]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/geom/raid/g_raid.c
Update to bmake-20220724
[FreeBSD/FreeBSD.git] / sys / geom / raid / g_raid.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/module.h>
36 #include <sys/limits.h>
37 #include <sys/lock.h>
38 #include <sys/mutex.h>
39 #include <sys/bio.h>
40 #include <sys/sbuf.h>
41 #include <sys/sysctl.h>
42 #include <sys/malloc.h>
43 #include <sys/eventhandler.h>
44 #include <vm/uma.h>
45 #include <geom/geom.h>
46 #include <geom/geom_dbg.h>
47 #include <sys/proc.h>
48 #include <sys/kthread.h>
49 #include <sys/sched.h>
50 #include <geom/raid/g_raid.h>
51 #include "g_raid_md_if.h"
52 #include "g_raid_tr_if.h"
53
54 static MALLOC_DEFINE(M_RAID, "raid_data", "GEOM_RAID Data");
55
56 SYSCTL_DECL(_kern_geom);
57 SYSCTL_NODE(_kern_geom, OID_AUTO, raid, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
58     "GEOM_RAID stuff");
59 int g_raid_enable = 1;
60 SYSCTL_INT(_kern_geom_raid, OID_AUTO, enable, CTLFLAG_RWTUN,
61     &g_raid_enable, 0, "Enable on-disk metadata taste");
62 u_int g_raid_aggressive_spare = 0;
63 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, aggressive_spare, CTLFLAG_RWTUN,
64     &g_raid_aggressive_spare, 0, "Use disks without metadata as spare");
65 u_int g_raid_debug = 0;
66 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, debug, CTLFLAG_RWTUN, &g_raid_debug, 0,
67     "Debug level");
68 int g_raid_read_err_thresh = 10;
69 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, read_err_thresh, CTLFLAG_RWTUN,
70     &g_raid_read_err_thresh, 0,
71     "Number of read errors equated to disk failure");
72 u_int g_raid_start_timeout = 30;
73 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, start_timeout, CTLFLAG_RWTUN,
74     &g_raid_start_timeout, 0,
75     "Time to wait for all array components");
76 static u_int g_raid_clean_time = 5;
77 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, clean_time, CTLFLAG_RWTUN,
78     &g_raid_clean_time, 0, "Mark volume as clean when idling");
79 static u_int g_raid_disconnect_on_failure = 1;
80 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, disconnect_on_failure, CTLFLAG_RWTUN,
81     &g_raid_disconnect_on_failure, 0, "Disconnect component on I/O failure.");
82 static u_int g_raid_name_format = 0;
83 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, name_format, CTLFLAG_RWTUN,
84     &g_raid_name_format, 0, "Providers name format.");
85 static u_int g_raid_idle_threshold = 1000000;
86 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, idle_threshold, CTLFLAG_RWTUN,
87     &g_raid_idle_threshold, 1000000,
88     "Time in microseconds to consider a volume idle.");
89
90 #define MSLEEP(rv, ident, mtx, priority, wmesg, timeout)        do {    \
91         G_RAID_DEBUG(4, "%s: Sleeping %p.", __func__, (ident));         \
92         rv = msleep((ident), (mtx), (priority), (wmesg), (timeout));    \
93         G_RAID_DEBUG(4, "%s: Woken up %p.", __func__, (ident));         \
94 } while (0)
95
96 LIST_HEAD(, g_raid_md_class) g_raid_md_classes =
97     LIST_HEAD_INITIALIZER(g_raid_md_classes);
98
99 LIST_HEAD(, g_raid_tr_class) g_raid_tr_classes =
100     LIST_HEAD_INITIALIZER(g_raid_tr_classes);
101
102 LIST_HEAD(, g_raid_volume) g_raid_volumes =
103     LIST_HEAD_INITIALIZER(g_raid_volumes);
104
105 static eventhandler_tag g_raid_post_sync = NULL;
106 static int g_raid_started = 0;
107 static int g_raid_shutdown = 0;
108
109 static int g_raid_destroy_geom(struct gctl_req *req, struct g_class *mp,
110     struct g_geom *gp);
111 static g_taste_t g_raid_taste;
112 static void g_raid_init(struct g_class *mp);
113 static void g_raid_fini(struct g_class *mp);
114
115 struct g_class g_raid_class = {
116         .name = G_RAID_CLASS_NAME,
117         .version = G_VERSION,
118         .ctlreq = g_raid_ctl,
119         .taste = g_raid_taste,
120         .destroy_geom = g_raid_destroy_geom,
121         .init = g_raid_init,
122         .fini = g_raid_fini
123 };
124
125 static void g_raid_destroy_provider(struct g_raid_volume *vol);
126 static int g_raid_update_disk(struct g_raid_disk *disk, u_int event);
127 static int g_raid_update_subdisk(struct g_raid_subdisk *subdisk, u_int event);
128 static int g_raid_update_volume(struct g_raid_volume *vol, u_int event);
129 static int g_raid_update_node(struct g_raid_softc *sc, u_int event);
130 static void g_raid_dumpconf(struct sbuf *sb, const char *indent,
131     struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp);
132 static void g_raid_start(struct bio *bp);
133 static void g_raid_start_request(struct bio *bp);
134 static void g_raid_disk_done(struct bio *bp);
135 static void g_raid_poll(struct g_raid_softc *sc);
136
137 static const char *
138 g_raid_node_event2str(int event)
139 {
140
141         switch (event) {
142         case G_RAID_NODE_E_WAKE:
143                 return ("WAKE");
144         case G_RAID_NODE_E_START:
145                 return ("START");
146         default:
147                 return ("INVALID");
148         }
149 }
150
151 const char *
152 g_raid_disk_state2str(int state)
153 {
154
155         switch (state) {
156         case G_RAID_DISK_S_NONE:
157                 return ("NONE");
158         case G_RAID_DISK_S_OFFLINE:
159                 return ("OFFLINE");
160         case G_RAID_DISK_S_DISABLED:
161                 return ("DISABLED");
162         case G_RAID_DISK_S_FAILED:
