]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/geom/part/g_part_gpt.c
libpcap: Update to 1.10.3
[FreeBSD/FreeBSD.git] / sys / geom / part / g_part_gpt.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/bio.h>
34 #include <sys/diskmbr.h>
35 #include <sys/gsb_crc32.h>
36 #include <sys/endian.h>
37 #include <sys/gpt.h>
38 #include <sys/kernel.h>
39 #include <sys/kobj.h>
40 #include <sys/limits.h>
41 #include <sys/lock.h>
42 #include <sys/malloc.h>
43 #include <sys/mutex.h>
44 #include <sys/queue.h>
45 #include <sys/sbuf.h>
46 #include <sys/systm.h>
47 #include <sys/sysctl.h>
48 #include <sys/uuid.h>
49 #include <geom/geom.h>
50 #include <geom/geom_int.h>
51 #include <geom/part/g_part.h>
52
53 #include "g_part_if.h"
54
55 FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support");
56
57 SYSCTL_DECL(_kern_geom_part);
58 static SYSCTL_NODE(_kern_geom_part, OID_AUTO, gpt,
59     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
60     "GEOM_PART_GPT GUID Partition Table");
61
62 static u_int allow_nesting = 0;
63 SYSCTL_UINT(_kern_geom_part_gpt, OID_AUTO, allow_nesting,
64     CTLFLAG_RWTUN, &allow_nesting, 0, "Allow GPT to be nested inside other schemes");
65
66 CTASSERT(offsetof(struct gpt_hdr, padding) == 92);
67 CTASSERT(sizeof(struct gpt_ent) == 128);
68
69 extern u_int geom_part_check_integrity;
70
71 #define EQUUID(a,b)     (memcmp(a, b, sizeof(struct uuid)) == 0)
72
73 #define MBRSIZE         512
74
75 enum gpt_elt {
76         GPT_ELT_PRIHDR,
77         GPT_ELT_PRITBL,
78         GPT_ELT_SECHDR,
79         GPT_ELT_SECTBL,
80         GPT_ELT_COUNT
81 };
82
83 enum gpt_state {
84         GPT_STATE_UNKNOWN,      /* Not determined. */
85         GPT_STATE_MISSING,      /* No signature found. */
86         GPT_STATE_CORRUPT,      /* Checksum mismatch. */
87         GPT_STATE_INVALID,      /* Nonconformant/invalid. */
88         GPT_STATE_UNSUPPORTED,  /* Not supported. */
89         GPT_STATE_OK            /* Perfectly fine. */
90 };
91
92 struct g_part_gpt_table {
93         struct g_part_table     base;
94         u_char                  mbr[MBRSIZE];
95         struct gpt_hdr          *hdr;
96         quad_t                  lba[GPT_ELT_COUNT];
97         enum gpt_state          state[GPT_ELT_COUNT];
98         int                     bootcamp;
99 };
100
101 struct g_part_gpt_entry {
102         struct g_part_entry     base;
103         struct gpt_ent          ent;
104 };
105
106 static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t);
107 static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t);
108 static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *);
109
110 static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *,
111     struct g_part_parms *);
112 static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *);
113 static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *);
114 static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *);
115 static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *,
116     struct sbuf *, const char *);
117 static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *);
118 static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *,
119     struct g_part_parms *);
120 static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *,
121     char *, size_t);
122 static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *);
123 static int g_part_gpt_read(struct g_part_table *, struct g_consumer *);
124 static int g_part_gpt_setunset(struct g_part_table *table,
125     struct g_part_entry *baseentry, const char *attrib, unsigned int set);
126 static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *,
127     char *, size_t);
128 static int g_part_gpt_write(struct g_part_table *, struct g_consumer *);
129 static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *,
130     struct g_part_parms *);
131 static int g_part_gpt_recover(struct g_part_table *);
132
133 static kobj_method_t g_part_gpt_methods[] = {
134         KOBJMETHOD(g_part_add,          g_part_gpt_add),
135         KOBJMETHOD(g_part_bootcode,     g_part_gpt_bootcode),
136         KOBJMETHOD(g_part_create,       g_part_gpt_create),
137         KOBJMETHOD(g_part_destroy,      g_part_gpt_destroy),
138         KOBJMETHOD(g_part_dumpconf,     g_part_gpt_dumpconf),
139         KOBJMETHOD(g_part_dumpto,       g_part_gpt_dumpto),
140         KOBJMETHOD(g_part_modify,       g_part_gpt_modify),
141         KOBJMETHOD(g_part_resize,       g_part_gpt_resize),
142         KOBJMETHOD(g_part_name,         g_part_gpt_name),
143         KOBJMETHOD(g_part_probe,        g_part_gpt_probe),
144         KOBJMETHOD(g_part_read,         g_part_gpt_read),
145         KOBJMETHOD(g_part_recover,      g_part_gpt_recover),
146         KOBJMETHOD(g_part_setunset,     g_part_gpt_setunset),
147         KOBJMETHOD(g_part_type,         g_part_gpt_type),
148         KOBJMETHOD(g_part_write,        g_part_gpt_write),
149         { 0, 0 }
150 };
151
152 #define MAXENTSIZE 1024
153
154 static struct g_part_scheme g_part_gpt_scheme = {
155         "GPT",
156         g_part_gpt_methods,
157         sizeof(struct g_part_gpt_table),
158         .gps_entrysz = sizeof(struct g_part_gpt_entry),
159         .gps_minent = 128,
160         .gps_maxent = 4096,
161         .gps_bootcodesz = MBRSIZE,
162 };
163 G_PART_SCHEME_DECLARE(g_part_gpt);
164 MODULE_VERSION(geom_part_gpt, 0);
165
166 static struct uuid gpt_uuid_apple_apfs = GPT_ENT_TYPE_APPLE_APFS;
167 static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT;
168 static struct uuid gpt_uuid_apple_core_storage =
169     GPT_ENT_TYPE_APPLE_CORE_STORAGE;
170 static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS;
171 static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL;
172 static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID;
173 static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE;
174 static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY;
175 static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS;
176 static struct uuid gpt_uuid_apple_zfs = GPT_ENT_TYPE_APPLE_ZFS;
177 static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT;
178 static struct uuid gpt_uuid_chromeos_firmware = GPT_ENT_TYPE_CHROMEOS_FIRMWARE;
179 static struct uuid gpt_uuid_chromeos_kernel = GPT_ENT_TYPE_CHROMEOS_KERNEL;
180 static struct uuid gpt_uuid_chromeos_reserved = GPT_ENT_TYPE_CHROMEOS_RESERVED;
181 static struct uuid gpt_uuid_chromeos_root = GPT_ENT_TYPE_CHROMEOS_ROOT;
182 static struct uuid gpt_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD;
183 static struct uuid gpt_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER;
184 static struct uuid gpt_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2;
185 static struct uuid gpt_uuid_dfbsd_label32 = GPT_ENT_TYPE_DRAGONFLY_LABEL32;
186 static struct uuid gpt_uuid_dfbsd_label64 = GPT_ENT_TYPE_DRAGONFLY_LABEL64;
187 static struct uuid gpt_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY;
188 static struct uuid gpt_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP;
