]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/geom/part/g_part_gpt.c
zfs: merge OpenZFS master-9312e0fd1
[FreeBSD/FreeBSD.git] / sys / geom / part / g_part_gpt.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/bio.h>
34 #include <sys/diskmbr.h>
35 #include <sys/gsb_crc32.h>
36 #include <sys/endian.h>
37 #include <sys/gpt.h>
38 #include <sys/kernel.h>
39 #include <sys/kobj.h>
40 #include <sys/limits.h>
41 #include <sys/lock.h>
42 #include <sys/malloc.h>
43 #include <sys/mutex.h>
44 #include <sys/queue.h>
45 #include <sys/sbuf.h>
46 #include <sys/systm.h>
47 #include <sys/sysctl.h>
48 #include <sys/uuid.h>
49 #include <geom/geom.h>
50 #include <geom/geom_int.h>
51 #include <geom/part/g_part.h>
52
53 #include "g_part_if.h"
54
55 FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support");
56
57 SYSCTL_DECL(_kern_geom_part);
58 static SYSCTL_NODE(_kern_geom_part, OID_AUTO, gpt,
59     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
60     "GEOM_PART_GPT GUID Partition Table");
61
62 static u_int allow_nesting = 0;
63 SYSCTL_UINT(_kern_geom_part_gpt, OID_AUTO, allow_nesting,
64     CTLFLAG_RWTUN, &allow_nesting, 0, "Allow GPT to be nested inside other schemes");
65
66 CTASSERT(offsetof(struct gpt_hdr, padding) == 92);
67 CTASSERT(sizeof(struct gpt_ent) == 128);
68
69 extern u_int geom_part_check_integrity;
70
71 #define EQUUID(a,b)     (memcmp(a, b, sizeof(struct uuid)) == 0)
72
73 #define MBRSIZE         512
74
75 enum gpt_elt {
76         GPT_ELT_PRIHDR,
77         GPT_ELT_PRITBL,
78         GPT_ELT_SECHDR,
79         GPT_ELT_SECTBL,
80         GPT_ELT_COUNT
81 };
82
83 enum gpt_state {
84         GPT_STATE_UNKNOWN,      /* Not determined. */
85         GPT_STATE_MISSING,      /* No signature found. */
86         GPT_STATE_CORRUPT,      /* Checksum mismatch. */
87         GPT_STATE_INVALID,      /* Nonconformant/invalid. */
88         GPT_STATE_OK            /* Perfectly fine. */
89 };
90
91 struct g_part_gpt_table {
92         struct g_part_table     base;
93         u_char                  mbr[MBRSIZE];
94         struct gpt_hdr          *hdr;
95         quad_t                  lba[GPT_ELT_COUNT];
96         enum gpt_state          state[GPT_ELT_COUNT];
97         int                     bootcamp;
98 };
99
100 struct g_part_gpt_entry {
101         struct g_part_entry     base;
102         struct gpt_ent          ent;
103 };
104
105 static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t);
106 static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t);
107 static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *);
108
109 static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *,
110     struct g_part_parms *);
111 static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *);
112 static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *);
113 static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *);
114 static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *,
115     struct sbuf *, const char *);
116 static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *);
117 static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *,
118     struct g_part_parms *);
119 static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *,
120     char *, size_t);
121 static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *);
122 static int g_part_gpt_read(struct g_part_table *, struct g_consumer *);
123 static int g_part_gpt_setunset(struct g_part_table *table,
124     struct g_part_entry *baseentry, const char *attrib, unsigned int set);
125 static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *,
126     char *, size_t);
127 static int g_part_gpt_write(struct g_part_table *, struct g_consumer *);
128 static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *,
129     struct g_part_parms *);
130 static int g_part_gpt_recover(struct g_part_table *);
131
132 static kobj_method_t g_part_gpt_methods[] = {
133         KOBJMETHOD(g_part_add,          g_part_gpt_add),
134         KOBJMETHOD(g_part_bootcode,     g_part_gpt_bootcode),
135         KOBJMETHOD(g_part_create,       g_part_gpt_create),
136         KOBJMETHOD(g_part_destroy,      g_part_gpt_destroy),
137         KOBJMETHOD(g_part_dumpconf,     g_part_gpt_dumpconf),
138         KOBJMETHOD(g_part_dumpto,       g_part_gpt_dumpto),
139         KOBJMETHOD(g_part_modify,       g_part_gpt_modify),
140         KOBJMETHOD(g_part_resize,       g_part_gpt_resize),
141         KOBJMETHOD(g_part_name,         g_part_gpt_name),
142         KOBJMETHOD(g_part_probe,        g_part_gpt_probe),
143         KOBJMETHOD(g_part_read,         g_part_gpt_read),
144         KOBJMETHOD(g_part_recover,      g_part_gpt_recover),
145         KOBJMETHOD(g_part_setunset,     g_part_gpt_setunset),
146         KOBJMETHOD(g_part_type,         g_part_gpt_type),
147         KOBJMETHOD(g_part_write,        g_part_gpt_write),
148         { 0, 0 }
149 };
150
151 static struct g_part_scheme g_part_gpt_scheme = {
152         "GPT",
153         g_part_gpt_methods,
154         sizeof(struct g_part_gpt_table),
155         .gps_entrysz = sizeof(struct g_part_gpt_entry),
156         .gps_minent = 128,
157         .gps_maxent = 4096,
158         .gps_bootcodesz = MBRSIZE,
159 };
160 G_PART_SCHEME_DECLARE(g_part_gpt);
161 MODULE_VERSION(geom_part_gpt, 0);
162
163 static struct uuid gpt_uuid_apple_apfs = GPT_ENT_TYPE_APPLE_APFS;
164 static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT;
165 static struct uuid gpt_uuid_apple_core_storage =
166     GPT_ENT_TYPE_APPLE_CORE_STORAGE;
167 static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS;
168 static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL;
169 static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID;
170 static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE;
171 static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY;
172 static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS;
173 static struct uuid gpt_uuid_apple_zfs = GPT_ENT_TYPE_APPLE_ZFS;
174 static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT;
175 static struct uuid gpt_uuid_chromeos_firmware = GPT_ENT_TYPE_CHROMEOS_FIRMWARE;
176 static struct uuid gpt_uuid_chromeos_kernel = GPT_ENT_TYPE_CHROMEOS_KERNEL;
177 static struct uuid gpt_uuid_chromeos_reserved = GPT_ENT_TYPE_CHROMEOS_RESERVED;
178 static struct uuid gpt_uuid_chromeos_root = GPT_ENT_TYPE_CHROMEOS_ROOT;
179 static struct uuid gpt_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD;
180 static struct uuid gpt_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER;
181 static struct uuid gpt_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2;
182 static struct uuid gpt_uuid_dfbsd_label32 = GPT_ENT_TYPE_DRAGONFLY_LABEL32;
183 static struct uuid gpt_uuid_dfbsd_label64 = GPT_ENT_TYPE_DRAGONFLY_LABEL64;
184 static struct uuid gpt_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY;