163                 return ("FAILED");
164         case G_RAID_DISK_S_STALE_FAILED:
165                 return ("STALE_FAILED");
166         case G_RAID_DISK_S_SPARE:
167                 return ("SPARE");
168         case G_RAID_DISK_S_STALE:
169                 return ("STALE");
170         case G_RAID_DISK_S_ACTIVE:
171                 return ("ACTIVE");
172         default:
173                 return ("INVALID");
174         }
175 }
176
177 static const char *
178 g_raid_disk_event2str(int event)
179 {
180
181         switch (event) {
182         case G_RAID_DISK_E_DISCONNECTED:
183                 return ("DISCONNECTED");
184         default:
185                 return ("INVALID");
186         }
187 }
188
189 const char *
190 g_raid_subdisk_state2str(int state)
191 {
192
193         switch (state) {
194         case G_RAID_SUBDISK_S_NONE:
195                 return ("NONE");
196         case G_RAID_SUBDISK_S_FAILED:
197                 return ("FAILED");
198         case G_RAID_SUBDISK_S_NEW:
199                 return ("NEW");
200         case G_RAID_SUBDISK_S_REBUILD:
201                 return ("REBUILD");
202         case G_RAID_SUBDISK_S_UNINITIALIZED:
203                 return ("UNINITIALIZED");
204         case G_RAID_SUBDISK_S_STALE:
205                 return ("STALE");
206         case G_RAID_SUBDISK_S_RESYNC:
207                 return ("RESYNC");
208         case G_RAID_SUBDISK_S_ACTIVE:
209                 return ("ACTIVE");
210         default:
211                 return ("INVALID");
212         }
213 }
214
215 static const char *
216 g_raid_subdisk_event2str(int event)
217 {
218
219         switch (event) {
220         case G_RAID_SUBDISK_E_NEW:
221                 return ("NEW");
222         case G_RAID_SUBDISK_E_FAILED:
223                 return ("FAILED");
224         case G_RAID_SUBDISK_E_DISCONNECTED:
225                 return ("DISCONNECTED");
226         default:
227                 return ("INVALID");
228         }
229 }
230
231 const char *
232 g_raid_volume_state2str(int state)
233 {
234
235         switch (state) {
236         case G_RAID_VOLUME_S_STARTING:
237                 return ("STARTING");
238         case G_RAID_VOLUME_S_BROKEN:
239                 return ("BROKEN");
240         case G_RAID_VOLUME_S_DEGRADED:
241                 return ("DEGRADED");
242         case G_RAID_VOLUME_S_SUBOPTIMAL:
243                 return ("SUBOPTIMAL");
244         case G_RAID_VOLUME_S_OPTIMAL:
245                 return ("OPTIMAL");
246         case G_RAID_VOLUME_S_UNSUPPORTED:
247                 return ("UNSUPPORTED");
248         case G_RAID_VOLUME_S_STOPPED:
249                 return ("STOPPED");
250         default:
251                 return ("INVALID");
252         }
253 }
254
255 static const char *
256 g_raid_volume_event2str(int event)
257 {
258
259         switch (event) {
260         case G_RAID_VOLUME_E_UP:
261                 return ("UP");
262         case G_RAID_VOLUME_E_DOWN:
263                 return ("DOWN");
264         case G_RAID_VOLUME_E_START:
265                 return ("START");
266         case G_RAID_VOLUME_E_STARTMD:
267                 return ("STARTMD");
268         default:
269                 return ("INVALID");
270         }
271 }
272
273 const char *
274 g_raid_volume_level2str(int level, int qual)
275 {
276
277         switch (level) {
278         case G_RAID_VOLUME_RL_RAID0:
279                 return ("RAID0");
280         case G_RAID_VOLUME_RL_RAID1:
281                 return ("RAID1");
282         case G_RAID_VOLUME_RL_RAID3:
283                 if (qual == G_RAID_VOLUME_RLQ_R3P0)
284                         return ("RAID3-P0");
285                 if (qual == G_RAID_VOLUME_RLQ_R3PN)
286                         return ("RAID3-PN");
287                 return ("RAID3");
288         case G_RAID_VOLUME_RL_RAID4:
289                 if (qual == G_RAID_VOLUME_RLQ_R4P0)
290                         return ("RAID4-P0");
291                 if (qual == G_RAID_VOLUME_RLQ_R4PN)
292                         return ("RAID4-PN");
293                 return ("RAID4");
294         case G_RAID_VOLUME_RL_RAID5:
295                 if (qual == G_RAID_VOLUME_RLQ_R5RA)
296                         return ("RAID5-RA");
297                 if (qual == G_RAID_VOLUME_RLQ_R5RS)
298                         return ("RAID5-RS");
299                 if (qual == G_RAID_VOLUME_RLQ_R5LA)
300                         return ("RAID5-LA");
301                 if (qual == G_RAID_VOLUME_RLQ_R5LS)
302                         return ("RAID5-LS");
303                 return ("RAID5");
304         case G_RAID_VOLUME_RL_RAID6:
305                 if (qual == G_RAID_VOLUME_RLQ_R6RA)
306                         return ("RAID6-RA");
307                 if (qual == G_RAID_VOLUME_RLQ_R6RS)
308                         return ("RAID6-RS");
309                 if (qual == G_RAID_VOLUME_RLQ_R6LA)
310                         return ("RAID6-LA");
311                 if (qual == G_RAID_VOLUME_RLQ_R6LS)
312                         return ("RAID6-LS");
313                 return ("RAID6");
314         case G_RAID_VOLUME_RL_RAIDMDF:
315                 if (qual == G_RAID_VOLUME_RLQ_RMDFRA)
316                         return ("RAIDMDF-RA");
317                 if (qual == G_RAID_VOLUME_RLQ_RMDFRS)
318                         return ("RAIDMDF-RS");
319                 if (qual == G_RAID_VOLUME_RLQ_RMDFLA)