189 static struct uuid gpt_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1;
190 static struct uuid gpt_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM;
191 static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI;
192 static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD;
193 static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT;
194 static struct uuid gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS;
195 static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP;
196 static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS;
197 static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM;
198 static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS;
199 static struct uuid gpt_uuid_hifive_fsbl = GPT_ENT_TYPE_HIFIVE_FSBL;
200 static struct uuid gpt_uuid_hifive_bbl = GPT_ENT_TYPE_HIFIVE_BBL;
201 static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA;
202 static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM;
203 static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID;
204 static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP;
205 static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR;
206 static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA;
207 static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA;
208 static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA;
209 static struct uuid gpt_uuid_ms_recovery = GPT_ENT_TYPE_MS_RECOVERY;
210 static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED;
211 static struct uuid gpt_uuid_ms_spaces = GPT_ENT_TYPE_MS_SPACES;
212 static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD;
213 static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD;
214 static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS;
215 static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS;
216 static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID;
217 static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP;
218 static struct uuid gpt_uuid_openbsd_data = GPT_ENT_TYPE_OPENBSD_DATA;
219 static struct uuid gpt_uuid_prep_boot = GPT_ENT_TYPE_PREP_BOOT;
220 static struct uuid gpt_uuid_solaris_boot = GPT_ENT_TYPE_SOLARIS_BOOT;
221 static struct uuid gpt_uuid_solaris_root = GPT_ENT_TYPE_SOLARIS_ROOT;
222 static struct uuid gpt_uuid_solaris_swap = GPT_ENT_TYPE_SOLARIS_SWAP;
223 static struct uuid gpt_uuid_solaris_backup = GPT_ENT_TYPE_SOLARIS_BACKUP;
224 static struct uuid gpt_uuid_solaris_var = GPT_ENT_TYPE_SOLARIS_VAR;
225 static struct uuid gpt_uuid_solaris_home = GPT_ENT_TYPE_SOLARIS_HOME;
226 static struct uuid gpt_uuid_solaris_altsec = GPT_ENT_TYPE_SOLARIS_ALTSEC;
227 static struct uuid gpt_uuid_solaris_reserved = GPT_ENT_TYPE_SOLARIS_RESERVED;
228 static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED;
229 static struct uuid gpt_uuid_vmfs = GPT_ENT_TYPE_VMFS;
230 static struct uuid gpt_uuid_vmkdiag = GPT_ENT_TYPE_VMKDIAG;
231 static struct uuid gpt_uuid_vmreserved = GPT_ENT_TYPE_VMRESERVED;
232 static struct uuid gpt_uuid_vmvsanhdr = GPT_ENT_TYPE_VMVSANHDR;
233
234 static struct g_part_uuid_alias {
235         struct uuid *uuid;
236         int alias;
237         int mbrtype;
238 } gpt_uuid_alias_match[] = {
239         { &gpt_uuid_apple_apfs,         G_PART_ALIAS_APPLE_APFS,         0 },
240         { &gpt_uuid_apple_boot,         G_PART_ALIAS_APPLE_BOOT,         0xab },
241         { &gpt_uuid_apple_core_storage, G_PART_ALIAS_APPLE_CORE_STORAGE, 0 },
242         { &gpt_uuid_apple_hfs,          G_PART_ALIAS_APPLE_HFS,          0xaf },
243         { &gpt_uuid_apple_label,        G_PART_ALIAS_APPLE_LABEL,        0 },
244         { &gpt_uuid_apple_raid,         G_PART_ALIAS_APPLE_RAID,         0 },
245         { &gpt_uuid_apple_raid_offline, G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 },
246         { &gpt_uuid_apple_tv_recovery,  G_PART_ALIAS_APPLE_TV_RECOVERY,  0 },
247         { &gpt_uuid_apple_ufs,          G_PART_ALIAS_APPLE_UFS,          0 },
248         { &gpt_uuid_apple_zfs,          G_PART_ALIAS_APPLE_ZFS,          0 },
249         { &gpt_uuid_bios_boot,          G_PART_ALIAS_BIOS_BOOT,          0 },
250         { &gpt_uuid_chromeos_firmware,  G_PART_ALIAS_CHROMEOS_FIRMWARE,  0 },
251         { &gpt_uuid_chromeos_kernel,    G_PART_ALIAS_CHROMEOS_KERNEL,    0 },
252         { &gpt_uuid_chromeos_reserved,  G_PART_ALIAS_CHROMEOS_RESERVED,  0 },
253         { &gpt_uuid_chromeos_root,      G_PART_ALIAS_CHROMEOS_ROOT,      0 },
254         { &gpt_uuid_dfbsd_ccd,          G_PART_ALIAS_DFBSD_CCD,          0 },
255         { &gpt_uuid_dfbsd_hammer,       G_PART_ALIAS_DFBSD_HAMMER,       0 },
256         { &gpt_uuid_dfbsd_hammer2,      G_PART_ALIAS_DFBSD_HAMMER2,      0 },
257         { &gpt_uuid_dfbsd_label32,      G_PART_ALIAS_DFBSD,              0xa5 },
258         { &gpt_uuid_dfbsd_label64,      G_PART_ALIAS_DFBSD64,            0xa5 },
259         { &gpt_uuid_dfbsd_legacy,       G_PART_ALIAS_DFBSD_LEGACY,       0 },
260         { &gpt_uuid_dfbsd_swap,         G_PART_ALIAS_DFBSD_SWAP,         0 },
261         { &gpt_uuid_dfbsd_ufs1,         G_PART_ALIAS_DFBSD_UFS,          0 },
262         { &gpt_uuid_dfbsd_vinum,        G_PART_ALIAS_DFBSD_VINUM,        0 },
263         { &gpt_uuid_efi,                G_PART_ALIAS_EFI,                0xee },
264         { &gpt_uuid_freebsd,            G_PART_ALIAS_FREEBSD,            0xa5 },
265         { &gpt_uuid_freebsd_boot,       G_PART_ALIAS_FREEBSD_BOOT,       0 },
266         { &gpt_uuid_freebsd_nandfs,     G_PART_ALIAS_FREEBSD_NANDFS,     0 },
267         { &gpt_uuid_freebsd_swap,       G_PART_ALIAS_FREEBSD_SWAP,       0 },
268         { &gpt_uuid_freebsd_ufs,        G_PART_ALIAS_FREEBSD_UFS,        0 },
269         { &gpt_uuid_freebsd_vinum,      G_PART_ALIAS_FREEBSD_VINUM,      0 },
270         { &gpt_uuid_freebsd_zfs,        G_PART_ALIAS_FREEBSD_ZFS,        0 },
271         { &gpt_uuid_hifive_fsbl,        G_PART_ALIAS_HIFIVE_FSBL,        0 },
272         { &gpt_uuid_hifive_bbl,         G_PART_ALIAS_HIFIVE_BBL,         0 },
273         { &gpt_uuid_linux_data,         G_PART_ALIAS_LINUX_DATA,         0x0b },
274         { &gpt_uuid_linux_lvm,          G_PART_ALIAS_LINUX_LVM,          0 },
275         { &gpt_uuid_linux_raid,         G_PART_ALIAS_LINUX_RAID,         0 },
276         { &gpt_uuid_linux_swap,         G_PART_ALIAS_LINUX_SWAP,         0 },
277         { &gpt_uuid_mbr,                G_PART_ALIAS_MBR,                0 },
278         { &gpt_uuid_ms_basic_data,      G_PART_ALIAS_MS_BASIC_DATA,      0x0b },
279         { &gpt_uuid_ms_ldm_data,        G_PART_ALIAS_MS_LDM_DATA,        0 },
280         { &gpt_uuid_ms_ldm_metadata,    G_PART_ALIAS_MS_LDM_METADATA,    0 },
281         { &gpt_uuid_ms_recovery,        G_PART_ALIAS_MS_RECOVERY,        0 },
282         { &gpt_uuid_ms_reserved,        G_PART_ALIAS_MS_RESERVED,        0 },
283         { &gpt_uuid_ms_spaces,          G_PART_ALIAS_MS_SPACES,          0 },
284         { &gpt_uuid_netbsd_ccd,         G_PART_ALIAS_NETBSD_CCD,         0 },