185 static struct uuid gpt_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP;
186 static struct uuid gpt_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1;
187 static struct uuid gpt_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM;
188 static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI;
189 static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD;
190 static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT;
191 static struct uuid gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS;
192 static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP;
193 static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS;
194 static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM;
195 static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS;
196 static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA;
197 static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM;
198 static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID;
199 static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP;
200 static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR;
201 static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA;
202 static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA;
203 static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA;
204 static struct uuid gpt_uuid_ms_recovery = GPT_ENT_TYPE_MS_RECOVERY;
205 static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED;
206 static struct uuid gpt_uuid_ms_spaces = GPT_ENT_TYPE_MS_SPACES;
207 static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD;
208 static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD;
209 static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS;
210 static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS;
211 static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID;
212 static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP;
213 static struct uuid gpt_uuid_openbsd_data = GPT_ENT_TYPE_OPENBSD_DATA;
214 static struct uuid gpt_uuid_prep_boot = GPT_ENT_TYPE_PREP_BOOT;
215 static struct uuid gpt_uuid_solaris_boot = GPT_ENT_TYPE_SOLARIS_BOOT;
216 static struct uuid gpt_uuid_solaris_root = GPT_ENT_TYPE_SOLARIS_ROOT;
217 static struct uuid gpt_uuid_solaris_swap = GPT_ENT_TYPE_SOLARIS_SWAP;
218 static struct uuid gpt_uuid_solaris_backup = GPT_ENT_TYPE_SOLARIS_BACKUP;
219 static struct uuid gpt_uuid_solaris_var = GPT_ENT_TYPE_SOLARIS_VAR;
220 static struct uuid gpt_uuid_solaris_home = GPT_ENT_TYPE_SOLARIS_HOME;
221 static struct uuid gpt_uuid_solaris_altsec = GPT_ENT_TYPE_SOLARIS_ALTSEC;
222 static struct uuid gpt_uuid_solaris_reserved = GPT_ENT_TYPE_SOLARIS_RESERVED;
223 static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED;
224 static struct uuid gpt_uuid_vmfs = GPT_ENT_TYPE_VMFS;
225 static struct uuid gpt_uuid_vmkdiag = GPT_ENT_TYPE_VMKDIAG;
226 static struct uuid gpt_uuid_vmreserved = GPT_ENT_TYPE_VMRESERVED;
227 static struct uuid gpt_uuid_vmvsanhdr = GPT_ENT_TYPE_VMVSANHDR;
228
229 static struct g_part_uuid_alias {
230         struct uuid *uuid;
231         int alias;
232         int mbrtype;
233 } gpt_uuid_alias_match[] = {
234         { &gpt_uuid_apple_apfs,         G_PART_ALIAS_APPLE_APFS,         0 },
235         { &gpt_uuid_apple_boot,         G_PART_ALIAS_APPLE_BOOT,         0xab },
236         { &gpt_uuid_apple_core_storage, G_PART_ALIAS_APPLE_CORE_STORAGE, 0 },
237         { &gpt_uuid_apple_hfs,          G_PART_ALIAS_APPLE_HFS,          0xaf },
238         { &gpt_uuid_apple_label,        G_PART_ALIAS_APPLE_LABEL,        0 },
239         { &gpt_uuid_apple_raid,         G_PART_ALIAS_APPLE_RAID,         0 },
240         { &gpt_uuid_apple_raid_offline, G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 },
241         { &gpt_uuid_apple_tv_recovery,  G_PART_ALIAS_APPLE_TV_RECOVERY,  0 },
242         { &gpt_uuid_apple_ufs,          G_PART_ALIAS_APPLE_UFS,          0 },
243         { &gpt_uuid_apple_zfs,          G_PART_ALIAS_APPLE_ZFS,          0 },
244         { &gpt_uuid_bios_boot,          G_PART_ALIAS_BIOS_BOOT,          0 },
245         { &gpt_uuid_chromeos_firmware,  G_PART_ALIAS_CHROMEOS_FIRMWARE,  0 },
246         { &gpt_uuid_chromeos_kernel,    G_PART_ALIAS_CHROMEOS_KERNEL,    0 },
247         { &gpt_uuid_chromeos_reserved,  G_PART_ALIAS_CHROMEOS_RESERVED,  0 },
248         { &gpt_uuid_chromeos_root,      G_PART_ALIAS_CHROMEOS_ROOT,      0 },
249         { &gpt_uuid_dfbsd_ccd,          G_PART_ALIAS_DFBSD_CCD,          0 },
250         { &gpt_uuid_dfbsd_hammer,       G_PART_ALIAS_DFBSD_HAMMER,       0 },
251         { &gpt_uuid_dfbsd_hammer2,      G_PART_ALIAS_DFBSD_HAMMER2,      0 },
252         { &gpt_uuid_dfbsd_label32,      G_PART_ALIAS_DFBSD,              0xa5 },
253         { &gpt_uuid_dfbsd_label64,      G_PART_ALIAS_DFBSD64,            0xa5 },
254         { &gpt_uuid_dfbsd_legacy,       G_PART_ALIAS_DFBSD_LEGACY,       0 },
255         { &gpt_uuid_dfbsd_swap,         G_PART_ALIAS_DFBSD_SWAP,         0 },
256         { &gpt_uuid_dfbsd_ufs1,         G_PART_ALIAS_DFBSD_UFS,          0 },
257         { &gpt_uuid_dfbsd_vinum,        G_PART_ALIAS_DFBSD_VINUM,        0 },
258         { &gpt_uuid_efi,                G_PART_ALIAS_EFI,                0xee },
259         { &gpt_uuid_freebsd,            G_PART_ALIAS_FREEBSD,            0xa5 },
260         { &gpt_uuid_freebsd_boot,       G_PART_ALIAS_FREEBSD_BOOT,       0 },
261         { &gpt_uuid_freebsd_nandfs,     G_PART_ALIAS_FREEBSD_NANDFS,     0 },
262         { &gpt_uuid_freebsd_swap,       G_PART_ALIAS_FREEBSD_SWAP,       0 },
263         { &gpt_uuid_freebsd_ufs,        G_PART_ALIAS_FREEBSD_UFS,        0 },
264         { &gpt_uuid_freebsd_vinum,      G_PART_ALIAS_FREEBSD_VINUM,      0 },
265         { &gpt_uuid_freebsd_zfs,        G_PART_ALIAS_FREEBSD_ZFS,        0 },
266         { &gpt_uuid_linux_data,         G_PART_ALIAS_LINUX_DATA,         0x0b },
267         { &gpt_uuid_linux_lvm,          G_PART_ALIAS_LINUX_LVM,          0 },
268         { &gpt_uuid_linux_raid,         G_PART_ALIAS_LINUX_RAID,         0 },
269         { &gpt_uuid_linux_swap,         G_PART_ALIAS_LINUX_SWAP,         0 },
270         { &gpt_uuid_mbr,                G_PART_ALIAS_MBR,                0 },
271         { &gpt_uuid_ms_basic_data,      G_PART_ALIAS_MS_BASIC_DATA,      0x0b },
272         { &gpt_uuid_ms_ldm_data,        G_PART_ALIAS_MS_LDM_DATA,        0 },
273         { &gpt_uuid_ms_ldm_metadata,    G_PART_ALIAS_MS_LDM_METADATA,    0 },
274         { &gpt_uuid_ms_recovery,        G_PART_ALIAS_MS_RECOVERY,        0 },
275         { &gpt_uuid_ms_reserved,        G_PART_ALIAS_MS_RESERVED,        0 },
276         { &gpt_uuid_ms_spaces,          G_PART_ALIAS_MS_SPACES,          0 },
277         { &gpt_uuid_netbsd_ccd,         G_PART_ALIAS_NETBSD_CCD,         0 },
278         { &gpt_uuid_netbsd_cgd,         G_PART_ALIAS_NETBSD_CGD,         0 },
279         { &gpt_uuid_netbsd_ffs,         G_PART_ALIAS_NETBSD_FFS,         0 },
