]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/geom/raid/g_raid.c
Upgrade our copy of clang and llvm to 3.5.1 release. This is a bugfix
[FreeBSD/FreeBSD.git] / sys / geom / raid / g_raid.c
1 /*-
2  * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/module.h>
34 #include <sys/limits.h>
35 #include <sys/lock.h>
36 #include <sys/mutex.h>
37 #include <sys/bio.h>
38 #include <sys/sbuf.h>
39 #include <sys/sysctl.h>
40 #include <sys/malloc.h>
41 #include <sys/eventhandler.h>
42 #include <vm/uma.h>
43 #include <geom/geom.h>
44 #include <sys/proc.h>
45 #include <sys/kthread.h>
46 #include <sys/sched.h>
47 #include <geom/raid/g_raid.h>
48 #include "g_raid_md_if.h"
49 #include "g_raid_tr_if.h"
50
51 static MALLOC_DEFINE(M_RAID, "raid_data", "GEOM_RAID Data");
52
53 SYSCTL_DECL(_kern_geom);
54 SYSCTL_NODE(_kern_geom, OID_AUTO, raid, CTLFLAG_RW, 0, "GEOM_RAID stuff");
55 int g_raid_enable = 1;
56 SYSCTL_INT(_kern_geom_raid, OID_AUTO, enable, CTLFLAG_RWTUN,
57     &g_raid_enable, 0, "Enable on-disk metadata taste");
58 u_int g_raid_aggressive_spare = 0;
59 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, aggressive_spare, CTLFLAG_RWTUN,
60     &g_raid_aggressive_spare, 0, "Use disks without metadata as spare");
61 u_int g_raid_debug = 0;
62 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, debug, CTLFLAG_RWTUN, &g_raid_debug, 0,
63     "Debug level");
64 int g_raid_read_err_thresh = 10;
65 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, read_err_thresh, CTLFLAG_RWTUN,
66     &g_raid_read_err_thresh, 0,
67     "Number of read errors equated to disk failure");
68 u_int g_raid_start_timeout = 30;
69 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, start_timeout, CTLFLAG_RWTUN,
70     &g_raid_start_timeout, 0,
71     "Time to wait for all array components");
72 static u_int g_raid_clean_time = 5;
73 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, clean_time, CTLFLAG_RWTUN,
74     &g_raid_clean_time, 0, "Mark volume as clean when idling");
75 static u_int g_raid_disconnect_on_failure = 1;
76 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, disconnect_on_failure, CTLFLAG_RWTUN,
77     &g_raid_disconnect_on_failure, 0, "Disconnect component on I/O failure.");
78 static u_int g_raid_name_format = 0;
79 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, name_format, CTLFLAG_RWTUN,
80     &g_raid_name_format, 0, "Providers name format.");
81 static u_int g_raid_idle_threshold = 1000000;
82 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, idle_threshold, CTLFLAG_RWTUN,
83     &g_raid_idle_threshold, 1000000,
84     "Time in microseconds to consider a volume idle.");
85 static u_int ar_legacy_aliases = 1;
86 SYSCTL_INT(_kern_geom_raid, OID_AUTO, legacy_aliases, CTLFLAG_RWTUN,
87            &ar_legacy_aliases, 0, "Create aliases named as the legacy ataraid style.");
88
89
90 #define MSLEEP(rv, ident, mtx, priority, wmesg, timeout)        do {    \
91         G_RAID_DEBUG(4, "%s: Sleeping %p.", __func__, (ident));         \
92         rv = msleep((ident), (mtx), (priority), (wmesg), (timeout));    \
93         G_RAID_DEBUG(4, "%s: Woken up %p.", __func__, (ident));         \
94 } while (0)
95
96 LIST_HEAD(, g_raid_md_class) g_raid_md_classes =
97     LIST_HEAD_INITIALIZER(g_raid_md_classes);
98
99 LIST_HEAD(, g_raid_tr_class) g_raid_tr_classes =
100     LIST_HEAD_INITIALIZER(g_raid_tr_classes);
101
102 LIST_HEAD(, g_raid_volume) g_raid_volumes =
103     LIST_HEAD_INITIALIZER(g_raid_volumes);
104
105 static eventhandler_tag g_raid_post_sync = NULL;
106 static int g_raid_started = 0;
107 static int g_raid_shutdown = 0;
108
109 static int g_raid_destroy_geom(struct gctl_req *req, struct g_class *mp,
110     struct g_geom *gp);
111 static g_taste_t g_raid_taste;
112 static void g_raid_init(struct g_class *mp);
113 static void g_raid_fini(struct g_class *mp);
114
115 struct g_class g_raid_class = {
116         .name = G_RAID_CLASS_NAME,
117         .version = G_VERSION,
118         .ctlreq = g_raid_ctl,
119         .taste = g_raid_taste,
120         .destroy_geom = g_raid_destroy_geom,
121         .init = g_raid_init,
122         .fini = g_raid_fini
123 };
124
125 static void g_raid_destroy_provider(struct g_raid_volume *vol);
126 static int g_raid_update_disk(struct g_raid_disk *disk, u_int event);
127 static int g_raid_update_subdisk(struct g_raid_subdisk *subdisk, u_int event);
128 static int g_raid_update_volume(struct g_raid_volume *vol, u_int event);
129 static int g_raid_update_node(struct g_raid_softc *sc, u_int event);
130 static void g_raid_dumpconf(struct sbuf *sb, const char *indent,
131     struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp);
132 static void g_raid_start(struct bio *bp);
133 static void g_raid_start_request(struct bio *bp);
134 static void g_raid_disk_done(struct bio *bp);
135 static void g_raid_poll(struct g_raid_softc *sc);
136
137 static const char *
138 g_raid_node_event2str(int event)
139 {
140
141         switch (event) {
142         case G_RAID_NODE_E_WAKE:
143                 return ("WAKE");
144         case G_RAID_NODE_E_START:
145                 return ("START");
146         default:
147                 return ("INVALID");
148         }
149 }
150
151 const char *
152 g_raid_disk_state2str(int state)
153 {
154
155         switch (state) {
156         case G_RAID_DISK_S_NONE:
157                 return ("NONE");
158         case G_RAID_DISK_S_OFFLINE:
159                 return ("OFFLINE");
160         case G_RAID_DISK_S_DISABLED:
161                 return ("DISABLED");
162         case G_RAID_DISK_S_FAILED:
163                 return ("FAILED");
164         case G_RAID_DISK_S_STALE_FAILED:
165                 return ("STALE_FAILED");
166         case G_RAID_DISK_S_SPARE:
167                 return ("SPARE");
168         case G_RAID_DISK_S_STALE:
169                 return ("STALE");
170         case G_RAID_DISK_S_ACTIVE:
171                 return ("ACTIVE");
172         default:
173                 return ("INVALID");
174         }
175 }
176
177 static const char *
178 g_raid_disk_event2str(int event)
179 {
180
181         switch (event) {
182         case G_RAID_DISK_E_DISCONNECTED:
183                 return ("DISCONNECTED");
184         default:
185                 return ("INVALID");
186         }
187 }
188
189 const char *
190 g_raid_subdisk_state2str(int state)
191 {
192
193         switch (state) {
194         case G_RAID_SUBDISK_S_NONE:
195                 return ("NONE");
196         case G_RAID_SUBDISK_S_FAILED:
197                 return ("FAILED");
198         case G_RAID_SUBDISK_S_NEW:
199                 return ("NEW");
200         case G_RAID_SUBDISK_S_REBUILD:
201                 return ("REBUILD");
202         case G_RAID_SUBDISK_S_UNINITIALIZED:
203                 return ("UNINITIALIZED");
204         case G_RAID_SUBDISK_S_STALE:
205                 return ("STALE");
206         case G_RAID_SUBDISK_S_RESYNC:
207                 return ("RESYNC");
208         case G_RAID_SUBDISK_S_ACTIVE:
209                 return ("ACTIVE");
210         default:
211                 return ("INVALID");
212         }
213 }
214
215 static const char *
216 g_raid_subdisk_event2str(int event)
217 {
218
219         switch (event) {
220         case G_RAID_SUBDISK_E_NEW:
221                 return ("NEW");
222         case G_RAID_SUBDISK_E_FAILED:
223                 return ("FAILED");
224         case G_RAID_SUBDISK_E_DISCONNECTED:
225                 return ("DISCONNECTED");
226         default:
227                 return ("INVALID");
228         }
229 }
230
231 const char *
232 g_raid_volume_state2str(int state)
233 {
234
235         switch (state) {
236         case G_RAID_VOLUME_S_STARTING:
237                 return ("STARTING");
238         case G_RAID_VOLUME_S_BROKEN:
239                 return ("BROKEN");
240         case G_RAID_VOLUME_S_DEGRADED:
241                 return ("DEGRADED");
242         case G_RAID_VOLUME_S_SUBOPTIMAL:
243                 return ("SUBOPTIMAL");
244         case G_RAID_VOLUME_S_OPTIMAL:
245                 return ("OPTIMAL");
246         case G_RAID_VOLUME_S_UNSUPPORTED:
247                 return ("UNSUPPORTED");
248         case G_RAID_VOLUME_S_STOPPED:
249                 return ("STOPPED");
250         default:
251                 return ("INVALID");
252         }
253 }
254
255 static const char *
256 g_raid_volume_event2str(int event)
257 {
258
259         switch (event) {
260         case G_RAID_VOLUME_E_UP:
261                 return ("UP");
262         case G_RAID_VOLUME_E_DOWN:
263                 return ("DOWN");
264         case G_RAID_VOLUME_E_START:
265                 return ("START");
266         case G_RAID_VOLUME_E_STARTMD:
267                 return ("STARTMD");
268         default:
269                 return ("INVALID");
270         }
271 }
272
273 const char *
274 g_raid_volume_level2str(int level, int qual)
275 {
276
277         switch (level) {
278         case G_RAID_VOLUME_RL_RAID0:
279                 return ("RAID0");
280         case G_RAID_VOLUME_RL_RAID1:
281                 return ("RAID1");
282         case G_RAID_VOLUME_RL_RAID3:
283                 if (qual == G_RAID_VOLUME_RLQ_R3P0)
284                         return ("RAID3-P0");
285                 if (qual == G_RAID_VOLUME_RLQ_R3PN)
286                         return ("RAID3-PN");
287                 return ("RAID3");
288         case G_RAID_VOLUME_RL_RAID4:
289                 if (qual == G_RAID_VOLUME_RLQ_R4P0)
290                         return ("RAID4-P0");
291                 if (qual == G_RAID_VOLUME_RLQ_R4PN)
292                         return ("RAID4-PN");
293                 return ("RAID4");
294         case G_RAID_VOLUME_RL_RAID5:
295                 if (qual == G_RAID_VOLUME_RLQ_R5RA)
296                         return ("RAID5-RA");
297                 if (qual == G_RAID_VOLUME_RLQ_R5RS)
298                         return ("RAID5-RS");
299                 if (qual == G_RAID_VOLUME_RLQ_R5LA)
300                         return ("RAID5-LA");
301                 if (qual == G_RAID_VOLUME_RLQ_R5LS)
302                         return ("RAID5-LS");
303                 return ("RAID5");
304         case G_RAID_VOLUME_RL_RAID6:
305                 if (qual == G_RAID_VOLUME_RLQ_R6RA)
306                         return ("RAID6-RA");
307                 if (qual == G_RAID_VOLUME_RLQ_R6RS)
308                         return ("RAID6-RS");
309                 if (qual == G_RAID_VOLUME_RLQ_R6LA)
310                         return ("RAID6-LA");
311                 if (qual == G_RAID_VOLUME_RLQ_R6LS)
312                         return ("RAID6-LS");
313                 return ("RAID6");
314         case G_RAID_VOLUME_RL_RAIDMDF:
315                 if (qual == G_RAID_VOLUME_RLQ_RMDFRA)
316                         return ("RAIDMDF-RA");
317                 if (qual == G_RAID_VOLUME_RLQ_RMDFRS)
318                         return ("RAIDMDF-RS");
319                 if (qual == G_RAID_VOLUME_RLQ_RMDFLA)
320                         return ("RAIDMDF-LA");
321                 if (qual == G_RAID_VOLUME_RLQ_RMDFLS)
322                         return ("RAIDMDF-LS");
323                 return ("RAIDMDF");
324         case G_RAID_VOLUME_RL_RAID1E:
325                 if (qual == G_RAID_VOLUME_RLQ_R1EA)
326                         return ("RAID1E-A");
327                 if (qual == G_RAID_VOLUME_RLQ_R1EO)
328                         return ("RAID1E-O");
329                 return ("RAID1E");
330         case G_RAID_VOLUME_RL_SINGLE:
331                 return ("SINGLE");
332         case G_RAID_VOLUME_RL_CONCAT:
333                 return ("CONCAT");
334         case G_RAID_VOLUME_RL_RAID5E:
335                 if (qual == G_RAID_VOLUME_RLQ_R5ERA)
336                         return ("RAID5E-RA");
337                 if (qual == G_RAID_VOLUME_RLQ_R5ERS)
338                         return ("RAID5E-RS");
339                 if (qual == G_RAID_VOLUME_RLQ_R5ELA)