285         { &gpt_uuid_netbsd_cgd,         G_PART_ALIAS_NETBSD_CGD,         0 },
286         { &gpt_uuid_netbsd_ffs,         G_PART_ALIAS_NETBSD_FFS,         0 },
287         { &gpt_uuid_netbsd_lfs,         G_PART_ALIAS_NETBSD_LFS,         0 },
288         { &gpt_uuid_netbsd_raid,        G_PART_ALIAS_NETBSD_RAID,        0 },
289         { &gpt_uuid_netbsd_swap,        G_PART_ALIAS_NETBSD_SWAP,        0 },
290         { &gpt_uuid_openbsd_data,       G_PART_ALIAS_OPENBSD_DATA,       0 },
291         { &gpt_uuid_prep_boot,          G_PART_ALIAS_PREP_BOOT,          0x41 },
292         { &gpt_uuid_solaris_boot,       G_PART_ALIAS_SOLARIS_BOOT,       0 },
293         { &gpt_uuid_solaris_root,       G_PART_ALIAS_SOLARIS_ROOT,       0 },
294         { &gpt_uuid_solaris_swap,       G_PART_ALIAS_SOLARIS_SWAP,       0 },
295         { &gpt_uuid_solaris_backup,     G_PART_ALIAS_SOLARIS_BACKUP,     0 },
296         { &gpt_uuid_solaris_var,        G_PART_ALIAS_SOLARIS_VAR,        0 },
297         { &gpt_uuid_solaris_home,       G_PART_ALIAS_SOLARIS_HOME,       0 },
298         { &gpt_uuid_solaris_altsec,     G_PART_ALIAS_SOLARIS_ALTSEC,     0 },
299         { &gpt_uuid_solaris_reserved,   G_PART_ALIAS_SOLARIS_RESERVED,   0 },
300         { &gpt_uuid_vmfs,               G_PART_ALIAS_VMFS,               0 },
301         { &gpt_uuid_vmkdiag,            G_PART_ALIAS_VMKDIAG,            0 },
302         { &gpt_uuid_vmreserved,         G_PART_ALIAS_VMRESERVED,         0 },
303         { &gpt_uuid_vmvsanhdr,          G_PART_ALIAS_VMVSANHDR,          0 },
304         { NULL, 0, 0 }
305 };
306
307 static int
308 gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start,
309     quad_t end)
310 {
311
312         if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX)
313                 return (EINVAL);
314
315         mbr += DOSPARTOFF + idx * DOSPARTSIZE;
316         mbr[0] = 0;
317         if (start == 1) {
318                 /*
319                  * Treat the PMBR partition specially to maximize
320                  * interoperability with BIOSes.
321                  */
322                 mbr[1] = mbr[3] = 0;
323                 mbr[2] = 2;
324         } else
325                 mbr[1] = mbr[2] = mbr[3] = 0xff;
326         mbr[4] = typ;
327         mbr[5] = mbr[6] = mbr[7] = 0xff;
328         le32enc(mbr + 8, (uint32_t)start);
329         le32enc(mbr + 12, (uint32_t)(end - start + 1));
330         return (0);
331 }
332
333 static int
334 gpt_map_type(struct uuid *t)
335 {
336         struct g_part_uuid_alias *uap;
337
338         for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
339                 if (EQUUID(t, uap->uuid))
340                         return (uap->mbrtype);
341         }
342         return (0);
343 }
344
345 static void
346 gpt_create_pmbr(struct g_part_gpt_table *table, struct g_provider *pp)
347 {
348
349         bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
350         gpt_write_mbr_entry(table->mbr, 0, 0xee, 1,
351             MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX));
352         le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC);
353 }
354
355 /*
356  * Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the
357  * whole disk anymore. Rather, it covers the GPT table and the EFI
358  * system partition only. This way the HFS+ partition and any FAT
359  * partitions can be added to the MBR without creating an overlap.
360  */
361 static int
362 gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname)
363 {
364         uint8_t *p;
365
366         p = table->mbr + DOSPARTOFF;
367         if (p[4] != 0xee || le32dec(p + 8) != 1)
368                 return (0);
369
370         p += DOSPARTSIZE;
371         if (p[4] != 0xaf)
372                 return (0);
373
374         printf("GEOM: %s: enabling Boot Camp\n", provname);
375         return (1);
376 }
377
378 static void
379 gpt_update_bootcamp(struct g_part_table *basetable, struct g_provider *pp)
380 {
381         struct g_part_entry *baseentry;
382         struct g_part_gpt_entry *entry;
383         struct g_part_gpt_table *table;
384         int bootable, error, index, slices, typ;
385
386         table = (struct g_part_gpt_table *)basetable;
387
388         bootable = -1;
389         for (index = 0; index < NDOSPART; index++) {
390                 if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index])
391                         bootable = index;
392         }
393
394         bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
395         slices = 0;
396         LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
397                 if (baseentry->gpe_deleted)
398                         continue;
399                 index = baseentry->gpe_index - 1;
400                 if (index >= NDOSPART)
401                         continue;
402
403                 entry = (struct g_part_gpt_entry *)baseentry;
404
405                 switch (index) {
406                 case 0: /* This must be the EFI system partition. */
407                         if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi))
408                                 goto disable;
409                         error = gpt_write_mbr_entry(table->mbr, index, 0xee,
410                             1ull, entry->ent.ent_lba_end);
411                         break;
412                 case 1: /* This must be the HFS+ partition. */
413                         if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs))
414                                 goto disable;
415                         error = gpt_write_mbr_entry(table->mbr, index, 0xaf,
416                             entry->ent.ent_lba_start, entry->ent.ent_lba_end);
417                         break;
418                 default:
419                         typ = gpt_map_type(&entry->ent.ent_type);
420                         error = gpt_write_mbr_entry(table->mbr, index, typ,
421                             entry->ent.ent_lba_start, entry->ent.ent_lba_end);
422                         break;
423                 }
424                 if (error)
425                         continue;
426
427                 if (index == bootable)
428                         table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80;
429                 slices |= 1 << index;
430         }
431         if ((slices & 3) == 3)
432                 return;
433
434  disable:
435         table->bootcamp = 0;
436         gpt_create_pmbr(table, pp);
437 }
438
439 static struct gpt_hdr *
440 gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp,
441     enum gpt_elt elt)
442 {
443         struct gpt_hdr *buf, *hdr;
444         struct g_provider *pp;
445         quad_t lba, last;
446         int error;
447         uint32_t crc, sz;
448
449         pp = cp->provider;
450         last = (pp->mediasize / pp->sectorsize) - 1;
451         table->state[elt] = GPT_STATE_MISSING;
452         /*
453          * If the primary header is valid look for secondary
454          * header in AlternateLBA, otherwise in the last medium's LBA.