280         { &gpt_uuid_netbsd_lfs,         G_PART_ALIAS_NETBSD_LFS,         0 },
281         { &gpt_uuid_netbsd_raid,        G_PART_ALIAS_NETBSD_RAID,        0 },
282         { &gpt_uuid_netbsd_swap,        G_PART_ALIAS_NETBSD_SWAP,        0 },
283         { &gpt_uuid_openbsd_data,       G_PART_ALIAS_OPENBSD_DATA,       0 },
284         { &gpt_uuid_prep_boot,          G_PART_ALIAS_PREP_BOOT,          0x41 },
285         { &gpt_uuid_solaris_boot,       G_PART_ALIAS_SOLARIS_BOOT,       0 },
286         { &gpt_uuid_solaris_root,       G_PART_ALIAS_SOLARIS_ROOT,       0 },
287         { &gpt_uuid_solaris_swap,       G_PART_ALIAS_SOLARIS_SWAP,       0 },
288         { &gpt_uuid_solaris_backup,     G_PART_ALIAS_SOLARIS_BACKUP,     0 },
289         { &gpt_uuid_solaris_var,        G_PART_ALIAS_SOLARIS_VAR,        0 },
290         { &gpt_uuid_solaris_home,       G_PART_ALIAS_SOLARIS_HOME,       0 },
291         { &gpt_uuid_solaris_altsec,     G_PART_ALIAS_SOLARIS_ALTSEC,     0 },
292         { &gpt_uuid_solaris_reserved,   G_PART_ALIAS_SOLARIS_RESERVED,   0 },
293         { &gpt_uuid_vmfs,               G_PART_ALIAS_VMFS,               0 },
294         { &gpt_uuid_vmkdiag,            G_PART_ALIAS_VMKDIAG,            0 },
295         { &gpt_uuid_vmreserved,         G_PART_ALIAS_VMRESERVED,         0 },
296         { &gpt_uuid_vmvsanhdr,          G_PART_ALIAS_VMVSANHDR,          0 },
297         { NULL, 0, 0 }
298 };
299
300 static int
301 gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start,
302     quad_t end)
303 {
304
305         if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX)
306                 return (EINVAL);
307
308         mbr += DOSPARTOFF + idx * DOSPARTSIZE;
309         mbr[0] = 0;
310         if (start == 1) {
311                 /*
312                  * Treat the PMBR partition specially to maximize
313                  * interoperability with BIOSes.
314                  */
315                 mbr[1] = mbr[3] = 0;
316                 mbr[2] = 2;
317         } else
318                 mbr[1] = mbr[2] = mbr[3] = 0xff;
319         mbr[4] = typ;
320         mbr[5] = mbr[6] = mbr[7] = 0xff;
321         le32enc(mbr + 8, (uint32_t)start);
322         le32enc(mbr + 12, (uint32_t)(end - start + 1));
323         return (0);
324 }
325
326 static int
327 gpt_map_type(struct uuid *t)
328 {
329         struct g_part_uuid_alias *uap;
330
331         for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
332                 if (EQUUID(t, uap->uuid))
333                         return (uap->mbrtype);
334         }
335         return (0);
336 }
337
338 static void
339 gpt_create_pmbr(struct g_part_gpt_table *table, struct g_provider *pp)
340 {
341
342         bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
343         gpt_write_mbr_entry(table->mbr, 0, 0xee, 1,
344             MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX));
345         le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC);
346 }
347
348 /*
349  * Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the
350  * whole disk anymore. Rather, it covers the GPT table and the EFI
351  * system partition only. This way the HFS+ partition and any FAT
352  * partitions can be added to the MBR without creating an overlap.
353  */
354 static int
355 gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname)
356 {
357         uint8_t *p;
358
359         p = table->mbr + DOSPARTOFF;
360         if (p[4] != 0xee || le32dec(p + 8) != 1)
361                 return (0);
362
363         p += DOSPARTSIZE;
364         if (p[4] != 0xaf)
365                 return (0);
366
367         printf("GEOM: %s: enabling Boot Camp\n", provname);
368         return (1);
369 }
370
371 static void
372 gpt_update_bootcamp(struct g_part_table *basetable, struct g_provider *pp)
373 {
374         struct g_part_entry *baseentry;
375         struct g_part_gpt_entry *entry;
376         struct g_part_gpt_table *table;
377         int bootable, error, index, slices, typ;
378
379         table = (struct g_part_gpt_table *)basetable;
380
381         bootable = -1;
382         for (index = 0; index < NDOSPART; index++) {
383                 if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index])
384                         bootable = index;
385         }
386
387         bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
388         slices = 0;
389         LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
390                 if (baseentry->gpe_deleted)
391                         continue;
392                 index = baseentry->gpe_index - 1;
393                 if (index >= NDOSPART)
394                         continue;
395
396                 entry = (struct g_part_gpt_entry *)baseentry;
397
398                 switch (index) {
399                 case 0: /* This must be the EFI system partition. */
400                         if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi))
401                                 goto disable;
402                         error = gpt_write_mbr_entry(table->mbr, index, 0xee,
403                             1ull, entry->ent.ent_lba_end);
404                         break;
405                 case 1: /* This must be the HFS+ partition. */
406                         if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs))
407                                 goto disable;
408                         error = gpt_write_mbr_entry(table->mbr, index, 0xaf,
409                             entry->ent.ent_lba_start, entry->ent.ent_lba_end);
410                         break;
411                 default:
412                         typ = gpt_map_type(&entry->ent.ent_type);
413                         error = gpt_write_mbr_entry(table->mbr, index, typ,
414                             entry->ent.ent_lba_start, entry->ent.ent_lba_end);
415                         break;
416                 }
417                 if (error)
418                         continue;
419
420                 if (index == bootable)
421                         table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80;
422                 slices |= 1 << index;
423         }
424         if ((slices & 3) == 3)
425                 return;
426
427  disable:
428         table->bootcamp = 0;
429         gpt_create_pmbr(table, pp);
430 }
431
432 static struct gpt_hdr *
433 gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp,
434     enum gpt_elt elt)
435 {
436         struct gpt_hdr *buf, *hdr;
437         struct g_provider *pp;
438         quad_t lba, last;
439         int error;
440         uint32_t crc, sz;
441
442         pp = cp->provider;
443         last = (pp->mediasize / pp->sectorsize) - 1;
444         table->state[elt] = GPT_STATE_MISSING;
445         /*
446          * If the primary header is valid look for secondary
447          * header in AlternateLBA, otherwise in the last medium's LBA.
