]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/geom/raid/g_raid.c
MFC r338913: Fix use-after-free in RAID0 error reporting of GEOM_RAID.
[FreeBSD/FreeBSD.git] / sys / geom / raid / g_raid.c
1 /*-
2  * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/module.h>
34 #include <sys/limits.h>
35 #include <sys/lock.h>
36 #include <sys/mutex.h>
37 #include <sys/bio.h>
38 #include <sys/sbuf.h>
39 #include <sys/sysctl.h>
40 #include <sys/malloc.h>
41 #include <sys/eventhandler.h>
42 #include <vm/uma.h>
43 #include <geom/geom.h>
44 #include <sys/proc.h>
45 #include <sys/kthread.h>
46 #include <sys/sched.h>
47 #include <geom/raid/g_raid.h>
48 #include "g_raid_md_if.h"
49 #include "g_raid_tr_if.h"
50
51 static MALLOC_DEFINE(M_RAID, "raid_data", "GEOM_RAID Data");
52
53 SYSCTL_DECL(_kern_geom);
54 SYSCTL_NODE(_kern_geom, OID_AUTO, raid, CTLFLAG_RW, 0, "GEOM_RAID stuff");
55 int g_raid_enable = 1;
56 SYSCTL_INT(_kern_geom_raid, OID_AUTO, enable, CTLFLAG_RWTUN,
57     &g_raid_enable, 0, "Enable on-disk metadata taste");
58 u_int g_raid_aggressive_spare = 0;
59 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, aggressive_spare, CTLFLAG_RWTUN,
60     &g_raid_aggressive_spare, 0, "Use disks without metadata as spare");
61 u_int g_raid_debug = 0;
62 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, debug, CTLFLAG_RWTUN, &g_raid_debug, 0,
63     "Debug level");
64 int g_raid_read_err_thresh = 10;
65 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, read_err_thresh, CTLFLAG_RWTUN,
66     &g_raid_read_err_thresh, 0,
67     "Number of read errors equated to disk failure");
68 u_int g_raid_start_timeout = 30;
69 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, start_timeout, CTLFLAG_RWTUN,
70     &g_raid_start_timeout, 0,
71     "Time to wait for all array components");
72 static u_int g_raid_clean_time = 5;
73 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, clean_time, CTLFLAG_RWTUN,
74     &g_raid_clean_time, 0, "Mark volume as clean when idling");
75 static u_int g_raid_disconnect_on_failure = 1;
76 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, disconnect_on_failure, CTLFLAG_RWTUN,
77     &g_raid_disconnect_on_failure, 0, "Disconnect component on I/O failure.");
78 static u_int g_raid_name_format = 0;
79 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, name_format, CTLFLAG_RWTUN,
80     &g_raid_name_format, 0, "Providers name format.");
81 static u_int g_raid_idle_threshold = 1000000;
82 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, idle_threshold, CTLFLAG_RWTUN,
83     &g_raid_idle_threshold, 1000000,
84     "Time in microseconds to consider a volume idle.");
85
86 #define MSLEEP(rv, ident, mtx, priority, wmesg, timeout)        do {    \
87         G_RAID_DEBUG(4, "%s: Sleeping %p.", __func__, (ident));         \
88         rv = msleep((ident), (mtx), (priority), (wmesg), (timeout));    \
89         G_RAID_DEBUG(4, "%s: Woken up %p.", __func__, (ident));         \
90 } while (0)
91
92 LIST_HEAD(, g_raid_md_class) g_raid_md_classes =
93     LIST_HEAD_INITIALIZER(g_raid_md_classes);
94
95 LIST_HEAD(, g_raid_tr_class) g_raid_tr_classes =
96     LIST_HEAD_INITIALIZER(g_raid_tr_classes);
97
98 LIST_HEAD(, g_raid_volume) g_raid_volumes =
99     LIST_HEAD_INITIALIZER(g_raid_volumes);
100
101 static eventhandler_tag g_raid_post_sync = NULL;
102 static int g_raid_started = 0;
103 static int g_raid_shutdown = 0;
104
105 static int g_raid_destroy_geom(struct gctl_req *req, struct g_class *mp,
106     struct g_geom *gp);
107 static g_taste_t g_raid_taste;
108 static void g_raid_init(struct g_class *mp);
109 static void g_raid_fini(struct g_class *mp);
110
111 struct g_class g_raid_class = {
112         .name = G_RAID_CLASS_NAME,
113         .version = G_VERSION,
114         .ctlreq = g_raid_ctl,
115         .taste = g_raid_taste,
116         .destroy_geom = g_raid_destroy_geom,
117         .init = g_raid_init,
118         .fini = g_raid_fini
119 };
120
121 static void g_raid_destroy_provider(struct g_raid_volume *vol);
122 static int g_raid_update_disk(struct g_raid_disk *disk, u_int event);
123 static int g_raid_update_subdisk(struct g_raid_subdisk *subdisk, u_int event);
124 static int g_raid_update_volume(struct g_raid_volume *vol, u_int event);
125 static int g_raid_update_node(struct g_raid_softc *sc, u_int event);
126 static void g_raid_dumpconf(struct sbuf *sb, const char *indent,
127     struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp);
128 static void g_raid_start(struct bio *bp);
129 static void g_raid_start_request(struct bio *bp);
130 static void g_raid_disk_done(struct bio *bp);
131 static void g_raid_poll(struct g_raid_softc *sc);
132
133 static const char *
134 g_raid_node_event2str(int event)
135 {
136
137         switch (event) {
138         case G_RAID_NODE_E_WAKE:
139                 return ("WAKE");
140         case G_RAID_NODE_E_START:
141                 return ("START");
142         default:
143                 return ("INVALID");
144         }
145 }
146
147 const char *
148 g_raid_disk_state2str(int state)
149 {
150
151         switch (state) {
152         case G_RAID_DISK_S_NONE:
153                 return ("NONE");
154         case G_RAID_DISK_S_OFFLINE:
155                 return ("OFFLINE");
156         case G_RAID_DISK_S_DISABLED:
157                 return ("DISABLED");
158         case G_RAID_DISK_S_FAILED:
159                 return ("FAILED");
160         case G_RAID_DISK_S_STALE_FAILED:
161                 return ("STALE_FAILED");
162         case G_RAID_DISK_S_SPARE:
163                 return ("SPARE");
164         case G_RAID_DISK_S_STALE:
165                 return ("STALE");
166         case G_RAID_DISK_S_ACTIVE:
167                 return ("ACTIVE");
168         default:
169                 return ("INVALID");
170         }
171 }
172
173 static const char *
174 g_raid_disk_event2str(int event)
175 {
176
177         switch (event) {
178         case G_RAID_DISK_E_DISCONNECTED:
179                 return ("DISCONNECTED");
180         default:
181                 return ("INVALID");
182         }
183 }
184
185 const char *
186 g_raid_subdisk_state2str(int state)
187 {
188
189         switch (state) {
190         case G_RAID_SUBDISK_S_NONE:
191                 return ("NONE");
192         case G_RAID_SUBDISK_S_FAILED:
193                 return ("FAILED");
194         case G_RAID_SUBDISK_S_NEW:
195                 return ("NEW");
196         case G_RAID_SUBDISK_S_REBUILD:
197                 return ("REBUILD");
198         case G_RAID_SUBDISK_S_UNINITIALIZED:
199                 return ("UNINITIALIZED");
200         case G_RAID_SUBDISK_S_STALE:
201                 return ("STALE");
202         case G_RAID_SUBDISK_S_RESYNC:
203                 return ("RESYNC");
204         case G_RAID_SUBDISK_S_ACTIVE:
205                 return ("ACTIVE");
206         default:
207                 return ("INVALID");
208         }
209 }
210
211 static const char *
212 g_raid_subdisk_event2str(int event)
213 {
214
215         switch (event) {
216         case G_RAID_SUBDISK_E_NEW:
217                 return ("NEW");
218         case G_RAID_SUBDISK_E_FAILED:
219                 return ("FAILED");
220         case G_RAID_SUBDISK_E_DISCONNECTED:
221                 return ("DISCONNECTED");
222         default:
223                 return ("INVALID");
224         }
225 }
226
227 const char *
228 g_raid_volume_state2str(int state)
229 {
230
231         switch (state) {
232         case G_RAID_VOLUME_S_STARTING:
233                 return ("STARTING");
234         case G_RAID_VOLUME_S_BROKEN:
235                 return ("BROKEN");
236         case G_RAID_VOLUME_S_DEGRADED:
237                 return ("DEGRADED");
238         case G_RAID_VOLUME_S_SUBOPTIMAL:
239                 return ("SUBOPTIMAL");
240         case G_RAID_VOLUME_S_OPTIMAL:
241                 return ("OPTIMAL");
242         case G_RAID_VOLUME_S_UNSUPPORTED:
243                 return ("UNSUPPORTED");
244         case G_RAID_VOLUME_S_STOPPED:
245                 return ("STOPPED");
246         default:
247                 return ("INVALID");
248         }
249 }
250
251 static const char *
252 g_raid_volume_event2str(int event)
253 {
254
255         switch (event) {
256         case G_RAID_VOLUME_E_UP:
257                 return ("UP");
258         case G_RAID_VOLUME_E_DOWN:
259                 return ("DOWN");
260         case G_RAID_VOLUME_E_START:
261                 return ("START");
262         case G_RAID_VOLUME_E_STARTMD:
263                 return ("STARTMD");
264         default:
265                 return ("INVALID");
266         }
267 }
268
269 const char *
270 g_raid_volume_level2str(int level, int qual)
271 {
272
273         switch (level) {
274         case G_RAID_VOLUME_RL_RAID0:
275                 return ("RAID0");
276         case G_RAID_VOLUME_RL_RAID1:
277                 return ("RAID1");
278         case G_RAID_VOLUME_RL_RAID3:
279                 if (qual == G_RAID_VOLUME_RLQ_R3P0)
280                         return ("RAID3-P0");
281                 if (qual == G_RAID_VOLUME_RLQ_R3PN)
282                         return ("RAID3-PN");
283                 return ("RAID3");
284         case G_RAID_VOLUME_RL_RAID4:
285                 if (qual == G_RAID_VOLUME_RLQ_R4P0)
286                         return ("RAID4-P0");
287                 if (qual == G_RAID_VOLUME_RLQ_R4PN)
288                         return ("RAID4-PN");
289                 return ("RAID4");
290         case G_RAID_VOLUME_RL_RAID5:
291                 if (qual == G_RAID_VOLUME_RLQ_R5RA)
292                         return ("RAID5-RA");
293                 if (qual == G_RAID_VOLUME_RLQ_R5RS)
294                         return ("RAID5-RS");
295                 if (qual == G_RAID_VOLUME_RLQ_R5LA)
296                         return ("RAID5-LA");
297                 if (qual == G_RAID_VOLUME_RLQ_R5LS)
298                         return ("RAID5-LS");
299                 return ("RAID5");
300         case G_RAID_VOLUME_RL_RAID6:
301                 if (qual == G_RAID_VOLUME_RLQ_R6RA)
302                         return ("RAID6-RA");
303                 if (qual == G_RAID_VOLUME_RLQ_R6RS)
304                         return ("RAID6-RS");
305                 if (qual == G_RAID_VOLUME_RLQ_R6LA)
306                         return ("RAID6-LA");
307                 if (qual == G_RAID_VOLUME_RLQ_R6LS)
308                         return ("RAID6-LS");
309                 return ("RAID6");
310         case G_RAID_VOLUME_RL_RAIDMDF:
311                 if (qual == G_RAID_VOLUME_RLQ_RMDFRA)
312                         return ("RAIDMDF-RA");
313                 if (qual == G_RAID_VOLUME_RLQ_RMDFRS)
314                         return ("RAIDMDF-RS");
315                 if (qual == G_RAID_VOLUME_RLQ_RMDFLA)
316                         return ("RAIDMDF-LA");
317                 if (qual == G_RAID_VOLUME_RLQ_RMDFLS)
318                         return ("RAIDMDF-LS");
319                 return ("RAIDMDF");
320         case G_RAID_VOLUME_RL_RAID1E:
321                 if (qual == G_RAID_VOLUME_RLQ_R1EA)
322                         return ("RAID1E-A");
323                 if (qual == G_RAID_VOLUME_RLQ_R1EO)
324                         return ("RAID1E-O");
325                 return ("RAID1E");
326         case G_RAID_VOLUME_RL_SINGLE:
327                 return ("SINGLE");
328         case G_RAID_VOLUME_RL_CONCAT:
329                 return ("CONCAT");
330         case G_RAID_VOLUME_RL_RAID5E:
331                 if (qual == G_RAID_VOLUME_RLQ_R5ERA)
332                         return ("RAID5E-RA");
333                 if (qual == G_RAID_VOLUME_RLQ_R5ERS)
334                         return ("RAID5E-RS");
335                 if (qual == G_RAID_VOLUME_RLQ_R5ELA)
336                         return ("RAID5E-LA");
337                 if (qual == G_RAID_VOLUME_RLQ_R5ELS)