455          */
456         if (elt == GPT_ELT_SECHDR) {
457                 if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK)
458                         table->lba[elt] = last;
459         } else
460                 table->lba[elt] = 1;
461         buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize,
462             &error);
463         if (buf == NULL)
464                 return (NULL);
465         hdr = NULL;
466         if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0)
467                 goto fail;
468
469         table->state[elt] = GPT_STATE_CORRUPT;
470         sz = le32toh(buf->hdr_size);
471         if (sz < 92 || sz > pp->sectorsize)
472                 goto fail;
473
474         hdr = g_malloc(sz, M_WAITOK | M_ZERO);
475         bcopy(buf, hdr, sz);
476         hdr->hdr_size = sz;
477
478         crc = le32toh(buf->hdr_crc_self);
479         buf->hdr_crc_self = 0;
480         if (crc32(buf, sz) != crc)
481                 goto fail;
482         hdr->hdr_crc_self = crc;
483
484         table->state[elt] = GPT_STATE_INVALID;
485         hdr->hdr_revision = le32toh(buf->hdr_revision);
486         if (hdr->hdr_revision < GPT_HDR_REVISION)
487                 goto fail;
488         hdr->hdr_lba_self = le64toh(buf->hdr_lba_self);
489         if (hdr->hdr_lba_self != table->lba[elt])
490                 goto fail;
491         hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt);
492         if (hdr->hdr_lba_alt == hdr->hdr_lba_self)
493                 goto fail;
494         if (hdr->hdr_lba_alt > last && geom_part_check_integrity)
495                 goto fail;
496
497         /* Check the managed area. */
498         hdr->hdr_lba_start = le64toh(buf->hdr_lba_start);
499         if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last)
500                 goto fail;
501         hdr->hdr_lba_end = le64toh(buf->hdr_lba_end);
502         if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last)
503                 goto fail;
504
505         /* Check the table location and size of the table. */
506         hdr->hdr_entries = le32toh(buf->hdr_entries);
507         hdr->hdr_entsz = le32toh(buf->hdr_entsz);
508         if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 ||
509             (hdr->hdr_entsz & 7) != 0)
510                 goto fail;
511         hdr->hdr_lba_table = le64toh(buf->hdr_lba_table);
512         if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last)
513                 goto fail;
514         if (hdr->hdr_lba_table >= hdr->hdr_lba_start &&
515             hdr->hdr_lba_table <= hdr->hdr_lba_end)
516                 goto fail;
517         lba = hdr->hdr_lba_table +
518             howmany((uint64_t)hdr->hdr_entries * hdr->hdr_entsz,
519                 pp->sectorsize) - 1;
520         if (lba >= last)
521                 goto fail;
522         if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end)
523                 goto fail;
524
525         table->state[elt] = GPT_STATE_OK;
526         le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid);
527         hdr->hdr_crc_table = le32toh(buf->hdr_crc_table);
528
529         /* save LBA for secondary header */
530         if (elt == GPT_ELT_PRIHDR)
531                 table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt;
532
533         g_free(buf);
534         return (hdr);
535
536  fail:
537         g_free(hdr);
538         g_free(buf);
539         return (NULL);
540 }
541
542 static struct gpt_ent *
543 gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp,
544     enum gpt_elt elt, struct gpt_hdr *hdr)
545 {
546         struct g_provider *pp;
547         struct gpt_ent *ent, *tbl;
548         char *buf, *p;
549         unsigned int idx, sectors, tblsz, size;
550         int error;
551
552         if (hdr == NULL)
553                 return (NULL);
554         if (hdr->hdr_entries > g_part_gpt_scheme.gps_maxent ||
555             hdr->hdr_entsz > MAXENTSIZE) {
556                 table->state[elt] = GPT_STATE_UNSUPPORTED;
557                 return (NULL);
558         }
559
560         pp = cp->provider;
561         table->lba[elt] = hdr->hdr_lba_table;
562
563         table->state[elt] = GPT_STATE_MISSING;
564         tblsz = hdr->hdr_entries * hdr->hdr_entsz;
565         sectors = howmany(tblsz, pp->sectorsize);
566         buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO);
567         for (idx = 0; idx < sectors; idx += maxphys / pp->sectorsize) {
568                 size = (sectors - idx > maxphys / pp->sectorsize) ?  maxphys:
569                     (sectors - idx) * pp->sectorsize;
570                 p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize,
571                     size, &error);
572                 if (p == NULL) {
573                         g_free(buf);
574                         return (NULL);
575                 }
576                 bcopy(p, buf + idx * pp->sectorsize, size);
577                 g_free(p);
578         }
579         table->state[elt] = GPT_STATE_CORRUPT;
580         if (crc32(buf, tblsz) != hdr->hdr_crc_table) {
581                 g_free(buf);
582                 return (NULL);
583         }
584
585         table->state[elt] = GPT_STATE_OK;
586         tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent),
587             M_WAITOK | M_ZERO);
588
589         for (idx = 0, ent = tbl, p = buf;
590              idx < hdr->hdr_entries;
591              idx++, ent++, p += hdr->hdr_entsz) {
592                 le_uuid_dec(p, &ent->ent_type);
593                 le_uuid_dec(p + 16, &ent->ent_uuid);
594                 ent->ent_lba_start = le64dec(p + 32);
595                 ent->ent_lba_end = le64dec(p + 40);
596                 ent->ent_attr = le64dec(p + 48);
597                 /* Keep UTF-16 in little-endian. */
598                 bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name));
599         }
600
601         g_free(buf);
602         return (tbl);
603 }
604
605 static int
606 gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec)
607 {
608
609         if (pri == NULL || sec == NULL)
610                 return (0);
611
612         if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid))
613                 return (0);
614         return ((pri->hdr_revision == sec->hdr_revision &&
615             pri->hdr_size == sec->hdr_size &&
616             pri->hdr_lba_start == sec->hdr_lba_start &&
617             pri->hdr_lba_end == sec->hdr_lba_end &&
618             pri->hdr_entries == sec->hdr_entries &&
619             pri->hdr_entsz == sec->hdr_entsz &&
620             pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0);
621 }
622
623 static int
624 gpt_parse_type(const char *type, struct uuid *uuid)
625 {
626         struct uuid tmp;
627         const char *alias;
628         int error;
629         struct g_part_uuid_alias *uap;
630
631         if (type[0] == '!') {
632                 error = parse_uuid(type + 1, &tmp);
633                 if (error)
634                         return (error);
635                 if (EQUUID(&tmp, &gpt_uuid_unused))
636                         return (EINVAL);
637                 *uuid = tmp;
638                 return (0);
639         }
640         for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
641                 alias = g_part_alias_name(uap->alias);
642                 if (!strcasecmp(type, alias)) {
643                         *uuid = *uap->uuid;
644                         return (0);
645                 }
646         }
647         return (EINVAL);
648 }
649
650 static int
651 g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry,
652     struct g_part_parms *gpp)
653 {
654         struct g_part_gpt_entry *entry;
655         int error;
656
657         entry = (struct g_part_gpt_entry *)baseentry;
658         error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
659         if (error)
660                 return (error);
661         kern_uuidgen(&entry->ent.ent_uuid, 1);
662         entry->ent.ent_lba_start = baseentry->gpe_start;
663         entry->ent.ent_lba_end = baseentry->gpe_end;
664         if (baseentry->gpe_deleted) {
665                 entry->ent.ent_attr = 0;
666                 bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name));
667         }
668         if (gpp->gpp_parms & G_PART_PARM_LABEL)
669                 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
670                     sizeof(entry->ent.ent_name) /
671                     sizeof(entry->ent.ent_name[0]));
672         return (0);
673 }
674
675 static int
676 g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp)
677 {
678         struct g_part_gpt_table *table;
679         size_t codesz;
680
681         codesz = DOSPARTOFF;
682         table = (struct g_part_gpt_table *)basetable;
683         bzero(table->mbr, codesz);
684         codesz = MIN(codesz, gpp->gpp_codesize);
685         if (codesz > 0)
686                 bcopy(gpp->gpp_codeptr, table->mbr, codesz);
687         return (0);
688 }
689
690 static int
691 g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp)
692 {
693         struct g_provider *pp;
694         struct g_part_gpt_table *table;
695         size_t tblsz;
696
697         /* Our depth should be 0 unless nesting was explicitly enabled. */
698         if (!allow_nesting && basetable->gpt_depth != 0)
699                 return (ENXIO);
700
701         table = (struct g_part_gpt_table *)basetable;
702         pp = gpp->gpp_provider;
703         tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent),
704             pp->sectorsize);
705         if (pp->sectorsize < MBRSIZE ||
706             pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) *
707             pp->sectorsize)
708                 return (ENOSPC);
709
710         gpt_create_pmbr(table, pp);
711
712         /* Allocate space for the header */
713         table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO);
714
715         bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
716         table->hdr->hdr_revision = GPT_HDR_REVISION;
717         table->hdr->hdr_size = offsetof(struct gpt_hdr, padding);
718         kern_uuidgen(&table->hdr->hdr_uuid, 1);
719         table->hdr->hdr_entries = basetable->gpt_entries;
720         table->hdr->hdr_entsz = sizeof(struct gpt_ent);
721
722         g_gpt_set_defaults(basetable, pp);
723         return (0);
724 }
725
726 static int
727 g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp)
728 {
729         struct g_part_gpt_table *table;
730         struct g_provider *pp;
731
732         table = (struct g_part_gpt_table *)basetable;
733         pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
734         g_free(table->hdr);
735         table->hdr = NULL;
736
737         /*
738          * Wipe the first 2 sectors and last one to clear the partitioning.