448          */
449         if (elt == GPT_ELT_SECHDR) {
450                 if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK)
451                         table->lba[elt] = last;
452         } else
453                 table->lba[elt] = 1;
454         buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize,
455             &error);
456         if (buf == NULL)
457                 return (NULL);
458         hdr = NULL;
459         if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0)
460                 goto fail;
461
462         table->state[elt] = GPT_STATE_CORRUPT;
463         sz = le32toh(buf->hdr_size);
464         if (sz < 92 || sz > pp->sectorsize)
465                 goto fail;
466
467         hdr = g_malloc(sz, M_WAITOK | M_ZERO);
468         bcopy(buf, hdr, sz);
469         hdr->hdr_size = sz;
470
471         crc = le32toh(buf->hdr_crc_self);
472         buf->hdr_crc_self = 0;
473         if (crc32(buf, sz) != crc)
474                 goto fail;
475         hdr->hdr_crc_self = crc;
476
477         table->state[elt] = GPT_STATE_INVALID;
478         hdr->hdr_revision = le32toh(buf->hdr_revision);
479         if (hdr->hdr_revision < GPT_HDR_REVISION)
480                 goto fail;
481         hdr->hdr_lba_self = le64toh(buf->hdr_lba_self);
482         if (hdr->hdr_lba_self != table->lba[elt])
483                 goto fail;
484         hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt);
485         if (hdr->hdr_lba_alt == hdr->hdr_lba_self)
486                 goto fail;
487         if (hdr->hdr_lba_alt > last && geom_part_check_integrity)
488                 goto fail;
489
490         /* Check the managed area. */
491         hdr->hdr_lba_start = le64toh(buf->hdr_lba_start);
492         if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last)
493                 goto fail;
494         hdr->hdr_lba_end = le64toh(buf->hdr_lba_end);
495         if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last)
496                 goto fail;
497
498         /* Check the table location and size of the table. */
499         hdr->hdr_entries = le32toh(buf->hdr_entries);
500         hdr->hdr_entsz = le32toh(buf->hdr_entsz);
501         if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 ||
502             (hdr->hdr_entsz & 7) != 0)
503                 goto fail;
504         hdr->hdr_lba_table = le64toh(buf->hdr_lba_table);
505         if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last)
506                 goto fail;
507         if (hdr->hdr_lba_table >= hdr->hdr_lba_start &&
508             hdr->hdr_lba_table <= hdr->hdr_lba_end)
509                 goto fail;
510         lba = hdr->hdr_lba_table +
511             howmany(hdr->hdr_entries * hdr->hdr_entsz, pp->sectorsize) - 1;
512         if (lba >= last)
513                 goto fail;
514         if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end)
515                 goto fail;
516
517         table->state[elt] = GPT_STATE_OK;
518         le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid);
519         hdr->hdr_crc_table = le32toh(buf->hdr_crc_table);
520
521         /* save LBA for secondary header */
522         if (elt == GPT_ELT_PRIHDR)
523                 table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt;
524
525         g_free(buf);
526         return (hdr);
527
528  fail:
529         if (hdr != NULL)
530                 g_free(hdr);
531         g_free(buf);
532         return (NULL);
533 }
534
535 static struct gpt_ent *
536 gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp,
537     enum gpt_elt elt, struct gpt_hdr *hdr)
538 {
539         struct g_provider *pp;
540         struct gpt_ent *ent, *tbl;
541         char *buf, *p;
542         unsigned int idx, sectors, tblsz, size;
543         int error;
544
545         if (hdr == NULL)
546                 return (NULL);
547
548         pp = cp->provider;
549         table->lba[elt] = hdr->hdr_lba_table;
550
551         table->state[elt] = GPT_STATE_MISSING;
552         tblsz = hdr->hdr_entries * hdr->hdr_entsz;
553         sectors = howmany(tblsz, pp->sectorsize);
554         buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO);
555         for (idx = 0; idx < sectors; idx += maxphys / pp->sectorsize) {
556                 size = (sectors - idx > maxphys / pp->sectorsize) ?  maxphys:
557                     (sectors - idx) * pp->sectorsize;
558                 p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize,
559                     size, &error);
560                 if (p == NULL) {
561                         g_free(buf);
562                         return (NULL);
563                 }
564                 bcopy(p, buf + idx * pp->sectorsize, size);
565                 g_free(p);
566         }
567         table->state[elt] = GPT_STATE_CORRUPT;
568         if (crc32(buf, tblsz) != hdr->hdr_crc_table) {
569                 g_free(buf);
570                 return (NULL);
571         }
572
573         table->state[elt] = GPT_STATE_OK;
574         tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent),
575             M_WAITOK | M_ZERO);
576
577         for (idx = 0, ent = tbl, p = buf;
578              idx < hdr->hdr_entries;
579              idx++, ent++, p += hdr->hdr_entsz) {
580                 le_uuid_dec(p, &ent->ent_type);
581                 le_uuid_dec(p + 16, &ent->ent_uuid);
582                 ent->ent_lba_start = le64dec(p + 32);
583                 ent->ent_lba_end = le64dec(p + 40);
584                 ent->ent_attr = le64dec(p + 48);
585                 /* Keep UTF-16 in little-endian. */
586                 bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name));
587         }
588
589         g_free(buf);
590         return (tbl);
591 }
592
593 static int
594 gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec)
595 {
596
597         if (pri == NULL || sec == NULL)
598                 return (0);
599
600         if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid))
601                 return (0);
602         return ((pri->hdr_revision == sec->hdr_revision &&
603             pri->hdr_size == sec->hdr_size &&
604             pri->hdr_lba_start == sec->hdr_lba_start &&
605             pri->hdr_lba_end == sec->hdr_lba_end &&
606             pri->hdr_entries == sec->hdr_entries &&
607             pri->hdr_entsz == sec->hdr_entsz &&
608             pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0);
609 }
610
611 static int
612 gpt_parse_type(const char *type, struct uuid *uuid)
613 {
614         struct uuid tmp;
615         const char *alias;
616         int error;
617         struct g_part_uuid_alias *uap;
618
619         if (type[0] == '!') {
620                 error = parse_uuid(type + 1, &tmp);
621                 if (error)
622                         return (error);
623                 if (EQUUID(&tmp, &gpt_uuid_unused))
624                         return (EINVAL);
625                 *uuid = tmp;
626                 return (0);
627         }
628         for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
629                 alias = g_part_alias_name(uap->alias);
630                 if (!strcasecmp(type, alias)) {
631                         *uuid = *uap->uuid;
632                         return (0);
633                 }
634         }
635         return (EINVAL);
636 }
637
638 static int
639 g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry,
640     struct g_part_parms *gpp)
641 {
642         struct g_part_gpt_entry *entry;
643         int error;
644
645         entry = (struct g_part_gpt_entry *)baseentry;
646         error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
647         if (error)
648                 return (error);
649         kern_uuidgen(&entry->ent.ent_uuid, 1);
650         entry->ent.ent_lba_start = baseentry->gpe_start;
651         entry->ent.ent_lba_end = baseentry->gpe_end;
652         if (baseentry->gpe_deleted) {
653                 entry->ent.ent_attr = 0;
654                 bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name));
655         }
656         if (gpp->gpp_parms & G_PART_PARM_LABEL)
657                 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
658                     sizeof(entry->ent.ent_name) /
659                     sizeof(entry->ent.ent_name[0]));
660         return (0);
661 }
662
663 static int
664 g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp)
665 {
666         struct g_part_gpt_table *table;
667         size_t codesz;
668
669         codesz = DOSPARTOFF;
670         table = (struct g_part_gpt_table *)basetable;
671         bzero(table->mbr, codesz);
672         codesz = MIN(codesz, gpp->gpp_codesize);
673         if (codesz > 0)
674                 bcopy(gpp->gpp_codeptr, table->mbr, codesz);
675         return (0);
676 }
677
678 static int
679 g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp)
680 {
681         struct g_provider *pp;
682         struct g_part_gpt_table *table;
683         size_t tblsz;
684
685         /* Our depth should be 0 unless nesting was explicitly enabled. */
686         if (!allow_nesting && basetable->gpt_depth != 0)
687                 return (ENXIO);
688
689         table = (struct g_part_gpt_table *)basetable;
690         pp = gpp->gpp_provider;
691         tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent),
692             pp->sectorsize);
693         if (pp->sectorsize < MBRSIZE ||
694             pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) *
695             pp->sectorsize)
696                 return (ENOSPC);
697
698         gpt_create_pmbr(table, pp);
699
700         /* Allocate space for the header */
701         table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO);
702
703         bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
704         table->hdr->hdr_revision = GPT_HDR_REVISION;
705         table->hdr->hdr_size = offsetof(struct gpt_hdr, padding);
706         kern_uuidgen(&table->hdr->hdr_uuid, 1);
707         table->hdr->hdr_entries = basetable->gpt_entries;
708         table->hdr->hdr_entsz = sizeof(struct gpt_ent);
709
710         g_gpt_set_defaults(basetable, pp);
711         return (0);
712 }
713
714 static int
715 g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp)
716 {
717         struct g_part_gpt_table *table;
718         struct g_provider *pp;
719
720         table = (struct g_part_gpt_table *)basetable;
721         pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
722         g_free(table->hdr);
723         table->hdr = NULL;
724
725         /*
726          * Wipe the first 2 sectors and last one to clear the partitioning.