338                         return ("RAID5E-LS");
339                 return ("RAID5E");
340         case G_RAID_VOLUME_RL_RAID5EE:
341                 if (qual == G_RAID_VOLUME_RLQ_R5EERA)
342                         return ("RAID5EE-RA");
343                 if (qual == G_RAID_VOLUME_RLQ_R5EERS)
344                         return ("RAID5EE-RS");
345                 if (qual == G_RAID_VOLUME_RLQ_R5EELA)
346                         return ("RAID5EE-LA");
347                 if (qual == G_RAID_VOLUME_RLQ_R5EELS)
348                         return ("RAID5EE-LS");
349                 return ("RAID5EE");
350         case G_RAID_VOLUME_RL_RAID5R:
351                 if (qual == G_RAID_VOLUME_RLQ_R5RRA)
352                         return ("RAID5R-RA");
353                 if (qual == G_RAID_VOLUME_RLQ_R5RRS)
354                         return ("RAID5R-RS");
355                 if (qual == G_RAID_VOLUME_RLQ_R5RLA)
356                         return ("RAID5R-LA");
357                 if (qual == G_RAID_VOLUME_RLQ_R5RLS)
358                         return ("RAID5R-LS");
359                 return ("RAID5E");
360         default:
361                 return ("UNKNOWN");
362         }
363 }
364
365 int
366 g_raid_volume_str2level(const char *str, int *level, int *qual)
367 {
368
369         *level = G_RAID_VOLUME_RL_UNKNOWN;
370         *qual = G_RAID_VOLUME_RLQ_NONE;
371         if (strcasecmp(str, "RAID0") == 0)
372                 *level = G_RAID_VOLUME_RL_RAID0;
373         else if (strcasecmp(str, "RAID1") == 0)
374                 *level = G_RAID_VOLUME_RL_RAID1;
375         else if (strcasecmp(str, "RAID3-P0") == 0) {
376                 *level = G_RAID_VOLUME_RL_RAID3;
377                 *qual = G_RAID_VOLUME_RLQ_R3P0;
378         } else if (strcasecmp(str, "RAID3-PN") == 0 ||
379                    strcasecmp(str, "RAID3") == 0) {
380                 *level = G_RAID_VOLUME_RL_RAID3;
381                 *qual = G_RAID_VOLUME_RLQ_R3PN;
382         } else if (strcasecmp(str, "RAID4-P0") == 0) {
383                 *level = G_RAID_VOLUME_RL_RAID4;
384                 *qual = G_RAID_VOLUME_RLQ_R4P0;
385         } else if (strcasecmp(str, "RAID4-PN") == 0 ||
386                    strcasecmp(str, "RAID4") == 0) {
387                 *level = G_RAID_VOLUME_RL_RAID4;
388                 *qual = G_RAID_VOLUME_RLQ_R4PN;
389         } else if (strcasecmp(str, "RAID5-RA") == 0) {
390                 *level = G_RAID_VOLUME_RL_RAID5;
391                 *qual = G_RAID_VOLUME_RLQ_R5RA;
392         } else if (strcasecmp(str, "RAID5-RS") == 0) {
393                 *level = G_RAID_VOLUME_RL_RAID5;
394                 *qual = G_RAID_VOLUME_RLQ_R5RS;
395         } else if (strcasecmp(str, "RAID5") == 0 ||
396                    strcasecmp(str, "RAID5-LA") == 0) {
397                 *level = G_RAID_VOLUME_RL_RAID5;
398                 *qual = G_RAID_VOLUME_RLQ_R5LA;
399         } else if (strcasecmp(str, "RAID5-LS") == 0) {
400                 *level = G_RAID_VOLUME_RL_RAID5;
401                 *qual = G_RAID_VOLUME_RLQ_R5LS;
402         } else if (strcasecmp(str, "RAID6-RA") == 0) {
403                 *level = G_RAID_VOLUME_RL_RAID6;
404                 *qual = G_RAID_VOLUME_RLQ_R6RA;
405         } else if (strcasecmp(str, "RAID6-RS") == 0) {
406                 *level = G_RAID_VOLUME_RL_RAID6;
407                 *qual = G_RAID_VOLUME_RLQ_R6RS;
408         } else if (strcasecmp(str, "RAID6") == 0 ||
409                    strcasecmp(str, "RAID6-LA") == 0) {
410                 *level = G_RAID_VOLUME_RL_RAID6;
411                 *qual = G_RAID_VOLUME_RLQ_R6LA;
412         } else if (strcasecmp(str, "RAID6-LS") == 0) {
413                 *level = G_RAID_VOLUME_RL_RAID6;
414                 *qual = G_RAID_VOLUME_RLQ_R6LS;
415         } else if (strcasecmp(str, "RAIDMDF-RA") == 0) {
416                 *level = G_RAID_VOLUME_RL_RAIDMDF;
417                 *qual = G_RAID_VOLUME_RLQ_RMDFRA;
418         } else if (strcasecmp(str, "RAIDMDF-RS") == 0) {
419                 *level = G_RAID_VOLUME_RL_RAIDMDF;
420                 *qual = G_RAID_VOLUME_RLQ_RMDFRS;
421         } else if (strcasecmp(str, "RAIDMDF") == 0 ||
422                    strcasecmp(str, "RAIDMDF-LA") == 0) {
423                 *level = G_RAID_VOLUME_RL_RAIDMDF;
424                 *qual = G_RAID_VOLUME_RLQ_RMDFLA;
425         } else if (strcasecmp(str, "RAIDMDF-LS") == 0) {
426                 *level = G_RAID_VOLUME_RL_RAIDMDF;
427                 *qual = G_RAID_VOLUME_RLQ_RMDFLS;
428         } else if (strcasecmp(str, "RAID10") == 0 ||
429                    strcasecmp(str, "RAID1E") == 0 ||
430                    strcasecmp(str, "RAID1E-A") == 0) {
431                 *level = G_RAID_VOLUME_RL_RAID1E;
432                 *qual = G_RAID_VOLUME_RLQ_R1EA;
433         } else if (strcasecmp(str, "RAID1E-O") == 0) {
434                 *level = G_RAID_VOLUME_RL_RAID1E;
435                 *qual = G_RAID_VOLUME_RLQ_R1EO;
436         } else if (strcasecmp(str, "SINGLE") == 0)
437                 *level = G_RAID_VOLUME_RL_SINGLE;
438         else if (strcasecmp(str, "CONCAT") == 0)
439                 *level = G_RAID_VOLUME_RL_CONCAT;
440         else if (strcasecmp(str, "RAID5E-RA") == 0) {
441                 *level = G_RAID_VOLUME_RL_RAID5E;
442                 *qual = G_RAID_VOLUME_RLQ_R5ERA;
443         } else if (strcasecmp(str, "RAID5E-RS") == 0) {
444                 *level = G_RAID_VOLUME_RL_RAID5E;
445                 *qual = G_RAID_VOLUME_RLQ_R5ERS;
446         } else if (strcasecmp(str, "RAID5E") == 0 ||
447                    strcasecmp(str, "RAID5E-LA") == 0) {
448                 *level = G_RAID_VOLUME_RL_RAID5E;
449                 *qual = G_RAID_VOLUME_RLQ_R5ELA;
450         } else if (strcasecmp(str, "RAID5E-LS") == 0) {
451                 *level = G_RAID_VOLUME_RL_RAID5E;
452                 *qual = G_RAID_VOLUME_RLQ_R5ELS;
453         } else if (strcasecmp(str, "RAID5EE-RA") == 0) {
454                 *level = G_RAID_VOLUME_RL_RAID5EE;
455                 *qual = G_RAID_VOLUME_RLQ_R5EERA;
456         } else if (strcasecmp(str, "RAID5EE-RS") == 0) {
457                 *level = G_RAID_VOLUME_RL_RAID5EE;
458                 *qual = G_RAID_VOLUME_RLQ_R5EERS;
459         } else if (strcasecmp(str, "RAID5EE") == 0 ||
460                    strcasecmp(str, "RAID5EE-LA") == 0) {
461                 *level = G_RAID_VOLUME_RL_RAID5EE;
462                 *qual = G_RAID_VOLUME_RLQ_R5EELA;
463         } else if (strcasecmp(str, "RAID5EE-LS") == 0) {
464                 *level = G_RAID_VOLUME_RL_RAID5EE;
465                 *qual = G_RAID_VOLUME_RLQ_R5EELS;
466         } else if (strcasecmp(str, "RAID5R-RA") == 0) {
467                 *level = G_RAID_VOLUME_RL_RAID5R;
468                 *qual = G_RAID_VOLUME_RLQ_R5RRA;
469         } else if (strcasecmp(str, "RAID5R-RS") == 0) {
470                 *level = G_RAID_VOLUME_RL_RAID5R;
471                 *qual = G_RAID_VOLUME_RLQ_R5RRS;
472         } else if (strcasecmp(str, "RAID5R") == 0 ||
473                    strcasecmp(str, "RAID5R-LA") == 0) {
474                 *level = G_RAID_VOLUME_RL_RAID5R;
475                 *qual = G_RAID_VOLUME_RLQ_R5RLA;
476         } else if (strcasecmp(str, "RAID5R-LS") == 0) {
477                 *level = G_RAID_VOLUME_RL_RAID5R;
478                 *qual = G_RAID_VOLUME_RLQ_R5RLS;
479         } else
480                 return (-1);
481         return (0);
482 }
483
484 const char *
485 g_raid_get_diskname(struct g_raid_disk *disk)
486 {
487
488         if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL)
489                 return ("[unknown]");
490         return (disk->d_consumer->provider->name);
491 }
492
493 void
494 g_raid_get_disk_info(struct g_raid_disk *disk)
495 {
496         struct g_consumer *cp = disk->d_consumer;
497         int error, len;
498
499         /* Read kernel dumping information. */
500         disk->d_kd.offset = 0;
501         disk->d_kd.length = OFF_MAX;
502         len = sizeof(disk->d_kd);
503         error = g_io_getattr("GEOM::kerneldump", cp, &len, &disk->d_kd);
504         if (error)
505                 disk->d_kd.di.dumper = NULL;
506         if (disk->d_kd.di.dumper == NULL)
507                 G_RAID_DEBUG1(2, disk->d_softc,
508                     "Dumping not supported by %s: %d.", 
509                     cp->provider->name, error);
510
511         /* Read BIO_DELETE support. */
512         error = g_getattr("GEOM::candelete", cp, &disk->d_candelete);
513         if (error)
514                 disk->d_candelete = 0;
515         if (!disk->d_candelete)
516                 G_RAID_DEBUG1(2, disk->d_softc,
517                     "BIO_DELETE not supported by %s: %d.", 
518                     cp->provider->name, error);
519 }
520
521 void
522 g_raid_report_disk_state(struct g_raid_disk *disk)
523 {
524         struct g_raid_subdisk *sd;
525         int len, state;
526         uint32_t s;
527
528         if (disk->d_consumer == NULL)
529                 return;
530         if (disk->d_state == G_RAID_DISK_S_DISABLED) {
531                 s = G_STATE_ACTIVE; /* XXX */
532         } else if (disk->d_state == G_RAID_DISK_S_FAILED ||
533             disk->d_state == G_RAID_DISK_S_STALE_FAILED) {
534                 s = G_STATE_FAILED;
535         } else {
536                 state = G_RAID_SUBDISK_S_ACTIVE;
537                 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
538                         if (sd->sd_state < state)
539                                 state = sd->sd_state;
540                 }
541                 if (state == G_RAID_SUBDISK_S_FAILED)
542                         s = G_STATE_FAILED;
543                 else if (state == G_RAID_SUBDISK_S_NEW ||
544                     state == G_RAID_SUBDISK_S_REBUILD)
545                         s = G_STATE_REBUILD;
546                 else if (state == G_RAID_SUBDISK_S_STALE ||
547                     state == G_RAID_SUBDISK_S_RESYNC)
548                         s = G_STATE_RESYNC;
549                 else
550                         s = G_STATE_ACTIVE;
551         }
552         len = sizeof(s);
553         g_io_getattr("GEOM::setstate", disk->d_consumer, &len, &s);
554         G_RAID_DEBUG1(2, disk->d_softc, "Disk %s state reported as %d.",
555             g_raid_get_diskname(disk), s);
556 }
557
558 void
559 g_raid_change_disk_state(struct g_raid_disk *disk, int state)
560 {
561
562         G_RAID_DEBUG1(0, disk->d_softc, "Disk %s state changed from %s to %s.",
563             g_raid_get_diskname(disk),
564             g_raid_disk_state2str(disk->d_state),
565             g_raid_disk_state2str(state));
566         disk->d_state = state;
567         g_raid_report_disk_state(disk);
568 }
569
570 void
571 g_raid_change_subdisk_state(struct g_raid_subdisk *sd, int state)
572 {
573
574         G_RAID_DEBUG1(0, sd->sd_softc,
575             "Subdisk %s:%d-%s state changed from %s to %s.",
576             sd->sd_volume->v_name, sd->sd_pos,
577             sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]",
578             g_raid_subdisk_state2str(sd->sd_state),
579             g_raid_subdisk_state2str(state));
580         sd->sd_state = state;
581         if (sd->sd_disk)
582                 g_raid_report_disk_state(sd->sd_disk);
583 }
584
585 void
586 g_raid_change_volume_state(struct g_raid_volume *vol, int state)
587 {
588
589         G_RAID_DEBUG1(0, vol->v_softc,
590             "Volume %s state changed from %s to %s.",
591             vol->v_name,
592             g_raid_volume_state2str(vol->v_state),
593             g_raid_volume_state2str(state));
594         vol->v_state = state;
595 }
596
597 /*
598  * --- Events handling functions ---
599  * Events in geom_raid are used to maintain subdisks and volumes status
600  * from one thread to simplify locking.
