setunset),
142         KOBJMETHOD(g_part_type,         g_part_gpt_type),
143         KOBJMETHOD(g_part_write,        g_part_gpt_write),
144         { 0, 0 }
145 };
146
147 static struct g_part_scheme g_part_gpt_scheme = {
148         "GPT",
149         g_part_gpt_methods,
150         sizeof(struct g_part_gpt_table),
151         .gps_entrysz = sizeof(struct g_part_gpt_entry),
152         .gps_minent = 128,
153         .gps_maxent = 4096,
154         .gps_bootcodesz = MBRSIZE,
155 };
156 G_PART_SCHEME_DECLARE(g_part_gpt);
157 MODULE_VERSION(geom_part_gpt, 0);
158
159 static struct uuid gpt_uuid_apple_apfs = GPT_ENT_TYPE_APPLE_APFS;
160 static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT;
161 static struct uuid gpt_uuid_apple_core_storage =
162     GPT_ENT_TYPE_APPLE_CORE_STORAGE;
163 static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS;
164 static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL;
165 static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID;
166 static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE;
167 static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY;
168 static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS;
169 static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT;
170 static struct uuid gpt_uuid_chromeos_firmware = GPT_ENT_TYPE_CHROMEOS_FIRMWARE;
171 static struct uuid gpt_uuid_chromeos_kernel = GPT_ENT_TYPE_CHROMEOS_KERNEL;
172 static struct uuid gpt_uuid_chromeos_reserved = GPT_ENT_TYPE_CHROMEOS_RESERVED;
173 static struct uuid gpt_uuid_chromeos_root = GPT_ENT_TYPE_CHROMEOS_ROOT;
174 static struct uuid gpt_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD;
175 static struct uuid gpt_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER;
176 static struct uuid gpt_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2;
177 static struct uuid gpt_uuid_dfbsd_label32 = GPT_ENT_TYPE_DRAGONFLY_LABEL32;
178 static struct uuid gpt_uuid_dfbsd_label64 = GPT_ENT_TYPE_DRAGONFLY_LABEL64;
179 static struct uuid gpt_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY;
180 static struct uuid gpt_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP;
181 static struct uuid gpt_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1;
182 static struct uuid gpt_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM;
183 static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI;
184 static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD;
185 static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT;
186 static struct uuid gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS;
187 static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP;
188 static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS;
189 static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM;
190 static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS;
191 static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA;
192 static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM;
193 static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID;
194 static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP;
195 static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR;
196 static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA;
197 static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA;
198 static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA;
199 static struct uuid gpt_uuid_ms_recovery = GPT_ENT_TYPE_MS_RECOVERY;
200 static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED;
201 static struct uuid gpt_uuid_ms_spaces = GPT_ENT_TYPE_MS_SPACES;
202 static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD;
203 static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD;
204 static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS;
205 static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS;
206 static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID;
207 static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP;
208 static struct uuid gpt_uuid_openbsd_data = GPT_ENT_TYPE_OPENBSD_DATA;
209 static struct uuid gpt_uuid_prep_boot = GPT_ENT_TYPE_PREP_BOOT;
210 static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED;
211 static struct uuid gpt_uuid_vmfs = GPT_ENT_TYPE_VMFS;
212 static struct uuid gpt_uuid_vmkdiag = GPT_ENT_TYPE_VMKDIAG;
213 static struct uuid gpt_uuid_vmreserved = GPT_ENT_TYPE_VMRESERVED;
214 static struct uuid gpt_uuid_vmvsanhdr = GPT_ENT_TYPE_VMVSANHDR;
215
216 static struct g_part_uuid_alias {
217         struct uuid *uuid;
218         int alias;
219         int mbrtype;
220 } gpt_uuid_alias_match[] = {
221         { &gpt_uuid_apple_apfs,         G_PART_ALIAS_APPLE_APFS,         0 },
222         { &gpt_uuid_apple_boot,         G_PART_ALIAS_APPLE_BOOT,         0xab },
223         { &gpt_uuid_apple_core_storage, G_PART_ALIAS_APPLE_CORE_STORAGE, 0 },
224         { &gpt_uuid_apple_hfs,          G_PART_ALIAS_APPLE_HFS,          0xaf },
225         { &gpt_uuid_apple_label,        G_PART_ALIAS_APPLE_LABEL,        0 },
226         { &gpt_uuid_apple_raid,         G_PART_ALIAS_APPLE_RAID,         0 },
227         { &gpt_uuid_apple_raid_offline, G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 },
228         { &gpt_uuid_apple_tv_recovery,  G_PART_ALIAS_APPLE_TV_RECOVERY,  0 },
229         { &gpt_uuid_apple_ufs,          G_PART_ALIAS_APPLE_UFS,          0 },
230         { &gpt_uuid_bios_boot,          G_PART_ALIAS_BIOS_BOOT,          0 },