727          * Wipe sectors only if they have valid metadata.
728          */
729         if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK)
730                 basetable->gpt_smhead |= 3;
731         if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
732             table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1)
733                 basetable->gpt_smtail |= 1;
734         return (0);
735 }
736
737 static void
738 g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry,
739     struct sbuf *sb, const char *indent)
740 {
741         struct g_part_gpt_entry *entry;
742
743         entry = (struct g_part_gpt_entry *)baseentry;
744         if (indent == NULL) {
745                 /* conftxt: libdisk compatibility */
746                 sbuf_cat(sb, " xs GPT xt ");
747                 sbuf_printf_uuid(sb, &entry->ent.ent_type);
748         } else if (entry != NULL) {
749                 /* confxml: partition entry information */
750                 sbuf_printf(sb, "%s<label>", indent);
751                 g_gpt_printf_utf16(sb, entry->ent.ent_name,
752                     sizeof(entry->ent.ent_name) >> 1);
753                 sbuf_cat(sb, "</label>\n");
754                 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME)
755                         sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent);
756                 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) {
757                         sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n",
758                             indent);
759                 }
760                 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) {
761                         sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n",
762                             indent);
763                 }
764                 sbuf_printf(sb, "%s<rawtype>", indent);
765                 sbuf_printf_uuid(sb, &entry->ent.ent_type);
766                 sbuf_cat(sb, "</rawtype>\n");
767                 sbuf_printf(sb, "%s<rawuuid>", indent);
768                 sbuf_printf_uuid(sb, &entry->ent.ent_uuid);
769                 sbuf_cat(sb, "</rawuuid>\n");
770                 sbuf_printf(sb, "%s<efimedia>", indent);
771                 sbuf_printf(sb, "HD(%d,GPT,", entry->base.gpe_index);
772                 sbuf_printf_uuid(sb, &entry->ent.ent_uuid);
773                 sbuf_printf(sb, ",%#jx,%#jx)", (intmax_t)entry->base.gpe_start,
774                     (intmax_t)(entry->base.gpe_end - entry->base.gpe_start + 1));
775                 sbuf_cat(sb, "</efimedia>\n");
776         } else {
777                 /* confxml: scheme information */
778         }
779 }
780
781 static int
782 g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry)
783 {
784         struct g_part_gpt_entry *entry;
785
786         entry = (struct g_part_gpt_entry *)baseentry;
787         return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) ||
788             EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap) ||
789             EQUUID(&entry->ent.ent_type, &gpt_uuid_dfbsd_swap)) ? 1 : 0);
790 }
791
792 static int
793 g_part_gpt_modify(struct g_part_table *basetable,
794     struct g_part_entry *baseentry, struct g_part_parms *gpp)
795 {
796         struct g_part_gpt_entry *entry;
797         int error;
798
799         entry = (struct g_part_gpt_entry *)baseentry;
800         if (gpp->gpp_parms & G_PART_PARM_TYPE) {
801                 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
802                 if (error)
803                         return (error);
804         }
805         if (gpp->gpp_parms & G_PART_PARM_LABEL)
806                 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
807                     sizeof(entry->ent.ent_name) /
808                     sizeof(entry->ent.ent_name[0]));
809         return (0);
810 }
811
812 static int
813 g_part_gpt_resize(struct g_part_table *basetable,
814     struct g_part_entry *baseentry, struct g_part_parms *gpp)
815 {
816         struct g_part_gpt_entry *entry;
817
818         if (baseentry == NULL)
819                 return (g_part_gpt_recover(basetable));
820
821         entry = (struct g_part_gpt_entry *)baseentry;
822         baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1;
823         entry->ent.ent_lba_end = baseentry->gpe_end;
824
825         return (0);
826 }
827
828 static const char *
829 g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry,
830     char *buf, size_t bufsz)
831 {
832         struct g_part_gpt_entry *entry;
833         char c;
834
835         entry = (struct g_part_gpt_entry *)baseentry;
836         c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p';
837         snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index);
838         return (buf);
839 }
840
841 static int
842 g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp)
843 {
844         struct g_provider *pp;
845         u_char *buf;
846         int error, index, pri, res;
847
848         /* Our depth should be 0 unless nesting was explicitly enabled. */
849         if (!allow_nesting && table->gpt_depth != 0)
850                 return (ENXIO);
851
852         pp = cp->provider;
853
854         /*
855          * Sanity-check the provider. Since the first sector on the provider
856          * must be a PMBR and a PMBR is 512 bytes large, the sector size
857          * must be at least 512 bytes.  Also, since the theoretical minimum
858          * number of sectors needed by GPT is 6, any medium that has less
859          * than 6 sectors is never going to be able to hold a GPT. The
860          * number 6 comes from:
861          *      1 sector for the PMBR
862          *      2 sectors for the GPT headers (each 1 sector)
863          *      2 sectors for the GPT tables (each 1 sector)
864          *      1 sector for an actual partition
865          * It's better to catch this pathological case early than behaving
866          * pathologically later on...
867          */
868         if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize)
869                 return (ENOSPC);
870
871         /*
872          * Check that there's a MBR or a PMBR. If it's a PMBR, we return
873          * as the highest priority on a match, otherwise we assume some
874          * GPT-unaware tool has destroyed the GPT by recreating a MBR and
875          * we really want the MBR scheme to take precedence.