739          * Wipe sectors only if they have valid metadata.
740          */
741         if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK)
742                 basetable->gpt_smhead |= 3;
743         if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
744             table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1)
745                 basetable->gpt_smtail |= 1;
746         return (0);
747 }
748
749 static void
750 g_part_gpt_efimedia(struct g_part_gpt_entry *entry, struct sbuf *sb)
751 {
752         sbuf_printf(sb, "HD(%d,GPT,", entry->base.gpe_index);
753         sbuf_printf_uuid(sb, &entry->ent.ent_uuid);
754         sbuf_printf(sb, ",%#jx,%#jx)", (intmax_t)entry->base.gpe_start,
755             (intmax_t)(entry->base.gpe_end - entry->base.gpe_start + 1));
756 }
757
758 static void
759 g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry,
760     struct sbuf *sb, const char *indent)
761 {
762         struct g_part_gpt_entry *entry;
763
764         entry = (struct g_part_gpt_entry *)baseentry;
765         if (indent == NULL) {
766                 /* conftxt: libdisk compatibility */
767                 sbuf_cat(sb, " xs GPT xt ");
768                 sbuf_printf_uuid(sb, &entry->ent.ent_type);
769         } else if (entry != NULL) {
770                 /* confxml: partition entry information */
771                 sbuf_printf(sb, "%s<label>", indent);
772                 g_gpt_printf_utf16(sb, entry->ent.ent_name,
773                     sizeof(entry->ent.ent_name) >> 1);
774                 sbuf_cat(sb, "</label>\n");
775                 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME)
776                         sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent);
777                 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) {
778                         sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n",
779                             indent);
780                 }
781                 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) {
782                         sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n",
783                             indent);
784                 }
785                 sbuf_printf(sb, "%s<rawtype>", indent);
786                 sbuf_printf_uuid(sb, &entry->ent.ent_type);
787                 sbuf_cat(sb, "</rawtype>\n");
788                 sbuf_printf(sb, "%s<rawuuid>", indent);
789                 sbuf_printf_uuid(sb, &entry->ent.ent_uuid);
790                 sbuf_cat(sb, "</rawuuid>\n");
791                 sbuf_printf(sb, "%s<efimedia>", indent);
792                 g_part_gpt_efimedia(entry, sb);
793                 sbuf_cat(sb, "</efimedia>\n");
794         } else {
795                 /* confxml: scheme information */
796         }
797 }
798
799 static int
800 g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry)
801 {
802         struct g_part_gpt_entry *entry;
803
804         entry = (struct g_part_gpt_entry *)baseentry;
805         return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) ||
806             EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap) ||
807             EQUUID(&entry->ent.ent_type, &gpt_uuid_dfbsd_swap)) ? 1 : 0);
808 }
809
810 static int
811 g_part_gpt_modify(struct g_part_table *basetable,
812     struct g_part_entry *baseentry, struct g_part_parms *gpp)
813 {
814         struct g_part_gpt_entry *entry;
815         int error;
816
817         entry = (struct g_part_gpt_entry *)baseentry;
818         if (gpp->gpp_parms & G_PART_PARM_TYPE) {
819                 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
820                 if (error)
821                         return (error);
822         }
823         if (gpp->gpp_parms & G_PART_PARM_LABEL)
824                 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
825                     sizeof(entry->ent.ent_name) /
826                     sizeof(entry->ent.ent_name[0]));
827         return (0);
828 }
829
830 static int
831 g_part_gpt_resize(struct g_part_table *basetable,
832     struct g_part_entry *baseentry, struct g_part_parms *gpp)
833 {
834         struct g_part_gpt_entry *entry;
835
836         if (baseentry == NULL)
837                 return (g_part_gpt_recover(basetable));
838
839         entry = (struct g_part_gpt_entry *)baseentry;
840         baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1;
841         entry->ent.ent_lba_end = baseentry->gpe_end;
842
843         return (0);
844 }
845
846 static const char *
847 g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry,
848     char *buf, size_t bufsz)
849 {
850         struct g_part_gpt_entry *entry;
851         char c;
852
853         entry = (struct g_part_gpt_entry *)baseentry;
854         c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p';
855         snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index);
856         return (buf);
857 }
858
859 static int
860 g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp)
861 {
862         struct g_provider *pp;
863         u_char *buf;
864         int error, index, pri, res;
865
866         /* Our depth should be 0 unless nesting was explicitly enabled. */
867         if (!allow_nesting && table->gpt_depth != 0)
868                 return (ENXIO);
869
870         pp = cp->provider;
871
872         /*
873          * Sanity-check the provider. Since the first sector on the provider
874          * must be a PMBR and a PMBR is 512 bytes large, the sector size
875          * must be at least 512 bytes.  Also, since the theoretical minimum
876          * number of sectors needed by GPT is 6, any medium that has less
877          * than 6 sectors is never going to be able to hold a GPT. The
878          * number 6 comes from:
879          *      1 sector for the PMBR
880          *      2 sectors for the GPT headers (each 1 sector)
881          *      2 sectors for the GPT tables (each 1 sector)
882          *      1 sector for an actual partition
883          * It's better to catch this pathological case early than behaving
884          * pathologically later on...
885          */
886         if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize)
887                 return (ENOSPC);
888
889         /*
890          * Check that there's a MBR or a PMBR. If it's a PMBR, we return
891          * as the highest priority on a match, otherwise we assume some
892          * GPT-unaware tool has destroyed the GPT by recreating a MBR and
893          * we really want the MBR scheme to take precedence.