231         { &gpt_uuid_chromeos_firmware,  G_PART_ALIAS_CHROMEOS_FIRMWARE,  0 },
232         { &gpt_uuid_chromeos_kernel,    G_PART_ALIAS_CHROMEOS_KERNEL,    0 },
233         { &gpt_uuid_chromeos_reserved,  G_PART_ALIAS_CHROMEOS_RESERVED,  0 },
234         { &gpt_uuid_chromeos_root,      G_PART_ALIAS_CHROMEOS_ROOT,      0 },
235         { &gpt_uuid_dfbsd_ccd,          G_PART_ALIAS_DFBSD_CCD,          0 },
236         { &gpt_uuid_dfbsd_hammer,       G_PART_ALIAS_DFBSD_HAMMER,       0 },
237         { &gpt_uuid_dfbsd_hammer2,      G_PART_ALIAS_DFBSD_HAMMER2,      0 },
238         { &gpt_uuid_dfbsd_label32,      G_PART_ALIAS_DFBSD,              0xa5 },
239         { &gpt_uuid_dfbsd_label64,      G_PART_ALIAS_DFBSD64,            0xa5 },
240         { &gpt_uuid_dfbsd_legacy,       G_PART_ALIAS_DFBSD_LEGACY,       0 },
241         { &gpt_uuid_dfbsd_swap,         G_PART_ALIAS_DFBSD_SWAP,         0 },
242         { &gpt_uuid_dfbsd_ufs1,         G_PART_ALIAS_DFBSD_UFS,          0 },
243         { &gpt_uuid_dfbsd_vinum,        G_PART_ALIAS_DFBSD_VINUM,        0 },
244         { &gpt_uuid_efi,                G_PART_ALIAS_EFI,                0xee },
245         { &gpt_uuid_freebsd,            G_PART_ALIAS_FREEBSD,            0xa5 },
246         { &gpt_uuid_freebsd_boot,       G_PART_ALIAS_FREEBSD_BOOT,       0 },
247         { &gpt_uuid_freebsd_nandfs,     G_PART_ALIAS_FREEBSD_NANDFS,     0 },
248         { &gpt_uuid_freebsd_swap,       G_PART_ALIAS_FREEBSD_SWAP,       0 },
249         { &gpt_uuid_freebsd_ufs,        G_PART_ALIAS_FREEBSD_UFS,        0 },
250         { &gpt_uuid_freebsd_vinum,      G_PART_ALIAS_FREEBSD_VINUM,      0 },
251         { &gpt_uuid_freebsd_zfs,        G_PART_ALIAS_FREEBSD_ZFS,        0 },
252         { &gpt_uuid_linux_data,         G_PART_ALIAS_LINUX_DATA,         0x0b },
253         { &gpt_uuid_linux_lvm,          G_PART_ALIAS_LINUX_LVM,          0 },
254         { &gpt_uuid_linux_raid,         G_PART_ALIAS_LINUX_RAID,         0 },
255         { &gpt_uuid_linux_swap,         G_PART_ALIAS_LINUX_SWAP,         0 },
256         { &gpt_uuid_mbr,                G_PART_ALIAS_MBR,                0 },
257         { &gpt_uuid_ms_basic_data,      G_PART_ALIAS_MS_BASIC_DATA,      0x0b },
258         { &gpt_uuid_ms_ldm_data,        G_PART_ALIAS_MS_LDM_DATA,        0 },
259         { &gpt_uuid_ms_ldm_metadata,    G_PART_ALIAS_MS_LDM_METADATA,    0 },
260         { &gpt_uuid_ms_recovery,        G_PART_ALIAS_MS_RECOVERY,        0 },
261         { &gpt_uuid_ms_reserved,        G_PART_ALIAS_MS_RESERVED,        0 },
262         { &gpt_uuid_ms_spaces,          G_PART_ALIAS_MS_SPACES,          0 },
263         { &gpt_uuid_netbsd_ccd,         G_PART_ALIAS_NETBSD_CCD,         0 },
264         { &gpt_uuid_netbsd_cgd,         G_PART_ALIAS_NETBSD_CGD,         0 },
265         { &gpt_uuid_netbsd_ffs,         G_PART_ALIAS_NETBSD_FFS,         0 },
266         { &gpt_uuid_netbsd_lfs,         G_PART_ALIAS_NETBSD_LFS,         0 },
267         { &gpt_uuid_netbsd_raid,        G_PART_ALIAS_NETBSD_RAID,        0 },
268         { &gpt_uuid_netbsd_swap,        G_PART_ALIAS_NETBSD_SWAP,        0 },
269         { &gpt_uuid_openbsd_data,       G_PART_ALIAS_OPENBSD_DATA,       0 },
270         { &gpt_uuid_prep_boot,          G_PART_ALIAS_PREP_BOOT,          0x41 },
271         { &gpt_uuid_vmfs,               G_PART_ALIAS_VMFS,               0 },
272         { &gpt_uuid_vmkdiag,            G_PART_ALIAS_VMKDIAG,            0 },
273         { &gpt_uuid_vmreserved,         G_PART_ALIAS_VMRESERVED,         0 },
274         { &gpt_uuid_vmvsanhdr,          G_PART_ALIAS_VMVSANHDR,          0 },
275         { NULL, 0, 0 }
276 };
277
278 static int
279 gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start,
280     quad_t end)
281 {
282
283         if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX)
284                 return (EINVAL);
285
286         mbr += DOSPARTOFF + idx * DOSPARTSIZE;
287         mbr[0] = 0;
288         if (start == 1) {
289                 /*
290                  * Treat the PMBR partition specially to maximize
291                  * interoperability with BIOSes.
292                  */
293                 mbr[1] = mbr[3] = 0;
294                 mbr[2] = 2;
295         } else
296                 mbr[1] = mbr[2] = mbr[3] = 0xff;
297         mbr[4] = typ;
298         mbr[5] = mbr[6] = mbr[7] = 0xff;
299         le32enc(mbr + 8, (uint32_t)start);
300         le32enc(mbr + 12, (uint32_t)(end - start + 1));
301         return (0);
302 }
303
304 static int
305 gpt_map_type(struct uuid *t)
306 {
307         struct g_part_uuid_alias *uap;
308
309         for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
310                 if (EQUUID(t, uap->uuid))
311                         return (uap->mbrtype);
312         }
313         return (0);
314 }
315
316 static void
317 gpt_create_pmbr(struct g_part_gpt_table *table, struct g_provider *pp)
318 {
319
320         bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
321         gpt_write_mbr_entry(table->mbr, 0, 0xee, 1,
322             MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX));
323         le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC);
324 }
325
326 /*
327  * Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the
328  * whole disk anymore. Rather, it covers the GPT table and the EFI
329  * system partition only. This way the HFS+ partition and any FAT
330  * partitions can be added to the MBR without creating an overlap.