876          */
877         buf = g_read_data(cp, 0L, pp->sectorsize, &error);
878         if (buf == NULL)
879                 return (error);
880         res = le16dec(buf + DOSMAGICOFFSET);
881         pri = G_PART_PROBE_PRI_LOW;
882         if (res == DOSMAGIC) {
883                 for (index = 0; index < NDOSPART; index++) {
884                         if (buf[DOSPARTOFF + DOSPARTSIZE * index + 4] == 0xee)
885                                 pri = G_PART_PROBE_PRI_HIGH;
886                 }
887                 g_free(buf);
888
889                 /* Check that there's a primary header. */
890                 buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error);
891                 if (buf == NULL)
892                         return (error);
893                 res = memcmp(buf, GPT_HDR_SIG, 8);
894                 g_free(buf);
895                 if (res == 0)
896                         return (pri);
897         } else
898                 g_free(buf);
899
900         /* No primary? Check that there's a secondary. */
901         buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize,
902             &error);
903         if (buf == NULL)
904                 return (error);
905         res = memcmp(buf, GPT_HDR_SIG, 8);
906         g_free(buf);
907         return ((res == 0) ? pri : ENXIO);
908 }
909
910 static int
911 g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp)
912 {
913         struct gpt_hdr *prihdr, *sechdr;
914         struct gpt_ent *tbl, *pritbl, *sectbl;
915         struct g_provider *pp;
916         struct g_part_gpt_table *table;
917         struct g_part_gpt_entry *entry;
918         u_char *buf;
919         uint64_t last;
920         int error, index;
921
922         table = (struct g_part_gpt_table *)basetable;
923         pp = cp->provider;
924         last = (pp->mediasize / pp->sectorsize) - 1;
925
926         /* Read the PMBR */
927         buf = g_read_data(cp, 0, pp->sectorsize, &error);
928         if (buf == NULL)
929                 return (error);
930         bcopy(buf, table->mbr, MBRSIZE);
931         g_free(buf);
932
933         /* Read the primary header and table. */
934         prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR);
935         if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) {
936                 pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr);
937         } else {
938                 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
939                 pritbl = NULL;
940         }
941
942         /* Read the secondary header and table. */
943         sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR);
944         if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) {
945                 sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr);
946         } else {
947                 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
948                 sectbl = NULL;
949         }
950
951         /* Fail if we haven't got any good tables at all. */
952         if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK &&
953             table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
954                 printf("GEOM: %s: corrupt or invalid GPT detected.\n",
955                     pp->name);
956                 printf("GEOM: %s: GPT rejected -- may not be recoverable.\n",
957                     pp->name);
958                 if (prihdr != NULL)
959                         g_free(prihdr);
960                 if (pritbl != NULL)
961                         g_free(pritbl);
962                 if (sechdr != NULL)
963                         g_free(sechdr);
964                 if (sectbl != NULL)
965                         g_free(sectbl);
966                 return (EINVAL);
967         }
968
969         /*
970          * If both headers are good but they disagree with each other,
971          * then invalidate one. We prefer to keep the primary header,
972          * unless the primary table is corrupt.
973          */
974         if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK &&
975             table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
976             !gpt_matched_hdrs(prihdr, sechdr)) {
977                 if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) {
978                         table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID;
979                         table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
980                         g_free(sechdr);
981                         sechdr = NULL;
982                 } else {
983                         table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID;
984                         table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
985                         g_free(prihdr);
986                         prihdr = NULL;
987                 }
988         }
989
990         if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) {
991                 printf("GEOM: %s: the primary GPT table is corrupt or "
992                     "invalid.\n", pp->name);
993                 printf("GEOM: %s: using the secondary instead -- recovery "
994                     "strongly advised.\n", pp->name);
995                 table->hdr = sechdr;
996                 basetable->gpt_corrupt = 1;
997                 if (prihdr != NULL)
998                         g_free(prihdr);
999                 tbl = sectbl;
1000                 if (pritbl != NULL)
1001                         g_free(pritbl);
1002         } else {
1003                 if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
1004                         printf("GEOM: %s: the secondary GPT table is corrupt "
1005                             "or invalid.\n", pp->name);
1006                         printf("GEOM: %s: using the primary only -- recovery "
1007                             "suggested.\n", pp->name);
1008                         basetable->gpt_corrupt = 1;
1009                 } else if (table->lba[GPT_ELT_SECHDR] != last) {
1010                         printf( "GEOM: %s: the secondary GPT header is not in "
1011                             "the last LBA.\n", pp->name);
1012                         basetable->gpt_corrupt = 1;
1013                 }
1014                 table->hdr = prihdr;
1015                 if (sechdr != NULL)
1016                         g_free(sechdr);
1017                 tbl = pritbl;
1018                 if (sectbl != NULL)
1019                         g_free(sectbl);
1020         }
1021
1022         basetable->gpt_first = table->hdr->hdr_lba_start;
1023         basetable->gpt_last = table->hdr->hdr_lba_end;
1024         basetable->gpt_entries = table->hdr->hdr_entries;
1025
1026         for (index = basetable->gpt_entries - 1; index >= 0; index--) {
1027                 if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused))
1028                         continue;
1029                 entry = (struct g_part_gpt_entry *)g_part_new_entry(
1030                     basetable, index + 1, tbl[index].ent_lba_start,
1031                     tbl[index].ent_lba_end);
1032                 entry->ent = tbl[index];
1033         }
1034
1035         g_free(tbl);
1036
1037         /*
1038          * Under Mac OS X, the MBR mirrors the first 4 GPT partitions
1039          * if (and only if) any FAT32 or FAT16 partitions have been
1040          * created. This happens irrespective of whether Boot Camp is
1041          * used/enabled, though it's generally understood to be done
1042          * to support legacy Windows under Boot Camp. We refer to this
1043          * mirroring simply as Boot Camp. We try to detect Boot Camp
1044          * so that we can update the MBR if and when GPT changes have
1045          * been made. Note that we do not enable Boot Camp if not
1046          * previously enabled because we can't assume that we're on a
1047          * Mac alongside Mac OS X.