320                         return ("RAIDMDF-LA");
321                 if (qual == G_RAID_VOLUME_RLQ_RMDFLS)
322                         return ("RAIDMDF-LS");
323                 return ("RAIDMDF");
324         case G_RAID_VOLUME_RL_RAID1E:
325                 if (qual == G_RAID_VOLUME_RLQ_R1EA)
326                         return ("RAID1E-A");
327                 if (qual == G_RAID_VOLUME_RLQ_R1EO)
328                         return ("RAID1E-O");
329                 return ("RAID1E");
330         case G_RAID_VOLUME_RL_SINGLE:
331                 return ("SINGLE");
332         case G_RAID_VOLUME_RL_CONCAT:
333                 return ("CONCAT");
334         case G_RAID_VOLUME_RL_RAID5E:
335                 if (qual == G_RAID_VOLUME_RLQ_R5ERA)
336                         return ("RAID5E-RA");
337                 if (qual == G_RAID_VOLUME_RLQ_R5ERS)
338                         return ("RAID5E-RS");
339                 if (qual == G_RAID_VOLUME_RLQ_R5ELA)
340                         return ("RAID5E-LA");
341                 if (qual == G_RAID_VOLUME_RLQ_R5ELS)
342                         return ("RAID5E-LS");
343                 return ("RAID5E");
344         case G_RAID_VOLUME_RL_RAID5EE:
345                 if (qual == G_RAID_VOLUME_RLQ_R5EERA)
346                         return ("RAID5EE-RA");
347                 if (qual == G_RAID_VOLUME_RLQ_R5EERS)
348                         return ("RAID5EE-RS");
349                 if (qual == G_RAID_VOLUME_RLQ_R5EELA)
350                         return ("RAID5EE-LA");
351                 if (qual == G_RAID_VOLUME_RLQ_R5EELS)
352                         return ("RAID5EE-LS");
353                 return ("RAID5EE");
354         case G_RAID_VOLUME_RL_RAID5R:
355                 if (qual == G_RAID_VOLUME_RLQ_R5RRA)
356                         return ("RAID5R-RA");
357                 if (qual == G_RAID_VOLUME_RLQ_R5RRS)
358                         return ("RAID5R-RS");
359                 if (qual == G_RAID_VOLUME_RLQ_R5RLA)
360                         return ("RAID5R-LA");
361                 if (qual == G_RAID_VOLUME_RLQ_R5RLS)
362                         return ("RAID5R-LS");
363                 return ("RAID5E");
364         default:
365                 return ("UNKNOWN");
366         }
367 }
368
369 int
370 g_raid_volume_str2level(const char *str, int *level, int *qual)
371 {
372
373         *level = G_RAID_VOLUME_RL_UNKNOWN;
374         *qual = G_RAID_VOLUME_RLQ_NONE;
375         if (strcasecmp(str, "RAID0") == 0)
376                 *level = G_RAID_VOLUME_RL_RAID0;
377         else if (strcasecmp(str, "RAID1") == 0)
378                 *level = G_RAID_VOLUME_RL_RAID1;
379         else if (strcasecmp(str, "RAID3-P0") == 0) {
380                 *level = G_RAID_VOLUME_RL_RAID3;
381                 *qual = G_RAID_VOLUME_RLQ_R3P0;
382         } else if (strcasecmp(str, "RAID3-PN") == 0 ||
383                    strcasecmp(str, "RAID3") == 0) {
384                 *level = G_RAID_VOLUME_RL_RAID3;
385                 *qual = G_RAID_VOLUME_RLQ_R3PN;
386         } else if (strcasecmp(str, "RAID4-P0") == 0) {
387                 *level = G_RAID_VOLUME_RL_RAID4;
388                 *qual = G_RAID_VOLUME_RLQ_R4P0;
389         } else if (strcasecmp(str, "RAID4-PN") == 0 ||
390                    strcasecmp(str, "RAID4") == 0) {
391                 *level = G_RAID_VOLUME_RL_RAID4;
392                 *qual = G_RAID_VOLUME_RLQ_R4PN;
393         } else if (strcasecmp(str, "RAID5-RA") == 0) {
394                 *level = G_RAID_VOLUME_RL_RAID5;
395                 *qual = G_RAID_VOLUME_RLQ_R5RA;
396         } else if (strcasecmp(str, "RAID5-RS") == 0) {
397                 *level = G_RAID_VOLUME_RL_RAID5;
398                 *qual = G_RAID_VOLUME_RLQ_R5RS;
399         } else if (strcasecmp(str, "RAID5") == 0 ||
400                    strcasecmp(str, "RAID5-LA") == 0) {
401                 *level = G_RAID_VOLUME_RL_RAID5;
402                 *qual = G_RAID_VOLUME_RLQ_R5LA;
403         } else if (strcasecmp(str, "RAID5-LS") == 0) {
404                 *level = G_RAID_VOLUME_RL_RAID5;
405                 *qual = G_RAID_VOLUME_RLQ_R5LS;
406         } else if (strcasecmp(str, "RAID6-RA") == 0) {
407                 *level = G_RAID_VOLUME_RL_RAID6;
408                 *qual = G_RAID_VOLUME_RLQ_R6RA;
409         } else if (strcasecmp(str, "RAID6-RS") == 0) {
410                 *level = G_RAID_VOLUME_RL_RAID6;
411                 *qual = G_RAID_VOLUME_RLQ_R6RS;
412         } else if (strcasecmp(str, "RAID6") == 0 ||
413                    strcasecmp(str, "RAID6-LA") == 0) {
414                 *level = G_RAID_VOLUME_RL_RAID6;
415                 *qual = G_RAID_VOLUME_RLQ_R6LA;
416         } else if (strcasecmp(str, "RAID6-LS") == 0) {
417                 *level = G_RAID_VOLUME_RL_RAID6;
418                 *qual = G_RAID_VOLUME_RLQ_R6LS;
419         } else if (strcasecmp(str, "RAIDMDF-RA") == 0) {
420                 *level = G_RAID_VOLUME_RL_RAIDMDF;
421                 *qual = G_RAID_VOLUME_RLQ_RMDFRA;
422         } else if (strcasecmp(str, "RAIDMDF-RS") == 0) {
423                 *level = G_RAID_VOLUME_RL_RAIDMDF;
424                 *qual = G_RAID_VOLUME_RLQ_RMDFRS;
425         } else if (strcasecmp(str, "RAIDMDF") == 0 ||
426                    strcasecmp(str, "RAIDMDF-LA") == 0) {
427                 *level = G_RAID_VOLUME_RL_RAIDMDF;