331  */
332 static int
333 gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname)
334 {
335         uint8_t *p;
336
337         p = table->mbr + DOSPARTOFF;
338         if (p[4] != 0xee || le32dec(p + 8) != 1)
339                 return (0);
340
341         p += DOSPARTSIZE;
342         if (p[4] != 0xaf)
343                 return (0);
344
345         printf("GEOM: %s: enabling Boot Camp\n", provname);
346         return (1);
347 }
348
349 static void
350 gpt_update_bootcamp(struct g_part_table *basetable, struct g_provider *pp)
351 {
352         struct g_part_entry *baseentry;
353         struct g_part_gpt_entry *entry;
354         struct g_part_gpt_table *table;
355         int bootable, error, index, slices, typ;
356
357         table = (struct g_part_gpt_table *)basetable;
358
359         bootable = -1;
360         for (index = 0; index < NDOSPART; index++) {
361                 if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index])
362                         bootable = index;
363         }
364
365         bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
366         slices = 0;
367         LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
368                 if (baseentry->gpe_deleted)
369                         continue;
370                 index = baseentry->gpe_index - 1;
371                 if (index >= NDOSPART)
372                         continue;
373
374                 entry = (struct g_part_gpt_entry *)baseentry;
375
376                 switch (index) {
377                 case 0: /* This must be the EFI system partition. */
378                         if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi))
379                                 goto disable;
380                         error = gpt_write_mbr_entry(table->mbr, index, 0xee,
381                             1ull, entry->ent.ent_lba_end);
382                         break;
383                 case 1: /* This must be the HFS+ partition. */
384                         if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs))
385                                 goto disable;
386                         error = gpt_write_mbr_entry(table->mbr, index, 0xaf,
387                             entry->ent.ent_lba_start, entry->ent.ent_lba_end);
388                         break;
389                 default:
390                         typ = gpt_map_type(&entry->ent.ent_type);
391                         error = gpt_write_mbr_entry(table->mbr, index, typ,
392                             entry->ent.ent_lba_start, entry->ent.ent_lba_end);
393                         break;
394                 }
395                 if (error)
396                         continue;
397
398                 if (index == bootable)
399                         table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80;
400                 slices |= 1 << index;
401         }
402         if ((slices & 3) == 3)
403                 return;
404
405  disable:
406         table->bootcamp = 0;
407         gpt_create_pmbr(table, pp);
408 }
409
410 static struct gpt_hdr *
411 gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp,
412     enum gpt_elt elt)
413 {
414         struct gpt_hdr *buf, *hdr;
415         struct g_provider *pp;
416         quad_t lba, last;
417         int error;
418         uint32_t crc, sz;
419
420         pp = cp->provider;
421         last = (pp->mediasize / pp->sectorsize) - 1;
422         table->state[elt] = GPT_STATE_MISSING;
423         /*
424          * If the primary header is valid look for secondary
425          * header in AlternateLBA, otherwise in the last medium's LBA.
426          */
427         if (elt == GPT_ELT_SECHDR) {
428                 if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK)
429                         table->lba[elt] = last;
430         } else
431                 table->lba[elt] = 1;
432         buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize,
433             &error);
434         if (buf == NULL)
435                 return (NULL);
436         hdr = NULL;
437         if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0)
438                 goto fail;
439
440         table->state[elt] = GPT_STATE_CORRUPT;
441         sz = le32toh(buf->hdr_size);
442         if (sz < 92 || sz > pp->sectorsize)
443                 goto fail;
444
445         hdr = g_malloc(sz, M_WAITOK | M_ZERO);
446         bcopy(buf, hdr, sz);
447         hdr->hdr_size = sz;
448
449         crc = le32toh(buf->hdr_crc_self);
450         buf->hdr_crc_self = 0;
451         if (crc32(buf, sz) != crc)
452                 goto fail;
453         hdr->hdr_crc_self = crc;
454
455         table->state[elt] = GPT_STATE_INVALID;
456         hdr->hdr_revision = le32toh(buf->hdr_revision);
457         if (hdr->hdr_revision < GPT_HDR_REVISION)
458                 goto fail;
459         hdr->hdr_lba_self = le64toh(buf->hdr_lba_self);
460         if (hdr->hdr_lba_self != table->lba[elt])
461                 goto fail;
462         hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt);
463         if (hdr->hdr_lba_alt == hdr->hdr_lba_self ||
464             hdr->hdr_lba_alt > last)
465                 goto fail;
466
467         /* Check the managed area. */
468         hdr->hdr_lba_start = le64toh(buf->hdr_lba_start);
469         if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last)
470                 goto fail;
471         hdr->hdr_lba_end = le64toh(buf->hdr_lba_end);
472         if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last)
473                 goto fail;
474
475         /* Check the table location and size of the table. */
476         hdr->hdr_entries = le32toh(buf->hdr_entries);
477         hdr->hdr_entsz = le32toh(buf->hdr_entsz);
478         if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 ||
479             (hdr->hdr_entsz & 7) != 0)
480                 goto fail;
481         hdr->hdr_lba_table = le64toh(buf->hdr_lba_table);
482         if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last)
483                 goto fail;
484         if (hdr->hdr_lba_table >= hdr->hdr_lba_start &&
485             hdr->hdr_lba_table <= hdr->hdr_lba_end)
486                 goto fail;
487         lba = hdr->hdr_lba_table +
488             howmany(hdr->hdr_entries * hdr->hdr_entsz, pp->sectorsize) - 1;
489         if (lba >= last)
490                 goto fail;
491         if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end)
492                 goto fail;
493
494         table->state[elt] = GPT_STATE_OK;
495         le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid);
496         hdr->hdr_crc_table = le32toh(buf->hdr_crc_table);
497
498         /* save LBA for secondary header */
499         if (elt == GPT_ELT_PRIHDR)
500                 table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt;
501
502         g_free(buf);
503         return (hdr);
504
505  fail:
506         if (hdr != NULL)
507                 g_free(hdr);
508         g_free(buf);
509         return (NULL);
510 }
511
512 static struct gpt_ent *
513 gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp,