601  */
602 static void
603 g_raid_event_free(struct g_raid_event *ep)
604 {
605
606         free(ep, M_RAID);
607 }
608
609 int
610 g_raid_event_send(void *arg, int event, int flags)
611 {
612         struct g_raid_softc *sc;
613         struct g_raid_event *ep;
614         int error;
615
616         if ((flags & G_RAID_EVENT_VOLUME) != 0) {
617                 sc = ((struct g_raid_volume *)arg)->v_softc;
618         } else if ((flags & G_RAID_EVENT_DISK) != 0) {
619                 sc = ((struct g_raid_disk *)arg)->d_softc;
620         } else if ((flags & G_RAID_EVENT_SUBDISK) != 0) {
621                 sc = ((struct g_raid_subdisk *)arg)->sd_softc;
622         } else {
623                 sc = arg;
624         }
625         ep = malloc(sizeof(*ep), M_RAID,
626             sx_xlocked(&sc->sc_lock) ? M_WAITOK : M_NOWAIT);
627         if (ep == NULL)
628                 return (ENOMEM);
629         ep->e_tgt = arg;
630         ep->e_event = event;
631         ep->e_flags = flags;
632         ep->e_error = 0;
633         G_RAID_DEBUG1(4, sc, "Sending event %p. Waking up %p.", ep, sc);
634         mtx_lock(&sc->sc_queue_mtx);
635         TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next);
636         mtx_unlock(&sc->sc_queue_mtx);
637         wakeup(sc);
638
639         if ((flags & G_RAID_EVENT_WAIT) == 0)
640                 return (0);
641
642         sx_assert(&sc->sc_lock, SX_XLOCKED);
643         G_RAID_DEBUG1(4, sc, "Sleeping on %p.", ep);
644         sx_xunlock(&sc->sc_lock);
645         while ((ep->e_flags & G_RAID_EVENT_DONE) == 0) {
646                 mtx_lock(&sc->sc_queue_mtx);
647                 MSLEEP(error, ep, &sc->sc_queue_mtx, PRIBIO | PDROP, "m:event",
648                     hz * 5);
649         }
650         error = ep->e_error;
651         g_raid_event_free(ep);
652         sx_xlock(&sc->sc_lock);
653         return (error);
654 }
655
656 static void
657 g_raid_event_cancel(struct g_raid_softc *sc, void *tgt)
658 {
659         struct g_raid_event *ep, *tmpep;
660
661         sx_assert(&sc->sc_lock, SX_XLOCKED);
662
663         mtx_lock(&sc->sc_queue_mtx);
664         TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) {
665                 if (ep->e_tgt != tgt)
666                         continue;
667                 TAILQ_REMOVE(&sc->sc_events, ep, e_next);
668                 if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0)
669                         g_raid_event_free(ep);
670                 else {
671                         ep->e_error = ECANCELED;
672                         wakeup(ep);
673                 }
674         }
675         mtx_unlock(&sc->sc_queue_mtx);
676 }
677
678 static int
679 g_raid_event_check(struct g_raid_softc *sc, void *tgt)
680 {
681         struct g_raid_event *ep;
682         int     res = 0;
683
684         sx_assert(&sc->sc_lock, SX_XLOCKED);
685
686         mtx_lock(&sc->sc_queue_mtx);
687         TAILQ_FOREACH(ep, &sc->sc_events, e_next) {
688                 if (ep->e_tgt != tgt)
689                         continue;
690                 res = 1;
691                 break;
692         }
693         mtx_unlock(&sc->sc_queue_mtx);
694         return (res);
695 }
696
697 /*
698  * Return the number of disks in given state.
699  * If state is equal to -1, count all connected disks.
700  */
701 u_int
702 g_raid_ndisks(struct g_raid_softc *sc, int state)
703 {
704         struct g_raid_disk *disk;
705         u_int n;
706
707         sx_assert(&sc->sc_lock, SX_LOCKED);
708
709         n = 0;
710         TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
711                 if (disk->d_state == state || state == -1)
712                         n++;
713         }
714         return (n);
715 }
716
717 /*
718  * Return the number of subdisks in given state.
719  * If state is equal to -1, count all connected disks.
720  */
721 u_int
722 g_raid_nsubdisks(struct g_raid_volume *vol, int state)
723 {
724         struct g_raid_subdisk *subdisk;
725         struct g_raid_softc *sc;
726         u_int i, n ;
727
728         sc = vol->v_softc;
729         sx_assert(&sc->sc_lock, SX_LOCKED);
730
731         n = 0;
732         for (i = 0; i < vol->v_disks_count; i++) {
733                 subdisk = &vol->v_subdisks[i];
734                 if ((state == -1 &&
735                      subdisk->sd_state != G_RAID_SUBDISK_S_NONE) ||
736                     subdisk->sd_state == state)
737                         n++;
738         }
739         return (n);
740 }
741
742 /*
743  * Return the first subdisk in given state.
744  * If state is equal to -1, then the first connected disks.
745  */
746 struct g_raid_subdisk *
747 g_raid_get_subdisk(struct g_raid_volume *vol, int state)
748 {
749         struct g_raid_subdisk *sd;
750         struct g_raid_softc *sc;
751         u_int i;
752
753         sc = vol->v_softc;
754         sx_assert(&sc->sc_lock, SX_LOCKED);
755
756         for (i = 0; i < vol->v_disks_count; i++) {
757                 sd = &vol->v_subdisks[i];
758                 if ((state == -1 &&
759                      sd->sd_state != G_RAID_SUBDISK_S_NONE) ||
760                     sd->sd_state == state)
761                         return (sd);
762         }
763         return (NULL);
764 }
765
766 struct g_consumer *
767 g_raid_open_consumer(struct g_raid_softc *sc, const char *name)
768 {
769         struct g_consumer *cp;
770         struct g_provider *pp;
771
772         g_topology_assert();
773
774         if (strncmp(name, "/dev/", 5) == 0)
775                 name += 5;
776         pp = g_provider_by_name(name);
777         if (pp == NULL)
778                 return (NULL);
779         cp = g_new_consumer(sc->sc_geom);
780         cp->flags |= G_CF_DIRECT_RECEIVE;
781         if (g_attach(cp, pp) != 0) {
782                 g_destroy_consumer(cp);
783                 return (NULL);
784         }
785         if (g_access(cp, 1, 1, 1) != 0) {
786                 g_detach(cp);
787                 g_destroy_consumer(cp);
788                 return (NULL);
789         }
790         return (cp);
791 }
792
793 static u_int
794 g_raid_nrequests(struct g_raid_softc *sc, struct g_consumer *cp)
795 {
796         struct bio *bp;
797         u_int nreqs = 0;
798
799         mtx_lock(&sc->sc_queue_mtx);
800         TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
801                 if (bp->bio_from == cp)
802                         nreqs++;
803         }
804         mtx_unlock(&sc->sc_queue_mtx);
805         return (nreqs);
806 }
807
808 u_int
809 g_raid_nopens(struct g_raid_softc *sc)
810 {
811         struct g_raid_volume *vol;
812         u_int opens;
813
814         opens = 0;
815         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
816                 if (vol->v_provider_open != 0)
817                         opens++;
818         }
819         return (opens);
820 }
821
822 static int
823 g_raid_consumer_is_busy(struct g_raid_softc *sc, struct g_consumer *cp)
824 {
825
826         if (cp->index > 0) {
827                 G_RAID_DEBUG1(2, sc,
828                     "I/O requests for %s exist, can't destroy it now.",
829                     cp->provider->name);
830                 return (1);
831         }
832         if (g_raid_nrequests(sc, cp) > 0) {
833                 G_RAID_DEBUG1(2, sc,
834                     "I/O requests for %s in queue, can't destroy it now.",
835                     cp->provider->name);
836                 return (1);
837         }
838         return (0);
839 }
840
841 static void
842 g_raid_destroy_consumer(void *arg, int flags __unused)
843 {
844         struct g_consumer *cp;
845
846         g_topology_assert();
847
848         cp = arg;
849         G_RAID_DEBUG(1, "Consumer %s destroyed.", cp->provider->name);
850         g_detach(cp);
851         g_destroy_consumer(cp);
852 }
853
854 void
855 g_raid_kill_consumer(struct g_raid_softc *sc, struct g_consumer *cp)
856 {
857         struct g_provider *pp;
858         int retaste_wait;
859
860         g_topology_assert_not();
861
862         g_topology_lock();
863         cp->private = NULL;
864         if (g_raid_consumer_is_busy(sc, cp))
865                 goto out;
866         pp = cp->provider;
867         retaste_wait = 0;
868         if (cp->acw == 1) {
869                 if ((pp->geom->flags & G_GEOM_WITHER) == 0)
870                         retaste_wait = 1;
871         }
872         if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0)
873                 g_access(cp, -cp->acr, -cp->acw, -cp->ace);
874         if (retaste_wait) {
875                 /*
876                  * After retaste event was send (inside g_access()), we can send
877                  * event to detach and destroy consumer.
878                  * A class, which has consumer to the given provider connected
879                  * will not receive retaste event for the provider.
880                  * This is the way how I ignore retaste events when I close
881                  * consumers opened for write: I detach and destroy consumer
882                  * after retaste event is sent.
883                  */
884                 g_post_event(g_raid_destroy_consumer, cp, M_WAITOK, NULL);
885                 goto out;
886         }
887         G_RAID_DEBUG(1, "Consumer %s destroyed.", pp->name);
888         g_detach(cp);
889         g_destroy_consumer(cp);
890 out:
891         g_topology_unlock();
892 }
893
894 static void
895 g_raid_orphan(struct g_consumer *cp)
896 {
897         struct g_raid_disk *disk;
898
899         g_topology_assert();
900
901         disk = cp->private;
902         if (disk == NULL)
903                 return;
904         g_raid_event_send(disk, G_RAID_DISK_E_DISCONNECTED,
905             G_RAID_EVENT_DISK);
906 }
907
908 static void
909 g_raid_clean(struct g_raid_volume *vol, int acw)
910 {
911         struct g_raid_softc *sc;
912         int timeout;
913
914         sc = vol->v_softc;
915         g_topology_assert_not();
916         sx_assert(&sc->sc_lock, SX_XLOCKED);
917
918 //      if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0)
919 //              return;
920         if (!vol->v_dirty)
921                 return;
922         if (vol->v_writes > 0)
923                 return;
924         if (acw > 0 || (acw == -1 &&
925             vol->v_provider != NULL && vol->v_provider->acw > 0)) {
926                 timeout = g_raid_clean_time - (time_uptime - vol->v_last_write);
927                 if (!g_raid_shutdown && timeout > 0)
928                         return;
929         }
930         vol->v_dirty = 0;
931         G_RAID_DEBUG1(1, sc, "Volume %s marked as clean.",
932             vol->v_name);
933         g_raid_write_metadata(sc, vol, NULL, NULL);
934 }
935
936 static void
937 g_raid_dirty(struct g_raid_volume *vol)
938 {
939         struct g_raid_softc *sc;
940
941         sc = vol->v_softc;
942         g_topology_assert_not();
943         sx_assert(&sc->sc_lock, SX_XLOCKED);
944
945 //      if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0)
946 //              return;
947         vol->v_dirty = 1;
948         G_RAID_DEBUG1(1, sc, "Volume %s marked as dirty.",
949             vol->v_name);
950         g_raid_write_metadata(sc, vol, NULL, NULL);
951 }
952
953 void
954 g_raid_tr_flush_common(struct g_raid_tr_object *tr, struct bio *bp)
955 {
956         struct g_raid_softc *sc;
957         struct g_raid_volume *vol;
958         struct g_raid_subdisk *sd;
959         struct bio_queue_head queue;
960         struct bio *cbp;
961         int i;
962
963         vol = tr->tro_volume;
964         sc = vol->v_softc;
965
966         /*
967          * Allocate all bios before sending any request, so we can return
968          * ENOMEM in nice and clean way.