340                         return ("RAID5E-LA");
341                 if (qual == G_RAID_VOLUME_RLQ_R5ELS)
342                         return ("RAID5E-LS");
343                 return ("RAID5E");
344         case G_RAID_VOLUME_RL_RAID5EE:
345                 if (qual == G_RAID_VOLUME_RLQ_R5EERA)
346                         return ("RAID5EE-RA");
347                 if (qual == G_RAID_VOLUME_RLQ_R5EERS)
348                         return ("RAID5EE-RS");
349                 if (qual == G_RAID_VOLUME_RLQ_R5EELA)
350                         return ("RAID5EE-LA");
351                 if (qual == G_RAID_VOLUME_RLQ_R5EELS)
352                         return ("RAID5EE-LS");
353                 return ("RAID5EE");
354         case G_RAID_VOLUME_RL_RAID5R:
355                 if (qual == G_RAID_VOLUME_RLQ_R5RRA)
356                         return ("RAID5R-RA");
357                 if (qual == G_RAID_VOLUME_RLQ_R5RRS)
358                         return ("RAID5R-RS");
359                 if (qual == G_RAID_VOLUME_RLQ_R5RLA)
360                         return ("RAID5R-LA");
361                 if (qual == G_RAID_VOLUME_RLQ_R5RLS)
362                         return ("RAID5R-LS");
363                 return ("RAID5E");
364         default:
365                 return ("UNKNOWN");
366         }
367 }
368
369 int
370 g_raid_volume_str2level(const char *str, int *level, int *qual)
371 {
372
373         *level = G_RAID_VOLUME_RL_UNKNOWN;
374         *qual = G_RAID_VOLUME_RLQ_NONE;
375         if (strcasecmp(str, "RAID0") == 0)
376                 *level = G_RAID_VOLUME_RL_RAID0;
377         else if (strcasecmp(str, "RAID1") == 0)
378                 *level = G_RAID_VOLUME_RL_RAID1;
379         else if (strcasecmp(str, "RAID3-P0") == 0) {
380                 *level = G_RAID_VOLUME_RL_RAID3;
381                 *qual = G_RAID_VOLUME_RLQ_R3P0;
382         } else if (strcasecmp(str, "RAID3-PN") == 0 ||
383                    strcasecmp(str, "RAID3") == 0) {
384                 *level = G_RAID_VOLUME_RL_RAID3;
385                 *qual = G_RAID_VOLUME_RLQ_R3PN;
386         } else if (strcasecmp(str, "RAID4-P0") == 0) {
387                 *level = G_RAID_VOLUME_RL_RAID4;
388                 *qual = G_RAID_VOLUME_RLQ_R4P0;
389         } else if (strcasecmp(str, "RAID4-PN") == 0 ||
390                    strcasecmp(str, "RAID4") == 0) {
391                 *level = G_RAID_VOLUME_RL_RAID4;
392                 *qual = G_RAID_VOLUME_RLQ_R4PN;
393         } else if (strcasecmp(str, "RAID5-RA") == 0) {
394                 *level = G_RAID_VOLUME_RL_RAID5;
395                 *qual = G_RAID_VOLUME_RLQ_R5RA;
396         } else if (strcasecmp(str, "RAID5-RS") == 0) {
397                 *level = G_RAID_VOLUME_RL_RAID5;
398                 *qual = G_RAID_VOLUME_RLQ_R5RS;
399         } else if (strcasecmp(str, "RAID5") == 0 ||
400                    strcasecmp(str, "RAID5-LA") == 0) {
401                 *level = G_RAID_VOLUME_RL_RAID5;
402                 *qual = G_RAID_VOLUME_RLQ_R5LA;
403         } else if (strcasecmp(str, "RAID5-LS") == 0) {
404                 *level = G_RAID_VOLUME_RL_RAID5;
405                 *qual = G_RAID_VOLUME_RLQ_R5LS;
406         } else if (strcasecmp(str, "RAID6-RA") == 0) {
407                 *level = G_RAID_VOLUME_RL_RAID6;
408                 *qual = G_RAID_VOLUME_RLQ_R6RA;
409         } else if (strcasecmp(str, "RAID6-RS") == 0) {
410                 *level = G_RAID_VOLUME_RL_RAID6;
411                 *qual = G_RAID_VOLUME_RLQ_R6RS;
412         } else if (strcasecmp(str, "RAID6") == 0 ||
413                    strcasecmp(str, "RAID6-LA") == 0) {
414                 *level = G_RAID_VOLUME_RL_RAID6;
415                 *qual = G_RAID_VOLUME_RLQ_R6LA;
416         } else if (strcasecmp(str, "RAID6-LS") == 0) {
417                 *level = G_RAID_VOLUME_RL_RAID6;
418                 *qual = G_RAID_VOLUME_RLQ_R6LS;
419         } else if (strcasecmp(str, "RAIDMDF-RA") == 0) {
420                 *level = G_RAID_VOLUME_RL_RAIDMDF;
421                 *qual = G_RAID_VOLUME_RLQ_RMDFRA;
422         } else if (strcasecmp(str, "RAIDMDF-RS") == 0) {
423                 *level = G_RAID_VOLUME_RL_RAIDMDF;
424                 *qual = G_RAID_VOLUME_RLQ_RMDFRS;
425         } else if (strcasecmp(str, "RAIDMDF") == 0 ||
426                    strcasecmp(str, "RAIDMDF-LA") == 0) {
427                 *level = G_RAID_VOLUME_RL_RAIDMDF;
428                 *qual = G_RAID_VOLUME_RLQ_RMDFLA;
429         } else if (strcasecmp(str, "RAIDMDF-LS") == 0) {
430                 *level = G_RAID_VOLUME_RL_RAIDMDF;
431                 *qual = G_RAID_VOLUME_RLQ_RMDFLS;
432         } else if (strcasecmp(str, "RAID10") == 0 ||
433                    strcasecmp(str, "RAID1E") == 0 ||
434                    strcasecmp(str, "RAID1E-A") == 0) {
435                 *level = G_RAID_VOLUME_RL_RAID1E;
436                 *qual = G_RAID_VOLUME_RLQ_R1EA;
437         } else if (strcasecmp(str, "RAID1E-O") == 0) {
438                 *level = G_RAID_VOLUME_RL_RAID1E;
439                 *qual = G_RAID_VOLUME_RLQ_R1EO;
440         } else if (strcasecmp(str, "SINGLE") == 0)
441                 *level = G_RAID_VOLUME_RL_SINGLE;
442         else if (strcasecmp(str, "CONCAT") == 0)
443                 *level = G_RAID_VOLUME_RL_CONCAT;
444         else if (strcasecmp(str, "RAID5E-RA") == 0) {
445                 *level = G_RAID_VOLUME_RL_RAID5E;
446                 *qual = G_RAID_VOLUME_RLQ_R5ERA;
447         } else if (strcasecmp(str, "RAID5E-RS") == 0) {
448                 *level = G_RAID_VOLUME_RL_RAID5E;
449                 *qual = G_RAID_VOLUME_RLQ_R5ERS;
450         } else if (strcasecmp(str, "RAID5E") == 0 ||
451                    strcasecmp(str, "RAID5E-LA") == 0) {
452                 *level = G_RAID_VOLUME_RL_RAID5E;
453                 *qual = G_RAID_VOLUME_RLQ_R5ELA;
454         } else if (strcasecmp(str, "RAID5E-LS") == 0) {
455                 *level = G_RAID_VOLUME_RL_RAID5E;
456                 *qual = G_RAID_VOLUME_RLQ_R5ELS;
457         } else if (strcasecmp(str, "RAID5EE-RA") == 0) {
458                 *level = G_RAID_VOLUME_RL_RAID5EE;
459                 *qual = G_RAID_VOLUME_RLQ_R5EERA;
460         } else if (strcasecmp(str, "RAID5EE-RS") == 0) {
461                 *level = G_RAID_VOLUME_RL_RAID5EE;
462                 *qual = G_RAID_VOLUME_RLQ_R5EERS;
463         } else if (strcasecmp(str, "RAID5EE") == 0 ||
464                    strcasecmp(str, "RAID5EE-LA") == 0) {
465                 *level = G_RAID_VOLUME_RL_RAID5EE;
466                 *qual = G_RAID_VOLUME_RLQ_R5EELA;
467         } else if (strcasecmp(str, "RAID5EE-LS") == 0) {
468                 *level = G_RAID_VOLUME_RL_RAID5EE;
469                 *qual = G_RAID_VOLUME_RLQ_R5EELS;
470         } else if (strcasecmp(str, "RAID5R-RA") == 0) {
471                 *level = G_RAID_VOLUME_RL_RAID5R;
472                 *qual = G_RAID_VOLUME_RLQ_R5RRA;
473         } else if (strcasecmp(str, "RAID5R-RS") == 0) {
474                 *level = G_RAID_VOLUME_RL_RAID5R;
475                 *qual = G_RAID_VOLUME_RLQ_R5RRS;
476         } else if (strcasecmp(str, "RAID5R") == 0 ||
477                    strcasecmp(str, "RAID5R-LA") == 0) {
478                 *level = G_RAID_VOLUME_RL_RAID5R;
479                 *qual = G_RAID_VOLUME_RLQ_R5RLA;
480         } else if (strcasecmp(str, "RAID5R-LS") == 0) {
481                 *level = G_RAID_VOLUME_RL_RAID5R;
482                 *qual = G_RAID_VOLUME_RLQ_R5RLS;
483         } else
484                 return (-1);
485         return (0);
486 }
487
488 const char *
489 g_raid_get_diskname(struct g_raid_disk *disk)
490 {
491
492         if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL)
493                 return ("[unknown]");
494         return (disk->d_consumer->provider->name);
495 }
496
497 void
498 g_raid_get_disk_info(struct g_raid_disk *disk)
499 {
500         struct g_consumer *cp = disk->d_consumer;
501         int error, len;
502
503         /* Read kernel dumping information. */
504         disk->d_kd.offset = 0;
505         disk->d_kd.length = OFF_MAX;
506         len = sizeof(disk->d_kd);
507         error = g_io_getattr("GEOM::kerneldump", cp, &len, &disk->d_kd);
508         if (error)
509                 disk->d_kd.di.dumper = NULL;
510         if (disk->d_kd.di.dumper == NULL)
511                 G_RAID_DEBUG1(2, disk->d_softc,
512                     "Dumping not supported by %s: %d.", 
513                     cp->provider->name, error);
514
515         /* Read BIO_DELETE support. */
516         error = g_getattr("GEOM::candelete", cp, &disk->d_candelete);
517         if (error)
518                 disk->d_candelete = 0;
519         if (!disk->d_candelete)
520                 G_RAID_DEBUG1(2, disk->d_softc,
521                     "BIO_DELETE not supported by %s: %d.", 
522                     cp->provider->name, error);
523 }
524
525 void
526 g_raid_report_disk_state(struct g_raid_disk *disk)
527 {
528         struct g_raid_subdisk *sd;
529         int len, state;
530         uint32_t s;
531
532         if (disk->d_consumer == NULL)
533                 return;
534         if (disk->d_state == G_RAID_DISK_S_DISABLED) {
535                 s = G_STATE_ACTIVE; /* XXX */
536         } else if (disk->d_state == G_RAID_DISK_S_FAILED ||
537             disk->d_state == G_RAID_DISK_S_STALE_FAILED) {
538                 s = G_STATE_FAILED;
539         } else {
540                 state = G_RAID_SUBDISK_S_ACTIVE;
541                 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
542                         if (sd->sd_state < state)
543                                 state = sd->sd_state;
544                 }
545                 if (state == G_RAID_SUBDISK_S_FAILED)
546                         s = G_STATE_FAILED;
547                 else if (state == G_RAID_SUBDISK_S_NEW ||
548                     state == G_RAID_SUBDISK_S_REBUILD)
549                         s = G_STATE_REBUILD;
550                 else if (state == G_RAID_SUBDISK_S_STALE ||
551                     state == G_RAID_SUBDISK_S_RESYNC)
552                         s = G_STATE_RESYNC;
553                 else
554                         s = G_STATE_ACTIVE;
555         }
556         len = sizeof(s);
557         g_io_getattr("GEOM::setstate", disk->d_consumer, &len, &s);
558         G_RAID_DEBUG1(2, disk->d_softc, "Disk %s state reported as %d.",
559             g_raid_get_diskname(disk), s);
560 }
561
562 void
563 g_raid_change_disk_state(struct g_raid_disk *disk, int state)
564 {
565
566         G_RAID_DEBUG1(0, disk->d_softc, "Disk %s state changed from %s to %s.",
567             g_raid_get_diskname(disk),
568             g_raid_disk_state2str(disk->d_state),
569             g_raid_disk_state2str(state));
570         disk->d_state = state;
571         g_raid_report_disk_state(disk);
572 }
573
574 void
575 g_raid_change_subdisk_state(struct g_raid_subdisk *sd, int state)
576 {
577
578         G_RAID_DEBUG1(0, sd->sd_softc,
579             "Subdisk %s:%d-%s state changed from %s to %s.",
580             sd->sd_volume->v_name, sd->sd_pos,
581             sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]",
582             g_raid_subdisk_state2str(sd->sd_state),
583             g_raid_subdisk_state2str(state));
584         sd->sd_state = state;
585         if (sd->sd_disk)
586                 g_raid_report_disk_state(sd->sd_disk);
587 }
588
589 void
590 g_raid_change_volume_state(struct g_raid_volume *vol, int state)
591 {
592
593         G_RAID_DEBUG1(0, vol->v_softc,
594             "Volume %s state changed from %s to %s.",
595             vol->v_name,
596             g_raid_volume_state2str(vol->v_state),
597             g_raid_volume_state2str(state));
598         vol->v_state = state;
599 }
600
601 /*
602  * --- Events handling functions ---
603  * Events in geom_raid are used to maintain subdisks and volumes status
604  * from one thread to simplify locking.