428                 *qual = G_RAID_VOLUME_RLQ_RMDFLA;
429         } else if (strcasecmp(str, "RAIDMDF-LS") == 0) {
430                 *level = G_RAID_VOLUME_RL_RAIDMDF;
431                 *qual = G_RAID_VOLUME_RLQ_RMDFLS;
432         } else if (strcasecmp(str, "RAID10") == 0 ||
433                    strcasecmp(str, "RAID1E") == 0 ||
434                    strcasecmp(str, "RAID1E-A") == 0) {
435                 *level = G_RAID_VOLUME_RL_RAID1E;
436                 *qual = G_RAID_VOLUME_RLQ_R1EA;
437         } else if (strcasecmp(str, "RAID1E-O") == 0) {
438                 *level = G_RAID_VOLUME_RL_RAID1E;
439                 *qual = G_RAID_VOLUME_RLQ_R1EO;
440         } else if (strcasecmp(str, "SINGLE") == 0)
441                 *level = G_RAID_VOLUME_RL_SINGLE;
442         else if (strcasecmp(str, "CONCAT") == 0)
443                 *level = G_RAID_VOLUME_RL_CONCAT;
444         else if (strcasecmp(str, "RAID5E-RA") == 0) {
445                 *level = G_RAID_VOLUME_RL_RAID5E;
446                 *qual = G_RAID_VOLUME_RLQ_R5ERA;
447         } else if (strcasecmp(str, "RAID5E-RS") == 0) {
448                 *level = G_RAID_VOLUME_RL_RAID5E;
449                 *qual = G_RAID_VOLUME_RLQ_R5ERS;
450         } else if (strcasecmp(str, "RAID5E") == 0 ||
451                    strcasecmp(str, "RAID5E-LA") == 0) {
452                 *level = G_RAID_VOLUME_RL_RAID5E;
453                 *qual = G_RAID_VOLUME_RLQ_R5ELA;
454         } else if (strcasecmp(str, "RAID5E-LS") == 0) {
455                 *level = G_RAID_VOLUME_RL_RAID5E;
456                 *qual = G_RAID_VOLUME_RLQ_R5ELS;
457         } else if (strcasecmp(str, "RAID5EE-RA") == 0) {
458                 *level = G_RAID_VOLUME_RL_RAID5EE;
459                 *qual = G_RAID_VOLUME_RLQ_R5EERA;
460         } else if (strcasecmp(str, "RAID5EE-RS") == 0) {
461                 *level = G_RAID_VOLUME_RL_RAID5EE;
462                 *qual = G_RAID_VOLUME_RLQ_R5EERS;
463         } else if (strcasecmp(str, "RAID5EE") == 0 ||
464                    strcasecmp(str, "RAID5EE-LA") == 0) {
465                 *level = G_RAID_VOLUME_RL_RAID5EE;
466                 *qual = G_RAID_VOLUME_RLQ_R5EELA;
467         } else if (strcasecmp(str, "RAID5EE-LS") == 0) {
468                 *level = G_RAID_VOLUME_RL_RAID5EE;
469                 *qual = G_RAID_VOLUME_RLQ_R5EELS;
470         } else if (strcasecmp(str, "RAID5R-RA") == 0) {
471                 *level = G_RAID_VOLUME_RL_RAID5R;
472                 *qual = G_RAID_VOLUME_RLQ_R5RRA;
473         } else if (strcasecmp(str, "RAID5R-RS") == 0) {
474                 *level = G_RAID_VOLUME_RL_RAID5R;
475                 *qual = G_RAID_VOLUME_RLQ_R5RRS;
476         } else if (strcasecmp(str, "RAID5R") == 0 ||
477                    strcasecmp(str, "RAID5R-LA") == 0) {
478                 *level = G_RAID_VOLUME_RL_RAID5R;
479                 *qual = G_RAID_VOLUME_RLQ_R5RLA;
480         } else if (strcasecmp(str, "RAID5R-LS") == 0) {
481                 *level = G_RAID_VOLUME_RL_RAID5R;
482                 *qual = G_RAID_VOLUME_RLQ_R5RLS;
483         } else
484                 return (-1);
485         return (0);
486 }
487
488 const char *
489 g_raid_get_diskname(struct g_raid_disk *disk)
490 {
491
492         if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL)
493                 return ("[unknown]");
494         return (disk->d_consumer->provider->name);
495 }
496
497 void
498 g_raid_get_disk_info(struct g_raid_disk *disk)
499 {
500         struct g_consumer *cp = disk->d_consumer;
501         int error, len;
502
503         /* Read kernel dumping information. */
504         disk->d_kd.offset = 0;
505         disk->d_kd.length = OFF_MAX;
506         len = sizeof(disk->d_kd);
507         error = g_io_getattr("GEOM::kerneldump", cp, &len, &disk->d_kd);
508         if (error)
509                 disk->d_kd.di.dumper = NULL;
510         if (disk->d_kd.di.dumper == NULL)
511                 G_RAID_DEBUG1(2, disk->d_softc,
512                     "Dumping not supported by %s: %d.", 
513                     cp->provider->name, error);
514
515         /* Read BIO_DELETE support. */
516         error = g_getattr("GEOM::candelete", cp, &disk->d_candelete);
517         if (error)
518                 disk->d_candelete = 0;
519         if (!disk->d_candelete)
520                 G_RAID_DEBUG1(2, disk->d_softc,
521                     "BIO_DELETE not supported by %s: %d.", 
522                     cp->provider->name, error);
523 }
524
525 void
526 g_raid_report_disk_state(struct g_raid_disk *disk)
527 {
528         struct g_raid_subdisk *sd;
529         int len, state;
530         uint32_t s;
531
532         if (disk->d_consumer == NULL)
533                 return;
534         if (disk->d_state == G_RAID_DISK_S_DISABLED) {
535                 s = G_STATE_ACTIVE; /* XXX */
536         } else if (disk->d_state == G_RAID_DISK_S_FAILED ||
537             disk->d_state == G_RAID_DISK_S_STALE_FAILED) {
538                 s = G_STATE_FAILED;
539         } else {
540                 state = G_RAID_SUBDISK_S_ACTIVE;
541                 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
542                         if (sd->sd_state < state)
543                                 state = sd->sd_state;
544                 }
545                 if (state == G_RAID_SUBDISK_S_FAILED)
546                         s = G_STATE_FAILED;