894          */
895         buf = g_read_data(cp, 0L, pp->sectorsize, &error);
896         if (buf == NULL)
897                 return (error);
898         res = le16dec(buf + DOSMAGICOFFSET);
899         pri = G_PART_PROBE_PRI_LOW;
900         if (res == DOSMAGIC) {
901                 for (index = 0; index < NDOSPART; index++) {
902                         if (buf[DOSPARTOFF + DOSPARTSIZE * index + 4] == 0xee)
903                                 pri = G_PART_PROBE_PRI_HIGH;
904                 }
905                 g_free(buf);
906
907                 /* Check that there's a primary header. */
908                 buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error);
909                 if (buf == NULL)
910                         return (error);
911                 res = memcmp(buf, GPT_HDR_SIG, 8);
912                 g_free(buf);
913                 if (res == 0)
914                         return (pri);
915         } else
916                 g_free(buf);
917
918         /* No primary? Check that there's a secondary. */
919         buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize,
920             &error);
921         if (buf == NULL)
922                 return (error);
923         res = memcmp(buf, GPT_HDR_SIG, 8);
924         g_free(buf);
925         return ((res == 0) ? pri : ENXIO);
926 }
927
928 static int
929 g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp)
930 {
931         struct gpt_hdr *prihdr, *sechdr;
932         struct gpt_ent *tbl, *pritbl, *sectbl;
933         struct g_provider *pp;
934         struct g_part_gpt_table *table;
935         struct g_part_gpt_entry *entry;
936         u_char *buf;
937         uint64_t last;
938         int error, index;
939
940         table = (struct g_part_gpt_table *)basetable;
941         pp = cp->provider;
942         last = (pp->mediasize / pp->sectorsize) - 1;
943
944         /* Read the PMBR */
945         buf = g_read_data(cp, 0, pp->sectorsize, &error);
946         if (buf == NULL)
947                 return (error);
948         bcopy(buf, table->mbr, MBRSIZE);
949         g_free(buf);
950
951         /* Read the primary header and table. */
952         prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR);
953         if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) {
954                 pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr);
955         } else {
956                 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
957                 pritbl = NULL;
958         }
959
960         /* Read the secondary header and table. */
961         sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR);
962         if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) {
963                 sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr);
964         } else {
965                 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
966                 sectbl = NULL;
967         }
968
969         /* Fail if we haven't got any good tables at all. */
970         if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK &&
971             table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
972                 if (table->state[GPT_ELT_PRITBL] == GPT_STATE_UNSUPPORTED &&
973                     table->state[GPT_ELT_SECTBL] == GPT_STATE_UNSUPPORTED &&
974                     gpt_matched_hdrs(prihdr, sechdr)) {
975                         printf("GEOM: %s: unsupported GPT detected.\n",
976                             pp->name);
977                         printf(
978                     "GEOM: %s: number of GPT entries: %u, entry size: %uB.\n",
979                             pp->name, prihdr->hdr_entries, prihdr->hdr_entsz);
980                         printf(
981     "GEOM: %s: maximum supported number of GPT entries: %u, entry size: %uB.\n",
982                             pp->name, g_part_gpt_scheme.gps_maxent, MAXENTSIZE);
983                         printf("GEOM: %s: GPT rejected.\n", pp->name);
984                 } else {
985                         printf("GEOM: %s: corrupt or invalid GPT detected.\n",
986                             pp->name);
987                         printf(
988                     "GEOM: %s: GPT rejected -- may not be recoverable.\n",
989                             pp->name);
990                 }
991                 g_free(prihdr);
992                 g_free(pritbl);
993                 g_free(sechdr);
994                 g_free(sectbl);
995                 return (EINVAL);
996         }
997
998         /*
999          * If both headers are good but they disagree with each other,
1000          * then invalidate one. We prefer to keep the primary header,
1001          * unless the primary table is corrupt.
1002          */
1003         if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK &&
1004             table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
1005             !gpt_matched_hdrs(prihdr, sechdr)) {
1006                 if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) {
1007                         table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID;
1008                         table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
1009                         g_free(sechdr);
1010                         sechdr = NULL;
1011                 } else {
1012                         table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID;
1013                         table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
1014                         g_free(prihdr);
1015                         prihdr = NULL;
1016                 }
1017         }
1018
1019         if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) {
1020                 printf("GEOM: %s: the primary GPT table is corrupt or "
1021                     "invalid.\n", pp->name);
1022                 printf("GEOM: %s: using the secondary instead -- recovery "
1023                     "strongly advised.\n", pp->name);
1024                 table->hdr = sechdr;
1025                 basetable->gpt_corrupt = 1;
1026                 g_free(prihdr);
1027                 tbl = sectbl;
1028                 g_free(pritbl);
1029         } else {
1030                 if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
1031                         printf("GEOM: %s: the secondary GPT table is corrupt "
1032                             "or invalid.\n", pp->name);
1033                         printf("GEOM: %s: using the primary only -- recovery "
1034                             "suggested.\n", pp->name);
1035                         basetable->gpt_corrupt = 1;
1036                 } else if (table->lba[GPT_ELT_SECHDR] != last) {
1037                         printf( "GEOM: %s: the secondary GPT header is not in "
1038                             "the last LBA.\n", pp->name);
1039                         basetable->gpt_corrupt = 1;
1040                 }
1041                 table->hdr = prihdr;
1042                 g_free(sechdr);
1043                 tbl = pritbl;
1044                 g_free(sectbl);
1045         }
1046
1047         basetable->gpt_first = table->hdr->hdr_lba_start;
1048         basetable->gpt_last = table->hdr->hdr_lba_end;
1049         basetable->gpt_entries = table->hdr->hdr_entries;
1050
1051         for (index = basetable->gpt_entries - 1; index >= 0; index--) {
1052                 if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused))
1053                         continue;
1054                 entry = (struct g_part_gpt_entry *)g_part_new_entry(
1055                     basetable, index + 1, tbl[index].ent_lba_start,
1056                     tbl[index].ent_lba_end);
1057                 entry->ent = tbl[index];
1058         }
1059
1060         g_free(tbl);
1061
1062         /*
1063          * Under Mac OS X, the MBR mirrors the first 4 GPT partitions
1064          * if (and only if) any FAT32 or FAT16 partitions have been
1065          * created. This happens irrespective of whether Boot Camp is
1066          * used/enabled, though it's generally understood to be done
1067          * to support legacy Windows under Boot Camp. We refer to this
1068          * mirroring simply as Boot Camp. We try to detect Boot Camp
1069          * so that we can update the MBR if and when GPT changes have
1070          * been made. Note that we do not enable Boot Camp if not
1071          * previously enabled because we can't assume that we're on a
1072          * Mac alongside Mac OS X.