1048          */
1049         table->bootcamp = gpt_is_bootcamp(table, pp->name);
1050
1051         return (0);
1052 }
1053
1054 static int
1055 g_part_gpt_recover(struct g_part_table *basetable)
1056 {
1057         struct g_part_gpt_table *table;
1058         struct g_provider *pp;
1059
1060         table = (struct g_part_gpt_table *)basetable;
1061         pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
1062         gpt_create_pmbr(table, pp);
1063         g_gpt_set_defaults(basetable, pp);
1064         basetable->gpt_corrupt = 0;
1065         return (0);
1066 }
1067
1068 static int
1069 g_part_gpt_setunset(struct g_part_table *basetable,
1070     struct g_part_entry *baseentry, const char *attrib, unsigned int set)
1071 {
1072         struct g_part_gpt_entry *entry;
1073         struct g_part_gpt_table *table;
1074         struct g_provider *pp;
1075         uint8_t *p;
1076         uint64_t attr;
1077         int i;
1078
1079         table = (struct g_part_gpt_table *)basetable;
1080         entry = (struct g_part_gpt_entry *)baseentry;
1081
1082         if (strcasecmp(attrib, "active") == 0) {
1083                 if (table->bootcamp) {
1084                         /* The active flag must be set on a valid entry. */
1085                         if (entry == NULL)
1086                                 return (ENXIO);
1087                         if (baseentry->gpe_index > NDOSPART)
1088                                 return (EINVAL);
1089                         for (i = 0; i < NDOSPART; i++) {
1090                                 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE];
1091                                 p[0] = (i == baseentry->gpe_index - 1)
1092                                     ? ((set) ? 0x80 : 0) : 0;
1093                         }
1094                 } else {
1095                         /* The PMBR is marked as active without an entry. */
1096                         if (entry != NULL)
1097                                 return (ENXIO);
1098                         for (i = 0; i < NDOSPART; i++) {
1099                                 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE];
1100                                 p[0] = (p[4] == 0xee) ? ((set) ? 0x80 : 0) : 0;
1101                         }
1102                 }
1103                 return (0);
1104         } else if (strcasecmp(attrib, "lenovofix") == 0) {
1105                 /*
1106                  * Write the 0xee GPT entry to slot #1 (2nd slot) in the pMBR.
1107                  * This workaround allows Lenovo X220, T420, T520, etc to boot
1108                  * from GPT Partitions in BIOS mode.
1109                  */
1110
1111                 if (entry != NULL)
1112                         return (ENXIO);
1113
1114                 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
1115                 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
1116                 gpt_write_mbr_entry(table->mbr, ((set) ? 1 : 0), 0xee, 1,
1117                     MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX));
1118                 return (0);
1119         }
1120
1121         if (entry == NULL)
1122                 return (ENODEV);
1123
1124         attr = 0;
1125         if (strcasecmp(attrib, "bootme") == 0) {
1126                 attr |= GPT_ENT_ATTR_BOOTME;
1127         } else if (strcasecmp(attrib, "bootonce") == 0) {
1128                 attr |= GPT_ENT_ATTR_BOOTONCE;
1129                 if (set)
1130                         attr |= GPT_ENT_ATTR_BOOTME;
1131         } else if (strcasecmp(attrib, "bootfailed") == 0) {
1132                 /*
1133                  * It should only be possible to unset BOOTFAILED, but it might
1134                  * be useful for test purposes to also be able to set it.
1135                  */
1136                 attr |= GPT_ENT_ATTR_BOOTFAILED;
1137         }
1138         if (attr == 0)
1139                 return (EINVAL);
1140
1141         if (set)
1142                 attr = entry->ent.ent_attr | attr;
1143         else
1144                 attr = entry->ent.ent_attr & ~attr;
1145         if (attr != entry->ent.ent_attr) {
1146                 entry->ent.ent_attr = attr;
1147                 if (!baseentry->gpe_created)
1148                         baseentry->gpe_modified = 1;
1149         }
1150         return (0);
1151 }
1152
1153 static const char *
1154 g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry,
1155     char *buf, size_t bufsz)
1156 {
1157         struct g_part_gpt_entry *entry;
1158         struct uuid *type;
1159         struct g_part_uuid_alias *uap;
1160
1161         entry = (struct g_part_gpt_entry *)baseentry;
1162         type = &entry->ent.ent_type;
1163         for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++)
1164                 if (EQUUID(type, uap->uuid))
1165                         return (g_part_alias_name(uap->alias));
1166         buf[0] = '!';
1167         snprintf_uuid(buf + 1, bufsz - 1, type);
1168
1169         return (buf);
1170 }
1171
1172 static int
1173 g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp)
1174 {
1175         unsigned char *buf, *bp;
1176         struct g_provider *pp;
1177         struct g_part_entry *baseentry;
1178         struct g_part_gpt_entry *entry;
1179         struct g_part_gpt_table *table;
1180         size_t tblsz;
1181         uint32_t crc;
1182         int error, index;
1183
1184         pp = cp->provider;
1185         table = (struct g_part_gpt_table *)basetable;
1186         tblsz = howmany(table->hdr->hdr_entries * table->hdr->hdr_entsz,
1187             pp->sectorsize);
1188
1189         /* Reconstruct the MBR from the GPT if under Boot Camp. */
1190         if (table->bootcamp)
1191                 gpt_update_bootcamp(basetable, pp);
1192
1193         /* Write the PMBR */
1194         buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO);
1195         bcopy(table->mbr, buf, MBRSIZE);
1196         error = g_write_data(cp, 0, buf, pp->sectorsize);
1197         g_free(buf);
1198         if (error)
1199                 return (error);
1200
1201         /* Allocate space for the header and entries. */
1202         buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO);
1203
1204         memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
1205         le32enc(buf + 8, table->hdr->hdr_revision);
1206         le32enc(buf + 12, table->hdr->hdr_size);
1207         le64enc(buf + 40, table->hdr->hdr_lba_start);
1208         le64enc(buf + 48, table->hdr->hdr_lba_end);
1209         le_uuid_enc(buf + 56, &table->hdr->hdr_uuid);
1210         le32enc(buf + 80, table->hdr->hdr_entries);
1211         le32enc(buf + 84, table->hdr->hdr_entsz);
1212
1213         LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
1214                 if (baseentry->gpe_deleted)
1215                         continue;
1216                 entry = (struct g_part_gpt_entry *)baseentry;
1217                 index = baseentry->gpe_index - 1;
1218                 bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index;
1219                 le_uuid_enc(bp, &entry->ent.ent_type);
1220                 le_uuid_enc(bp + 16, &entry->ent.ent_uuid);
1221                 le64enc(bp + 32, entry->ent.ent_lba_start);
1222                 le64enc(bp + 40, entry->ent.ent_lba_end);
1223                 le64enc(bp + 48, entry->ent.ent_attr);
1224                 memcpy(bp + 56, entry->ent.ent_name,
1225                     sizeof(entry->ent.ent_name));
1226         }
1227
1228         crc = crc32(buf + pp->sectorsize,
1229             table->hdr->hdr_entries * table->hdr->hdr_entsz);
1230         le32enc(buf + 88, crc);
1231
1232         /* Write primary meta-data. */
1233         le32enc(buf + 16, 0);   /* hdr_crc_self. */
1234         le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]);  /* hdr_lba_self. */
1235         le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]);  /* hdr_lba_alt. */
1236         le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]);  /* hdr_lba_table. */
1237         crc = crc32(buf, table->hdr->hdr_size);
1238         le32enc(buf + 16, crc);
1239
1240         for (index = 0; index < tblsz; index += maxphys / pp->sectorsize) {
1241                 error = g_write_data(cp,
1242                     (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize,
1243                     buf + (index + 1) * pp->sectorsize,
1244                     (tblsz - index > maxphys / pp->sectorsize) ? maxphys :
1245                     (tblsz - index) * pp->sectorsize);
1246                 if (error)
1247                         goto out;
1248         }
1249         error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize,
1250             buf, pp->sectorsize);