514     enum gpt_elt elt, struct gpt_hdr *hdr)
515 {
516         struct g_provider *pp;
517         struct gpt_ent *ent, *tbl;
518         char *buf, *p;
519         unsigned int idx, sectors, tblsz, size;
520         int error;
521
522         if (hdr == NULL)
523                 return (NULL);
524
525         pp = cp->provider;
526         table->lba[elt] = hdr->hdr_lba_table;
527
528         table->state[elt] = GPT_STATE_MISSING;
529         tblsz = hdr->hdr_entries * hdr->hdr_entsz;
530         sectors = howmany(tblsz, pp->sectorsize);
531         buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO);
532         for (idx = 0; idx < sectors; idx += MAXPHYS / pp->sectorsize) {
533                 size = (sectors - idx > MAXPHYS / pp->sectorsize) ?  MAXPHYS:
534                     (sectors - idx) * pp->sectorsize;
535                 p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize,
536                     size, &error);
537                 if (p == NULL) {
538                         g_free(buf);
539                         return (NULL);
540                 }
541                 bcopy(p, buf + idx * pp->sectorsize, size);
542                 g_free(p);
543         }
544         table->state[elt] = GPT_STATE_CORRUPT;
545         if (crc32(buf, tblsz) != hdr->hdr_crc_table) {
546                 g_free(buf);
547                 return (NULL);
548         }
549
550         table->state[elt] = GPT_STATE_OK;
551         tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent),
552             M_WAITOK | M_ZERO);
553
554         for (idx = 0, ent = tbl, p = buf;
555              idx < hdr->hdr_entries;
556              idx++, ent++, p += hdr->hdr_entsz) {
557                 le_uuid_dec(p, &ent->ent_type);
558                 le_uuid_dec(p + 16, &ent->ent_uuid);
559                 ent->ent_lba_start = le64dec(p + 32);
560                 ent->ent_lba_end = le64dec(p + 40);
561                 ent->ent_attr = le64dec(p + 48);
562                 /* Keep UTF-16 in little-endian. */
563                 bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name));
564         }
565
566         g_free(buf);
567         return (tbl);
568 }
569
570 static int
571 gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec)
572 {
573
574         if (pri == NULL || sec == NULL)
575                 return (0);
576
577         if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid))
578                 return (0);
579         return ((pri->hdr_revision == sec->hdr_revision &&
580             pri->hdr_size == sec->hdr_size &&
581             pri->hdr_lba_start == sec->hdr_lba_start &&
582             pri->hdr_lba_end == sec->hdr_lba_end &&
583             pri->hdr_entries == sec->hdr_entries &&
584             pri->hdr_entsz == sec->hdr_entsz &&
585             pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0);
586 }
587
588 static int
589 gpt_parse_type(const char *type, struct uuid *uuid)
590 {
591         struct uuid tmp;
592         const char *alias;
593         int error;
594         struct g_part_uuid_alias *uap;
595
596         if (type[0] == '!') {
597                 error = parse_uuid(type + 1, &tmp);
598                 if (error)
599                         return (error);
600                 if (EQUUID(&tmp, &gpt_uuid_unused))
601                         return (EINVAL);
602                 *uuid = tmp;
603                 return (0);
604         }
605         for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
606                 alias = g_part_alias_name(uap->alias);
607                 if (!strcasecmp(type, alias)) {
608                         *uuid = *uap->uuid;
609                         return (0);
610                 }
611         }
612         return (EINVAL);
613 }
614
615 static int
616 g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry,
617     struct g_part_parms *gpp)
618 {
619         struct g_part_gpt_entry *entry;
620         int error;
621
622         entry = (struct g_part_gpt_entry *)baseentry;
623         error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
624         if (error)
625                 return (error);
626         kern_uuidgen(&entry->ent.ent_uuid, 1);
627         entry->ent.ent_lba_start = baseentry->gpe_start;
628         entry->ent.ent_lba_end = baseentry->gpe_end;
629         if (baseentry->gpe_deleted) {
630                 entry->ent.ent_attr = 0;
631                 bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name));
632         }
633         if (gpp->gpp_parms & G_PART_PARM_LABEL)
634                 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
635                     sizeof(entry->ent.ent_name) /
636                     sizeof(entry->ent.ent_name[0]));
637         return (0);
638 }
639
640 static int
641 g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp)
642 {
643         struct g_part_gpt_table *table;
644         size_t codesz;
645
646         codesz = DOSPARTOFF;
647         table = (struct g_part_gpt_table *)basetable;
648         bzero(table->mbr, codesz);
649         codesz = MIN(codesz, gpp->gpp_codesize);
650         if (codesz > 0)
651                 bcopy(gpp->gpp_codeptr, table->mbr, codesz);
652         return (0);
653 }
654
655 static int
656 g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp)
657 {
658         struct g_provider *pp;
659         struct g_part_gpt_table *table;
660         size_t tblsz;
661
662         /* Our depth should be 0 unless nesting was explicitly enabled. */
663         if (!allow_nesting && basetable->gpt_depth != 0)
664                 return (ENXIO);
665
666         table = (struct g_part_gpt_table *)basetable;
667         pp = gpp->gpp_provider;
668         tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent),
669             pp->sectorsize);
670         if (pp->sectorsize < MBRSIZE ||
671             pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) *
672             pp->sectorsize)
673                 return (ENOSPC);
674
675         gpt_create_pmbr(table, pp);
676
677         /* Allocate space for the header */
678         table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO);
679
680         bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
681         table->hdr->hdr_revision = GPT_HDR_REVISION;
682         table->hdr->hdr_size = offsetof(struct gpt_hdr, padding);
683         kern_uuidgen(&table->hdr->hdr_uuid, 1);
684         table->hdr->hdr_entries = basetable->gpt_entries;
685         table->hdr->hdr_entsz = sizeof(struct gpt_ent);
686
687         g_gpt_set_defaults(basetable, pp);
688         return (0);
689 }
690
691 static int
692 g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp)
693 {
694         struct g_part_gpt_table *table;
695         struct g_provider *pp;
696
697         table = (struct g_part_gpt_table *)basetable;
698         pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
699         g_free(table->hdr);
700         table->hdr = NULL;
701
702         /*
703          * Wipe the first 2 sectors and last one to clear the partitioning.
704          * Wipe sectors only if they have valid metadata.