969          */
970         bioq_init(&queue);
971         for (i = 0; i < vol->v_disks_count; i++) {
972                 sd = &vol->v_subdisks[i];
973                 if (sd->sd_state == G_RAID_SUBDISK_S_NONE ||
974                     sd->sd_state == G_RAID_SUBDISK_S_FAILED)
975                         continue;
976                 cbp = g_clone_bio(bp);
977                 if (cbp == NULL)
978                         goto failure;
979                 cbp->bio_caller1 = sd;
980                 bioq_insert_tail(&queue, cbp);
981         }
982         while ((cbp = bioq_takefirst(&queue)) != NULL) {
983                 sd = cbp->bio_caller1;
984                 cbp->bio_caller1 = NULL;
985                 g_raid_subdisk_iostart(sd, cbp);
986         }
987         return;
988 failure:
989         while ((cbp = bioq_takefirst(&queue)) != NULL)
990                 g_destroy_bio(cbp);
991         if (bp->bio_error == 0)
992                 bp->bio_error = ENOMEM;
993         g_raid_iodone(bp, bp->bio_error);
994 }
995
996 static void
997 g_raid_tr_kerneldump_common_done(struct bio *bp)
998 {
999
1000         bp->bio_flags |= BIO_DONE;
1001 }
1002
1003 int
1004 g_raid_tr_kerneldump_common(struct g_raid_tr_object *tr,
1005     void *virtual, vm_offset_t physical, off_t offset, size_t length)
1006 {
1007         struct g_raid_softc *sc;
1008         struct g_raid_volume *vol;
1009         struct bio bp;
1010
1011         vol = tr->tro_volume;
1012         sc = vol->v_softc;
1013
1014         g_reset_bio(&bp);
1015         bp.bio_cmd = BIO_WRITE;
1016         bp.bio_done = g_raid_tr_kerneldump_common_done;
1017         bp.bio_attribute = NULL;
1018         bp.bio_offset = offset;
1019         bp.bio_length = length;
1020         bp.bio_data = virtual;
1021         bp.bio_to = vol->v_provider;
1022
1023         g_raid_start(&bp);
1024         while (!(bp.bio_flags & BIO_DONE)) {
1025                 G_RAID_DEBUG1(4, sc, "Poll...");
1026                 g_raid_poll(sc);
1027                 DELAY(10);
1028         }
1029
1030         return (bp.bio_error != 0 ? EIO : 0);
1031 }
1032
1033 static int
1034 g_raid_dump(void *arg,
1035     void *virtual, vm_offset_t physical, off_t offset, size_t length)
1036 {
1037         struct g_raid_volume *vol;
1038         int error;
1039
1040         vol = (struct g_raid_volume *)arg;
1041         G_RAID_DEBUG1(3, vol->v_softc, "Dumping at off %llu len %llu.",
1042             (long long unsigned)offset, (long long unsigned)length);
1043
1044         error = G_RAID_TR_KERNELDUMP(vol->v_tr,
1045             virtual, physical, offset, length);
1046         return (error);
1047 }
1048
1049 static void
1050 g_raid_kerneldump(struct g_raid_softc *sc, struct bio *bp)
1051 {
1052         struct g_kerneldump *gkd;
1053         struct g_provider *pp;
1054         struct g_raid_volume *vol;
1055
1056         gkd = (struct g_kerneldump*)bp->bio_data;
1057         pp = bp->bio_to;
1058         vol = pp->private;
1059         g_trace(G_T_TOPOLOGY, "g_raid_kerneldump(%s, %jd, %jd)",
1060                 pp->name, (intmax_t)gkd->offset, (intmax_t)gkd->length);
1061         gkd->di.dumper = g_raid_dump;
1062         gkd->di.priv = vol;
1063         gkd->di.blocksize = vol->v_sectorsize;
1064         gkd->di.maxiosize = DFLTPHYS;
1065         gkd->di.mediaoffset = gkd->offset;
1066         if ((gkd->offset + gkd->length) > vol->v_mediasize)
1067                 gkd->length = vol->v_mediasize - gkd->offset;
1068         gkd->di.mediasize = gkd->length;
1069         g_io_deliver(bp, 0);
1070 }
1071
1072 static void
1073 g_raid_candelete(struct g_raid_softc *sc, struct bio *bp)
1074 {
1075         struct g_provider *pp;
1076         struct g_raid_volume *vol;
1077         struct g_raid_subdisk *sd;
1078         int *val;
1079         int i;
1080
1081         val = (int *)bp->bio_data;
1082         pp = bp->bio_to;
1083         vol = pp->private;
1084         *val = 0;
1085         for (i = 0; i < vol->v_disks_count; i++) {
1086                 sd = &vol->v_subdisks[i];
1087                 if (sd->sd_state == G_RAID_SUBDISK_S_NONE)
1088                         continue;
1089                 if (sd->sd_disk->d_candelete) {
1090                         *val = 1;
1091                         break;
1092                 }
1093         }
1094         g_io_deliver(bp, 0);
1095 }
1096
1097 static void
1098 g_raid_start(struct bio *bp)
1099 {
1100         struct g_raid_softc *sc;
1101
1102         sc = bp->bio_to->geom->softc;
1103         /*
1104          * If sc == NULL or there are no valid disks, provider's error
1105          * should be set and g_raid_start() should not be called at all.
1106          */
1107 //      KASSERT(sc != NULL && sc->sc_state == G_RAID_VOLUME_S_RUNNING,
1108 //          ("Provider's error should be set (error=%d)(mirror=%s).",
1109 //          bp->bio_to->error, bp->bio_to->name));
1110         G_RAID_LOGREQ(3, bp, "Request received.");
1111
1112         switch (bp->bio_cmd) {
1113         case BIO_READ:
1114         case BIO_WRITE:
1115         case BIO_DELETE:
1116         case BIO_FLUSH:
1117                 break;
1118         case BIO_GETATTR:
1119                 if (!strcmp(bp->bio_attribute, "GEOM::candelete"))
1120                         g_raid_candelete(sc, bp);
1121                 else if (!strcmp(bp->bio_attribute, "GEOM::kerneldump"))
1122                         g_raid_kerneldump(sc, bp);
1123                 else
1124                         g_io_deliver(bp, EOPNOTSUPP);
1125                 return;
1126         default:
1127                 g_io_deliver(bp, EOPNOTSUPP);
1128                 return;
1129         }
1130         mtx_lock(&sc->sc_queue_mtx);
1131         bioq_insert_tail(&sc->sc_queue, bp);
1132         mtx_unlock(&sc->sc_queue_mtx);
1133         if (!dumping) {
1134                 G_RAID_DEBUG1(4, sc, "Waking up %p.", sc);
1135                 wakeup(sc);
1136         }
1137 }
1138
1139 static int
1140 g_raid_bio_overlaps(const struct bio *bp, off_t lstart, off_t len)
1141 {
1142         /*
1143          * 5 cases:
1144          * (1) bp entirely below NO
1145          * (2) bp entirely above NO
1146          * (3) bp start below, but end in range YES
1147          * (4) bp entirely within YES
1148          * (5) bp starts within, ends above YES
1149          *
1150          * lock range 10-19 (offset 10 length 10)
1151          * (1) 1-5: first if kicks it out
1152          * (2) 30-35: second if kicks it out
1153          * (3) 5-15: passes both ifs
1154          * (4) 12-14: passes both ifs
1155          * (5) 19-20: passes both
1156          */
1157         off_t lend = lstart + len - 1;
1158         off_t bstart = bp->bio_offset;
1159         off_t bend = bp->bio_offset + bp->bio_length - 1;
1160
1161         if (bend < lstart)
1162                 return (0);
1163         if (lend < bstart)
1164                 return (0);
1165         return (1);
1166 }
1167
1168 static int
1169 g_raid_is_in_locked_range(struct g_raid_volume *vol, const struct bio *bp)
1170 {
1171         struct g_raid_lock *lp;
1172
1173         sx_assert(&vol->v_softc->sc_lock, SX_LOCKED);
1174
1175         LIST_FOREACH(lp, &vol->v_locks, l_next) {
1176                 if (g_raid_bio_overlaps(bp, lp->l_offset, lp->l_length))
1177                         return (1);
1178         }
1179         return (0);
1180 }
1181
1182 static void
1183 g_raid_start_request(struct bio *bp)
1184 {
1185         struct g_raid_softc *sc;
1186         struct g_raid_volume *vol;
1187
1188         sc = bp->bio_to->geom->softc;
1189         sx_assert(&sc->sc_lock, SX_LOCKED);
1190         vol = bp->bio_to->private;
1191
1192         /*
1193          * Check to see if this item is in a locked range.  If so,
1194          * queue it to our locked queue and return.  We'll requeue
1195          * it when the range is unlocked.  Internal I/O for the
1196          * rebuild/rescan/recovery process is excluded from this
1197          * check so we can actually do the recovery.
1198          */
1199         if (!(bp->bio_cflags & G_RAID_BIO_FLAG_SPECIAL) &&
1200             g_raid_is_in_locked_range(vol, bp)) {
1201                 G_RAID_LOGREQ(3, bp, "Defer request.");
1202                 bioq_insert_tail(&vol->v_locked, bp);
1203                 return;
1204         }
1205
1206         /*
1207          * If we're actually going to do the write/delete, then
1208          * update the idle stats for the volume.
1209          */
1210         if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) {
1211                 if (!vol->v_dirty)
1212                         g_raid_dirty(vol);
1213                 vol->v_writes++;
1214         }
1215
1216         /*
1217          * Put request onto inflight queue, so we can check if new
1218          * synchronization requests don't collide with it.  Then tell
1219          * the transformation layer to start the I/O.
1220          */
1221         bioq_insert_tail(&vol->v_inflight, bp);
1222         G_RAID_LOGREQ(4, bp, "Request started");
1223         G_RAID_TR_IOSTART(vol->v_tr, bp);
1224 }
1225
1226 static void
1227 g_raid_finish_with_locked_ranges(struct g_raid_volume *vol, struct bio *bp)
1228 {
1229         off_t off, len;
1230         struct bio *nbp;
1231         struct g_raid_lock *lp;
1232
1233         vol->v_pending_lock = 0;
1234         LIST_FOREACH(lp, &vol->v_locks, l_next) {
1235                 if (lp->l_pending) {
1236                         off = lp->l_offset;
1237                         len = lp->l_length;
1238                         lp->l_pending = 0;
1239                         TAILQ_FOREACH(nbp, &vol->v_inflight.queue, bio_queue) {
1240                                 if (g_raid_bio_overlaps(nbp, off, len))
1241                                         lp->l_pending++;
1242                         }
1243                         if (lp->l_pending) {
1244                                 vol->v_pending_lock = 1;
1245                                 G_RAID_DEBUG1(4, vol->v_softc,
1246                                     "Deferred lock(%jd, %jd) has %d pending",
1247                                     (intmax_t)off, (intmax_t)(off + len),
1248                                     lp->l_pending);
1249                                 continue;
1250                         }
1251                         G_RAID_DEBUG1(4, vol->v_softc,
1252                             "Deferred lock of %jd to %jd completed",
1253                             (intmax_t)off, (intmax_t)(off + len));
1254                         G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg);
1255                 }
1256         }
1257 }
1258
1259 void
1260 g_raid_iodone(struct bio *bp, int error)
1261 {
1262         struct g_raid_softc *sc;
1263         struct g_raid_volume *vol;
1264
1265         sc = bp->bio_to->geom->softc;
1266         sx_assert(&sc->sc_lock, SX_LOCKED);
1267         vol = bp->bio_to->private;
1268         G_RAID_LOGREQ(3, bp, "Request done: %d.", error);
1269
1270         /* Update stats if we done write/delete. */
1271         if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) {
1272                 vol->v_writes--;
1273                 vol->v_last_write = time_uptime;
1274         }
1275
1276         bioq_remove(&vol->v_inflight, bp);
1277         if (vol->v_pending_lock && g_raid_is_in_locked_range(vol, bp))
1278                 g_raid_finish_with_locked_ranges(vol, bp);
1279         getmicrouptime(&vol->v_last_done);
1280         g_io_deliver(bp, error);
1281 }
1282
1283 int
1284 g_raid_lock_range(struct g_raid_volume *vol, off_t off, off_t len,
1285     struct bio *ignore, void *argp)
1286 {
1287         struct g_raid_softc *sc;
1288         struct g_raid_lock *lp;
1289         struct bio *bp;
1290
1291         sc = vol->v_softc;
1292         lp = malloc(sizeof(*lp), M_RAID, M_WAITOK | M_ZERO);
1293         LIST_INSERT_HEAD(&vol->v_locks, lp, l_next);
1294         lp->l_offset = off;
1295         lp->l_length = len;
1296         lp->l_callback_arg = argp;
1297
1298         lp->l_pending = 0;
1299         TAILQ_FOREACH(bp, &vol->v_inflight.queue, bio_queue) {
1300                 if (bp != ignore && g_raid_bio_overlaps(bp, off, len))
1301                         lp->l_pending++;
1302         }       
1303
1304         /*
1305          * If there are any writes that are pending, we return EBUSY.  All
1306          * callers will have to wait until all pending writes clear.