1073          */
1074         table->bootcamp = gpt_is_bootcamp(table, pp->name);
1075
1076         return (0);
1077 }
1078
1079 static int
1080 g_part_gpt_recover(struct g_part_table *basetable)
1081 {
1082         struct g_part_gpt_table *table;
1083         struct g_provider *pp;
1084
1085         table = (struct g_part_gpt_table *)basetable;
1086         pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
1087         gpt_create_pmbr(table, pp);
1088         g_gpt_set_defaults(basetable, pp);
1089         basetable->gpt_corrupt = 0;
1090         return (0);
1091 }
1092
1093 static int
1094 g_part_gpt_setunset(struct g_part_table *basetable,
1095     struct g_part_entry *baseentry, const char *attrib, unsigned int set)
1096 {
1097         struct g_part_gpt_entry *entry;
1098         struct g_part_gpt_table *table;
1099         struct g_provider *pp;
1100         uint8_t *p;
1101         uint64_t attr;
1102         int i;
1103
1104         table = (struct g_part_gpt_table *)basetable;
1105         entry = (struct g_part_gpt_entry *)baseentry;
1106
1107         if (strcasecmp(attrib, "active") == 0) {
1108                 if (table->bootcamp) {
1109                         /* The active flag must be set on a valid entry. */
1110                         if (entry == NULL)
1111                                 return (ENXIO);
1112                         if (baseentry->gpe_index > NDOSPART)
1113                                 return (EINVAL);
1114                         for (i = 0; i < NDOSPART; i++) {
1115                                 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE];
1116                                 p[0] = (i == baseentry->gpe_index - 1)
1117                                     ? ((set) ? 0x80 : 0) : 0;
1118                         }
1119                 } else {
1120                         /* The PMBR is marked as active without an entry. */
1121                         if (entry != NULL)
1122                                 return (ENXIO);
1123                         for (i = 0; i < NDOSPART; i++) {
1124                                 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE];
1125                                 p[0] = (p[4] == 0xee) ? ((set) ? 0x80 : 0) : 0;
1126                         }
1127                 }
1128                 return (0);
1129         } else if (strcasecmp(attrib, "lenovofix") == 0) {
1130                 /*
1131                  * Write the 0xee GPT entry to slot #1 (2nd slot) in the pMBR.
1132                  * This workaround allows Lenovo X220, T420, T520, etc to boot
1133                  * from GPT Partitions in BIOS mode.
1134                  */
1135
1136                 if (entry != NULL)
1137                         return (ENXIO);
1138
1139                 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
1140                 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
1141                 gpt_write_mbr_entry(table->mbr, ((set) ? 1 : 0), 0xee, 1,
1142                     MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX));
1143                 return (0);
1144         }
1145
1146         if (entry == NULL)
1147                 return (ENODEV);
1148
1149         attr = 0;
1150         if (strcasecmp(attrib, "bootme") == 0) {
1151                 attr |= GPT_ENT_ATTR_BOOTME;
1152         } else if (strcasecmp(attrib, "bootonce") == 0) {
1153                 attr |= GPT_ENT_ATTR_BOOTONCE;
1154                 if (set)
1155                         attr |= GPT_ENT_ATTR_BOOTME;
1156         } else if (strcasecmp(attrib, "bootfailed") == 0) {
1157                 /*
1158                  * It should only be possible to unset BOOTFAILED, but it might
1159                  * be useful for test purposes to also be able to set it.
1160                  */
1161                 attr |= GPT_ENT_ATTR_BOOTFAILED;
1162         }
1163         if (attr == 0)
1164                 return (EINVAL);
1165
1166         if (set)
1167                 attr = entry->ent.ent_attr | attr;
1168         else
1169                 attr = entry->ent.ent_attr & ~attr;
1170         if (attr != entry->ent.ent_attr) {
1171                 entry->ent.ent_attr = attr;
1172                 if (!baseentry->gpe_created)
1173                         baseentry->gpe_modified = 1;
1174         }
1175         return (0);
1176 }
1177
1178 static const char *
1179 g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry,
1180     char *buf, size_t bufsz)
1181 {
1182         struct g_part_gpt_entry *entry;
1183         struct uuid *type;
1184         struct g_part_uuid_alias *uap;
1185
1186         entry = (struct g_part_gpt_entry *)baseentry;
1187         type = &entry->ent.ent_type;
1188         for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++)
1189                 if (EQUUID(type, uap->uuid))
1190                         return (g_part_alias_name(uap->alias));
1191         buf[0] = '!';
1192         snprintf_uuid(buf + 1, bufsz - 1, type);
1193
1194         return (buf);
1195 }
1196
1197 static int
1198 g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp)
1199 {
1200         unsigned char *buf, *bp;
1201         struct g_provider *pp;
1202         struct g_part_entry *baseentry;
1203         struct g_part_gpt_entry *entry;
1204         struct g_part_gpt_table *table;
1205         size_t tblsz;
1206         uint32_t crc;
1207         int error, index;
1208
1209         pp = cp->provider;
1210         table = (struct g_part_gpt_table *)basetable;
1211         tblsz = howmany(table->hdr->hdr_entries * table->hdr->hdr_entsz,
1212             pp->sectorsize);
1213
1214         /* Reconstruct the MBR from the GPT if under Boot Camp. */
1215         if (table->bootcamp)
1216                 gpt_update_bootcamp(basetable, pp);
1217
1218         /* Write the PMBR */
1219         buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO);
1220         bcopy(table->mbr, buf, MBRSIZE);
1221         error = g_write_data(cp, 0, buf, pp->sectorsize);
1222         g_free(buf);
1223         if (error)
1224                 return (error);
1225
1226         /* Allocate space for the header and entries. */
1227         buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO);
1228
1229         memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
1230         le32enc(buf + 8, table->hdr->hdr_revision);
1231         le32enc(buf + 12, table->hdr->hdr_size);
1232         le64enc(buf + 40, table->hdr->hdr_lba_start);
1233         le64enc(buf + 48, table->hdr->hdr_lba_end);
1234         le_uuid_enc(buf + 56, &table->hdr->hdr_uuid);
1235         le32enc(buf + 80, table->hdr->hdr_entries);
1236         le32enc(buf + 84, table->hdr->hdr_entsz);
1237
1238         LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
1239                 if (baseentry->gpe_deleted)
1240                         continue;
1241                 entry = (struct g_part_gpt_entry *)baseentry;
1242                 index = baseentry->gpe_index - 1;
1243                 bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index;
1244                 le_uuid_enc(bp, &entry->ent.ent_type);
1245                 le_uuid_enc(bp + 16, &entry->ent.ent_uuid);
1246                 le64enc(bp + 32, entry->ent.ent_lba_start);
1247                 le64enc(bp + 40, entry->ent.ent_lba_end);
1248                 le64enc(bp + 48, entry->ent.ent_attr);
1249                 memcpy(bp + 56, entry->ent.ent_name,
1250                     sizeof(entry->ent.ent_name));
1251         }
1252
1253         crc = crc32(buf + pp->sectorsize,
1254             table->hdr->hdr_entries * table->hdr->hdr_entsz);
1255         le32enc(buf + 88, crc);
1256
1257         /* Write primary meta-data. */
1258         le32enc(buf + 16, 0);   /* hdr_crc_self. */
1259         le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]);  /* hdr_lba_self. */
1260         le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]);  /* hdr_lba_alt. */
1261         le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]);  /* hdr_lba_table. */
1262         crc = crc32(buf, table->hdr->hdr_size);
1263         le32enc(buf + 16, crc);
1264
1265         for (index = 0; index < tblsz; index += maxphys / pp->sectorsize) {
1266                 error = g_write_data(cp,
1267                     (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize,
1268                     buf + (index + 1) * pp->sectorsize,
1269                     (tblsz - index > maxphys / pp->sectorsize) ? maxphys :
1270                     (tblsz - index) * pp->sectorsize);
1271                 if (error)
1272                         goto out;
1273         }
1274         error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize,
1275             buf, pp->sectorsize);