705          */
706         if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK)
707                 basetable->gpt_smhead |= 3;
708         if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
709             table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1)
710                 basetable->gpt_smtail |= 1;
711         return (0);
712 }
713
714 static void
715 g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry,
716     struct sbuf *sb, const char *indent)
717 {
718         struct g_part_gpt_entry *entry;
719
720         entry = (struct g_part_gpt_entry *)baseentry;
721         if (indent == NULL) {
722                 /* conftxt: libdisk compatibility */
723                 sbuf_cat(sb, " xs GPT xt ");
724                 sbuf_printf_uuid(sb, &entry->ent.ent_type);
725         } else if (entry != NULL) {
726                 /* confxml: partition entry information */
727                 sbuf_printf(sb, "%s<label>", indent);
728                 g_gpt_printf_utf16(sb, entry->ent.ent_name,
729                     sizeof(entry->ent.ent_name) >> 1);
730                 sbuf_cat(sb, "</label>\n");
731                 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME)
732                         sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent);
733                 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) {
734                         sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n",
735                             indent);
736                 }
737                 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) {
738                         sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n",
739                             indent);
740                 }
741                 sbuf_printf(sb, "%s<rawtype>", indent);
742                 sbuf_printf_uuid(sb, &entry->ent.ent_type);
743                 sbuf_cat(sb, "</rawtype>\n");
744                 sbuf_printf(sb, "%s<rawuuid>", indent);
745                 sbuf_printf_uuid(sb, &entry->ent.ent_uuid);
746                 sbuf_cat(sb, "</rawuuid>\n");
747                 sbuf_printf(sb, "%s<efimedia>", indent);
748                 sbuf_printf(sb, "HD(%d,GPT,", entry->base.gpe_index);
749                 sbuf_printf_uuid(sb, &entry->ent.ent_uuid);
750                 sbuf_printf(sb, ",%#jx,%#jx)", (intmax_t)entry->base.gpe_start,
751                     (intmax_t)(entry->base.gpe_end - entry->base.gpe_start + 1));
752                 sbuf_cat(sb, "</efimedia>\n");
753         } else {
754                 /* confxml: scheme information */
755         }
756 }
757
758 static int
759 g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry)
760 {
761         struct g_part_gpt_entry *entry;
762
763         entry = (struct g_part_gpt_entry *)baseentry;
764         return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) ||
765             EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap) ||
766             EQUUID(&entry->ent.ent_type, &gpt_uuid_dfbsd_swap)) ? 1 : 0);
767 }
768
769 static int
770 g_part_gpt_modify(struct g_part_table *basetable,
771     struct g_part_entry *baseentry, struct g_part_parms *gpp)
772 {
773         struct g_part_gpt_entry *entry;
774         int error;
775
776         entry = (struct g_part_gpt_entry *)baseentry;
777         if (gpp->gpp_parms & G_PART_PARM_TYPE) {
778                 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
779                 if (error)
780                         return (error);
781         }
782         if (gpp->gpp_parms & G_PART_PARM_LABEL)
783                 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
784                     sizeof(entry->ent.ent_name) /
785                     sizeof(entry->ent.ent_name[0]));
786         return (0);
787 }
788
789 static int
790 g_part_gpt_resize(struct g_part_table *basetable,
791     struct g_part_entry *baseentry, struct g_part_parms *gpp)
792 {
793         struct g_part_gpt_entry *entry;
794
795         if (baseentry == NULL)
796                 return (g_part_gpt_recover(basetable));
797
798         entry = (struct g_part_gpt_entry *)baseentry;
799         baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1;
800         entry->ent.ent_lba_end = baseentry->gpe_end;
801
802         return (0);
803 }
804
805 static const char *
806 g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry,
807     char *buf, size_t bufsz)
808 {
809         struct g_part_gpt_entry *entry;
810         char c;
811
812         entry = (struct g_part_gpt_entry *)baseentry;
813         c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p';
814         snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index);
815         return (buf);
816 }
817
818 static int
819 g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp)
820 {
821         struct g_provider *pp;
822         u_char *buf;
823         int error, index, pri, res;
824
825         /* Our depth should be 0 unless nesting was explicitly enabled. */
826         if (!allow_nesting && table->gpt_depth != 0)
827                 return (ENXIO);
828
829         pp = cp->provider;
830
831         /*
832          * Sanity-check the provider. Since the first sector on the provider
833          * must be a PMBR and a PMBR is 512 bytes large, the sector size
834          * must be at least 512 bytes.  Also, since the theoretical minimum
835          * number of sectors needed by GPT is 6, any medium that has less
836          * than 6 sectors is never going to be able to hold a GPT. The
837          * number 6 comes from:
838          *      1 sector for the PMBR
839          *      2 sectors for the GPT headers (each 1 sector)
840          *      2 sectors for the GPT tables (each 1 sector)
841          *      1 sector for an actual partition
842          * It's better to catch this pathological case early than behaving
843          * pathologically later on...
844          */
845         if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize)
846                 return (ENOSPC);
847
848         /*
849          * Check that there's a MBR or a PMBR. If it's a PMBR, we return
850          * as the highest priority on a match, otherwise we assume some
851          * GPT-unaware tool has destroyed the GPT by recreating a MBR and
852          * we really want the MBR scheme to take precedence.
853          */
854         buf = g_read_data(cp, 0L, pp->sectorsize, &error);
855         if (buf == NULL)
856                 return (error);
857         res = le16dec(buf + DOSMAGICOFFSET);
858         pri = G_PART_PROBE_PRI_LOW;
859         if (res == DOSMAGIC) {
860                 for (index = 0; index < NDOSPART; index++) {
861                         if (buf[DOSPARTOFF + DOSPARTSIZE * index + 4] == 0xee)
862                                 pri = G_PART_PROBE_PRI_HIGH;
863                 }
864                 g_free(buf);
865
866                 /* Check that there's a primary header. */
867                 buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error);
868                 if (buf == NULL)
869                         return (error);
870                 res = memcmp(buf, GPT_HDR_SIG, 8);
871                 g_free(buf);
872                 if (res == 0)
873                         return (pri);
874         } else
875                 g_free(buf);
876
877         /* No primary? Check that there's a secondary. */
878         buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize,
879             &error);
880         if (buf == NULL)
881                 return (error);
882         res = memcmp(buf, GPT_HDR_SIG, 8);
883         g_free(buf);
884         return ((res == 0) ? pri : ENXIO);
885 }
886
887 static int
888 g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp)
889 {
890         struct gpt_hdr *prihdr, *sechdr;
891         struct gpt_ent *tbl, *pritbl, *sectbl;
892         struct g_provider *pp;
893         struct g_part_gpt_table *table;
894         struct g_part_gpt_entry *entry;
895         u_char *buf;
896         uint64_t last;
897         int error, index;
898
899         table = (struct g_part_gpt_table *)basetable;
900         pp = cp->provider;
901         last = (pp->mediasize / pp->sectorsize) - 1;
902
903         /* Read the PMBR */
904         buf = g_read_data(cp, 0, pp->sectorsize, &error);
905         if (buf == NULL)
906                 return (error);
907         bcopy(buf, table->mbr, MBRSIZE);
908         g_free(buf);
909
910         /* Read the primary header and table. */
911         prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR);
912         if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) {
913                 pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr);
914         } else {
915                 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
916                 pritbl = NULL;
917         }
918
919         /* Read the secondary header and table. */
920         sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR);
921         if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) {
922                 sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr);
923         } else {
924                 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
925                 sectbl = NULL;
926         }
927
928         /* Fail if we haven't got any good tables at all. */
929         if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK &&
930             table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
931                 printf("GEOM: %s: corrupt or invalid GPT detected.\n",
932                     pp->name);
933                 printf("GEOM: %s: GPT rejected -- may not be recoverable.\n",
934                     pp->name);
935                 if (prihdr != NULL)
936                         g_free(prihdr);
937                 if (pritbl != NULL)
938                         g_free(pritbl);
939                 if (sechdr != NULL)
940                         g_free(sechdr);
941                 if (sectbl != NULL)
942                         g_free(sectbl);
943                 return (EINVAL);
944         }
945
946         /*
947          * If both headers are good but they disagree with each other,
948          * then invalidate one. We prefer to keep the primary header,
949          * unless the primary table is corrupt.