1307          */
1308         if (lp->l_pending > 0) {
1309                 vol->v_pending_lock = 1;
1310                 G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd deferred %d pend",
1311                     (intmax_t)off, (intmax_t)(off+len), lp->l_pending);
1312                 return (EBUSY);
1313         }
1314         G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd",
1315             (intmax_t)off, (intmax_t)(off+len));
1316         G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg);
1317         return (0);
1318 }
1319
1320 int
1321 g_raid_unlock_range(struct g_raid_volume *vol, off_t off, off_t len)
1322 {
1323         struct g_raid_lock *lp;
1324         struct g_raid_softc *sc;
1325         struct bio *bp;
1326
1327         sc = vol->v_softc;
1328         LIST_FOREACH(lp, &vol->v_locks, l_next) {
1329                 if (lp->l_offset == off && lp->l_length == len) {
1330                         LIST_REMOVE(lp, l_next);
1331                         /* XXX
1332                          * Right now we just put them all back on the queue
1333                          * and hope for the best.  We hope this because any
1334                          * locked ranges will go right back on this list
1335                          * when the worker thread runs.
1336                          * XXX
1337                          */
1338                         G_RAID_DEBUG1(4, sc, "Unlocked %jd to %jd",
1339                             (intmax_t)lp->l_offset,
1340                             (intmax_t)(lp->l_offset+lp->l_length));
1341                         mtx_lock(&sc->sc_queue_mtx);
1342                         while ((bp = bioq_takefirst(&vol->v_locked)) != NULL)
1343                                 bioq_insert_tail(&sc->sc_queue, bp);
1344                         mtx_unlock(&sc->sc_queue_mtx);
1345                         free(lp, M_RAID);
1346                         return (0);
1347                 }
1348         }
1349         return (EINVAL);
1350 }
1351
1352 void
1353 g_raid_subdisk_iostart(struct g_raid_subdisk *sd, struct bio *bp)
1354 {
1355         struct g_consumer *cp;
1356         struct g_raid_disk *disk, *tdisk;
1357
1358         bp->bio_caller1 = sd;
1359
1360         /*
1361          * Make sure that the disk is present. Generally it is a task of
1362          * transformation layers to not send requests to absent disks, but
1363          * it is better to be safe and report situation then sorry.
1364          */
1365         if (sd->sd_disk == NULL) {
1366                 G_RAID_LOGREQ(0, bp, "Warning! I/O request to an absent disk!");
1367 nodisk:
1368                 bp->bio_from = NULL;
1369                 bp->bio_to = NULL;
1370                 bp->bio_error = ENXIO;
1371                 g_raid_disk_done(bp);
1372                 return;
1373         }
1374         disk = sd->sd_disk;
1375         if (disk->d_state != G_RAID_DISK_S_ACTIVE &&
1376             disk->d_state != G_RAID_DISK_S_FAILED) {
1377                 G_RAID_LOGREQ(0, bp, "Warning! I/O request to a disk in a "
1378                     "wrong state (%s)!", g_raid_disk_state2str(disk->d_state));
1379                 goto nodisk;
1380         }
1381
1382         cp = disk->d_consumer;
1383         bp->bio_from = cp;
1384         bp->bio_to = cp->provider;
1385         cp->index++;
1386
1387         /* Update average disks load. */
1388         TAILQ_FOREACH(tdisk, &sd->sd_softc->sc_disks, d_next) {
1389                 if (tdisk->d_consumer == NULL)
1390                         tdisk->d_load = 0;
1391                 else
1392                         tdisk->d_load = (tdisk->d_consumer->index *
1393                             G_RAID_SUBDISK_LOAD_SCALE + tdisk->d_load * 7) / 8;
1394         }
1395
1396         disk->d_last_offset = bp->bio_offset + bp->bio_length;
1397         if (dumping) {
1398                 G_RAID_LOGREQ(3, bp, "Sending dumping request.");
1399                 if (bp->bio_cmd == BIO_WRITE) {
1400                         bp->bio_error = g_raid_subdisk_kerneldump(sd,
1401                             bp->bio_data, 0, bp->bio_offset, bp->bio_length);
1402                 } else
1403                         bp->bio_error = EOPNOTSUPP;
1404                 g_raid_disk_done(bp);
1405         } else {
1406                 bp->bio_done = g_raid_disk_done;
1407                 bp->bio_offset += sd->sd_offset;
1408                 G_RAID_LOGREQ(3, bp, "Sending request.");
1409                 g_io_request(bp, cp);
1410         }
1411 }
1412
1413 int
1414 g_raid_subdisk_kerneldump(struct g_raid_subdisk *sd,
1415     void *virtual, vm_offset_t physical, off_t offset, size_t length)
1416 {
1417
1418         if (sd->sd_disk == NULL)
1419                 return (ENXIO);
1420         if (sd->sd_disk->d_kd.di.dumper == NULL)
1421                 return (EOPNOTSUPP);
1422         return (dump_write(&sd->sd_disk->d_kd.di,
1423             virtual, physical,
1424             sd->sd_disk->d_kd.di.mediaoffset + sd->sd_offset + offset,
1425             length));
1426 }
1427
1428 static void
1429 g_raid_disk_done(struct bio *bp)
1430 {
1431         struct g_raid_softc *sc;
1432         struct g_raid_subdisk *sd;
1433
1434         sd = bp->bio_caller1;
1435         sc = sd->sd_softc;
1436         mtx_lock(&sc->sc_queue_mtx);
1437         bioq_insert_tail(&sc->sc_queue, bp);
1438         mtx_unlock(&sc->sc_queue_mtx);
1439         if (!dumping)
1440                 wakeup(sc);
1441 }
1442
1443 static void
1444 g_raid_disk_done_request(struct bio *bp)
1445 {
1446         struct g_raid_softc *sc;
1447         struct g_raid_disk *disk;
1448         struct g_raid_subdisk *sd;
1449         struct g_raid_volume *vol;
1450
1451         g_topology_assert_not();
1452
1453         G_RAID_LOGREQ(3, bp, "Disk request done: %d.", bp->bio_error);
1454         sd = bp->bio_caller1;
1455         sc = sd->sd_softc;
1456         vol = sd->sd_volume;
1457         if (bp->bio_from != NULL) {
1458                 bp->bio_from->index--;
1459                 disk = bp->bio_from->private;
1460                 if (disk == NULL)
1461                         g_raid_kill_consumer(sc, bp->bio_from);
1462         }
1463         bp->bio_offset -= sd->sd_offset;
1464
1465         G_RAID_TR_IODONE(vol->v_tr, sd, bp);
1466 }
1467
1468 static void
1469 g_raid_handle_event(struct g_raid_softc *sc, struct g_raid_event *ep)
1470 {
1471
1472         if ((ep->e_flags & G_RAID_EVENT_VOLUME) != 0)
1473                 ep->e_error = g_raid_update_volume(ep->e_tgt, ep->e_event);
1474         else if ((ep->e_flags & G_RAID_EVENT_DISK) != 0)
1475                 ep->e_error = g_raid_update_disk(ep->e_tgt, ep->e_event);
1476         else if ((ep->e_flags & G_RAID_EVENT_SUBDISK) != 0)
1477                 ep->e_error = g_raid_update_subdisk(ep->e_tgt, ep->e_event);
1478         else
1479                 ep->e_error = g_raid_update_node(ep->e_tgt, ep->e_event);
1480         if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) {
1481                 KASSERT(ep->e_error == 0,
1482                     ("Error cannot be handled."));
1483                 g_raid_event_free(ep);
1484         } else {
1485                 ep->e_flags |= G_RAID_EVENT_DONE;
1486                 G_RAID_DEBUG1(4, sc, "Waking up %p.", ep);
1487                 mtx_lock(&sc->sc_queue_mtx);
1488                 wakeup(ep);
1489                 mtx_unlock(&sc->sc_queue_mtx);
1490         }
1491 }
1492
1493 /*
1494  * Worker thread.
1495  */
1496 static void
1497 g_raid_worker(void *arg)
1498 {
1499         struct g_raid_softc *sc;
1500         struct g_raid_event *ep;
1501         struct g_raid_volume *vol;
1502         struct bio *bp;
1503         struct timeval now, t;
1504         int timeout, rv;
1505
1506         sc = arg;
1507         thread_lock(curthread);
1508         sched_prio(curthread, PRIBIO);
1509         thread_unlock(curthread);
1510
1511         sx_xlock(&sc->sc_lock);
1512         for (;;) {
1513                 mtx_lock(&sc->sc_queue_mtx);
1514                 /*
1515                  * First take a look at events.
1516                  * This is important to handle events before any I/O requests.
1517                  */
1518                 bp = NULL;
1519                 vol = NULL;
1520                 rv = 0;
1521                 ep = TAILQ_FIRST(&sc->sc_events);
1522                 if (ep != NULL)
1523                         TAILQ_REMOVE(&sc->sc_events, ep, e_next);
1524                 else if ((bp = bioq_takefirst(&sc->sc_queue)) != NULL)
1525                         ;
1526                 else {
1527                         getmicrouptime(&now);
1528                         t = now;
1529                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1530                                 if (bioq_first(&vol->v_inflight) == NULL &&
1531                                     vol->v_tr &&
1532                                     timevalcmp(&vol->v_last_done, &t, < ))
1533                                         t = vol->v_last_done;
1534                         }
1535                         timevalsub(&t, &now);
1536                         timeout = g_raid_idle_threshold +
1537                             t.tv_sec * 1000000 + t.tv_usec;
1538                         if (timeout > 0) {
1539                                 /*
1540                                  * Two steps to avoid overflows at HZ=1000
1541                                  * and idle timeouts > 2.1s.  Some rounding
1542                                  * errors can occur, but they are < 1tick,
1543                                  * which is deemed to be close enough for
1544                                  * this purpose.
1545                                  */
1546                                 int micpertic = 1000000 / hz;
1547                                 timeout = (timeout + micpertic - 1) / micpertic;
1548                                 sx_xunlock(&sc->sc_lock);
1549                                 MSLEEP(rv, sc, &sc->sc_queue_mtx,
1550                                     PRIBIO | PDROP, "-", timeout);
1551                                 sx_xlock(&sc->sc_lock);
1552                                 goto process;
1553                         } else
1554                                 rv = EWOULDBLOCK;
1555                 }
1556                 mtx_unlock(&sc->sc_queue_mtx);
1557 process:
1558                 if (ep != NULL) {
1559                         g_raid_handle_event(sc, ep);
1560                 } else if (bp != NULL) {
1561                         if (bp->bio_to != NULL &&
1562                             bp->bio_to->geom == sc->sc_geom)
1563                                 g_raid_start_request(bp);
1564                         else
1565                                 g_raid_disk_done_request(bp);
1566                 } else if (rv == EWOULDBLOCK) {
1567                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1568                                 g_raid_clean(vol, -1);
1569                                 if (bioq_first(&vol->v_inflight) == NULL &&
1570                                     vol->v_tr) {
1571                                         t.tv_sec = g_raid_idle_threshold / 1000000;
1572                                         t.tv_usec = g_raid_idle_threshold % 1000000;
1573                                         timevaladd(&t, &vol->v_last_done);
1574                                         getmicrouptime(&now);
1575                                         if (timevalcmp(&t, &now, <= )) {
1576                                                 G_RAID_TR_IDLE(vol->v_tr);
1577                                                 vol->v_last_done = now;
1578                                         }
1579                                 }
1580                         }
1581                 }
1582                 if (sc->sc_stopping == G_RAID_DESTROY_HARD)
1583                         g_raid_destroy_node(sc, 1);     /* May not return. */
1584         }
1585 }
1586
1587 static void
1588 g_raid_poll(struct g_raid_softc *sc)
1589 {
1590         struct g_raid_event *ep;
1591         struct bio *bp;
1592
1593         sx_xlock(&sc->sc_lock);
1594         mtx_lock(&sc->sc_queue_mtx);
1595         /*
1596          * First take a look at events.
1597          * This is important to handle events before any I/O requests.