605  */
606 static void
607 g_raid_event_free(struct g_raid_event *ep)
608 {
609
610         free(ep, M_RAID);
611 }
612
613 int
614 g_raid_event_send(void *arg, int event, int flags)
615 {
616         struct g_raid_softc *sc;
617         struct g_raid_event *ep;
618         int error;
619
620         if ((flags & G_RAID_EVENT_VOLUME) != 0) {
621                 sc = ((struct g_raid_volume *)arg)->v_softc;
622         } else if ((flags & G_RAID_EVENT_DISK) != 0) {
623                 sc = ((struct g_raid_disk *)arg)->d_softc;
624         } else if ((flags & G_RAID_EVENT_SUBDISK) != 0) {
625                 sc = ((struct g_raid_subdisk *)arg)->sd_softc;
626         } else {
627                 sc = arg;
628         }
629         ep = malloc(sizeof(*ep), M_RAID,
630             sx_xlocked(&sc->sc_lock) ? M_WAITOK : M_NOWAIT);
631         if (ep == NULL)
632                 return (ENOMEM);
633         ep->e_tgt = arg;
634         ep->e_event = event;
635         ep->e_flags = flags;
636         ep->e_error = 0;
637         G_RAID_DEBUG1(4, sc, "Sending event %p. Waking up %p.", ep, sc);
638         mtx_lock(&sc->sc_queue_mtx);
639         TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next);
640         mtx_unlock(&sc->sc_queue_mtx);
641         wakeup(sc);
642
643         if ((flags & G_RAID_EVENT_WAIT) == 0)
644                 return (0);
645
646         sx_assert(&sc->sc_lock, SX_XLOCKED);
647         G_RAID_DEBUG1(4, sc, "Sleeping on %p.", ep);
648         sx_xunlock(&sc->sc_lock);
649         while ((ep->e_flags & G_RAID_EVENT_DONE) == 0) {
650                 mtx_lock(&sc->sc_queue_mtx);
651                 MSLEEP(error, ep, &sc->sc_queue_mtx, PRIBIO | PDROP, "m:event",
652                     hz * 5);
653         }
654         error = ep->e_error;
655         g_raid_event_free(ep);
656         sx_xlock(&sc->sc_lock);
657         return (error);
658 }
659
660 static void
661 g_raid_event_cancel(struct g_raid_softc *sc, void *tgt)
662 {
663         struct g_raid_event *ep, *tmpep;
664
665         sx_assert(&sc->sc_lock, SX_XLOCKED);
666
667         mtx_lock(&sc->sc_queue_mtx);
668         TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) {
669                 if (ep->e_tgt != tgt)
670                         continue;
671                 TAILQ_REMOVE(&sc->sc_events, ep, e_next);
672                 if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0)
673                         g_raid_event_free(ep);
674                 else {
675                         ep->e_error = ECANCELED;
676                         wakeup(ep);
677                 }
678         }
679         mtx_unlock(&sc->sc_queue_mtx);
680 }
681
682 static int
683 g_raid_event_check(struct g_raid_softc *sc, void *tgt)
684 {
685         struct g_raid_event *ep;
686         int     res = 0;
687
688         sx_assert(&sc->sc_lock, SX_XLOCKED);
689
690         mtx_lock(&sc->sc_queue_mtx);
691         TAILQ_FOREACH(ep, &sc->sc_events, e_next) {
692                 if (ep->e_tgt != tgt)
693                         continue;
694                 res = 1;
695                 break;
696         }
697         mtx_unlock(&sc->sc_queue_mtx);
698         return (res);
699 }
700
701 /*
702  * Return the number of disks in given state.
703  * If state is equal to -1, count all connected disks.
704  */
705 u_int
706 g_raid_ndisks(struct g_raid_softc *sc, int state)
707 {
708         struct g_raid_disk *disk;
709         u_int n;
710
711         sx_assert(&sc->sc_lock, SX_LOCKED);
712
713         n = 0;
714         TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
715                 if (disk->d_state == state || state == -1)
716                         n++;
717         }
718         return (n);
719 }
720
721 /*
722  * Return the number of subdisks in given state.
723  * If state is equal to -1, count all connected disks.
724  */
725 u_int
726 g_raid_nsubdisks(struct g_raid_volume *vol, int state)
727 {
728         struct g_raid_subdisk *subdisk;
729         struct g_raid_softc *sc;
730         u_int i, n ;
731
732         sc = vol->v_softc;
733         sx_assert(&sc->sc_lock, SX_LOCKED);
734
735         n = 0;
736         for (i = 0; i < vol->v_disks_count; i++) {
737                 subdisk = &vol->v_subdisks[i];
738                 if ((state == -1 &&
739                      subdisk->sd_state != G_RAID_SUBDISK_S_NONE) ||
740                     subdisk->sd_state == state)
741                         n++;
742         }
743         return (n);
744 }
745
746 /*
747  * Return the first subdisk in given state.
748  * If state is equal to -1, then the first connected disks.
749  */
750 struct g_raid_subdisk *
751 g_raid_get_subdisk(struct g_raid_volume *vol, int state)
752 {
753         struct g_raid_subdisk *sd;
754         struct g_raid_softc *sc;
755         u_int i;
756
757         sc = vol->v_softc;
758         sx_assert(&sc->sc_lock, SX_LOCKED);
759
760         for (i = 0; i < vol->v_disks_count; i++) {
761                 sd = &vol->v_subdisks[i];
762                 if ((state == -1 &&
763                      sd->sd_state != G_RAID_SUBDISK_S_NONE) ||
764                     sd->sd_state == state)
765                         return (sd);
766         }
767         return (NULL);
768 }
769
770 struct g_consumer *
771 g_raid_open_consumer(struct g_raid_softc *sc, const char *name)
772 {
773         struct g_consumer *cp;
774         struct g_provider *pp;
775
776         g_topology_assert();
777
778         if (strncmp(name, "/dev/", 5) == 0)
779                 name += 5;
780         pp = g_provider_by_name(name);
781         if (pp == NULL)
782                 return (NULL);
783         cp = g_new_consumer(sc->sc_geom);
784         cp->flags |= G_CF_DIRECT_RECEIVE;
785         if (g_attach(cp, pp) != 0) {
786                 g_destroy_consumer(cp);
787                 return (NULL);
788         }
789         if (g_access(cp, 1, 1, 1) != 0) {
790                 g_detach(cp);
791                 g_destroy_consumer(cp);
792                 return (NULL);
793         }
794         return (cp);
795 }
796
797 static u_int
798 g_raid_nrequests(struct g_raid_softc *sc, struct g_consumer *cp)
799 {
800         struct bio *bp;
801         u_int nreqs = 0;
802
803         mtx_lock(&sc->sc_queue_mtx);
804         TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
805                 if (bp->bio_from == cp)
806                         nreqs++;
807         }
808         mtx_unlock(&sc->sc_queue_mtx);
809         return (nreqs);
810 }
811
812 u_int
813 g_raid_nopens(struct g_raid_softc *sc)
814 {
815         struct g_raid_volume *vol;
816         u_int opens;
817
818         opens = 0;
819         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
820                 if (vol->v_provider_open != 0)
821                         opens++;
822         }
823         return (opens);
824 }
825
826 static int
827 g_raid_consumer_is_busy(struct g_raid_softc *sc, struct g_consumer *cp)
828 {
829
830         if (cp->index > 0) {
831                 G_RAID_DEBUG1(2, sc,
832                     "I/O requests for %s exist, can't destroy it now.",
833                     cp->provider->name);
834                 return (1);
835         }
836         if (g_raid_nrequests(sc, cp) > 0) {
837                 G_RAID_DEBUG1(2, sc,
838                     "I/O requests for %s in queue, can't destroy it now.",
839                     cp->provider->name);
840                 return (1);
841         }
842         return (0);
843 }
844
845 static void
846 g_raid_destroy_consumer(void *arg, int flags __unused)
847 {
848         struct g_consumer *cp;
849
850         g_topology_assert();
851
852         cp = arg;
853         G_RAID_DEBUG(1, "Consumer %s destroyed.", cp->provider->name);
854         g_detach(cp);
855         g_destroy_consumer(cp);
856 }
857
858 void
859 g_raid_kill_consumer(struct g_raid_softc *sc, struct g_consumer *cp)
860 {
861         struct g_provider *pp;
862         int retaste_wait;
863
864         g_topology_assert_not();
865
866         g_topology_lock();
867         cp->private = NULL;
868         if (g_raid_consumer_is_busy(sc, cp))
869                 goto out;
870         pp = cp->provider;
871         retaste_wait = 0;
872         if (cp->acw == 1) {
873                 if ((pp->geom->flags & G_GEOM_WITHER) == 0)
874                         retaste_wait = 1;
875         }
876         if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0)
877                 g_access(cp, -cp->acr, -cp->acw, -cp->ace);
878         if (retaste_wait) {
879                 /*
880                  * After retaste event was send (inside g_access()), we can send
881                  * event to detach and destroy consumer.
882                  * A class, which has consumer to the given provider connected
883                  * will not receive retaste event for the provider.
884                  * This is the way how I ignore retaste events when I close
885                  * consumers opened for write: I detach and destroy consumer
886                  * after retaste event is sent.
887                  */
888                 g_post_event(g_raid_destroy_consumer, cp, M_WAITOK, NULL);
889                 goto out;
890         }
891         G_RAID_DEBUG(1, "Consumer %s destroyed.", pp->name);
892         g_detach(cp);
893         g_destroy_consumer(cp);
894 out:
895         g_topology_unlock();
896 }
897
898 static void
899 g_raid_orphan(struct g_consumer *cp)
900 {
901         struct g_raid_disk *disk;
902
903         g_topology_assert();
904
905         disk = cp->private;
906         if (disk == NULL)
907                 return;
908         g_raid_event_send(disk, G_RAID_DISK_E_DISCONNECTED,
909             G_RAID_EVENT_DISK);
910 }
911
912 static void
913 g_raid_clean(struct g_raid_volume *vol, int acw)
914 {
915         struct g_raid_softc *sc;
916         int timeout;
917
918         sc = vol->v_softc;
919         g_topology_assert_not();
920         sx_assert(&sc->sc_lock, SX_XLOCKED);
921
922 //      if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0)
923 //              return;
924         if (!vol->v_dirty)
925                 return;
926         if (vol->v_writes > 0)
927                 return;
928         if (acw > 0 || (acw == -1 &&
929             vol->v_provider != NULL && vol->v_provider->acw > 0)) {
930                 timeout = g_raid_clean_time - (time_uptime - vol->v_last_write);
931                 if (!g_raid_shutdown && timeout > 0)
932                         return;
933         }
934         vol->v_dirty = 0;
935         G_RAID_DEBUG1(1, sc, "Volume %s marked as clean.",
936             vol->v_name);
937         g_raid_write_metadata(sc, vol, NULL, NULL);
938 }
939
940 static void
941 g_raid_dirty(struct g_raid_volume *vol)
942 {
943         struct g_raid_softc *sc;
944
945         sc = vol->v_softc;
946         g_topology_assert_not();
947         sx_assert(&sc->sc_lock, SX_XLOCKED);
948
949 //      if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0)
950 //              return;
951         vol->v_dirty = 1;
952         G_RAID_DEBUG1(1, sc, "Volume %s marked as dirty.",
953             vol->v_name);
954         g_raid_write_metadata(sc, vol, NULL, NULL);
955 }
956
957 void
958 g_raid_tr_flush_common(struct g_raid_tr_object *tr, struct bio *bp)
959 {
960         struct g_raid_softc *sc;
961         struct g_raid_volume *vol;
962         struct g_raid_subdisk *sd;
963         struct bio_queue_head queue;
964         struct bio *cbp;
965         int i;
966
967         vol = tr->tro_volume;
968         sc = vol->v_softc;
969
970         /*
971          * Allocate all bios before sending any request, so we can return
972          * ENOMEM in nice and clean way.