950          */
951         if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK &&
952             table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
953             !gpt_matched_hdrs(prihdr, sechdr)) {
954                 if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) {
955                         table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID;
956                         table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
957                         g_free(sechdr);
958                         sechdr = NULL;
959                 } else {
960                         table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID;
961                         table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
962                         g_free(prihdr);
963                         prihdr = NULL;
964                 }
965         }
966
967         if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) {
968                 printf("GEOM: %s: the primary GPT table is corrupt or "
969                     "invalid.\n", pp->name);
970                 printf("GEOM: %s: using the secondary instead -- recovery "
971                     "strongly advised.\n", pp->name);
972                 table->hdr = sechdr;
973                 basetable->gpt_corrupt = 1;
974                 if (prihdr != NULL)
975                         g_free(prihdr);
976                 tbl = sectbl;
977                 if (pritbl != NULL)
978                         g_free(pritbl);
979         } else {
980                 if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
981                         printf("GEOM: %s: the secondary GPT table is corrupt "
982                             "or invalid.\n", pp->name);
983                         printf("GEOM: %s: using the primary only -- recovery "
984                             "suggested.\n", pp->name);
985                         basetable->gpt_corrupt = 1;
986                 } else if (table->lba[GPT_ELT_SECHDR] != last) {
987                         printf( "GEOM: %s: the secondary GPT header is not in "
988                             "the last LBA.\n", pp->name);
989                         basetable->gpt_corrupt = 1;
990                 }
991                 table->hdr = prihdr;
992                 if (sechdr != NULL)
993                         g_free(sechdr);
994                 tbl = pritbl;
995                 if (sectbl != NULL)
996                         g_free(sectbl);
997         }
998
999         basetable->gpt_first = table->hdr->hdr_lba_start;
1000         basetable->gpt_last = table->hdr->hdr_lba_end;
1001         basetable->gpt_entries = table->hdr->hdr_entries;
1002
1003         for (index = basetable->gpt_entries - 1; index >= 0; index--) {
1004                 if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused))
1005                         continue;
1006                 entry = (struct g_part_gpt_entry *)g_part_new_entry(
1007                     basetable, index + 1, tbl[index].ent_lba_start,
1008                     tbl[index].ent_lba_end);
1009                 entry->ent = tbl[index];
1010         }
1011
1012         g_free(tbl);
1013
1014         /*
1015          * Under Mac OS X, the MBR mirrors the first 4 GPT partitions
1016          * if (and only if) any FAT32 or FAT16 partitions have been
1017          * created. This happens irrespective of whether Boot Camp is
1018          * used/enabled, though it's generally understood to be done
1019          * to support legacy Windows under Boot Camp. We refer to this
1020          * mirroring simply as Boot Camp. We try to detect Boot Camp
1021          * so that we can update the MBR if and when GPT changes have
1022          * been made. Note that we do not enable Boot Camp if not
1023          * previously enabled because we can't assume that we're on a
1024          * Mac alongside Mac OS X.
1025          */
1026         table->bootcamp = gpt_is_bootcamp(table, pp->name);
1027
1028         return (0);
1029 }
1030
1031 static int
1032 g_part_gpt_recover(struct g_part_table *basetable)
1033 {
1034         struct g_part_gpt_table *table;
1035         struct g_provider *pp;
1036
1037         table = (struct g_part_gpt_table *)basetable;
1038         pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
1039         gpt_create_pmbr(table, pp);
1040         g_gpt_set_defaults(basetable, pp);
1041         basetable->gpt_corrupt = 0;
1042         return (0);
1043 }
1044
1045 static int
1046 g_part_gpt_setunset(struct g_part_table *basetable,
1047     struct g_part_entry *baseentry, const char *attrib, unsigned int set)
1048 {
1049         struct g_part_gpt_entry *entry;
1050         struct g_part_gpt_table *table;
1051         struct g_provider *pp;
1052         uint8_t *p;
1053         uint64_t attr;
1054         int i;
1055
1056         table = (struct g_part_gpt_table *)basetable;
1057         entry = (struct g_part_gpt_entry *)baseentry;
1058
1059         if (strcasecmp(attrib, "active") == 0) {
1060                 if (table->bootcamp) {
1061                         /* The active flag must be set on a valid entry. */
1062                         if (entry == NULL)
1063                                 return (ENXIO);
1064                         if (baseentry->gpe_index > NDOSPART)
1065                                 return (EINVAL);
1066                         for (i = 0; i < NDOSPART; i++) {
1067                                 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE];
1068                                 p[0] = (i == baseentry->gpe_index - 1)
1069                                     ? ((set) ? 0x80 : 0) : 0;
1070                         }
1071                 } else {
1072                         /* The PMBR is marked as active without an entry. */
1073                         if (entry != NULL)
1074                                 return (ENXIO);
1075                         for (i = 0; i < NDOSPART; i++) {
1076                                 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE];
1077                                 p[0] = (p[4] == 0xee) ? ((set) ? 0x80 : 0) : 0;
1078                         }
1079                 }
1080                 return (0);
1081         } else if (strcasecmp(attrib, "lenovofix") == 0) {
1082                 /*
1083                  * Write the 0xee GPT entry to slot #1 (2nd slot) in the pMBR.
1084                  * This workaround allows Lenovo X220, T420, T520, etc to boot
1085                  * from GPT Partitions in BIOS mode.