1598          */
1599         ep = TAILQ_FIRST(&sc->sc_events);
1600         if (ep != NULL) {
1601                 TAILQ_REMOVE(&sc->sc_events, ep, e_next);
1602                 mtx_unlock(&sc->sc_queue_mtx);
1603                 g_raid_handle_event(sc, ep);
1604                 goto out;
1605         }
1606         bp = bioq_takefirst(&sc->sc_queue);
1607         if (bp != NULL) {
1608                 mtx_unlock(&sc->sc_queue_mtx);
1609                 if (bp->bio_from == NULL ||
1610                     bp->bio_from->geom != sc->sc_geom)
1611                         g_raid_start_request(bp);
1612                 else
1613                         g_raid_disk_done_request(bp);
1614         }
1615 out:
1616         sx_xunlock(&sc->sc_lock);
1617 }
1618
1619 static void
1620 g_raid_launch_provider(struct g_raid_volume *vol)
1621 {
1622         struct g_raid_disk *disk;
1623         struct g_raid_subdisk *sd;
1624         struct g_raid_softc *sc;
1625         struct g_provider *pp;
1626         char name[G_RAID_MAX_VOLUMENAME];
1627         off_t off;
1628         int i;
1629
1630         sc = vol->v_softc;
1631         sx_assert(&sc->sc_lock, SX_LOCKED);
1632
1633         g_topology_lock();
1634         /* Try to name provider with volume name. */
1635         snprintf(name, sizeof(name), "raid/%s", vol->v_name);
1636         if (g_raid_name_format == 0 || vol->v_name[0] == 0 ||
1637             g_provider_by_name(name) != NULL) {
1638                 /* Otherwise use sequential volume number. */
1639                 snprintf(name, sizeof(name), "raid/r%d", vol->v_global_id);
1640         }
1641
1642         pp = g_new_providerf(sc->sc_geom, "%s", name);
1643         pp->flags |= G_PF_DIRECT_RECEIVE;
1644         if (vol->v_tr->tro_class->trc_accept_unmapped) {
1645                 pp->flags |= G_PF_ACCEPT_UNMAPPED;
1646                 for (i = 0; i < vol->v_disks_count; i++) {
1647                         sd = &vol->v_subdisks[i];
1648                         if (sd->sd_state == G_RAID_SUBDISK_S_NONE)
1649                                 continue;
1650                         if ((sd->sd_disk->d_consumer->provider->flags &
1651                             G_PF_ACCEPT_UNMAPPED) == 0)
1652                                 pp->flags &= ~G_PF_ACCEPT_UNMAPPED;
1653                 }
1654         }
1655         pp->private = vol;
1656         pp->mediasize = vol->v_mediasize;
1657         pp->sectorsize = vol->v_sectorsize;
1658         pp->stripesize = 0;
1659         pp->stripeoffset = 0;
1660         if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 ||
1661             vol->v_raid_level == G_RAID_VOLUME_RL_RAID3 ||
1662             vol->v_raid_level == G_RAID_VOLUME_RL_SINGLE ||
1663             vol->v_raid_level == G_RAID_VOLUME_RL_CONCAT) {
1664                 if ((disk = vol->v_subdisks[0].sd_disk) != NULL &&
1665                     disk->d_consumer != NULL &&
1666                     disk->d_consumer->provider != NULL) {
1667                         pp->stripesize = disk->d_consumer->provider->stripesize;
1668                         off = disk->d_consumer->provider->stripeoffset;
1669                         pp->stripeoffset = off + vol->v_subdisks[0].sd_offset;
1670                         if (off > 0)
1671                                 pp->stripeoffset %= off;
1672                 }
1673                 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID3) {
1674                         pp->stripesize *= (vol->v_disks_count - 1);
1675                         pp->stripeoffset *= (vol->v_disks_count - 1);
1676                 }
1677         } else
1678                 pp->stripesize = vol->v_strip_size;
1679         vol->v_provider = pp;
1680         g_error_provider(pp, 0);
1681         g_topology_unlock();
1682         G_RAID_DEBUG1(0, sc, "Provider %s for volume %s created.",
1683             pp->name, vol->v_name);
1684 }
1685
1686 static void
1687 g_raid_destroy_provider(struct g_raid_volume *vol)
1688 {
1689         struct g_raid_softc *sc;
1690         struct g_provider *pp;
1691         struct bio *bp, *tmp;
1692
1693         g_topology_assert_not();
1694         sc = vol->v_softc;
1695         pp = vol->v_provider;
1696         KASSERT(pp != NULL, ("NULL provider (volume=%s).", vol->v_name));
1697
1698         g_topology_lock();
1699         g_error_provider(pp, ENXIO);
1700         mtx_lock(&sc->sc_queue_mtx);
1701         TAILQ_FOREACH_SAFE(bp, &sc->sc_queue.queue, bio_queue, tmp) {
1702                 if (bp->bio_to != pp)
1703                         continue;
1704                 bioq_remove(&sc->sc_queue, bp);
1705                 g_io_deliver(bp, ENXIO);
1706         }
1707         mtx_unlock(&sc->sc_queue_mtx);
1708         G_RAID_DEBUG1(0, sc, "Provider %s for volume %s destroyed.",
1709             pp->name, vol->v_name);
1710         g_wither_provider(pp, ENXIO);
1711         g_topology_unlock();
1712         vol->v_provider = NULL;
1713 }
1714
1715 /*
1716  * Update device state.
1717  */
1718 static int
1719 g_raid_update_volume(struct g_raid_volume *vol, u_int event)
1720 {
1721         struct g_raid_softc *sc;
1722
1723         sc = vol->v_softc;
1724         sx_assert(&sc->sc_lock, SX_XLOCKED);
1725
1726         G_RAID_DEBUG1(2, sc, "Event %s for volume %s.",
1727             g_raid_volume_event2str(event),
1728             vol->v_name);
1729         switch (event) {
1730         case G_RAID_VOLUME_E_DOWN:
1731                 if (vol->v_provider != NULL)
1732                         g_raid_destroy_provider(vol);
1733                 break;
1734         case G_RAID_VOLUME_E_UP:
1735                 if (vol->v_provider == NULL)
1736                         g_raid_launch_provider(vol);
1737                 break;
1738         case G_RAID_VOLUME_E_START:
1739                 if (vol->v_tr)
1740                         G_RAID_TR_START(vol->v_tr);
1741                 return (0);
1742         default:
1743                 if (sc->sc_md)
1744                         G_RAID_MD_VOLUME_EVENT(sc->sc_md, vol, event);
1745                 return (0);
1746         }
1747
1748         /* Manage root mount release. */
1749         if (vol->v_starting) {
1750                 vol->v_starting = 0;
1751                 G_RAID_DEBUG1(1, sc, "root_mount_rel %p", vol->v_rootmount);
1752                 root_mount_rel(vol->v_rootmount);
1753                 vol->v_rootmount = NULL;
1754         }
1755         if (vol->v_stopping && vol->v_provider_open == 0)
1756                 g_raid_destroy_volume(vol);
1757         return (0);
1758 }
1759
1760 /*
1761  * Update subdisk state.
1762  */
1763 static int
1764 g_raid_update_subdisk(struct g_raid_subdisk *sd, u_int event)
1765 {
1766         struct g_raid_softc *sc;
1767         struct g_raid_volume *vol;
1768
1769         sc = sd->sd_softc;
1770         vol = sd->sd_volume;
1771         sx_assert(&sc->sc_lock, SX_XLOCKED);
1772
1773         G_RAID_DEBUG1(2, sc, "Event %s for subdisk %s:%d-%s.",
1774             g_raid_subdisk_event2str(event),
1775             vol->v_name, sd->sd_pos,
1776             sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]");
1777         if (vol->v_tr)
1778                 G_RAID_TR_EVENT(vol->v_tr, sd, event);
1779
1780         return (0);
1781 }
1782
1783 /*
1784  * Update disk state.
1785  */
1786 static int
1787 g_raid_update_disk(struct g_raid_disk *disk, u_int event)
1788 {
1789         struct g_raid_softc *sc;
1790
1791         sc = disk->d_softc;
1792         sx_assert(&sc->sc_lock, SX_XLOCKED);
1793
1794         G_RAID_DEBUG1(2, sc, "Event %s for disk %s.",
1795             g_raid_disk_event2str(event),
1796             g_raid_get_diskname(disk));
1797
1798         if (sc->sc_md)
1799                 G_RAID_MD_EVENT(sc->sc_md, disk, event);
1800         return (0);
1801 }
1802
1803 /*
1804  * Node event.
1805  */
1806 static int
1807 g_raid_update_node(struct g_raid_softc *sc, u_int event)
1808 {
1809         sx_assert(&sc->sc_lock, SX_XLOCKED);
1810
1811         G_RAID_DEBUG1(2, sc, "Event %s for the array.",
1812             g_raid_node_event2str(event));
1813
1814         if (event == G_RAID_NODE_E_WAKE)
1815                 return (0);
1816         if (sc->sc_md)
1817                 G_RAID_MD_EVENT(sc->sc_md, NULL, event);
1818         return (0);
1819 }
1820
1821 static int
1822 g_raid_access(struct g_provider *pp, int acr, int acw, int ace)
1823 {
1824         struct g_raid_volume *vol;
1825         struct g_raid_softc *sc;
1826         int dcw, opens, error = 0;
1827
1828         g_topology_assert();
1829         sc = pp->geom->softc;
1830         vol = pp->private;
1831         KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name));
1832         KASSERT(vol != NULL, ("NULL volume (provider=%s).", pp->name));
1833
1834         G_RAID_DEBUG1(2, sc, "Access request for %s: r%dw%de%d.", pp->name,
1835             acr, acw, ace);
1836         dcw = pp->acw + acw;
1837
1838         g_topology_unlock();
1839         sx_xlock(&sc->sc_lock);
1840         /* Deny new opens while dying. */
1841         if (sc->sc_stopping != 0 && (acr > 0 || acw > 0 || ace > 0)) {
1842                 error = ENXIO;
1843                 goto out;
1844         }
1845         /* Deny write opens for read-only volumes. */
1846         if (vol->v_read_only && acw > 0) {
1847                 error = EROFS;
1848                 goto out;
1849         }
1850         if (dcw == 0)
1851                 g_raid_clean(vol, dcw);
1852         vol->v_provider_open += acr + acw + ace;
1853         /* Handle delayed node destruction. */
1854         if (sc->sc_stopping == G_RAID_DESTROY_DELAYED &&
1855             vol->v_provider_open == 0) {
1856                 /* Count open volumes. */
1857                 opens = g_raid_nopens(sc);
1858                 if (opens == 0) {
1859                         sc->sc_stopping = G_RAID_DESTROY_HARD;
1860                         /* Wake up worker to make it selfdestruct. */
1861                         g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
1862                 }
1863         }
1864         /* Handle open volume destruction. */
1865         if (vol->v_stopping && vol->v_provider_open == 0)
1866                 g_raid_destroy_volume(vol);
1867 out:
1868         sx_xunlock(&sc->sc_lock);
1869         g_topology_lock();
1870         return (error);
1871 }
1872
1873 struct g_raid_softc *
1874 g_raid_create_node(struct g_class *mp,
1875     const char *name, struct g_raid_md_object *md)
1876 {
1877         struct g_raid_softc *sc;
1878         struct g_geom *gp;
1879         int error;
1880
1881         g_topology_assert();
1882         G_RAID_DEBUG(1, "Creating array %s.", name);
1883
1884         gp = g_new_geomf(mp, "%s", name);
1885         sc = malloc(sizeof(*sc), M_RAID, M_WAITOK | M_ZERO);
1886         gp->start = g_raid_start;
1887         gp->orphan = g_raid_orphan;
1888         gp->access = g_raid_access;
1889         gp->dumpconf = g_raid_dumpconf;
1890
1891         sc->sc_md = md;
1892         sc->sc_geom = gp;
1893         sc->sc_flags = 0;
1894         TAILQ_INIT(&sc->sc_volumes);
1895         TAILQ_INIT(&sc->sc_disks);
1896         sx_init(&sc->sc_lock, "graid:lock");
1897         mtx_init(&sc->sc_queue_mtx, "graid:queue", NULL, MTX_DEF);
1898         TAILQ_INIT(&sc->sc_events);
1899         bioq_init(&sc->sc_queue);
1900         gp->softc = sc;
1901         error = kproc_create(g_raid_worker, sc, &sc->sc_worker, 0, 0,
1902             "g_raid %s", name);
1903         if (error != 0) {
1904                 G_RAID_DEBUG(0, "Cannot create kernel thread for %s.", name);
1905                 mtx_destroy(&sc->sc_queue_mtx);
1906                 sx_destroy(&sc->sc_lock);
1907                 g_destroy_geom(sc->sc_geom);
1908                 free(sc, M_RAID);
1909                 return (NULL);
1910         }
1911
1912         G_RAID_DEBUG1(0, sc, "Array %s created.", name);
1913         return (sc);
1914 }
1915
1916 struct g_raid_volume *
1917 g_raid_create_volume(struct g_raid_softc *sc, const char *name, int id)
1918 {
1919         struct g_raid_volume    *vol, *vol1;
1920         int i;
1921
1922         G_RAID_DEBUG1(1, sc, "Creating volume %s.", name);
1923         vol = malloc(sizeof(*vol), M_RAID, M_WAITOK | M_ZERO);