973          */
974         bioq_init(&queue);
975         for (i = 0; i < vol->v_disks_count; i++) {
976                 sd = &vol->v_subdisks[i];
977                 if (sd->sd_state == G_RAID_SUBDISK_S_NONE ||
978                     sd->sd_state == G_RAID_SUBDISK_S_FAILED)
979                         continue;
980                 cbp = g_clone_bio(bp);
981                 if (cbp == NULL)
982                         goto failure;
983                 cbp->bio_caller1 = sd;
984                 bioq_insert_tail(&queue, cbp);
985         }
986         while ((cbp = bioq_takefirst(&queue)) != NULL) {
987                 sd = cbp->bio_caller1;
988                 cbp->bio_caller1 = NULL;
989                 g_raid_subdisk_iostart(sd, cbp);
990         }
991         return;
992 failure:
993         while ((cbp = bioq_takefirst(&queue)) != NULL)
994                 g_destroy_bio(cbp);
995         if (bp->bio_error == 0)
996                 bp->bio_error = ENOMEM;
997         g_raid_iodone(bp, bp->bio_error);
998 }
999
1000 static void
1001 g_raid_tr_kerneldump_common_done(struct bio *bp)
1002 {
1003
1004         bp->bio_flags |= BIO_DONE;
1005 }
1006
1007 int
1008 g_raid_tr_kerneldump_common(struct g_raid_tr_object *tr,
1009     void *virtual, vm_offset_t physical, off_t offset, size_t length)
1010 {
1011         struct g_raid_softc *sc;
1012         struct g_raid_volume *vol;
1013         struct bio bp;
1014
1015         vol = tr->tro_volume;
1016         sc = vol->v_softc;
1017
1018         bzero(&bp, sizeof(bp));
1019         bp.bio_cmd = BIO_WRITE;
1020         bp.bio_done = g_raid_tr_kerneldump_common_done;
1021         bp.bio_attribute = NULL;
1022         bp.bio_offset = offset;
1023         bp.bio_length = length;
1024         bp.bio_data = virtual;
1025         bp.bio_to = vol->v_provider;
1026
1027         g_raid_start(&bp);
1028         while (!(bp.bio_flags & BIO_DONE)) {
1029                 G_RAID_DEBUG1(4, sc, "Poll...");
1030                 g_raid_poll(sc);
1031                 DELAY(10);
1032         }
1033
1034         return (bp.bio_error != 0 ? EIO : 0);
1035 }
1036
1037 static int
1038 g_raid_dump(void *arg,
1039     void *virtual, vm_offset_t physical, off_t offset, size_t length)
1040 {
1041         struct g_raid_volume *vol;
1042         int error;
1043
1044         vol = (struct g_raid_volume *)arg;
1045         G_RAID_DEBUG1(3, vol->v_softc, "Dumping at off %llu len %llu.",
1046             (long long unsigned)offset, (long long unsigned)length);
1047
1048         error = G_RAID_TR_KERNELDUMP(vol->v_tr,
1049             virtual, physical, offset, length);
1050         return (error);
1051 }
1052
1053 static void
1054 g_raid_kerneldump(struct g_raid_softc *sc, struct bio *bp)
1055 {
1056         struct g_kerneldump *gkd;
1057         struct g_provider *pp;
1058         struct g_raid_volume *vol;
1059
1060         gkd = (struct g_kerneldump*)bp->bio_data;
1061         pp = bp->bio_to;
1062         vol = pp->private;
1063         g_trace(G_T_TOPOLOGY, "g_raid_kerneldump(%s, %jd, %jd)",
1064                 pp->name, (intmax_t)gkd->offset, (intmax_t)gkd->length);
1065         gkd->di.dumper = g_raid_dump;
1066         gkd->di.priv = vol;
1067         gkd->di.blocksize = vol->v_sectorsize;
1068         gkd->di.maxiosize = DFLTPHYS;
1069         gkd->di.mediaoffset = gkd->offset;
1070         if ((gkd->offset + gkd->length) > vol->v_mediasize)
1071                 gkd->length = vol->v_mediasize - gkd->offset;
1072         gkd->di.mediasize = gkd->length;
1073         g_io_deliver(bp, 0);
1074 }
1075
1076 static void
1077 g_raid_candelete(struct g_raid_softc *sc, struct bio *bp)
1078 {
1079         struct g_provider *pp;
1080         struct g_raid_volume *vol;
1081         struct g_raid_subdisk *sd;
1082         int *val;
1083         int i;
1084
1085         val = (int *)bp->bio_data;
1086         pp = bp->bio_to;
1087         vol = pp->private;
1088         *val = 0;
1089         for (i = 0; i < vol->v_disks_count; i++) {
1090                 sd = &vol->v_subdisks[i];
1091                 if (sd->sd_state == G_RAID_SUBDISK_S_NONE)
1092                         continue;
1093                 if (sd->sd_disk->d_candelete) {
1094                         *val = 1;
1095                         break;
1096                 }
1097         }
1098         g_io_deliver(bp, 0);
1099 }
1100
1101 static void
1102 g_raid_start(struct bio *bp)
1103 {
1104         struct g_raid_softc *sc;
1105
1106         sc = bp->bio_to->geom->softc;
1107         /*
1108          * If sc == NULL or there are no valid disks, provider's error
1109          * should be set and g_raid_start() should not be called at all.
1110          */
1111 //      KASSERT(sc != NULL && sc->sc_state == G_RAID_VOLUME_S_RUNNING,
1112 //          ("Provider's error should be set (error=%d)(mirror=%s).",
1113 //          bp->bio_to->error, bp->bio_to->name));
1114         G_RAID_LOGREQ(3, bp, "Request received.");
1115
1116         switch (bp->bio_cmd) {
1117         case BIO_READ:
1118         case BIO_WRITE:
1119         case BIO_DELETE:
1120         case BIO_FLUSH:
1121                 break;
1122         case BIO_GETATTR:
1123                 if (!strcmp(bp->bio_attribute, "GEOM::candelete"))
1124                         g_raid_candelete(sc, bp);
1125                 else if (!strcmp(bp->bio_attribute, "GEOM::kerneldump"))
1126                         g_raid_kerneldump(sc, bp);
1127                 else
1128                         g_io_deliver(bp, EOPNOTSUPP);
1129                 return;
1130         default:
1131                 g_io_deliver(bp, EOPNOTSUPP);
1132                 return;
1133         }
1134         mtx_lock(&sc->sc_queue_mtx);
1135         bioq_disksort(&sc->sc_queue, bp);
1136         mtx_unlock(&sc->sc_queue_mtx);
1137         if (!dumping) {
1138                 G_RAID_DEBUG1(4, sc, "Waking up %p.", sc);
1139                 wakeup(sc);
1140         }
1141 }
1142
1143 static int
1144 g_raid_bio_overlaps(const struct bio *bp, off_t lstart, off_t len)
1145 {
1146         /*
1147          * 5 cases:
1148          * (1) bp entirely below NO
1149          * (2) bp entirely above NO
1150          * (3) bp start below, but end in range YES
1151          * (4) bp entirely within YES
1152          * (5) bp starts within, ends above YES
1153          *
1154          * lock range 10-19 (offset 10 length 10)
1155          * (1) 1-5: first if kicks it out
1156          * (2) 30-35: second if kicks it out
1157          * (3) 5-15: passes both ifs
1158          * (4) 12-14: passes both ifs
1159          * (5) 19-20: passes both
1160          */
1161         off_t lend = lstart + len - 1;
1162         off_t bstart = bp->bio_offset;
1163         off_t bend = bp->bio_offset + bp->bio_length - 1;
1164
1165         if (bend < lstart)
1166                 return (0);
1167         if (lend < bstart)
1168                 return (0);
1169         return (1);
1170 }
1171
1172 static int
1173 g_raid_is_in_locked_range(struct g_raid_volume *vol, const struct bio *bp)
1174 {
1175         struct g_raid_lock *lp;
1176
1177         sx_assert(&vol->v_softc->sc_lock, SX_LOCKED);
1178
1179         LIST_FOREACH(lp, &vol->v_locks, l_next) {
1180                 if (g_raid_bio_overlaps(bp, lp->l_offset, lp->l_length))
1181                         return (1);
1182         }
1183         return (0);
1184 }
1185
1186 static void
1187 g_raid_start_request(struct bio *bp)
1188 {
1189         struct g_raid_softc *sc;
1190         struct g_raid_volume *vol;
1191
1192         sc = bp->bio_to->geom->softc;
1193         sx_assert(&sc->sc_lock, SX_LOCKED);
1194         vol = bp->bio_to->private;
1195
1196         /*
1197          * Check to see if this item is in a locked range.  If so,
1198          * queue it to our locked queue and return.  We'll requeue
1199          * it when the range is unlocked.  Internal I/O for the
1200          * rebuild/rescan/recovery process is excluded from this
1201          * check so we can actually do the recovery.
1202          */
1203         if (!(bp->bio_cflags & G_RAID_BIO_FLAG_SPECIAL) &&
1204             g_raid_is_in_locked_range(vol, bp)) {
1205                 G_RAID_LOGREQ(3, bp, "Defer request.");
1206                 bioq_insert_tail(&vol->v_locked, bp);
1207                 return;
1208         }
1209
1210         /*
1211          * If we're actually going to do the write/delete, then
1212          * update the idle stats for the volume.
1213          */
1214         if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) {
1215                 if (!vol->v_dirty)
1216                         g_raid_dirty(vol);
1217                 vol->v_writes++;
1218         }
1219
1220         /*
1221          * Put request onto inflight queue, so we can check if new
1222          * synchronization requests don't collide with it.  Then tell
1223          * the transformation layer to start the I/O.
1224          */
1225         bioq_insert_tail(&vol->v_inflight, bp);
1226         G_RAID_LOGREQ(4, bp, "Request started");
1227         G_RAID_TR_IOSTART(vol->v_tr, bp);
1228 }
1229
1230 static void
1231 g_raid_finish_with_locked_ranges(struct g_raid_volume *vol, struct bio *bp)
1232 {
1233         off_t off, len;
1234         struct bio *nbp;
1235         struct g_raid_lock *lp;
1236
1237         vol->v_pending_lock = 0;
1238         LIST_FOREACH(lp, &vol->v_locks, l_next) {
1239                 if (lp->l_pending) {
1240                         off = lp->l_offset;
1241                         len = lp->l_length;
1242                         lp->l_pending = 0;
1243                         TAILQ_FOREACH(nbp, &vol->v_inflight.queue, bio_queue) {
1244                                 if (g_raid_bio_overlaps(nbp, off, len))
1245                                         lp->l_pending++;
1246                         }
1247                         if (lp->l_pending) {
1248                                 vol->v_pending_lock = 1;
1249                                 G_RAID_DEBUG1(4, vol->v_softc,
1250                                     "Deferred lock(%jd, %jd) has %d pending",
1251                                     (intmax_t)off, (intmax_t)(off + len),
1252                                     lp->l_pending);
1253                                 continue;
1254                         }
1255                         G_RAID_DEBUG1(4, vol->v_softc,
1256                             "Deferred lock of %jd to %jd completed",
1257                             (intmax_t)off, (intmax_t)(off + len));
1258                         G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg);
1259                 }
1260         }
1261 }
1262
1263 void
1264 g_raid_iodone(struct bio *bp, int error)
1265 {
1266         struct g_raid_softc *sc;
1267         struct g_raid_volume *vol;
1268
1269         sc = bp->bio_to->geom->softc;
1270         sx_assert(&sc->sc_lock, SX_LOCKED);
1271         vol = bp->bio_to->private;
1272         G_RAID_LOGREQ(3, bp, "Request done: %d.", error);
1273
1274         /* Update stats if we done write/delete. */
1275         if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) {
1276                 vol->v_writes--;
1277                 vol->v_last_write = time_uptime;
1278         }
1279
1280         bioq_remove(&vol->v_inflight, bp);
1281         if (vol->v_pending_lock && g_raid_is_in_locked_range(vol, bp))
1282                 g_raid_finish_with_locked_ranges(vol, bp);
1283         getmicrouptime(&vol->v_last_done);
1284         g_io_deliver(bp, error);
1285 }
1286
1287 int
1288 g_raid_lock_range(struct g_raid_volume *vol, off_t off, off_t len,
1289     struct bio *ignore, void *argp)
1290 {
1291         struct g_raid_softc *sc;
1292         struct g_raid_lock *lp;
1293         struct bio *bp;
1294
1295         sc = vol->v_softc;
1296         lp = malloc(sizeof(*lp), M_RAID, M_WAITOK | M_ZERO);
1297         LIST_INSERT_HEAD(&vol->v_locks, lp, l_next);
1298         lp->l_offset = off;
1299         lp->l_length = len;
1300         lp->l_callback_arg = argp;
1301
1302         lp->l_pending = 0;
1303         TAILQ_FOREACH(bp, &vol->v_inflight.queue, bio_queue) {
1304                 if (bp != ignore && g_raid_bio_overlaps(bp, off, len))
1305                         lp->l_pending++;
1306         }       
1307
1308         /*
1309          * If there are any writes that are pending, we return EBUSY.  All
1310          * callers will have to wait until all pending writes clear.