547                 else if (state == G_RAID_SUBDISK_S_NEW ||
548                     state == G_RAID_SUBDISK_S_REBUILD)
549                         s = G_STATE_REBUILD;
550                 else if (state == G_RAID_SUBDISK_S_STALE ||
551                     state == G_RAID_SUBDISK_S_RESYNC)
552                         s = G_STATE_RESYNC;
553                 else
554                         s = G_STATE_ACTIVE;
555         }
556         len = sizeof(s);
557         g_io_getattr("GEOM::setstate", disk->d_consumer, &len, &s);
558         G_RAID_DEBUG1(2, disk->d_softc, "Disk %s state reported as %d.",
559             g_raid_get_diskname(disk), s);
560 }
561
562 void
563 g_raid_change_disk_state(struct g_raid_disk *disk, int state)
564 {
565
566         G_RAID_DEBUG1(0, disk->d_softc, "Disk %s state changed from %s to %s.",
567             g_raid_get_diskname(disk),
568             g_raid_disk_state2str(disk->d_state),
569             g_raid_disk_state2str(state));
570         disk->d_state = state;
571         g_raid_report_disk_state(disk);
572 }
573
574 void
575 g_raid_change_subdisk_state(struct g_raid_subdisk *sd, int state)
576 {
577
578         G_RAID_DEBUG1(0, sd->sd_softc,
579             "Subdisk %s:%d-%s state changed from %s to %s.",
580             sd->sd_volume->v_name, sd->sd_pos,
581             sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]",
582             g_raid_subdisk_state2str(sd->sd_state),
583             g_raid_subdisk_state2str(state));
584         sd->sd_state = state;
585         if (sd->sd_disk)
586                 g_raid_report_disk_state(sd->sd_disk);
587 }
588
589 void
590 g_raid_change_volume_state(struct g_raid_volume *vol, int state)
591 {
592
593         G_RAID_DEBUG1(0, vol->v_softc,
594             "Volume %s state changed from %s to %s.",
595             vol->v_name,
596             g_raid_volume_state2str(vol->v_state),
597             g_raid_volume_state2str(state));
598         vol->v_state = state;
599 }
600
601 /*
602  * --- Events handling functions ---
603  * Events in geom_raid are used to maintain subdisks and volumes status
604  * from one thread to simplify locking.
605  */
606 static void
607 g_raid_event_free(struct g_raid_event *ep)
608 {
609
610         free(ep, M_RAID);
611 }
612
613 int
614 g_raid_event_send(void *arg, int event, int flags)
615 {
616         struct g_raid_softc *sc;
617         struct g_raid_event *ep;
618         int error;
619
620         if ((flags & G_RAID_EVENT_VOLUME) != 0) {
621                 sc = ((struct g_raid_volume *)arg)->v_softc;
622         } else if ((flags & G_RAID_EVENT_DISK) != 0) {
623                 sc = ((struct g_raid_disk *)arg)->d_softc;
624         } else if ((flags & G_RAID_EVENT_SUBDISK) != 0) {
625                 sc = ((struct g_raid_subdisk *)arg)->sd_softc;
626         } else {
627                 sc = arg;
628         }
629         ep = malloc(sizeof(*ep), M_RAID,
630             sx_xlocked(&sc->sc_lock) ? M_WAITOK : M_NOWAIT);
631         if (ep == NULL)
632                 return (ENOMEM);
633         ep->e_tgt = arg;
634         ep->e_event = event;
635         ep->e_flags = flags;
636         ep->e_error = 0;
637         G_RAID_DEBUG1(4, sc, "Sending event %p. Waking up %p.", ep, sc);
638         mtx_lock(&sc->sc_queue_mtx);
639         TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next);
640         mtx_unlock(&sc->sc_queue_mtx);
641         wakeup(sc);
642
643         if ((flags & G_RAID_EVENT_WAIT) == 0)
644                 return (0);
645
646         sx_assert(&sc->sc_lock, SX_XLOCKED);
647         G_RAID_DEBUG1(4, sc, "Sleeping on %p.", ep);
648         sx_xunlock(&sc->sc_lock);
649         while ((ep->e_flags & G_RAID_EVENT_DONE) == 0) {
650                 mtx_lock(&sc->sc_queue_mtx);
651                 MSLEEP(error, ep, &sc->sc_queue_mtx, PRIBIO | PDROP, "m:event",
652                     hz * 5);
653         }
654         error = ep->e_error;
655         g_raid_event_free(ep);
656         sx_xlock(&sc->sc_lock);
657         return (error);
658 }
659
660 static void
661 g_raid_event_cancel(struct g_raid_softc *sc, void *tgt)
662 {
663         struct g_raid_event *ep, *tmpep;
664
665         sx_assert(&sc->sc_lock, SX_XLOCKED);
666
667         mtx_lock(&sc->sc_queue_mtx);
668         TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) {
669                 if (ep->e_tgt != tgt)
670                         continue;
671                 TAILQ_REMOVE(&sc->sc_events, ep, e_next);
672                 if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0)
673                         g_raid_event_free(ep);
674                 else {
675                         ep->e_error = ECANCELED;
676                         wakeup(ep);
677                 }
678         }
679         mtx_unlock(&sc->sc_queue_mtx);
680 }
681
682 static int
683 g_raid_event_check(struct g_raid_softc *sc, void *tgt)
684 {
685         struct g_raid_event *ep;
686         int     res = 0;
687
688         sx_assert(&sc->sc_lock, SX_XLOCKED);
689
690         mtx_lock(&sc->sc_queue_mtx);
691         TAILQ_FOREACH(ep, &sc->sc_events, e_next) {
692                 if (ep->e_tgt != tgt)
693                         continue;
694                 res = 1;
695                 break;
696         }
697         mtx_unlock(&sc->sc_queue_mtx);
698         return (res);
699 }
700
701 /*
702  * Return the number of disks in given state.