1086                  */
1087
1088                 if (entry != NULL)
1089                         return (ENXIO);
1090
1091                 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
1092                 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
1093                 gpt_write_mbr_entry(table->mbr, ((set) ? 1 : 0), 0xee, 1,
1094                     MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX));
1095                 return (0);
1096         }
1097
1098         if (entry == NULL)
1099                 return (ENODEV);
1100
1101         attr = 0;
1102         if (strcasecmp(attrib, "bootme") == 0) {
1103                 attr |= GPT_ENT_ATTR_BOOTME;
1104         } else if (strcasecmp(attrib, "bootonce") == 0) {
1105                 attr |= GPT_ENT_ATTR_BOOTONCE;
1106                 if (set)
1107                         attr |= GPT_ENT_ATTR_BOOTME;
1108         } else if (strcasecmp(attrib, "bootfailed") == 0) {
1109                 /*
1110                  * It should only be possible to unset BOOTFAILED, but it might
1111                  * be useful for test purposes to also be able to set it.
1112                  */
1113                 attr |= GPT_ENT_ATTR_BOOTFAILED;
1114         }
1115         if (attr == 0)
1116                 return (EINVAL);
1117
1118         if (set)
1119                 attr = entry->ent.ent_attr | attr;
1120         else
1121                 attr = entry->ent.ent_attr & ~attr;
1122         if (attr != entry->ent.ent_attr) {
1123                 entry->ent.ent_attr = attr;
1124                 if (!baseentry->gpe_created)
1125                         baseentry->gpe_modified = 1;
1126         }
1127         return (0);
1128 }
1129
1130 static const char *
1131 g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry,
1132     char *buf, size_t bufsz)
1133 {
1134         struct g_part_gpt_entry *entry;
1135         struct uuid *type;
1136         struct g_part_uuid_alias *uap;
1137
1138         entry = (struct g_part_gpt_entry *)baseentry;
1139         type = &entry->ent.ent_type;
1140         for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++)
1141                 if (EQUUID(type, uap->uuid))
1142                         return (g_part_alias_name(uap->alias));
1143         buf[0] = '!';
1144         snprintf_uuid(buf + 1, bufsz - 1, type);
1145
1146         return (buf);
1147 }
1148
1149 static int
1150 g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp)
1151 {
1152         unsigned char *buf, *bp;
1153         struct g_provider *pp;
1154         struct g_part_entry *baseentry;
1155         struct g_part_gpt_entry *entry;
1156         struct g_part_gpt_table *table;
1157         size_t tblsz;
1158         uint32_t crc;
1159         int error, index;
1160
1161         pp = cp->provider;
1162         table = (struct g_part_gpt_table *)basetable;
1163         tblsz = howmany(table->hdr->hdr_entries * table->hdr->hdr_entsz,
1164             pp->sectorsize);
1165
1166         /* Reconstruct the MBR from the GPT if under Boot Camp. */
1167         if (table->bootcamp)
1168                 gpt_update_bootcamp(basetable, pp);
1169
1170         /* Write the PMBR */
1171         buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO);
1172         bcopy(table->mbr, buf, MBRSIZE);
1173         error = g_write_data(cp, 0, buf, pp->sectorsize);
1174         g_free(buf);
1175         if (error)
1176                 return (error);
1177
1178         /* Allocate space for the header and entries. */
1179         buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO);
1180
1181         memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
1182         le32enc(buf + 8, table->hdr->hdr_revision);
1183         le32enc(buf + 12, table->hdr->hdr_size);
1184         le64enc(buf + 40, table->hdr->hdr_lba_start);
1185         le64enc(buf + 48, table->hdr->hdr_lba_end);
1186         le_uuid_enc(buf + 56, &table->hdr->hdr_uuid);
1187         le32enc(buf + 80, table->hdr->hdr_entries);
1188         le32enc(buf + 84, table->hdr->hdr_entsz);
1189
1190         LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
1191                 if (baseentry->gpe_deleted)
1192                         continue;
1193                 entry = (struct g_part_gpt_entry *)baseentry;
1194                 index = baseentry->gpe_index - 1;
1195                 bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index;
1196                 le_uuid_enc(bp, &entry->ent.ent_type);
1197                 le_uuid_enc(bp + 16, &entry->ent.ent_uuid);
1198                 le64enc(bp + 32, entry->ent.ent_lba_start);
1199                 le64enc(bp + 40, entry->ent.ent_lba_end);
1200                 le64enc(bp + 48, entry->ent.ent_attr);
1201                 memcpy(bp + 56, entry->ent.ent_name,
1202                     sizeof(entry->ent.ent_name));
1203         }
1204
1205         crc = crc32(buf + pp->sectorsize,
1206             table->hdr->hdr_entries * table->hdr->hdr_entsz);
1207         le32enc(buf + 88, crc);
1208
1209         /* Write primary meta-data. */
1210         le32enc(buf + 16, 0);   /* hdr_crc_self. */
1211         le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]);  /* hdr_lba_self. */
1212         le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]);  /* hdr_lba_alt. */
1213         le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]);  /* hdr_lba_table. */
1214         crc = crc32(buf, table->hdr->hdr_size);
1215         le32enc(buf + 16, crc);
1216
1217         for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) {
1218                 error = g_write_data(cp,
1219                     (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize,
1220                     buf + (index + 1) * pp->sectorsize,
1221                     (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS:
1222                     (tblsz - index) * pp->sectorsize);
1223                 if (error)
1224                         goto out;
1225         }
1226         error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize,
1227             buf, pp->sectorsize);
1228         if (error)
1229                 goto out;
1230
1231         /* Write secondary meta-data. */
1232         le32enc(buf + 16, 0);   /* hdr_crc_self. */
1233         le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]);  /* hdr_lba_self. */
1234         le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]);  /* hdr_lba_alt. */
1235         le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]);  /* hdr_lba_table. */
1236         crc = crc32(buf, table->hdr->hdr_size);
1237         le32enc(buf + 16, crc);
1238
1239         for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) {
1240                 error = g_write_data(cp,
1241                     (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize,
1242                     buf + (index + 1) * pp->sectorsize,
1243                     (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS:
1244                     (tblsz - index) * pp->sectorsize);
1245                 if (error)
1246                         goto out;
1247         }
1248         error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize,
1249             buf, pp->sectorsize);
1250
1251  out:
1252         g_free(buf);
1253         return (error);
1254 }
1255
1256 static void
1257 g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp)
1258 {