1311          */
1312         if (lp->l_pending > 0) {
1313                 vol->v_pending_lock = 1;
1314                 G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd deferred %d pend",
1315                     (intmax_t)off, (intmax_t)(off+len), lp->l_pending);
1316                 return (EBUSY);
1317         }
1318         G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd",
1319             (intmax_t)off, (intmax_t)(off+len));
1320         G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg);
1321         return (0);
1322 }
1323
1324 int
1325 g_raid_unlock_range(struct g_raid_volume *vol, off_t off, off_t len)
1326 {
1327         struct g_raid_lock *lp;
1328         struct g_raid_softc *sc;
1329         struct bio *bp;
1330
1331         sc = vol->v_softc;
1332         LIST_FOREACH(lp, &vol->v_locks, l_next) {
1333                 if (lp->l_offset == off && lp->l_length == len) {
1334                         LIST_REMOVE(lp, l_next);
1335                         /* XXX
1336                          * Right now we just put them all back on the queue
1337                          * and hope for the best.  We hope this because any
1338                          * locked ranges will go right back on this list
1339                          * when the worker thread runs.
1340                          * XXX
1341                          */
1342                         G_RAID_DEBUG1(4, sc, "Unlocked %jd to %jd",
1343                             (intmax_t)lp->l_offset,
1344                             (intmax_t)(lp->l_offset+lp->l_length));
1345                         mtx_lock(&sc->sc_queue_mtx);
1346                         while ((bp = bioq_takefirst(&vol->v_locked)) != NULL)
1347                                 bioq_disksort(&sc->sc_queue, bp);
1348                         mtx_unlock(&sc->sc_queue_mtx);
1349                         free(lp, M_RAID);
1350                         return (0);
1351                 }
1352         }
1353         return (EINVAL);
1354 }
1355
1356 void
1357 g_raid_subdisk_iostart(struct g_raid_subdisk *sd, struct bio *bp)
1358 {
1359         struct g_consumer *cp;
1360         struct g_raid_disk *disk, *tdisk;
1361
1362         bp->bio_caller1 = sd;
1363
1364         /*
1365          * Make sure that the disk is present. Generally it is a task of
1366          * transformation layers to not send requests to absent disks, but
1367          * it is better to be safe and report situation then sorry.
1368          */
1369         if (sd->sd_disk == NULL) {
1370                 G_RAID_LOGREQ(0, bp, "Warning! I/O request to an absent disk!");
1371 nodisk:
1372                 bp->bio_from = NULL;
1373                 bp->bio_to = NULL;
1374                 bp->bio_error = ENXIO;
1375                 g_raid_disk_done(bp);
1376                 return;
1377         }
1378         disk = sd->sd_disk;
1379         if (disk->d_state != G_RAID_DISK_S_ACTIVE &&
1380             disk->d_state != G_RAID_DISK_S_FAILED) {
1381                 G_RAID_LOGREQ(0, bp, "Warning! I/O request to a disk in a "
1382                     "wrong state (%s)!", g_raid_disk_state2str(disk->d_state));
1383                 goto nodisk;
1384         }
1385
1386         cp = disk->d_consumer;
1387         bp->bio_from = cp;
1388         bp->bio_to = cp->provider;
1389         cp->index++;
1390
1391         /* Update average disks load. */
1392         TAILQ_FOREACH(tdisk, &sd->sd_softc->sc_disks, d_next) {
1393                 if (tdisk->d_consumer == NULL)
1394                         tdisk->d_load = 0;
1395                 else
1396                         tdisk->d_load = (tdisk->d_consumer->index *
1397                             G_RAID_SUBDISK_LOAD_SCALE + tdisk->d_load * 7) / 8;
1398         }
1399
1400         disk->d_last_offset = bp->bio_offset + bp->bio_length;
1401         if (dumping) {
1402                 G_RAID_LOGREQ(3, bp, "Sending dumping request.");
1403                 if (bp->bio_cmd == BIO_WRITE) {
1404                         bp->bio_error = g_raid_subdisk_kerneldump(sd,
1405                             bp->bio_data, 0, bp->bio_offset, bp->bio_length);
1406                 } else
1407                         bp->bio_error = EOPNOTSUPP;
1408                 g_raid_disk_done(bp);
1409         } else {
1410                 bp->bio_done = g_raid_disk_done;
1411                 bp->bio_offset += sd->sd_offset;
1412                 G_RAID_LOGREQ(3, bp, "Sending request.");
1413                 g_io_request(bp, cp);
1414         }
1415 }
1416
1417 int
1418 g_raid_subdisk_kerneldump(struct g_raid_subdisk *sd,
1419     void *virtual, vm_offset_t physical, off_t offset, size_t length)
1420 {
1421
1422         if (sd->sd_disk == NULL)
1423                 return (ENXIO);
1424         if (sd->sd_disk->d_kd.di.dumper == NULL)
1425                 return (EOPNOTSUPP);
1426         return (dump_write(&sd->sd_disk->d_kd.di,
1427             virtual, physical,
1428             sd->sd_disk->d_kd.di.mediaoffset + sd->sd_offset + offset,
1429             length));
1430 }
1431
1432 static void
1433 g_raid_disk_done(struct bio *bp)
1434 {
1435         struct g_raid_softc *sc;
1436         struct g_raid_subdisk *sd;
1437
1438         sd = bp->bio_caller1;
1439         sc = sd->sd_softc;
1440         mtx_lock(&sc->sc_queue_mtx);
1441         bioq_disksort(&sc->sc_queue, bp);
1442         mtx_unlock(&sc->sc_queue_mtx);
1443         if (!dumping)
1444                 wakeup(sc);
1445 }
1446
1447 static void
1448 g_raid_disk_done_request(struct bio *bp)
1449 {
1450         struct g_raid_softc *sc;
1451         struct g_raid_disk *disk;
1452         struct g_raid_subdisk *sd;
1453         struct g_raid_volume *vol;
1454
1455         g_topology_assert_not();
1456
1457         G_RAID_LOGREQ(3, bp, "Disk request done: %d.", bp->bio_error);
1458         sd = bp->bio_caller1;
1459         sc = sd->sd_softc;
1460         vol = sd->sd_volume;
1461         if (bp->bio_from != NULL) {
1462                 bp->bio_from->index--;
1463                 disk = bp->bio_from->private;
1464                 if (disk == NULL)
1465                         g_raid_kill_consumer(sc, bp->bio_from);
1466         }
1467         bp->bio_offset -= sd->sd_offset;
1468
1469         G_RAID_TR_IODONE(vol->v_tr, sd, bp);
1470 }
1471
1472 static void
1473 g_raid_handle_event(struct g_raid_softc *sc, struct g_raid_event *ep)
1474 {
1475
1476         if ((ep->e_flags & G_RAID_EVENT_VOLUME) != 0)
1477                 ep->e_error = g_raid_update_volume(ep->e_tgt, ep->e_event);
1478         else if ((ep->e_flags & G_RAID_EVENT_DISK) != 0)
1479                 ep->e_error = g_raid_update_disk(ep->e_tgt, ep->e_event);
1480         else if ((ep->e_flags & G_RAID_EVENT_SUBDISK) != 0)
1481                 ep->e_error = g_raid_update_subdisk(ep->e_tgt, ep->e_event);
1482         else
1483                 ep->e_error = g_raid_update_node(ep->e_tgt, ep->e_event);
1484         if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) {
1485                 KASSERT(ep->e_error == 0,
1486                     ("Error cannot be handled."));
1487                 g_raid_event_free(ep);
1488         } else {
1489                 ep->e_flags |= G_RAID_EVENT_DONE;
1490                 G_RAID_DEBUG1(4, sc, "Waking up %p.", ep);
1491                 mtx_lock(&sc->sc_queue_mtx);
1492                 wakeup(ep);
1493                 mtx_unlock(&sc->sc_queue_mtx);
1494         }
1495 }
1496
1497 /*
1498  * Worker thread.
1499  */
1500 static void
1501 g_raid_worker(void *arg)
1502 {
1503         struct g_raid_softc *sc;
1504         struct g_raid_event *ep;
1505         struct g_raid_volume *vol;
1506         struct bio *bp;
1507         struct timeval now, t;
1508         int timeout, rv;
1509
1510         sc = arg;
1511         thread_lock(curthread);
1512         sched_prio(curthread, PRIBIO);
1513         thread_unlock(curthread);
1514
1515         sx_xlock(&sc->sc_lock);
1516         for (;;) {
1517                 mtx_lock(&sc->sc_queue_mtx);
1518                 /*
1519                  * First take a look at events.
1520                  * This is important to handle events before any I/O requests.
1521                  */
1522                 bp = NULL;
1523                 vol = NULL;
1524                 rv = 0;
1525                 ep = TAILQ_FIRST(&sc->sc_events);
1526                 if (ep != NULL)
1527                         TAILQ_REMOVE(&sc->sc_events, ep, e_next);
1528                 else if ((bp = bioq_takefirst(&sc->sc_queue)) != NULL)
1529                         ;
1530                 else {
1531                         getmicrouptime(&now);
1532                         t = now;
1533                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1534                                 if (bioq_first(&vol->v_inflight) == NULL &&
1535                                     vol->v_tr &&
1536                                     timevalcmp(&vol->v_last_done, &t, < ))
1537                                         t = vol->v_last_done;
1538                         }
1539                         timevalsub(&t, &now);
1540                         timeout = g_raid_idle_threshold +
1541                             t.tv_sec * 1000000 + t.tv_usec;
1542                         if (timeout > 0) {
1543                                 /*
1544                                  * Two steps to avoid overflows at HZ=1000
1545                                  * and idle timeouts > 2.1s.  Some rounding
1546                                  * errors can occur, but they are < 1tick,
1547                                  * which is deemed to be close enough for
1548                                  * this purpose.
1549                                  */
1550                                 int micpertic = 1000000 / hz;
1551                                 timeout = (timeout + micpertic - 1) / micpertic;
1552                                 sx_xunlock(&sc->sc_lock);
1553                                 MSLEEP(rv, sc, &sc->sc_queue_mtx,
1554                                     PRIBIO | PDROP, "-", timeout);
1555                                 sx_xlock(&sc->sc_lock);
1556                                 goto process;
1557                         } else
1558                                 rv = EWOULDBLOCK;
1559                 }
1560                 mtx_unlock(&sc->sc_queue_mtx);
1561 process:
1562                 if (ep != NULL) {
1563                         g_raid_handle_event(sc, ep);
1564                 } else if (bp != NULL) {
1565                         if (bp->bio_to != NULL &&
1566                             bp->bio_to->geom == sc->sc_geom)
1567                                 g_raid_start_request(bp);
1568                         else
1569                                 g_raid_disk_done_request(bp);
1570                 } else if (rv == EWOULDBLOCK) {
1571                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1572                                 g_raid_clean(vol, -1);
1573                                 if (bioq_first(&vol->v_inflight) == NULL &&
1574                                     vol->v_tr) {
1575                                         t.tv_sec = g_raid_idle_threshold / 1000000;
1576                                         t.tv_usec = g_raid_idle_threshold % 1000000;
1577                                         timevaladd(&t, &vol->v_last_done);
1578                                         getmicrouptime(&now);
1579                                         if (timevalcmp(&t, &now, <= )) {
1580                                                 G_RAID_TR_IDLE(vol->v_tr);
1581                                                 vol->v_last_done = now;
1582                                         }
1583                                 }
1584                         }
1585                 }
1586                 if (sc->sc_stopping == G_RAID_DESTROY_HARD)
1587                         g_raid_destroy_node(sc, 1);     /* May not return. */
1588         }
1589 }
1590
1591 static void
1592 g_raid_poll(struct g_raid_softc *sc)
1593 {
1594         struct g_raid_event *ep;
1595         struct bio *bp;
1596
1597         sx_xlock(&sc->sc_lock);
1598         mtx_lock(&sc->sc_queue_mtx);
1599         /*
1600          * First take a look at events.
1601          * This is important to handle events before any I/O requests.
1602          */
1603         ep = TAILQ_FIRST(&sc->sc_events);
1604         if (ep != NULL) {
1605                 TAILQ_REMOVE(&sc->sc_events, ep, e_next);
1606                 mtx_unlock(&sc->sc_queue_mtx);
1607                 g_raid_handle_event(sc, ep);
1608                 goto out;
1609         }
1610         bp = bioq_takefirst(&sc->sc_queue);
1611         if (bp != NULL) {
1612                 mtx_unlock(&sc->sc_queue_mtx);
1613                 if (bp->bio_from == NULL ||
1614                     bp->bio_from->geom != sc->sc_geom)
1615                         g_raid_start_request(bp);
1616                 else
1617                         g_raid_disk_done_request(bp);
1618         }
1619 out:
1620         sx_xunlock(&sc->sc_lock);
1621 }
1622
1623 static void
1624 g_raid_launch_provider(struct g_raid_volume *vol)
1625 {
1626         struct g_raid_disk *disk;
1627         struct g_raid_subdisk *sd;
1628         struct g_raid_softc *sc;
1629         struct g_provider *pp;
1630         char name[G_RAID_MAX_VOLUMENAME];
1631         char   announce_buf[80], buf1[32];
1632         off_t off;
1633         int i;
1634
1635         sc = vol->v_softc;
1636         sx_assert(&sc->sc_lock, SX_LOCKED);
1637
1638         g_topology_lock();
1639         /* Try to name provider with volume name. */
1640         snprintf(name, sizeof(name), "raid/%s", vol->v_name);
1641         if (g_raid_name_format == 0 || vol->v_name[0] == 0 ||
1642             g_provider_by_name(name) != NULL) {
1643                 /* Otherwise use sequential volume number. */
1644                 snprintf(name, sizeof(name), "raid/r%d", vol->v_global_id);
1645         }
1646
1647         /*
1648          * Create a /dev/ar%d that the old ataraid(4) stack once
1649          * created as an alias for /dev/raid/r%d if requested.