703  * If state is equal to -1, count all connected disks.
704  */
705 u_int
706 g_raid_ndisks(struct g_raid_softc *sc, int state)
707 {
708         struct g_raid_disk *disk;
709         u_int n;
710
711         sx_assert(&sc->sc_lock, SX_LOCKED);
712
713         n = 0;
714         TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
715                 if (disk->d_state == state || state == -1)
716                         n++;
717         }
718         return (n);
719 }
720
721 /*
722  * Return the number of subdisks in given state.
723  * If state is equal to -1, count all connected disks.
724  */
725 u_int
726 g_raid_nsubdisks(struct g_raid_volume *vol, int state)
727 {
728         struct g_raid_subdisk *subdisk;
729         struct g_raid_softc *sc __diagused;
730         u_int i, n ;
731
732         sc = vol->v_softc;
733         sx_assert(&sc->sc_lock, SX_LOCKED);
734
735         n = 0;
736         for (i = 0; i < vol->v_disks_count; i++) {
737                 subdisk = &vol->v_subdisks[i];
738                 if ((state == -1 &&
739                      subdisk->sd_state != G_RAID_SUBDISK_S_NONE) ||
740                     subdisk->sd_state == state)
741                         n++;
742         }
743         return (n);
744 }
745
746 /*
747  * Return the first subdisk in given state.
748  * If state is equal to -1, then the first connected disks.
749  */
750 struct g_raid_subdisk *
751 g_raid_get_subdisk(struct g_raid_volume *vol, int state)
752 {
753         struct g_raid_subdisk *sd;
754         struct g_raid_softc *sc __diagused;
755         u_int i;
756
757         sc = vol->v_softc;
758         sx_assert(&sc->sc_lock, SX_LOCKED);
759
760         for (i = 0; i < vol->v_disks_count; i++) {
761                 sd = &vol->v_subdisks[i];
762                 if ((state == -1 &&
763                      sd->sd_state != G_RAID_SUBDISK_S_NONE) ||
764                     sd->sd_state == state)
765                         return (sd);
766         }
767         return (NULL);
768 }
769
770 struct g_consumer *
771 g_raid_open_consumer(struct g_raid_softc *sc, const char *name)
772 {
773         struct g_consumer *cp;
774         struct g_provider *pp;
775
776         g_topology_assert();
777
778         if (strncmp(name, _PATH_DEV, 5) == 0)
779                 name += 5;
780         pp = g_provider_by_name(name);
781         if (pp == NULL)
782                 return (NULL);
783         cp = g_new_consumer(sc->sc_geom);
784         cp->flags |= G_CF_DIRECT_RECEIVE;
785         if (g_attach(cp, pp) != 0) {
786                 g_destroy_consumer(cp);
787                 return (NULL);
788         }
789         if (g_access(cp, 1, 1, 1) != 0) {
790                 g_detach(cp);
791                 g_destroy_consumer(cp);
792                 return (NULL);
793         }
794         return (cp);
795 }
796
797 static u_int
798 g_raid_nrequests(struct g_raid_softc *sc, struct g_consumer *cp)
799 {
800         struct bio *bp;
801         u_int nreqs = 0;
802
803         mtx_lock(&sc->sc_queue_mtx);
804         TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
805                 if (bp->bio_from == cp)
806                         nreqs++;
807         }
808         mtx_unlock(&sc->sc_queue_mtx);
809         return (nreqs);
810 }
811
812 u_int
813 g_raid_nopens(struct g_raid_softc *sc)
814 {
815         struct g_raid_volume *vol;
816         u_int opens;
817
818         opens = 0;
819         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
820                 if (vol->v_provider_open != 0)
821                         opens++;
822         }
823         return (opens);
824 }
825
826 static int
827 g_raid_consumer_is_busy(struct g_raid_softc *sc, struct g_consumer *cp)
828 {
829
830         if (cp->index > 0) {
831                 G_RAID_DEBUG1(2, sc,
832                     "I/O requests for %s exist, can't destroy it now.",
833                     cp->provider->name);
834                 return (1);
835         }
836         if (g_raid_nrequests(sc, cp) > 0) {
837                 G_RAID_DEBUG1(2, sc,
838                     "I/O requests for %s in queue, can't destroy it now.",
839                     cp->provider->name);
840                 return (1);
841         }
842         return (0);
843 }
844
845 static void
846 g_raid_destroy_consumer(void *arg, int flags __unused)
847 {
848         struct g_consumer *cp;
849
850         g_topology_assert();
851
852         cp = arg;
853         G_RAID_DEBUG(1, "Consumer %s destroyed.", cp->provider->name);
854         g_detach(cp);
855         g_destroy_consumer(cp);
856 }
857
858 void
859 g_raid_kill_consumer(struct g_raid_softc *sc, struct g_consumer *cp)
860 {
861         struct g_provider *pp;
862         int retaste_wait;
863
864         g_topology_assert_not();
865
866         g_topology_lock();
867         cp->private = NULL;
868         if (g_raid_consumer_is_busy(sc, cp))
869                 goto out;
870         pp = cp->provider;
871         retaste_wait = 0;
872         if (cp->acw == 1) {
873                 if ((pp->geom->flags & G_GEOM_WITHER) == 0)
874                         retaste_wait = 1;
875         }
876         if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0)
877                 g_access(cp, -cp->acr, -cp->acw, -cp->ace);
878         if (retaste_wait) {
879                 /*
880                  * After retaste event was send (inside g_access()), we can send
881                  * event to detach and destroy consumer.