1251         if (error)
1252                 goto out;
1253
1254         /* Write secondary meta-data. */
1255         le32enc(buf + 16, 0);   /* hdr_crc_self. */
1256         le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]);  /* hdr_lba_self. */
1257         le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]);  /* hdr_lba_alt. */
1258         le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]);  /* hdr_lba_table. */
1259         crc = crc32(buf, table->hdr->hdr_size);
1260         le32enc(buf + 16, crc);
1261
1262         for (index = 0; index < tblsz; index += maxphys / pp->sectorsize) {
1263                 error = g_write_data(cp,
1264                     (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize,
1265                     buf + (index + 1) * pp->sectorsize,
1266                     (tblsz - index > maxphys / pp->sectorsize) ? maxphys :
1267                     (tblsz - index) * pp->sectorsize);
1268                 if (error)
1269                         goto out;
1270         }
1271         error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize,
1272             buf, pp->sectorsize);
1273
1274  out:
1275         g_free(buf);
1276         return (error);
1277 }
1278
1279 static void
1280 g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp)
1281 {
1282         struct g_part_entry *baseentry;
1283         struct g_part_gpt_entry *entry;
1284         struct g_part_gpt_table *table;
1285         quad_t start, end, min, max;
1286         quad_t lba, last;
1287         size_t spb, tblsz;
1288
1289         table = (struct g_part_gpt_table *)basetable;
1290         last = pp->mediasize / pp->sectorsize - 1;
1291         tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent),
1292             pp->sectorsize);
1293
1294         table->lba[GPT_ELT_PRIHDR] = 1;
1295         table->lba[GPT_ELT_PRITBL] = 2;
1296         table->lba[GPT_ELT_SECHDR] = last;
1297         table->lba[GPT_ELT_SECTBL] = last - tblsz;
1298         table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK;
1299         table->state[GPT_ELT_PRITBL] = GPT_STATE_OK;
1300         table->state[GPT_ELT_SECHDR] = GPT_STATE_OK;
1301         table->state[GPT_ELT_SECTBL] = GPT_STATE_OK;
1302
1303         max = start = 2 + tblsz;
1304         min = end = last - tblsz - 1;
1305         LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
1306                 if (baseentry->gpe_deleted)
1307                         continue;
1308                 entry = (struct g_part_gpt_entry *)baseentry;
1309                 if (entry->ent.ent_lba_start < min)
1310                         min = entry->ent.ent_lba_start;
1311                 if (entry->ent.ent_lba_end > max)
1312                         max = entry->ent.ent_lba_end;
1313         }
1314         spb = 4096 / pp->sectorsize;
1315         if (spb > 1) {
1316                 lba = start + ((start % spb) ? spb - start % spb : 0);
1317                 if (lba <= min)
1318                         start = lba;
1319                 lba = end - (end + 1) % spb;
1320                 if (max <= lba)
1321                         end = lba;
1322         }
1323         table->hdr->hdr_lba_start = start;
1324         table->hdr->hdr_lba_end = end;
1325
1326         basetable->gpt_first = start;
1327         basetable->gpt_last = end;
1328 }
1329
1330 static void
1331 g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len)
1332 {
1333         u_int bo;
1334         uint32_t ch;
1335         uint16_t c;
1336
1337         bo = LITTLE_ENDIAN;     /* GPT is little-endian */
1338         while (len > 0 && *str != 0) {
1339                 ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str);
1340                 str++, len--;
1341                 if ((ch & 0xf800) == 0xd800) {
1342                         if (len > 0) {
1343                                 c = (bo == BIG_ENDIAN) ? be16toh(*str)
1344                                     : le16toh(*str);
1345                                 str++, len--;
1346                         } else
1347                                 c = 0xfffd;
1348                         if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) {
1349                                 ch = ((ch & 0x3ff) << 10) + (c & 0x3ff);
1350                                 ch += 0x10000;
1351                         } else
1352                                 ch = 0xfffd;
1353                 } else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */
1354                         bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN;
1355                         continue;
1356                 } else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */
1357                         continue;
1358
1359                 /* Write the Unicode character in UTF-8 */
1360                 if (ch < 0x80)
1361                         g_conf_printf_escaped(sb, "%c", ch);
1362                 else if (ch < 0x800)
1363                         g_conf_printf_escaped(sb, "%c%c", 0xc0 | (ch >> 6),
1364                             0x80 | (ch & 0x3f));
1365                 else if (ch < 0x10000)
1366                         g_conf_printf_escaped(sb, "%c%c%c", 0xe0 | (ch >> 12),
1367                             0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1368                 else if (ch < 0x200000)
1369                         g_conf_printf_escaped(sb, "%c%c%c%c", 0xf0 |
1370                             (ch >> 18), 0x80 | ((ch >> 12) & 0x3f),
1371                             0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1372         }
1373 }
1374
1375 static void
1376 g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len)
1377 {
1378         size_t s16idx, s8idx;
1379         uint32_t utfchar;
1380         unsigned int c, utfbytes;
1381
1382         s8idx = s16idx = 0;
1383         utfchar = 0;
1384         utfbytes = 0;
1385         bzero(s16, s16len << 1);
1386         while (s8[s8idx] != 0 && s16idx < s16len) {
1387                 c = s8[s8idx++];
1388                 if ((c & 0xc0) != 0x80) {
1389                         /* Initial characters. */
1390                         if (utfbytes != 0) {
1391                                 /* Incomplete encoding of previous char. */
1392                                 s16[s16idx++] = htole16(0xfffd);
1393                         }
1394                         if ((c & 0xf8) == 0xf0) {
1395                                 utfchar = c & 0x07;
1396                                 utfbytes = 3;
1397                         } else if ((c & 0xf0) == 0xe0) {
1398                                 utfchar = c & 0x0f;
1399                                 utfbytes = 2;
1400                         } else if ((c & 0xe0) == 0xc0) {
1401                                 utfchar = c & 0x1f;
1402                                 utfbytes = 1;
1403                         } else {
1404                                 utfchar = c & 0x7f;
1405                                 utfbytes = 0;
1406                         }
1407                 } else {
1408                         /* Followup characters. */
1409                         if (utfbytes > 0) {
1410                                 utfchar = (utfchar << 6) + (c & 0x3f);
1411                                 utfbytes--;
1412                         } else if (utfbytes == 0)
1413                                 utfbytes = ~0;
1414                 }
1415                 /*
1416                  * Write the complete Unicode character as UTF-16 when we
1417                  * have all the UTF-8 charactars collected.
1418                  */
1419                 if (utfbytes == 0) {
1420                         /*
1421                          * If we need to write 2 UTF-16 characters, but
1422                          * we only have room for 1, then we truncate the
1423                          * string by writing a 0 instead.
1424                          */
1425                         if (utfchar >= 0x10000 && s16idx < s16len - 1) {
1426                                 s16[s16idx++] =
1427                                     htole16(0xd800 | ((utfchar >> 10) - 0x40));
1428                                 s16[s16idx++] =
1429                                     htole16(0xdc00 | (utfchar & 0x3ff));
1430                         } else
1431                                 s16[s16idx++] = (utfchar >= 0x10000) ? 0 :
1432                                     htole16(utfchar);
1433                 }
1434         }
1435         /*
1436          * If our input string was truncated, append an invalid encoding
1437          * character to the output string.
1438          */
1439         if (utfbytes != 0 && s16idx < s16len)
1440                 s16[s16idx++] = htole16(0xfffd);
1441 }