1650          * This helps going from stable/7 ataraid devices to newer
1651          * FreeBSD releases. sbruno 07 MAY 2013
1652          */
1653
1654         if (ar_legacy_aliases) {
1655                 snprintf(announce_buf, sizeof(announce_buf),
1656                         "kern.devalias.%s", name);
1657                 snprintf(buf1, sizeof(buf1),
1658                         "ar%d", vol->v_global_id);
1659                 kern_setenv(announce_buf, buf1);
1660         }
1661
1662         pp = g_new_providerf(sc->sc_geom, "%s", name);
1663         pp->flags |= G_PF_DIRECT_RECEIVE;
1664         if (vol->v_tr->tro_class->trc_accept_unmapped) {
1665                 pp->flags |= G_PF_ACCEPT_UNMAPPED;
1666                 for (i = 0; i < vol->v_disks_count; i++) {
1667                         sd = &vol->v_subdisks[i];
1668                         if (sd->sd_state == G_RAID_SUBDISK_S_NONE)
1669                                 continue;
1670                         if ((sd->sd_disk->d_consumer->provider->flags &
1671                             G_PF_ACCEPT_UNMAPPED) == 0)
1672                                 pp->flags &= ~G_PF_ACCEPT_UNMAPPED;
1673                 }
1674         }
1675         pp->private = vol;
1676         pp->mediasize = vol->v_mediasize;
1677         pp->sectorsize = vol->v_sectorsize;
1678         pp->stripesize = 0;
1679         pp->stripeoffset = 0;
1680         if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 ||
1681             vol->v_raid_level == G_RAID_VOLUME_RL_RAID3 ||
1682             vol->v_raid_level == G_RAID_VOLUME_RL_SINGLE ||
1683             vol->v_raid_level == G_RAID_VOLUME_RL_CONCAT) {
1684                 if ((disk = vol->v_subdisks[0].sd_disk) != NULL &&
1685                     disk->d_consumer != NULL &&
1686                     disk->d_consumer->provider != NULL) {
1687                         pp->stripesize = disk->d_consumer->provider->stripesize;
1688                         off = disk->d_consumer->provider->stripeoffset;
1689                         pp->stripeoffset = off + vol->v_subdisks[0].sd_offset;
1690                         if (off > 0)
1691                                 pp->stripeoffset %= off;
1692                 }
1693                 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID3) {
1694                         pp->stripesize *= (vol->v_disks_count - 1);
1695                         pp->stripeoffset *= (vol->v_disks_count - 1);
1696                 }
1697         } else
1698                 pp->stripesize = vol->v_strip_size;
1699         vol->v_provider = pp;
1700         g_error_provider(pp, 0);
1701         g_topology_unlock();
1702         G_RAID_DEBUG1(0, sc, "Provider %s for volume %s created.",
1703             pp->name, vol->v_name);
1704 }
1705
1706 static void
1707 g_raid_destroy_provider(struct g_raid_volume *vol)
1708 {
1709         struct g_raid_softc *sc;
1710         struct g_provider *pp;
1711         struct bio *bp, *tmp;
1712
1713         g_topology_assert_not();
1714         sc = vol->v_softc;
1715         pp = vol->v_provider;
1716         KASSERT(pp != NULL, ("NULL provider (volume=%s).", vol->v_name));
1717
1718         g_topology_lock();
1719         g_error_provider(pp, ENXIO);
1720         mtx_lock(&sc->sc_queue_mtx);
1721         TAILQ_FOREACH_SAFE(bp, &sc->sc_queue.queue, bio_queue, tmp) {
1722                 if (bp->bio_to != pp)
1723                         continue;
1724                 bioq_remove(&sc->sc_queue, bp);
1725                 g_io_deliver(bp, ENXIO);
1726         }
1727         mtx_unlock(&sc->sc_queue_mtx);
1728         G_RAID_DEBUG1(0, sc, "Provider %s for volume %s destroyed.",
1729             pp->name, vol->v_name);
1730         g_wither_provider(pp, ENXIO);
1731         g_topology_unlock();
1732         vol->v_provider = NULL;
1733 }
1734
1735 /*
1736  * Update device state.
1737  */
1738 static int
1739 g_raid_update_volume(struct g_raid_volume *vol, u_int event)
1740 {
1741         struct g_raid_softc *sc;
1742
1743         sc = vol->v_softc;
1744         sx_assert(&sc->sc_lock, SX_XLOCKED);
1745
1746         G_RAID_DEBUG1(2, sc, "Event %s for volume %s.",
1747             g_raid_volume_event2str(event),
1748             vol->v_name);
1749         switch (event) {
1750         case G_RAID_VOLUME_E_DOWN:
1751                 if (vol->v_provider != NULL)
1752                         g_raid_destroy_provider(vol);
1753                 break;
1754         case G_RAID_VOLUME_E_UP:
1755                 if (vol->v_provider == NULL)
1756                         g_raid_launch_provider(vol);
1757                 break;
1758         case G_RAID_VOLUME_E_START:
1759                 if (vol->v_tr)
1760                         G_RAID_TR_START(vol->v_tr);
1761                 return (0);
1762         default:
1763                 if (sc->sc_md)
1764                         G_RAID_MD_VOLUME_EVENT(sc->sc_md, vol, event);
1765                 return (0);
1766         }
1767
1768         /* Manage root mount release. */
1769         if (vol->v_starting) {
1770                 vol->v_starting = 0;
1771                 G_RAID_DEBUG1(1, sc, "root_mount_rel %p", vol->v_rootmount);
1772                 root_mount_rel(vol->v_rootmount);
1773                 vol->v_rootmount = NULL;
1774         }
1775         if (vol->v_stopping && vol->v_provider_open == 0)
1776                 g_raid_destroy_volume(vol);
1777         return (0);
1778 }
1779
1780 /*
1781  * Update subdisk state.
1782  */
1783 static int
1784 g_raid_update_subdisk(struct g_raid_subdisk *sd, u_int event)
1785 {
1786         struct g_raid_softc *sc;
1787         struct g_raid_volume *vol;
1788
1789         sc = sd->sd_softc;
1790         vol = sd->sd_volume;
1791         sx_assert(&sc->sc_lock, SX_XLOCKED);
1792
1793         G_RAID_DEBUG1(2, sc, "Event %s for subdisk %s:%d-%s.",
1794             g_raid_subdisk_event2str(event),
1795             vol->v_name, sd->sd_pos,
1796             sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]");
1797         if (vol->v_tr)
1798                 G_RAID_TR_EVENT(vol->v_tr, sd, event);
1799
1800         return (0);
1801 }
1802
1803 /*
1804  * Update disk state.
1805  */
1806 static int
1807 g_raid_update_disk(struct g_raid_disk *disk, u_int event)
1808 {
1809         struct g_raid_softc *sc;
1810
1811         sc = disk->d_softc;
1812         sx_assert(&sc->sc_lock, SX_XLOCKED);
1813
1814         G_RAID_DEBUG1(2, sc, "Event %s for disk %s.",
1815             g_raid_disk_event2str(event),
1816             g_raid_get_diskname(disk));
1817
1818         if (sc->sc_md)
1819                 G_RAID_MD_EVENT(sc->sc_md, disk, event);
1820         return (0);
1821 }
1822
1823 /*
1824  * Node event.
1825  */
1826 static int
1827 g_raid_update_node(struct g_raid_softc *sc, u_int event)
1828 {
1829         sx_assert(&sc->sc_lock, SX_XLOCKED);
1830
1831         G_RAID_DEBUG1(2, sc, "Event %s for the array.",
1832             g_raid_node_event2str(event));
1833
1834         if (event == G_RAID_NODE_E_WAKE)
1835                 return (0);
1836         if (sc->sc_md)
1837                 G_RAID_MD_EVENT(sc->sc_md, NULL, event);
1838         return (0);
1839 }
1840
1841 static int
1842 g_raid_access(struct g_provider *pp, int acr, int acw, int ace)
1843 {
1844         struct g_raid_volume *vol;
1845         struct g_raid_softc *sc;
1846         int dcw, opens, error = 0;
1847
1848         g_topology_assert();
1849         sc = pp->geom->softc;
1850         vol = pp->private;
1851         KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name));
1852         KASSERT(vol != NULL, ("NULL volume (provider=%s).", pp->name));
1853
1854         G_RAID_DEBUG1(2, sc, "Access request for %s: r%dw%de%d.", pp->name,
1855             acr, acw, ace);
1856         dcw = pp->acw + acw;
1857
1858         g_topology_unlock();
1859         sx_xlock(&sc->sc_lock);
1860         /* Deny new opens while dying. */
1861         if (sc->sc_stopping != 0 && (acr > 0 || acw > 0 || ace > 0)) {
1862                 error = ENXIO;
1863                 goto out;
1864         }
1865         /* Deny write opens for read-only volumes. */
1866         if (vol->v_read_only && acw > 0) {
1867                 error = EROFS;
1868                 goto out;
1869         }
1870         if (dcw == 0)
1871                 g_raid_clean(vol, dcw);
1872         vol->v_provider_open += acr + acw + ace;
1873         /* Handle delayed node destruction. */
1874         if (sc->sc_stopping == G_RAID_DESTROY_DELAYED &&
1875             vol->v_provider_open == 0) {
1876                 /* Count open volumes. */
1877                 opens = g_raid_nopens(sc);
1878                 if (opens == 0) {
1879                         sc->sc_stopping = G_RAID_DESTROY_HARD;
1880                         /* Wake up worker to make it selfdestruct. */
1881                         g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
1882                 }
1883         }
1884         /* Handle open volume destruction. */
1885         if (vol->v_stopping && vol->v_provider_open == 0)
1886                 g_raid_destroy_volume(vol);
1887 out:
1888         sx_xunlock(&sc->sc_lock);
1889         g_topology_lock();
1890         return (error);
1891 }
1892
1893 struct g_raid_softc *
1894 g_raid_create_node(struct g_class *mp,
1895     const char *name, struct g_raid_md_object *md)
1896 {
1897         struct g_raid_softc *sc;
1898         struct g_geom *gp;
1899         int error;
1900
1901         g_topology_assert();
1902         G_RAID_DEBUG(1, "Creating array %s.", name);
1903
1904         gp = g_new_geomf(mp, "%s", name);
1905         sc = malloc(sizeof(*sc), M_RAID, M_WAITOK | M_ZERO);
1906         gp->start = g_raid_start;
1907         gp->orphan = g_raid_orphan;
1908         gp->access = g_raid_access;
1909         gp->dumpconf = g_raid_dumpconf;
1910
1911         sc->sc_md = md;
1912         sc->sc_geom = gp;
1913         sc->sc_flags = 0;
1914         TAILQ_INIT(&sc->sc_volumes);
1915         TAILQ_INIT(&sc->sc_disks);
1916         sx_init(&sc->sc_lock, "graid:lock");
1917         mtx_init(&sc->sc_queue_mtx, "graid:queue", NULL, MTX_DEF);
1918         TAILQ_INIT(&sc->sc_events);
1919         bioq_init(&sc->sc_queue);
1920         gp->softc = sc;
1921         error = kproc_create(g_raid_worker, sc, &sc->sc_worker, 0, 0,
1922             "g_raid %s", name);
1923         if (error != 0) {
1924                 G_RAID_DEBUG(0, "Cannot create kernel thread for %s.", name);
1925                 mtx_destroy(&sc->sc_queue_mtx);
1926                 sx_destroy(&sc->sc_lock);
1927                 g_destroy_geom(sc->sc_geom);
1928                 free(sc, M_RAID);
1929                 return (NULL);
1930         }
1931
1932         G_RAID_DEBUG1(0, sc, "Array %s created.", name);
1933         return (sc);
1934 }
1935
1936 struct g_raid_volume *
1937 g_raid_create_volume(struct g_raid_softc *sc, const char *name, int id)
1938 {
1939         struct g_raid_volume    *vol, *vol1;
1940         int i;
1941
1942         G_RAID_DEBUG1(1, sc, "Creating volume %s.", name);
1943         vol = malloc(sizeof(*vol), M_RAID, M_WAITOK | M_ZERO);
1944         vol->v_softc = sc;
1945         strlcpy(vol->v_name, name, G_RAID_MAX_VOLUMENAME);
1946         vol->v_state = G_RAID_VOLUME_S_STARTING;
1947         vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN;
1948         vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_UNKNOWN;
1949         vol->v_rotate_parity = 1;
1950         bioq_init(&vol->v_inflight);
1951         bioq_init(&vol->v_locked);
1952         LIST_INIT(&vol->v_locks);
1953         for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) {