882                  * A class, which has consumer to the given provider connected
883                  * will not receive retaste event for the provider.
884                  * This is the way how I ignore retaste events when I close
885                  * consumers opened for write: I detach and destroy consumer
886                  * after retaste event is sent.
887                  */
888                 g_post_event(g_raid_destroy_consumer, cp, M_WAITOK, NULL);
889                 goto out;
890         }
891         G_RAID_DEBUG(1, "Consumer %s destroyed.", pp->name);
892         g_detach(cp);
893         g_destroy_consumer(cp);
894 out:
895         g_topology_unlock();
896 }
897
898 static void
899 g_raid_orphan(struct g_consumer *cp)
900 {
901         struct g_raid_disk *disk;
902
903         g_topology_assert();
904
905         disk = cp->private;
906         if (disk == NULL)
907                 return;
908         g_raid_event_send(disk, G_RAID_DISK_E_DISCONNECTED,
909             G_RAID_EVENT_DISK);
910 }
911
912 static void
913 g_raid_clean(struct g_raid_volume *vol, int acw)
914 {
915         struct g_raid_softc *sc;
916         int timeout;
917
918         sc = vol->v_softc;
919         g_topology_assert_not();
920         sx_assert(&sc->sc_lock, SX_XLOCKED);
921
922 //      if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0)
923 //              return;
924         if (!vol->v_dirty)
925                 return;
926         if (vol->v_writes > 0)
927                 return;
928         if (acw > 0 || (acw == -1 &&
929             vol->v_provider != NULL && vol->v_provider->acw > 0)) {
930                 timeout = g_raid_clean_time - (time_uptime - vol->v_last_write);
931                 if (!g_raid_shutdown && timeout > 0)
932                         return;
933         }
934         vol->v_dirty = 0;
935         G_RAID_DEBUG1(1, sc, "Volume %s marked as clean.",
936             vol->v_name);
937         g_raid_write_metadata(sc, vol, NULL, NULL);
938 }
939
940 static void
941 g_raid_dirty(struct g_raid_volume *vol)
942 {
943         struct g_raid_softc *sc;
944
945         sc = vol->v_softc;
946         g_topology_assert_not();
947         sx_assert(&sc->sc_lock, SX_XLOCKED);
948
949 //      if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0)
950 //              return;
951         vol->v_dirty = 1;
952         G_RAID_DEBUG1(1, sc, "Volume %s marked as dirty.",
953             vol->v_name);
954         g_raid_write_metadata(sc, vol, NULL, NULL);
955 }
956
957 void
958 g_raid_tr_flush_common(struct g_raid_tr_object *tr, struct bio *bp)
959 {
960         struct g_raid_volume *vol;
961         struct g_raid_subdisk *sd;
962         struct bio_queue_head queue;
963         struct bio *cbp;
964         int i;
965
966         vol = tr->tro_volume;
967
968         /*
969          * Allocate all bios before sending any request, so we can return
970          * ENOMEM in nice and clean way.
971          */
972         bioq_init(&queue);
973         for (i = 0; i < vol->v_disks_count; i++) {
974                 sd = &vol->v_subdisks[i];
975                 if (sd->sd_state == G_RAID_SUBDISK_S_NONE ||
976                     sd->sd_state == G_RAID_SUBDISK_S_FAILED)
977                         continue;
978                 cbp = g_clone_bio(bp);
979                 if (cbp == NULL)
980                         goto failure;
981                 cbp->bio_caller1 = sd;
982                 bioq_insert_tail(&queue, cbp);
983         }
984         while ((cbp = bioq_takefirst(&queue)) != NULL) {
985                 sd = cbp->bio_caller1;
986                 cbp->bio_caller1 = NULL;
987                 g_raid_subdisk_iostart(sd, cbp);
988         }
989         return;
990 failure:
991         while ((cbp = bioq_takefirst(&queue)) != NULL)
992                 g_destroy_bio(cbp);
993         if (bp->bio_error == 0)
994                 bp->bio_error = ENOMEM;
995         g_raid_iodone(bp, bp->bio_error);
996 }
997
998 static void
999 g_raid_tr_kerneldump_common_done(struct bio *bp)
1000 {
1001
1002         bp->bio_flags |= BIO_DONE;
1003 }
1004
1005 int
1006 g_raid_tr_kerneldump_common(struct g_raid_tr_object *tr,
1007     void *virtual, vm_offset_t physical, off_t offset, size_t length)
1008 {
1009         struct g_raid_softc *sc;
1010         struct g_raid_volume *vol;
1011         struct bio bp;
1012
1013         vol = tr->tro_volume;
1014         sc = vol->v_softc;
1015
1016         g_reset_bio(&bp);
1017         bp.bio_cmd = BIO_WRITE;
1018         bp.bio_done = g_raid_tr_kerneldump_common_done;
1019         bp.bio_attribute = NULL;
1020         bp.bio_offset = offset;
1021         bp.bio_length = length;
1022         bp.bio_data = virtual;
1023         bp.bio_to = vol->v_provider;
1024
1025         g_raid_start(&bp);
1026         while (!(bp.bio_flags & BIO_DONE)) {
1027                 G_RAID_DEBUG1(4, sc, "Poll...");
1028                 g_raid_poll(sc);
1029                 DELAY(10);
1030         }
1031
1032         return (bp.bio_error != 0 ? EIO : 0);
1033 }
1034
1035 static int
1036 g_raid_dump(void *arg, void *virtual, off_t offset, size_t length)
1037 {
1038         struct g_raid_volume *vol;
1039         int error;
1040
1041         vol = (struct g_raid_volume *)arg;
1042         G_RAID_DEBUG1(3, vol->v_softc, "Dumping at off %llu len %llu.",
1043             (long long unsigned)offset, (long long unsigned)length);
1044
1045         error = G_RAID_TR_KERNELDUMP(vol->v_tr, virtual, offset, length);