1924         vol->v_softc = sc;
1925         strlcpy(vol->v_name, name, G_RAID_MAX_VOLUMENAME);
1926         vol->v_state = G_RAID_VOLUME_S_STARTING;
1927         vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN;
1928         vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_UNKNOWN;
1929         vol->v_rotate_parity = 1;
1930         bioq_init(&vol->v_inflight);
1931         bioq_init(&vol->v_locked);
1932         LIST_INIT(&vol->v_locks);
1933         for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) {
1934                 vol->v_subdisks[i].sd_softc = sc;
1935                 vol->v_subdisks[i].sd_volume = vol;
1936                 vol->v_subdisks[i].sd_pos = i;
1937                 vol->v_subdisks[i].sd_state = G_RAID_DISK_S_NONE;
1938         }
1939
1940         /* Find free ID for this volume. */
1941         g_topology_lock();
1942         vol1 = vol;
1943         if (id >= 0) {
1944                 LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) {
1945                         if (vol1->v_global_id == id)
1946                                 break;
1947                 }
1948         }
1949         if (vol1 != NULL) {
1950                 for (id = 0; ; id++) {
1951                         LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) {
1952                                 if (vol1->v_global_id == id)
1953                                         break;
1954                         }
1955                         if (vol1 == NULL)
1956                                 break;
1957                 }
1958         }
1959         vol->v_global_id = id;
1960         LIST_INSERT_HEAD(&g_raid_volumes, vol, v_global_next);
1961         g_topology_unlock();
1962
1963         /* Delay root mounting. */
1964         vol->v_rootmount = root_mount_hold("GRAID");
1965         G_RAID_DEBUG1(1, sc, "root_mount_hold %p", vol->v_rootmount);
1966         vol->v_starting = 1;
1967         TAILQ_INSERT_TAIL(&sc->sc_volumes, vol, v_next);
1968         return (vol);
1969 }
1970
1971 struct g_raid_disk *
1972 g_raid_create_disk(struct g_raid_softc *sc)
1973 {
1974         struct g_raid_disk      *disk;
1975
1976         G_RAID_DEBUG1(1, sc, "Creating disk.");
1977         disk = malloc(sizeof(*disk), M_RAID, M_WAITOK | M_ZERO);
1978         disk->d_softc = sc;
1979         disk->d_state = G_RAID_DISK_S_NONE;
1980         TAILQ_INIT(&disk->d_subdisks);
1981         TAILQ_INSERT_TAIL(&sc->sc_disks, disk, d_next);
1982         return (disk);
1983 }
1984
1985 int g_raid_start_volume(struct g_raid_volume *vol)
1986 {
1987         struct g_raid_tr_class *class;
1988         struct g_raid_tr_object *obj;
1989         int status;
1990
1991         G_RAID_DEBUG1(2, vol->v_softc, "Starting volume %s.", vol->v_name);
1992         LIST_FOREACH(class, &g_raid_tr_classes, trc_list) {
1993                 if (!class->trc_enable)
1994                         continue;
1995                 G_RAID_DEBUG1(2, vol->v_softc,
1996                     "Tasting volume %s for %s transformation.",
1997                     vol->v_name, class->name);
1998                 obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
1999                     M_WAITOK);
2000                 obj->tro_class = class;
2001                 obj->tro_volume = vol;
2002                 status = G_RAID_TR_TASTE(obj, vol);
2003                 if (status != G_RAID_TR_TASTE_FAIL)
2004                         break;
2005                 kobj_delete((kobj_t)obj, M_RAID);
2006         }
2007         if (class == NULL) {
2008                 G_RAID_DEBUG1(0, vol->v_softc,
2009                     "No transformation module found for %s.",
2010                     vol->v_name);
2011                 vol->v_tr = NULL;
2012                 g_raid_change_volume_state(vol, G_RAID_VOLUME_S_UNSUPPORTED);
2013                 g_raid_event_send(vol, G_RAID_VOLUME_E_DOWN,
2014                     G_RAID_EVENT_VOLUME);
2015                 return (-1);
2016         }
2017         G_RAID_DEBUG1(2, vol->v_softc,
2018             "Transformation module %s chosen for %s.",
2019             class->name, vol->v_name);
2020         vol->v_tr = obj;
2021         return (0);
2022 }
2023
2024 int
2025 g_raid_destroy_node(struct g_raid_softc *sc, int worker)
2026 {
2027         struct g_raid_volume *vol, *tmpv;
2028         struct g_raid_disk *disk, *tmpd;
2029         int error = 0;
2030
2031         sc->sc_stopping = G_RAID_DESTROY_HARD;
2032         TAILQ_FOREACH_SAFE(vol, &sc->sc_volumes, v_next, tmpv) {
2033                 if (g_raid_destroy_volume(vol))
2034                         error = EBUSY;
2035         }
2036         if (error)
2037                 return (error);
2038         TAILQ_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tmpd) {
2039                 if (g_raid_destroy_disk(disk))
2040                         error = EBUSY;
2041         }
2042         if (error)
2043                 return (error);
2044         if (sc->sc_md) {
2045                 G_RAID_MD_FREE(sc->sc_md);
2046                 kobj_delete((kobj_t)sc->sc_md, M_RAID);
2047                 sc->sc_md = NULL;
2048         }
2049         if (sc->sc_geom != NULL) {
2050                 G_RAID_DEBUG1(0, sc, "Array %s destroyed.", sc->sc_name);
2051                 g_topology_lock();
2052                 sc->sc_geom->softc = NULL;
2053                 g_wither_geom(sc->sc_geom, ENXIO);
2054                 g_topology_unlock();
2055                 sc->sc_geom = NULL;
2056         } else
2057                 G_RAID_DEBUG(1, "Array destroyed.");
2058         if (worker) {
2059                 g_raid_event_cancel(sc, sc);
2060                 mtx_destroy(&sc->sc_queue_mtx);
2061                 sx_xunlock(&sc->sc_lock);
2062                 sx_destroy(&sc->sc_lock);
2063                 wakeup(&sc->sc_stopping);
2064                 free(sc, M_RAID);
2065                 curthread->td_pflags &= ~TDP_GEOM;
2066                 G_RAID_DEBUG(1, "Thread exiting.");
2067                 kproc_exit(0);
2068         } else {
2069                 /* Wake up worker to make it selfdestruct. */
2070                 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
2071         }
2072         return (0);
2073 }
2074
2075 int
2076 g_raid_destroy_volume(struct g_raid_volume *vol)
2077 {
2078         struct g_raid_softc *sc;
2079         struct g_raid_disk *disk;
2080         int i;
2081
2082         sc = vol->v_softc;
2083         G_RAID_DEBUG1(2, sc, "Destroying volume %s.", vol->v_name);
2084         vol->v_stopping = 1;
2085         if (vol->v_state != G_RAID_VOLUME_S_STOPPED) {
2086                 if (vol->v_tr) {
2087                         G_RAID_TR_STOP(vol->v_tr);
2088                         return (EBUSY);
2089                 } else
2090                         vol->v_state = G_RAID_VOLUME_S_STOPPED;
2091         }
2092         if (g_raid_event_check(sc, vol) != 0)
2093                 return (EBUSY);
2094         if (vol->v_provider != NULL)
2095                 return (EBUSY);
2096         if (vol->v_provider_open != 0)
2097                 return (EBUSY);
2098         if (vol->v_tr) {
2099                 G_RAID_TR_FREE(vol->v_tr);
2100                 kobj_delete((kobj_t)vol->v_tr, M_RAID);
2101                 vol->v_tr = NULL;
2102         }
2103         if (vol->v_rootmount)
2104                 root_mount_rel(vol->v_rootmount);
2105         g_topology_lock();
2106         LIST_REMOVE(vol, v_global_next);
2107         g_topology_unlock();
2108         TAILQ_REMOVE(&sc->sc_volumes, vol, v_next);
2109         for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) {
2110                 g_raid_event_cancel(sc, &vol->v_subdisks[i]);
2111                 disk = vol->v_subdisks[i].sd_disk;
2112                 if (disk == NULL)
2113                         continue;
2114                 TAILQ_REMOVE(&disk->d_subdisks, &vol->v_subdisks[i], sd_next);
2115         }
2116         G_RAID_DEBUG1(2, sc, "Volume %s destroyed.", vol->v_name);
2117         if (sc->sc_md)
2118                 G_RAID_MD_FREE_VOLUME(sc->sc_md, vol);
2119         g_raid_event_cancel(sc, vol);
2120         free(vol, M_RAID);
2121         if (sc->sc_stopping == G_RAID_DESTROY_HARD) {
2122                 /* Wake up worker to let it selfdestruct. */
2123                 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
2124         }
2125         return (0);
2126 }
2127
2128 int
2129 g_raid_destroy_disk(struct g_raid_disk *disk)
2130 {
2131         struct g_raid_softc *sc;
2132         struct g_raid_subdisk *sd, *tmp;
2133
2134         sc = disk->d_softc;
2135         G_RAID_DEBUG1(2, sc, "Destroying disk.");
2136         if (disk->d_consumer) {
2137                 g_raid_kill_consumer(sc, disk->d_consumer);
2138                 disk->d_consumer = NULL;
2139         }
2140         TAILQ_FOREACH_SAFE(sd, &disk->d_subdisks, sd_next, tmp) {
2141                 g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_NONE);
2142                 g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED,
2143                     G_RAID_EVENT_SUBDISK);
2144                 TAILQ_REMOVE(&disk->d_subdisks, sd, sd_next);
2145                 sd->sd_disk = NULL;
2146         }
2147         TAILQ_REMOVE(&sc->sc_disks, disk, d_next);
2148         if (sc->sc_md)
2149                 G_RAID_MD_FREE_DISK(sc->sc_md, disk);
2150         g_raid_event_cancel(sc, disk);
2151         free(disk, M_RAID);
2152         return (0);
2153 }
2154
2155 int
2156 g_raid_destroy(struct g_raid_softc *sc, int how)
2157 {
2158         int error, opens;
2159
2160         g_topology_assert_not();
2161         if (sc == NULL)
2162                 return (ENXIO);
2163         sx_assert(&sc->sc_lock, SX_XLOCKED);
2164
2165         /* Count open volumes. */
2166         opens = g_raid_nopens(sc);
2167
2168         /* React on some opened volumes. */
2169         if (opens > 0) {
2170                 switch (how) {
2171                 case G_RAID_DESTROY_SOFT:
2172                         G_RAID_DEBUG1(1, sc,
2173                             "%d volumes are still open.",
2174                             opens);
2175                         sx_xunlock(&sc->sc_lock);
2176                         return (EBUSY);
2177                 case G_RAID_DESTROY_DELAYED:
2178                         G_RAID_DEBUG1(1, sc,
2179                             "Array will be destroyed on last close.");
2180                         sc->sc_stopping = G_RAID_DESTROY_DELAYED;
2181                         sx_xunlock(&sc->sc_lock);
2182                         return (EBUSY);
2183                 case G_RAID_DESTROY_HARD:
2184                         G_RAID_DEBUG1(1, sc,
2185                             "%d volumes are still open.",
2186                             opens);
2187                 }
2188         }
2189
2190         /* Mark node for destruction. */
2191         sc->sc_stopping = G_RAID_DESTROY_HARD;
2192         /* Wake up worker to let it selfdestruct. */
2193         g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
2194         /* Sleep until node destroyed. */
2195         error = sx_sleep(&sc->sc_stopping, &sc->sc_lock,
2196             PRIBIO | PDROP, "r:destroy", hz * 3);
2197         return (error == EWOULDBLOCK ? EBUSY : 0);
2198 }
2199
2200 static void
2201 g_raid_taste_orphan(struct g_consumer *cp)
2202 {
2203
2204         KASSERT(1 == 0, ("%s called while tasting %s.", __func__,
2205             cp->provider->name));
2206 }
2207
2208 static struct g_geom *
2209 g_raid_taste(struct g_class *mp, struct g_provider *pp, int flags __unused)
2210 {
2211         struct g_consumer *cp;
2212         struct g_geom *gp, *geom;
2213         struct g_raid_md_class *class;
2214         struct g_raid_md_object *obj;
2215         int status;
2216
2217         g_topology_assert();
2218         g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name);
2219         if (!g_raid_enable)
2220                 return (NULL);
2221         G_RAID_DEBUG(2, "Tasting provider %s.", pp->name);
2222
2223         geom = NULL;
2224         status = G_RAID_MD_TASTE_FAIL;
2225         gp = g_new_geomf(mp, "raid:taste");
2226         /*
2227          * This orphan function should be never called.