1954                 vol->v_subdisks[i].sd_softc = sc;
1955                 vol->v_subdisks[i].sd_volume = vol;
1956                 vol->v_subdisks[i].sd_pos = i;
1957                 vol->v_subdisks[i].sd_state = G_RAID_DISK_S_NONE;
1958         }
1959
1960         /* Find free ID for this volume. */
1961         g_topology_lock();
1962         vol1 = vol;
1963         if (id >= 0) {
1964                 LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) {
1965                         if (vol1->v_global_id == id)
1966                                 break;
1967                 }
1968         }
1969         if (vol1 != NULL) {
1970                 for (id = 0; ; id++) {
1971                         LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) {
1972                                 if (vol1->v_global_id == id)
1973                                         break;
1974                         }
1975                         if (vol1 == NULL)
1976                                 break;
1977                 }
1978         }
1979         vol->v_global_id = id;
1980         LIST_INSERT_HEAD(&g_raid_volumes, vol, v_global_next);
1981         g_topology_unlock();
1982
1983         /* Delay root mounting. */
1984         vol->v_rootmount = root_mount_hold("GRAID");
1985         G_RAID_DEBUG1(1, sc, "root_mount_hold %p", vol->v_rootmount);
1986         vol->v_starting = 1;
1987         TAILQ_INSERT_TAIL(&sc->sc_volumes, vol, v_next);
1988         return (vol);
1989 }
1990
1991 struct g_raid_disk *
1992 g_raid_create_disk(struct g_raid_softc *sc)
1993 {
1994         struct g_raid_disk      *disk;
1995
1996         G_RAID_DEBUG1(1, sc, "Creating disk.");
1997         disk = malloc(sizeof(*disk), M_RAID, M_WAITOK | M_ZERO);
1998         disk->d_softc = sc;
1999         disk->d_state = G_RAID_DISK_S_NONE;
2000         TAILQ_INIT(&disk->d_subdisks);
2001         TAILQ_INSERT_TAIL(&sc->sc_disks, disk, d_next);
2002         return (disk);
2003 }
2004
2005 int g_raid_start_volume(struct g_raid_volume *vol)
2006 {
2007         struct g_raid_tr_class *class;
2008         struct g_raid_tr_object *obj;
2009         int status;
2010
2011         G_RAID_DEBUG1(2, vol->v_softc, "Starting volume %s.", vol->v_name);
2012         LIST_FOREACH(class, &g_raid_tr_classes, trc_list) {
2013                 if (!class->trc_enable)
2014                         continue;
2015                 G_RAID_DEBUG1(2, vol->v_softc,
2016                     "Tasting volume %s for %s transformation.",
2017                     vol->v_name, class->name);
2018                 obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
2019                     M_WAITOK);
2020                 obj->tro_class = class;
2021                 obj->tro_volume = vol;
2022                 status = G_RAID_TR_TASTE(obj, vol);
2023                 if (status != G_RAID_TR_TASTE_FAIL)
2024                         break;
2025                 kobj_delete((kobj_t)obj, M_RAID);
2026         }
2027         if (class == NULL) {
2028                 G_RAID_DEBUG1(0, vol->v_softc,
2029                     "No transformation module found for %s.",
2030                     vol->v_name);
2031                 vol->v_tr = NULL;
2032                 g_raid_change_volume_state(vol, G_RAID_VOLUME_S_UNSUPPORTED);
2033                 g_raid_event_send(vol, G_RAID_VOLUME_E_DOWN,
2034                     G_RAID_EVENT_VOLUME);
2035                 return (-1);
2036         }
2037         G_RAID_DEBUG1(2, vol->v_softc,
2038             "Transformation module %s chosen for %s.",
2039             class->name, vol->v_name);
2040         vol->v_tr = obj;
2041         return (0);
2042 }
2043
2044 int
2045 g_raid_destroy_node(struct g_raid_softc *sc, int worker)
2046 {
2047         struct g_raid_volume *vol, *tmpv;
2048         struct g_raid_disk *disk, *tmpd;
2049         int error = 0;
2050
2051         sc->sc_stopping = G_RAID_DESTROY_HARD;
2052         TAILQ_FOREACH_SAFE(vol, &sc->sc_volumes, v_next, tmpv) {
2053                 if (g_raid_destroy_volume(vol))
2054                         error = EBUSY;
2055         }
2056         if (error)
2057                 return (error);
2058         TAILQ_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tmpd) {
2059                 if (g_raid_destroy_disk(disk))
2060                         error = EBUSY;
2061         }
2062         if (error)
2063                 return (error);
2064         if (sc->sc_md) {
2065                 G_RAID_MD_FREE(sc->sc_md);
2066                 kobj_delete((kobj_t)sc->sc_md, M_RAID);
2067                 sc->sc_md = NULL;
2068         }
2069         if (sc->sc_geom != NULL) {
2070                 G_RAID_DEBUG1(0, sc, "Array %s destroyed.", sc->sc_name);
2071                 g_topology_lock();
2072                 sc->sc_geom->softc = NULL;
2073                 g_wither_geom(sc->sc_geom, ENXIO);
2074                 g_topology_unlock();
2075                 sc->sc_geom = NULL;
2076         } else
2077                 G_RAID_DEBUG(1, "Array destroyed.");
2078         if (worker) {
2079                 g_raid_event_cancel(sc, sc);
2080                 mtx_destroy(&sc->sc_queue_mtx);
2081                 sx_xunlock(&sc->sc_lock);
2082                 sx_destroy(&sc->sc_lock);
2083                 wakeup(&sc->sc_stopping);
2084                 free(sc, M_RAID);
2085                 curthread->td_pflags &= ~TDP_GEOM;
2086                 G_RAID_DEBUG(1, "Thread exiting.");
2087                 kproc_exit(0);
2088         } else {
2089                 /* Wake up worker to make it selfdestruct. */
2090                 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
2091         }
2092         return (0);
2093 }
2094
2095 int
2096 g_raid_destroy_volume(struct g_raid_volume *vol)
2097 {
2098         struct g_raid_softc *sc;
2099         struct g_raid_disk *disk;
2100         int i;
2101
2102         sc = vol->v_softc;
2103         G_RAID_DEBUG1(2, sc, "Destroying volume %s.", vol->v_name);
2104         vol->v_stopping = 1;
2105         if (vol->v_state != G_RAID_VOLUME_S_STOPPED) {
2106                 if (vol->v_tr) {
2107                         G_RAID_TR_STOP(vol->v_tr);
2108                         return (EBUSY);
2109                 } else
2110                         vol->v_state = G_RAID_VOLUME_S_STOPPED;
2111         }
2112         if (g_raid_event_check(sc, vol) != 0)
2113                 return (EBUSY);
2114         if (vol->v_provider != NULL)
2115                 return (EBUSY);
2116         if (vol->v_provider_open != 0)
2117                 return (EBUSY);
2118         if (vol->v_tr) {
2119                 G_RAID_TR_FREE(vol->v_tr);
2120                 kobj_delete((kobj_t)vol->v_tr, M_RAID);
2121                 vol->v_tr = NULL;
2122         }
2123         if (vol->v_rootmount)
2124                 root_mount_rel(vol->v_rootmount);
2125         g_topology_lock();
2126         LIST_REMOVE(vol, v_global_next);
2127         g_topology_unlock();
2128         TAILQ_REMOVE(&sc->sc_volumes, vol, v_next);
2129         for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) {
2130                 g_raid_event_cancel(sc, &vol->v_subdisks[i]);
2131                 disk = vol->v_subdisks[i].sd_disk;
2132                 if (disk == NULL)
2133                         continue;
2134                 TAILQ_REMOVE(&disk->d_subdisks, &vol->v_subdisks[i], sd_next);
2135         }
2136         G_RAID_DEBUG1(2, sc, "Volume %s destroyed.", vol->v_name);
2137         if (sc->sc_md)
2138                 G_RAID_MD_FREE_VOLUME(sc->sc_md, vol);
2139         g_raid_event_cancel(sc, vol);
2140         free(vol, M_RAID);
2141         if (sc->sc_stopping == G_RAID_DESTROY_HARD) {
2142                 /* Wake up worker to let it selfdestruct. */
2143                 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
2144         }
2145         return (0);
2146 }
2147
2148 int
2149 g_raid_destroy_disk(struct g_raid_disk *disk)
2150 {
2151         struct g_raid_softc *sc;
2152         struct g_raid_subdisk *sd, *tmp;
2153
2154         sc = disk->d_softc;
2155         G_RAID_DEBUG1(2, sc, "Destroying disk.");
2156         if (disk->d_consumer) {
2157                 g_raid_kill_consumer(sc, disk->d_consumer);
2158                 disk->d_consumer = NULL;
2159         }
2160         TAILQ_FOREACH_SAFE(sd, &disk->d_subdisks, sd_next, tmp) {
2161                 g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_NONE);
2162                 g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED,
2163                     G_RAID_EVENT_SUBDISK);
2164                 TAILQ_REMOVE(&disk->d_subdisks, sd, sd_next);
2165                 sd->sd_disk = NULL;
2166         }
2167         TAILQ_REMOVE(&sc->sc_disks, disk, d_next);
2168         if (sc->sc_md)
2169                 G_RAID_MD_FREE_DISK(sc->sc_md, disk);
2170         g_raid_event_cancel(sc, disk);
2171         free(disk, M_RAID);
2172         return (0);
2173 }
2174
2175 int
2176 g_raid_destroy(struct g_raid_softc *sc, int how)
2177 {
2178         int error, opens;
2179
2180         g_topology_assert_not();
2181         if (sc == NULL)
2182                 return (ENXIO);
2183         sx_assert(&sc->sc_lock, SX_XLOCKED);
2184
2185         /* Count open volumes. */
2186         opens = g_raid_nopens(sc);
2187
2188         /* React on some opened volumes. */
2189         if (opens > 0) {
2190                 switch (how) {
2191                 case G_RAID_DESTROY_SOFT:
2192                         G_RAID_DEBUG1(1, sc,
2193                             "%d volumes are still open.",
2194                             opens);
2195                         sx_xunlock(&sc->sc_lock);
2196                         return (EBUSY);
2197                 case G_RAID_DESTROY_DELAYED:
2198                         G_RAID_DEBUG1(1, sc,
2199                             "Array will be destroyed on last close.");
2200                         sc->sc_stopping = G_RAID_DESTROY_DELAYED;
2201                         sx_xunlock(&sc->sc_lock);
2202                         return (EBUSY);
2203                 case G_RAID_DESTROY_HARD:
2204                         G_RAID_DEBUG1(1, sc,
2205                             "%d volumes are still open.",
2206                             opens);
2207                 }
2208         }
2209
2210         /* Mark node for destruction. */
2211         sc->sc_stopping = G_RAID_DESTROY_HARD;
2212         /* Wake up worker to let it selfdestruct. */
2213         g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
2214         /* Sleep until node destroyed. */
2215         error = sx_sleep(&sc->sc_stopping, &sc->sc_lock,
2216             PRIBIO | PDROP, "r:destroy", hz * 3);
2217         return (error == EWOULDBLOCK ? EBUSY : 0);
2218 }
2219
2220 static void
2221 g_raid_taste_orphan(struct g_consumer *cp)
2222 {
2223
2224         KASSERT(1 == 0, ("%s called while tasting %s.", __func__,
2225             cp->provider->name));
2226 }
2227
2228 static struct g_geom *
2229 g_raid_taste(struct g_class *mp, struct g_provider *pp, int flags __unused)
2230 {
2231         struct g_consumer *cp;
2232         struct g_geom *gp, *geom;
2233         struct g_raid_md_class *class;
2234         struct g_raid_md_object *obj;
2235         int status;
2236
2237         g_topology_assert();
2238         g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name);
2239         if (!g_raid_enable)
2240                 return (NULL);
2241         G_RAID_DEBUG(2, "Tasting provider %s.", pp->name);
2242
2243         geom = NULL;
2244         status = G_RAID_MD_TASTE_FAIL;
2245         gp = g_new_geomf(mp, "raid:taste");
2246         /*
2247          * This orphan function should be never called.