1259         struct g_part_entry *baseentry;
1260         struct g_part_gpt_entry *entry;
1261         struct g_part_gpt_table *table;
1262         quad_t start, end, min, max;
1263         quad_t lba, last;
1264         size_t spb, tblsz;
1265
1266         table = (struct g_part_gpt_table *)basetable;
1267         last = pp->mediasize / pp->sectorsize - 1;
1268         tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent),
1269             pp->sectorsize);
1270
1271         table->lba[GPT_ELT_PRIHDR] = 1;
1272         table->lba[GPT_ELT_PRITBL] = 2;
1273         table->lba[GPT_ELT_SECHDR] = last;
1274         table->lba[GPT_ELT_SECTBL] = last - tblsz;
1275         table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK;
1276         table->state[GPT_ELT_PRITBL] = GPT_STATE_OK;
1277         table->state[GPT_ELT_SECHDR] = GPT_STATE_OK;
1278         table->state[GPT_ELT_SECTBL] = GPT_STATE_OK;
1279
1280         max = start = 2 + tblsz;
1281         min = end = last - tblsz - 1;
1282         LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
1283                 if (baseentry->gpe_deleted)
1284                         continue;
1285                 entry = (struct g_part_gpt_entry *)baseentry;
1286                 if (entry->ent.ent_lba_start < min)
1287                         min = entry->ent.ent_lba_start;
1288                 if (entry->ent.ent_lba_end > max)
1289                         max = entry->ent.ent_lba_end;
1290         }
1291         spb = 4096 / pp->sectorsize;
1292         if (spb > 1) {
1293                 lba = start + ((start % spb) ? spb - start % spb : 0);
1294                 if (lba <= min)
1295                         start = lba;
1296                 lba = end - (end + 1) % spb;
1297                 if (max <= lba)
1298                         end = lba;
1299         }
1300         table->hdr->hdr_lba_start = start;
1301         table->hdr->hdr_lba_end = end;
1302
1303         basetable->gpt_first = start;
1304         basetable->gpt_last = end;
1305 }
1306
1307 static void
1308 g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len)
1309 {
1310         u_int bo;
1311         uint32_t ch;
1312         uint16_t c;
1313
1314         bo = LITTLE_ENDIAN;     /* GPT is little-endian */
1315         while (len > 0 && *str != 0) {
1316                 ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str);
1317                 str++, len--;
1318                 if ((ch & 0xf800) == 0xd800) {
1319                         if (len > 0) {
1320                                 c = (bo == BIG_ENDIAN) ? be16toh(*str)
1321                                     : le16toh(*str);
1322                                 str++, len--;
1323                         } else
1324                                 c = 0xfffd;
1325                         if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) {
1326                                 ch = ((ch & 0x3ff) << 10) + (c & 0x3ff);
1327                                 ch += 0x10000;
1328                         } else
1329                                 ch = 0xfffd;
1330                 } else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */
1331                         bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN;
1332                         continue;
1333                 } else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */
1334                         continue;
1335
1336                 /* Write the Unicode character in UTF-8 */
1337                 if (ch < 0x80)
1338                         g_conf_printf_escaped(sb, "%c", ch);
1339                 else if (ch < 0x800)
1340                         g_conf_printf_escaped(sb, "%c%c", 0xc0 | (ch >> 6),
1341                             0x80 | (ch & 0x3f));
1342                 else if (ch < 0x10000)
1343                         g_conf_printf_escaped(sb, "%c%c%c", 0xe0 | (ch >> 12),
1344                             0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1345                 else if (ch < 0x200000)
1346                         g_conf_printf_escaped(sb, "%c%c%c%c", 0xf0 |
1347                             (ch >> 18), 0x80 | ((ch >> 12) & 0x3f),
1348                             0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1349         }
1350 }
1351
1352 static void
1353 g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len)
1354 {
1355         size_t s16idx, s8idx;
1356         uint32_t utfchar;
1357         unsigned int c, utfbytes;
1358
1359         s8idx = s16idx = 0;
1360         utfchar = 0;
1361         utfbytes = 0;
1362         bzero(s16, s16len << 1);
1363         while (s8[s8idx] != 0 && s16idx < s16len) {
1364                 c = s8[s8idx++];
1365                 if ((c & 0xc0) != 0x80) {
1366                         /* Initial characters. */
1367                         if (utfbytes != 0) {
1368                                 /* Incomplete encoding of previous char. */
1369                                 s16[s16idx++] = htole16(0xfffd);
1370                         }
1371                         if ((c & 0xf8) == 0xf0) {
1372                                 utfchar = c & 0x07;
1373                                 utfbytes = 3;
1374                         } else if ((c & 0xf0) == 0xe0) {
1375                                 utfchar = c & 0x0f;
1376                                 utfbytes = 2;
1377                         } else if ((c & 0xe0) == 0xc0) {
1378                                 utfchar = c & 0x1f;
1379                                 utfbytes = 1;
1380                         } else {
1381                                 utfchar = c & 0x7f;
1382                                 utfbytes = 0;
1383                         }
1384                 } else {
1385                         /* Followup characters. */
1386                         if (utfbytes > 0) {
1387                                 utfchar = (utfchar << 6) + (c & 0x3f);
1388                                 utfbytes--;
1389                         } else if (utfbytes == 0)
1390                                 utfbytes = ~0;
1391                 }
1392                 /*
1393                  * Write the complete Unicode character as UTF-16 when we
1394                  * have all the UTF-8 charactars collected.
1395                  */
1396                 if (utfbytes == 0) {
1397                         /*
1398                          * If we need to write 2 UTF-16 characters, but
1399                          * we only have room for 1, then we truncate the
1400                          * string by writing a 0 instead.
1401                          */
1402                         if (utfchar >= 0x10000 && s16idx < s16len - 1) {
1403                                 s16[s16idx++] =
1404                                     htole16(0xd800 | ((utfchar >> 10) - 0x40));
1405                                 s16[s16idx++] =
1406                                     htole16(0xdc00 | (utfchar & 0x3ff));
1407                         } else
1408                                 s16[s16idx++] = (utfchar >= 0x10000) ? 0 :
1409                                     htole16(utfchar);
1410                 }
1411         }
1412         /*
1413          * If our input string was truncated, append an invalid encoding
1414          * character to the output string.
1415          */
1416         if (utfbytes != 0 && s16idx < s16len)
1417                 s16[s16idx++] = htole16(0xfffd);
1418 }