2228          */
2229         gp->orphan = g_raid_taste_orphan;
2230         cp = g_new_consumer(gp);
2231         cp->flags |= G_CF_DIRECT_RECEIVE;
2232         g_attach(cp, pp);
2233         if (g_access(cp, 1, 0, 0) != 0)
2234                 goto ofail;
2235
2236         LIST_FOREACH(class, &g_raid_md_classes, mdc_list) {
2237                 if (!class->mdc_enable)
2238                         continue;
2239                 G_RAID_DEBUG(2, "Tasting provider %s for %s metadata.",
2240                     pp->name, class->name);
2241                 obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
2242                     M_WAITOK);
2243                 obj->mdo_class = class;
2244                 status = G_RAID_MD_TASTE(obj, mp, cp, &geom);
2245                 if (status != G_RAID_MD_TASTE_NEW)
2246                         kobj_delete((kobj_t)obj, M_RAID);
2247                 if (status != G_RAID_MD_TASTE_FAIL)
2248                         break;
2249         }
2250
2251         if (status == G_RAID_MD_TASTE_FAIL)
2252                 (void)g_access(cp, -1, 0, 0);
2253 ofail:
2254         g_detach(cp);
2255         g_destroy_consumer(cp);
2256         g_destroy_geom(gp);
2257         G_RAID_DEBUG(2, "Tasting provider %s done.", pp->name);
2258         return (geom);
2259 }
2260
2261 int
2262 g_raid_create_node_format(const char *format, struct gctl_req *req,
2263     struct g_geom **gp)
2264 {
2265         struct g_raid_md_class *class;
2266         struct g_raid_md_object *obj;
2267         int status;
2268
2269         G_RAID_DEBUG(2, "Creating array for %s metadata.", format);
2270         LIST_FOREACH(class, &g_raid_md_classes, mdc_list) {
2271                 if (strcasecmp(class->name, format) == 0)
2272                         break;
2273         }
2274         if (class == NULL) {
2275                 G_RAID_DEBUG(1, "No support for %s metadata.", format);
2276                 return (G_RAID_MD_TASTE_FAIL);
2277         }
2278         obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
2279             M_WAITOK);
2280         obj->mdo_class = class;
2281         status = G_RAID_MD_CREATE_REQ(obj, &g_raid_class, req, gp);
2282         if (status != G_RAID_MD_TASTE_NEW)
2283                 kobj_delete((kobj_t)obj, M_RAID);
2284         return (status);
2285 }
2286
2287 static int
2288 g_raid_destroy_geom(struct gctl_req *req __unused,
2289     struct g_class *mp __unused, struct g_geom *gp)
2290 {
2291         struct g_raid_softc *sc;
2292         int error;
2293
2294         g_topology_unlock();
2295         sc = gp->softc;
2296         sx_xlock(&sc->sc_lock);
2297         g_cancel_event(sc);
2298         error = g_raid_destroy(gp->softc, G_RAID_DESTROY_SOFT);
2299         g_topology_lock();
2300         return (error);
2301 }
2302
2303 void g_raid_write_metadata(struct g_raid_softc *sc, struct g_raid_volume *vol,
2304     struct g_raid_subdisk *sd, struct g_raid_disk *disk)
2305 {
2306
2307         if (sc->sc_stopping == G_RAID_DESTROY_HARD)
2308                 return;
2309         if (sc->sc_md)
2310                 G_RAID_MD_WRITE(sc->sc_md, vol, sd, disk);
2311 }
2312
2313 void g_raid_fail_disk(struct g_raid_softc *sc,
2314     struct g_raid_subdisk *sd, struct g_raid_disk *disk)
2315 {
2316
2317         if (disk == NULL)
2318                 disk = sd->sd_disk;
2319         if (disk == NULL) {
2320                 G_RAID_DEBUG1(0, sc, "Warning! Fail request to an absent disk!");
2321                 return;
2322         }
2323         if (disk->d_state != G_RAID_DISK_S_ACTIVE) {
2324                 G_RAID_DEBUG1(0, sc, "Warning! Fail request to a disk in a "
2325                     "wrong state (%s)!", g_raid_disk_state2str(disk->d_state));
2326                 return;
2327         }
2328         if (sc->sc_md)
2329                 G_RAID_MD_FAIL_DISK(sc->sc_md, sd, disk);
2330 }
2331
2332 static void
2333 g_raid_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp,
2334     struct g_consumer *cp, struct g_provider *pp)
2335 {
2336         struct g_raid_softc *sc;
2337         struct g_raid_volume *vol;
2338         struct g_raid_subdisk *sd;
2339         struct g_raid_disk *disk;
2340         int i, s;
2341
2342         g_topology_assert();
2343
2344         sc = gp->softc;
2345         if (sc == NULL)
2346                 return;
2347         if (pp != NULL) {
2348                 vol = pp->private;
2349                 g_topology_unlock();
2350                 sx_xlock(&sc->sc_lock);
2351                 sbuf_printf(sb, "%s<descr>%s %s volume</descr>\n", indent,
2352                     sc->sc_md->mdo_class->name,
2353                     g_raid_volume_level2str(vol->v_raid_level,
2354                     vol->v_raid_level_qualifier));
2355                 sbuf_printf(sb, "%s<Label>%s</Label>\n", indent,
2356                     vol->v_name);
2357                 sbuf_printf(sb, "%s<RAIDLevel>%s</RAIDLevel>\n", indent,
2358                     g_raid_volume_level2str(vol->v_raid_level,
2359                     vol->v_raid_level_qualifier));
2360                 sbuf_printf(sb,
2361                     "%s<Transformation>%s</Transformation>\n", indent,
2362                     vol->v_tr ? vol->v_tr->tro_class->name : "NONE");
2363                 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent,
2364                     vol->v_disks_count);
2365                 sbuf_printf(sb, "%s<Strip>%u</Strip>\n", indent,
2366                     vol->v_strip_size);
2367                 sbuf_printf(sb, "%s<State>%s</State>\n", indent,
2368                     g_raid_volume_state2str(vol->v_state));
2369                 sbuf_printf(sb, "%s<Dirty>%s</Dirty>\n", indent,
2370                     vol->v_dirty ? "Yes" : "No");
2371                 sbuf_printf(sb, "%s<Subdisks>", indent);
2372                 for (i = 0; i < vol->v_disks_count; i++) {
2373                         sd = &vol->v_subdisks[i];
2374                         if (sd->sd_disk != NULL &&
2375                             sd->sd_disk->d_consumer != NULL) {
2376                                 sbuf_printf(sb, "%s ",
2377                                     g_raid_get_diskname(sd->sd_disk));
2378                         } else {
2379                                 sbuf_printf(sb, "NONE ");
2380                         }
2381                         sbuf_printf(sb, "(%s",
2382                             g_raid_subdisk_state2str(sd->sd_state));
2383                         if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
2384                             sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
2385                                 sbuf_printf(sb, " %d%%",
2386                                     (int)(sd->sd_rebuild_pos * 100 /
2387                                      sd->sd_size));
2388                         }
2389                         sbuf_printf(sb, ")");
2390                         if (i + 1 < vol->v_disks_count)
2391                                 sbuf_printf(sb, ", ");
2392                 }
2393                 sbuf_printf(sb, "</Subdisks>\n");
2394                 sx_xunlock(&sc->sc_lock);
2395                 g_topology_lock();
2396         } else if (cp != NULL) {
2397                 disk = cp->private;
2398                 if (disk == NULL)
2399                         return;
2400                 g_topology_unlock();
2401                 sx_xlock(&sc->sc_lock);
2402                 sbuf_printf(sb, "%s<State>%s", indent,
2403                     g_raid_disk_state2str(disk->d_state));
2404                 if (!TAILQ_EMPTY(&disk->d_subdisks)) {
2405                         sbuf_printf(sb, " (");
2406                         TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
2407                                 sbuf_printf(sb, "%s",
2408                                     g_raid_subdisk_state2str(sd->sd_state));
2409                                 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
2410                                     sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
2411                                         sbuf_printf(sb, " %d%%",
2412                                             (int)(sd->sd_rebuild_pos * 100 /
2413                                              sd->sd_size));
2414                                 }
2415                                 if (TAILQ_NEXT(sd, sd_next))
2416                                         sbuf_printf(sb, ", ");
2417                         }
2418                         sbuf_printf(sb, ")");
2419                 }
2420                 sbuf_printf(sb, "</State>\n");
2421                 sbuf_printf(sb, "%s<Subdisks>", indent);
2422                 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
2423                         sbuf_printf(sb, "r%d(%s):%d@%ju",
2424                             sd->sd_volume->v_global_id,
2425                             sd->sd_volume->v_name,
2426                             sd->sd_pos, sd->sd_offset);
2427                         if (TAILQ_NEXT(sd, sd_next))
2428                                 sbuf_printf(sb, ", ");
2429                 }
2430                 sbuf_printf(sb, "</Subdisks>\n");
2431                 sbuf_printf(sb, "%s<ReadErrors>%d</ReadErrors>\n", indent,
2432                     disk->d_read_errs);
2433                 sx_xunlock(&sc->sc_lock);
2434                 g_topology_lock();
2435         } else {
2436                 g_topology_unlock();
2437                 sx_xlock(&sc->sc_lock);
2438                 if (sc->sc_md) {
2439                         sbuf_printf(sb, "%s<Metadata>%s</Metadata>\n", indent,
2440                             sc->sc_md->mdo_class->name);
2441                 }
2442                 if (!TAILQ_EMPTY(&sc->sc_volumes)) {
2443                         s = 0xff;
2444                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2445                                 if (vol->v_state < s)
2446                                         s = vol->v_state;
2447                         }
2448                         sbuf_printf(sb, "%s<State>%s</State>\n", indent,
2449                             g_raid_volume_state2str(s));
2450                 }
2451                 sx_xunlock(&sc->sc_lock);
2452                 g_topology_lock();
2453         }
2454 }
2455
2456 static void
2457 g_raid_shutdown_post_sync(void *arg, int howto)
2458 {
2459         struct g_class *mp;
2460         struct g_geom *gp, *gp2;
2461         struct g_raid_softc *sc;
2462         struct g_raid_volume *vol;
2463
2464         mp = arg;
2465         g_topology_lock();
2466         g_raid_shutdown = 1;
2467         LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) {
2468                 if ((sc = gp->softc) == NULL)
2469                         continue;
2470                 g_topology_unlock();
2471                 sx_xlock(&sc->sc_lock);
2472                 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next)
2473                         g_raid_clean(vol, -1);
2474                 g_cancel_event(sc);
2475                 g_raid_destroy(sc, G_RAID_DESTROY_DELAYED);
2476                 g_topology_lock();
2477         }
2478         g_topology_unlock();
2479 }
2480
2481 static void
2482 g_raid_init(struct g_class *mp)
2483 {
2484
2485         g_raid_post_sync = EVENTHANDLER_REGISTER(shutdown_post_sync,
2486             g_raid_shutdown_post_sync, mp, SHUTDOWN_PRI_FIRST);
2487         if (g_raid_post_sync == NULL)
2488                 G_RAID_DEBUG(0, "Warning! Cannot register shutdown event.");
2489         g_raid_started = 1;
2490 }
2491
2492 static void
2493 g_raid_fini(struct g_class *mp)
2494 {
2495
2496         if (g_raid_post_sync != NULL)
2497                 EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_raid_post_sync);
2498         g_raid_started = 0;
2499 }
2500
2501 int
2502 g_raid_md_modevent(module_t mod, int type, void *arg)
2503 {
2504         struct g_raid_md_class *class, *c, *nc;
2505         int error;
2506
2507         error = 0;
2508         class = arg;
2509         switch (type) {
2510         case MOD_LOAD:
2511                 c = LIST_FIRST(&g_raid_md_classes);
2512                 if (c == NULL || c->mdc_priority > class->mdc_priority)
2513                         LIST_INSERT_HEAD(&g_raid_md_classes, class, mdc_list);
2514                 else {
2515                         while ((nc = LIST_NEXT(c, mdc_list)) != NULL &&
2516                             nc->mdc_priority < class->mdc_priority)
2517                                 c = nc;
2518                         LIST_INSERT_AFTER(c, class, mdc_list);
2519                 }
2520                 if (g_raid_started)
2521                         g_retaste(&g_raid_class);
2522                 break;
2523         case MOD_UNLOAD:
2524                 LIST_REMOVE(class, mdc_list);
2525                 break;
2526         default:
2527                 error = EOPNOTSUPP;
2528                 break;
2529         }
2530
2531         return (error);
2532 }
2533
2534 int
2535 g_raid_tr_modevent(module_t mod, int type, void *arg)
2536 {
2537         struct g_raid_tr_class *class, *c, *nc;
2538         int error;
2539
2540         error = 0;
2541         class = arg;
2542         switch (type) {
2543         case MOD_LOAD:
2544                 c = LIST_FIRST(&g_raid_tr_classes);
2545                 if (c == NULL || c->trc_priority > class->trc_priority)
2546                         LIST_INSERT_HEAD(&g_raid_tr_classes, class, trc_list);
2547                 else {
2548                         while ((nc = LIST_NEXT(c, trc_list)) != NULL &&
2549                             nc->trc_priority < class->trc_priority)
2550                                 c = nc;
2551                         LIST_INSERT_AFTER(c, class, trc_list);
2552                 }
2553                 break;
2554         case MOD_UNLOAD:
2555                 LIST_REMOVE(class, trc_list);
2556                 break;
2557         default:
2558                 error = EOPNOTSUPP;
2559                 break;
2560         }
2561
2562         return (error);
2563 }
2564
2565 /*
2566  * Use local implementation of DECLARE_GEOM_CLASS(g_raid_class, g_raid)
2567  * to reduce module priority, allowing submodules to register them first.
2568  */
2569 static moduledata_t g_raid_mod = {
2570         "g_raid",
2571         g_modevent,
2572         &g_raid_class
2573 };
2574 DECLARE_MODULE(g_raid, g_raid_mod, SI_SUB_DRIVERS, SI_ORDER_THIRD);
2575 MODULE_VERSION(geom_raid, 0);