1276         if (error)
1277                 goto out;
1278
1279         /* Write secondary meta-data. */
1280         le32enc(buf + 16, 0);   /* hdr_crc_self. */
1281         le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]);  /* hdr_lba_self. */
1282         le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]);  /* hdr_lba_alt. */
1283         le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]);  /* hdr_lba_table. */
1284         crc = crc32(buf, table->hdr->hdr_size);
1285         le32enc(buf + 16, crc);
1286
1287         for (index = 0; index < tblsz; index += maxphys / pp->sectorsize) {
1288                 error = g_write_data(cp,
1289                     (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize,
1290                     buf + (index + 1) * pp->sectorsize,
1291                     (tblsz - index > maxphys / pp->sectorsize) ? maxphys :
1292                     (tblsz - index) * pp->sectorsize);
1293                 if (error)
1294                         goto out;
1295         }
1296         error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize,
1297             buf, pp->sectorsize);
1298
1299  out:
1300         g_free(buf);
1301         return (error);
1302 }
1303
1304 static void
1305 g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp)
1306 {
1307         struct g_part_entry *baseentry;
1308         struct g_part_gpt_entry *entry;
1309         struct g_part_gpt_table *table;
1310         quad_t start, end, min, max;
1311         quad_t lba, last;
1312         size_t spb, tblsz;
1313
1314         table = (struct g_part_gpt_table *)basetable;
1315         last = pp->mediasize / pp->sectorsize - 1;
1316         tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent),
1317             pp->sectorsize);
1318
1319         table->lba[GPT_ELT_PRIHDR] = 1;
1320         table->lba[GPT_ELT_PRITBL] = 2;
1321         table->lba[GPT_ELT_SECHDR] = last;
1322         table->lba[GPT_ELT_SECTBL] = last - tblsz;
1323         table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK;
1324         table->state[GPT_ELT_PRITBL] = GPT_STATE_OK;
1325         table->state[GPT_ELT_SECHDR] = GPT_STATE_OK;
1326         table->state[GPT_ELT_SECTBL] = GPT_STATE_OK;
1327
1328         max = start = 2 + tblsz;
1329         min = end = last - tblsz - 1;
1330         LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
1331                 if (baseentry->gpe_deleted)
1332                         continue;
1333                 entry = (struct g_part_gpt_entry *)baseentry;
1334                 if (entry->ent.ent_lba_start < min)
1335                         min = entry->ent.ent_lba_start;
1336                 if (entry->ent.ent_lba_end > max)
1337                         max = entry->ent.ent_lba_end;
1338         }
1339         spb = 4096 / pp->sectorsize;
1340         if (spb > 1) {
1341                 lba = start + ((start % spb) ? spb - start % spb : 0);
1342                 if (lba <= min)
1343                         start = lba;
1344                 lba = end - (end + 1) % spb;
1345                 if (max <= lba)
1346                         end = lba;
1347         }
1348         table->hdr->hdr_lba_start = start;
1349         table->hdr->hdr_lba_end = end;
1350
1351         basetable->gpt_first = start;
1352         basetable->gpt_last = end;
1353 }
1354
1355 static void
1356 g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len)
1357 {
1358         u_int bo;
1359         uint32_t ch;
1360         uint16_t c;
1361
1362         bo = LITTLE_ENDIAN;     /* GPT is little-endian */
1363         while (len > 0 && *str != 0) {
1364                 ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str);
1365                 str++, len--;
1366                 if ((ch & 0xf800) == 0xd800) {
1367                         if (len > 0) {
1368                                 c = (bo == BIG_ENDIAN) ? be16toh(*str)
1369                                     : le16toh(*str);
1370                                 str++, len--;
1371                         } else
1372                                 c = 0xfffd;
1373                         if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) {
1374                                 ch = ((ch & 0x3ff) << 10) + (c & 0x3ff);
1375                                 ch += 0x10000;
1376                         } else
1377                                 ch = 0xfffd;
1378                 } else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */
1379                         bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN;
1380                         continue;
1381                 } else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */
1382                         continue;
1383
1384                 /* Write the Unicode character in UTF-8 */
1385                 if (ch < 0x80)
1386                         g_conf_printf_escaped(sb, "%c", ch);
1387                 else if (ch < 0x800)
1388                         g_conf_printf_escaped(sb, "%c%c", 0xc0 | (ch >> 6),
1389                             0x80 | (ch & 0x3f));
1390                 else if (ch < 0x10000)
1391                         g_conf_printf_escaped(sb, "%c%c%c", 0xe0 | (ch >> 12),
1392                             0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1393                 else if (ch < 0x200000)
1394                         g_conf_printf_escaped(sb, "%c%c%c%c", 0xf0 |
1395                             (ch >> 18), 0x80 | ((ch >> 12) & 0x3f),
1396                             0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1397         }
1398 }
1399
1400 static void
1401 g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len)
1402 {
1403         size_t s16idx, s8idx;
1404         uint32_t utfchar;
1405         unsigned int c, utfbytes;
1406
1407         s8idx = s16idx = 0;
1408         utfchar = 0;
1409         utfbytes = 0;
1410         bzero(s16, s16len << 1);
1411         while (s8[s8idx] != 0 && s16idx < s16len) {
1412                 c = s8[s8idx++];
1413                 if ((c & 0xc0) != 0x80) {
1414                         /* Initial characters. */
1415                         if (utfbytes != 0) {
1416                                 /* Incomplete encoding of previous char. */
1417                                 s16[s16idx++] = htole16(0xfffd);
1418                         }
1419                         if ((c & 0xf8) == 0xf0) {
1420                                 utfchar = c & 0x07;
1421                                 utfbytes = 3;
1422                         } else if ((c & 0xf0) == 0xe0) {
1423                                 utfchar = c & 0x0f;
1424                                 utfbytes = 2;
1425                         } else if ((c & 0xe0) == 0xc0) {
1426                                 utfchar = c & 0x1f;
1427                                 utfbytes = 1;
1428                         } else {
1429                                 utfchar = c & 0x7f;
1430                                 utfbytes = 0;
1431                         }
1432                 } else {
1433                         /* Followup characters. */
1434                         if (utfbytes > 0) {
1435                                 utfchar = (utfchar << 6) + (c & 0x3f);
1436                                 utfbytes--;
1437                         } else if (utfbytes == 0)
1438                                 utfbytes = ~0;
1439                 }
1440                 /*
1441                  * Write the complete Unicode character as UTF-16 when we
1442                  * have all the UTF-8 charactars collected.
1443                  */
1444                 if (utfbytes == 0) {
1445                         /*
1446                          * If we need to write 2 UTF-16 characters, but
1447                          * we only have room for 1, then we truncate the
1448                          * string by writing a 0 instead.
1449                          */
1450                         if (utfchar >= 0x10000 && s16idx < s16len - 1) {
1451                                 s16[s16idx++] =
1452                                     htole16(0xd800 | ((utfchar >> 10) - 0x40));
1453                                 s16[s16idx++] =
1454                                     htole16(0xdc00 | (utfchar & 0x3ff));
1455                         } else
1456                                 s16[s16idx++] = (utfchar >= 0x10000) ? 0 :
1457                                     htole16(utfchar);
1458                 }
1459         }
1460         /*
1461          * If our input string was truncated, append an invalid encoding
1462          * character to the output string.
1463          */
1464         if (utfbytes != 0 && s16idx < s16len)
1465                 s16[s16idx++] = htole16(0xfffd);
1466 }