2248          */
2249         gp->orphan = g_raid_taste_orphan;
2250         cp = g_new_consumer(gp);
2251         cp->flags |= G_CF_DIRECT_RECEIVE;
2252         g_attach(cp, pp);
2253         if (g_access(cp, 1, 0, 0) != 0)
2254                 goto ofail;
2255
2256         LIST_FOREACH(class, &g_raid_md_classes, mdc_list) {
2257                 if (!class->mdc_enable)
2258                         continue;
2259                 G_RAID_DEBUG(2, "Tasting provider %s for %s metadata.",
2260                     pp->name, class->name);
2261                 obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
2262                     M_WAITOK);
2263                 obj->mdo_class = class;
2264                 status = G_RAID_MD_TASTE(obj, mp, cp, &geom);
2265                 if (status != G_RAID_MD_TASTE_NEW)
2266                         kobj_delete((kobj_t)obj, M_RAID);
2267                 if (status != G_RAID_MD_TASTE_FAIL)
2268                         break;
2269         }
2270
2271         if (status == G_RAID_MD_TASTE_FAIL)
2272                 (void)g_access(cp, -1, 0, 0);
2273 ofail:
2274         g_detach(cp);
2275         g_destroy_consumer(cp);
2276         g_destroy_geom(gp);
2277         G_RAID_DEBUG(2, "Tasting provider %s done.", pp->name);
2278         return (geom);
2279 }
2280
2281 int
2282 g_raid_create_node_format(const char *format, struct gctl_req *req,
2283     struct g_geom **gp)
2284 {
2285         struct g_raid_md_class *class;
2286         struct g_raid_md_object *obj;
2287         int status;
2288
2289         G_RAID_DEBUG(2, "Creating array for %s metadata.", format);
2290         LIST_FOREACH(class, &g_raid_md_classes, mdc_list) {
2291                 if (strcasecmp(class->name, format) == 0)
2292                         break;
2293         }
2294         if (class == NULL) {
2295                 G_RAID_DEBUG(1, "No support for %s metadata.", format);
2296                 return (G_RAID_MD_TASTE_FAIL);
2297         }
2298         obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
2299             M_WAITOK);
2300         obj->mdo_class = class;
2301         status = G_RAID_MD_CREATE_REQ(obj, &g_raid_class, req, gp);
2302         if (status != G_RAID_MD_TASTE_NEW)
2303                 kobj_delete((kobj_t)obj, M_RAID);
2304         return (status);
2305 }
2306
2307 static int
2308 g_raid_destroy_geom(struct gctl_req *req __unused,
2309     struct g_class *mp __unused, struct g_geom *gp)
2310 {
2311         struct g_raid_softc *sc;
2312         int error;
2313
2314         g_topology_unlock();
2315         sc = gp->softc;
2316         sx_xlock(&sc->sc_lock);
2317         g_cancel_event(sc);
2318         error = g_raid_destroy(gp->softc, G_RAID_DESTROY_SOFT);
2319         g_topology_lock();
2320         return (error);
2321 }
2322
2323 void g_raid_write_metadata(struct g_raid_softc *sc, struct g_raid_volume *vol,
2324     struct g_raid_subdisk *sd, struct g_raid_disk *disk)
2325 {
2326
2327         if (sc->sc_stopping == G_RAID_DESTROY_HARD)
2328                 return;
2329         if (sc->sc_md)
2330                 G_RAID_MD_WRITE(sc->sc_md, vol, sd, disk);
2331 }
2332
2333 void g_raid_fail_disk(struct g_raid_softc *sc,
2334     struct g_raid_subdisk *sd, struct g_raid_disk *disk)
2335 {
2336
2337         if (disk == NULL)
2338                 disk = sd->sd_disk;
2339         if (disk == NULL) {
2340                 G_RAID_DEBUG1(0, sc, "Warning! Fail request to an absent disk!");
2341                 return;
2342         }
2343         if (disk->d_state != G_RAID_DISK_S_ACTIVE) {
2344                 G_RAID_DEBUG1(0, sc, "Warning! Fail request to a disk in a "
2345                     "wrong state (%s)!", g_raid_disk_state2str(disk->d_state));
2346                 return;
2347         }
2348         if (sc->sc_md)
2349                 G_RAID_MD_FAIL_DISK(sc->sc_md, sd, disk);
2350 }
2351
2352 static void
2353 g_raid_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp,
2354     struct g_consumer *cp, struct g_provider *pp)
2355 {
2356         struct g_raid_softc *sc;
2357         struct g_raid_volume *vol;
2358         struct g_raid_subdisk *sd;
2359         struct g_raid_disk *disk;
2360         int i, s;
2361
2362         g_topology_assert();
2363
2364         sc = gp->softc;
2365         if (sc == NULL)
2366                 return;
2367         if (pp != NULL) {
2368                 vol = pp->private;
2369                 g_topology_unlock();
2370                 sx_xlock(&sc->sc_lock);
2371                 sbuf_printf(sb, "%s<descr>%s %s volume</descr>\n", indent,
2372                     sc->sc_md->mdo_class->name,
2373                     g_raid_volume_level2str(vol->v_raid_level,
2374                     vol->v_raid_level_qualifier));
2375                 sbuf_printf(sb, "%s<Label>%s</Label>\n", indent,
2376                     vol->v_name);
2377                 sbuf_printf(sb, "%s<RAIDLevel>%s</RAIDLevel>\n", indent,
2378                     g_raid_volume_level2str(vol->v_raid_level,
2379                     vol->v_raid_level_qualifier));
2380                 sbuf_printf(sb,
2381                     "%s<Transformation>%s</Transformation>\n", indent,
2382                     vol->v_tr ? vol->v_tr->tro_class->name : "NONE");
2383                 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent,
2384                     vol->v_disks_count);
2385                 sbuf_printf(sb, "%s<Strip>%u</Strip>\n", indent,
2386                     vol->v_strip_size);
2387                 sbuf_printf(sb, "%s<State>%s</State>\n", indent,
2388                     g_raid_volume_state2str(vol->v_state));
2389                 sbuf_printf(sb, "%s<Dirty>%s</Dirty>\n", indent,
2390                     vol->v_dirty ? "Yes" : "No");
2391                 sbuf_printf(sb, "%s<Subdisks>", indent);
2392                 for (i = 0; i < vol->v_disks_count; i++) {
2393                         sd = &vol->v_subdisks[i];
2394                         if (sd->sd_disk != NULL &&
2395                             sd->sd_disk->d_consumer != NULL) {
2396                                 sbuf_printf(sb, "%s ",
2397                                     g_raid_get_diskname(sd->sd_disk));
2398                         } else {
2399                                 sbuf_printf(sb, "NONE ");
2400                         }
2401                         sbuf_printf(sb, "(%s",
2402                             g_raid_subdisk_state2str(sd->sd_state));
2403                         if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
2404                             sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
2405                                 sbuf_printf(sb, " %d%%",
2406                                     (int)(sd->sd_rebuild_pos * 100 /
2407                                      sd->sd_size));
2408                         }
2409                         sbuf_printf(sb, ")");
2410                         if (i + 1 < vol->v_disks_count)
2411                                 sbuf_printf(sb, ", ");
2412                 }
2413                 sbuf_printf(sb, "</Subdisks>\n");
2414                 sx_xunlock(&sc->sc_lock);
2415                 g_topology_lock();
2416         } else if (cp != NULL) {
2417                 disk = cp->private;
2418                 if (disk == NULL)
2419                         return;
2420                 g_topology_unlock();
2421                 sx_xlock(&sc->sc_lock);
2422                 sbuf_printf(sb, "%s<State>%s", indent,
2423                     g_raid_disk_state2str(disk->d_state));
2424                 if (!TAILQ_EMPTY(&disk->d_subdisks)) {
2425                         sbuf_printf(sb, " (");
2426                         TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
2427                                 sbuf_printf(sb, "%s",
2428                                     g_raid_subdisk_state2str(sd->sd_state));
2429                                 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
2430                                     sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
2431                                         sbuf_printf(sb, " %d%%",
2432                                             (int)(sd->sd_rebuild_pos * 100 /
2433                                              sd->sd_size));
2434                                 }
2435                                 if (TAILQ_NEXT(sd, sd_next))
2436                                         sbuf_printf(sb, ", ");
2437                         }
2438                         sbuf_printf(sb, ")");
2439                 }
2440                 sbuf_printf(sb, "</State>\n");
2441                 sbuf_printf(sb, "%s<Subdisks>", indent);
2442                 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
2443                         sbuf_printf(sb, "r%d(%s):%d@%ju",
2444                             sd->sd_volume->v_global_id,
2445                             sd->sd_volume->v_name,
2446                             sd->sd_pos, sd->sd_offset);
2447                         if (TAILQ_NEXT(sd, sd_next))
2448                                 sbuf_printf(sb, ", ");
2449                 }
2450                 sbuf_printf(sb, "</Subdisks>\n");
2451                 sbuf_printf(sb, "%s<ReadErrors>%d</ReadErrors>\n", indent,
2452                     disk->d_read_errs);
2453                 sx_xunlock(&sc->sc_lock);
2454                 g_topology_lock();
2455         } else {
2456                 g_topology_unlock();
2457                 sx_xlock(&sc->sc_lock);
2458                 if (sc->sc_md) {
2459                         sbuf_printf(sb, "%s<Metadata>%s</Metadata>\n", indent,
2460                             sc->sc_md->mdo_class->name);
2461                 }
2462                 if (!TAILQ_EMPTY(&sc->sc_volumes)) {
2463                         s = 0xff;
2464                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2465                                 if (vol->v_state < s)
2466                                         s = vol->v_state;
2467                         }
2468                         sbuf_printf(sb, "%s<State>%s</State>\n", indent,
2469                             g_raid_volume_state2str(s));
2470                 }
2471                 sx_xunlock(&sc->sc_lock);
2472                 g_topology_lock();
2473         }
2474 }
2475
2476 static void
2477 g_raid_shutdown_post_sync(void *arg, int howto)
2478 {
2479         struct g_class *mp;
2480         struct g_geom *gp, *gp2;
2481         struct g_raid_softc *sc;
2482         struct g_raid_volume *vol;
2483
2484         mp = arg;
2485         DROP_GIANT();
2486         g_topology_lock();
2487         g_raid_shutdown = 1;
2488         LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) {
2489                 if ((sc = gp->softc) == NULL)
2490                         continue;
2491                 g_topology_unlock();
2492                 sx_xlock(&sc->sc_lock);
2493                 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next)
2494                         g_raid_clean(vol, -1);
2495                 g_cancel_event(sc);
2496                 g_raid_destroy(sc, G_RAID_DESTROY_DELAYED);
2497                 g_topology_lock();
2498         }
2499         g_topology_unlock();
2500         PICKUP_GIANT();
2501 }
2502
2503 static void
2504 g_raid_init(struct g_class *mp)
2505 {
2506
2507         g_raid_post_sync = EVENTHANDLER_REGISTER(shutdown_post_sync,
2508             g_raid_shutdown_post_sync, mp, SHUTDOWN_PRI_FIRST);
2509         if (g_raid_post_sync == NULL)
2510                 G_RAID_DEBUG(0, "Warning! Cannot register shutdown event.");
2511         g_raid_started = 1;
2512 }
2513
2514 static void
2515 g_raid_fini(struct g_class *mp)
2516 {
2517
2518         if (g_raid_post_sync != NULL)
2519                 EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_raid_post_sync);
2520         g_raid_started = 0;
2521 }
2522
2523 int
2524 g_raid_md_modevent(module_t mod, int type, void *arg)
2525 {
2526         struct g_raid_md_class *class, *c, *nc;
2527         int error;
2528
2529         error = 0;
2530         class = arg;
2531         switch (type) {
2532         case MOD_LOAD:
2533                 c = LIST_FIRST(&g_raid_md_classes);
2534                 if (c == NULL || c->mdc_priority > class->mdc_priority)
2535                         LIST_INSERT_HEAD(&g_raid_md_classes, class, mdc_list);
2536                 else {
2537                         while ((nc = LIST_NEXT(c, mdc_list)) != NULL &&
2538                             nc->mdc_priority < class->mdc_priority)
2539                                 c = nc;
2540                         LIST_INSERT_AFTER(c, class, mdc_list);
2541                 }
2542                 if (g_raid_started)
2543                         g_retaste(&g_raid_class);
2544                 break;
2545         case MOD_UNLOAD:
2546                 LIST_REMOVE(class, mdc_list);
2547                 break;
2548         default:
2549                 error = EOPNOTSUPP;
2550                 break;
2551         }
2552
2553         return (error);
2554 }
2555
2556 int
2557 g_raid_tr_modevent(module_t mod, int type, void *arg)
2558 {
2559         struct g_raid_tr_class *class, *c, *nc;
2560         int error;
2561
2562         error = 0;
2563         class = arg;
2564         switch (type) {
2565         case MOD_LOAD:
2566                 c = LIST_FIRST(&g_raid_tr_classes);
2567                 if (c == NULL || c->trc_priority > class->trc_priority)
2568                         LIST_INSERT_HEAD(&g_raid_tr_classes, class, trc_list);
2569                 else {
2570                         while ((nc = LIST_NEXT(c, trc_list)) != NULL &&
2571                             nc->trc_priority < class->trc_priority)
2572                                 c = nc;
2573                         LIST_INSERT_AFTER(c, class, trc_list);
2574                 }
2575                 break;
2576         case MOD_UNLOAD:
2577                 LIST_REMOVE(class, trc_list);
2578                 break;
2579         default:
2580                 error = EOPNOTSUPP;
2581                 break;
2582         }
2583
2584         return (error);
2585 }
2586
2587 /*
2588  * Use local implementation of DECLARE_GEOM_CLASS(g_raid_class, g_raid)
2589  * to reduce module priority, allowing submodules to register them first.
2590  */
2591 static moduledata_t g_raid_mod = {
2592         "g_raid",
2593         g_modevent,
2594         &g_raid_class
2595 };
2596 DECLARE_MODULE(g_raid, g_raid_mod, SI_SUB_DRIVERS, SI_ORDER_THIRD);
2597 MODULE_VERSION(geom_raid, 0);