1046         return (error);
1047 }
1048
1049 static void
1050 g_raid_kerneldump(struct g_raid_softc *sc, struct bio *bp)
1051 {
1052         struct g_kerneldump *gkd;
1053         struct g_provider *pp;
1054         struct g_raid_volume *vol;
1055
1056         gkd = (struct g_kerneldump*)bp->bio_data;
1057         pp = bp->bio_to;
1058         vol = pp->private;
1059         g_trace(G_T_TOPOLOGY, "g_raid_kerneldump(%s, %jd, %jd)",
1060                 pp->name, (intmax_t)gkd->offset, (intmax_t)gkd->length);
1061         gkd->di.dumper = g_raid_dump;
1062         gkd->di.priv = vol;
1063         gkd->di.blocksize = vol->v_sectorsize;
1064         gkd->di.maxiosize = DFLTPHYS;
1065         gkd->di.mediaoffset = gkd->offset;
1066         if ((gkd->offset + gkd->length) > vol->v_mediasize)
1067                 gkd->length = vol->v_mediasize - gkd->offset;
1068         gkd->di.mediasize = gkd->length;
1069         g_io_deliver(bp, 0);
1070 }
1071
1072 static void
1073 g_raid_candelete(struct g_raid_softc *sc, struct bio *bp)
1074 {
1075         struct g_provider *pp;
1076         struct g_raid_volume *vol;
1077         struct g_raid_subdisk *sd;
1078         int i, val;
1079
1080         pp = bp->bio_to;
1081         vol = pp->private;
1082         for (i = 0; i < vol->v_disks_count; i++) {
1083                 sd = &vol->v_subdisks[i];
1084                 if (sd->sd_state == G_RAID_SUBDISK_S_NONE)
1085                         continue;
1086                 if (sd->sd_disk->d_candelete)
1087                         break;
1088         }
1089         val = i < vol->v_disks_count;
1090         g_handleattr(bp, "GEOM::candelete", &val, sizeof(val));
1091 }
1092
1093 static void
1094 g_raid_start(struct bio *bp)
1095 {
1096         struct g_raid_softc *sc;
1097
1098         sc = bp->bio_to->geom->softc;
1099         /*
1100          * If sc == NULL or there are no valid disks, provider's error
1101          * should be set and g_raid_start() should not be called at all.
1102          */
1103 //      KASSERT(sc != NULL && sc->sc_state == G_RAID_VOLUME_S_RUNNING,
1104 //          ("Provider's error should be set (error=%d)(mirror=%s).",
1105 //          bp->bio_to->error, bp->bio_to->name));
1106         G_RAID_LOGREQ(3, bp, "Request received.");
1107
1108         switch (bp->bio_cmd) {
1109         case BIO_READ:
1110         case BIO_WRITE:
1111         case BIO_DELETE:
1112         case BIO_FLUSH:
1113         case BIO_SPEEDUP:
1114                 break;
1115         case BIO_GETATTR:
1116                 if (!strcmp(bp->bio_attribute, "GEOM::candelete"))
1117                         g_raid_candelete(sc, bp);
1118                 else if (!strcmp(bp->bio_attribute, "GEOM::kerneldump"))
1119                         g_raid_kerneldump(sc, bp);
1120                 else
1121                         g_io_deliver(bp, EOPNOTSUPP);
1122                 return;
1123         default:
1124                 g_io_deliver(bp, EOPNOTSUPP);
1125                 return;
1126         }
1127         mtx_lock(&sc->sc_queue_mtx);
1128         bioq_insert_tail(&sc->sc_queue, bp);
1129         mtx_unlock(&sc->sc_queue_mtx);
1130         if (!dumping) {
1131                 G_RAID_DEBUG1(4, sc, "Waking up %p.", sc);
1132                 wakeup(sc);
1133         }
1134 }
1135
1136 static int
1137 g_raid_bio_overlaps(const struct bio *bp, off_t lstart, off_t len)
1138 {
1139         /*
1140          * 5 cases:
1141          * (1) bp entirely below NO
1142          * (2) bp entirely above NO
1143          * (3) bp start below, but end in range YES
1144          * (4) bp entirely within YES
1145          * (5) bp starts within, ends above YES
1146          *
1147          * lock range 10-19 (offset 10 length 10)
1148          * (1) 1-5: first if kicks it out
1149          * (2) 30-35: second if kicks it out
1150          * (3) 5-15: passes both ifs
1151          * (4) 12-14: passes both ifs
1152          * (5) 19-20: passes both
1153          */
1154         off_t lend = lstart + len - 1;
1155         off_t bstart = bp->bio_offset;
1156         off_t bend = bp->bio_offset + bp->bio_length - 1;
1157
1158         if (bend < lstart)
1159                 return (0);
1160         if (lend < bstart)
1161                 return (0);
1162         return (1);
1163 }
1164
1165 static int
1166 g_raid_is_in_locked_range(struct g_raid_volume *vol, const struct bio *bp)
1167 {
1168         struct g_raid_lock *lp;
1169
1170         sx_assert(&vol->v_softc->sc_lock, SX_LOCKED);
1171
1172         LIST_FOREACH(lp, &vol->v_locks, l_next) {
1173                 if (g_raid_bio_overlaps(bp, lp->l_offset, lp->l_length))
1174                         return (1);
1175         }
1176         return (0);
1177 }
1178
1179 static void
1180 g_raid_start_request(struct bio *bp)
1181 {
1182         struct g_raid_softc *sc __diagused;
1183         struct g_raid_volume *vol;
1184
1185         sc = bp->bio_to->geom->softc;
1186         sx_assert(&sc->sc_lock, SX_LOCKED);
1187         vol = bp->bio_to->private;
1188
1189         /*
1190          * Check to see if this item is in a locked range.  If so,
1191          * queue it to our locked queue and return.  We'll requeue
1192          * it when the range is unlocked.  Internal I/O for the
1193          * rebuild/rescan/recovery process is excluded from this
1194          * check so we can actually do the recovery.
1195          */
1196         if (!(bp->bio_cflags & G_RAID_BIO_FLAG_SPECIAL) &&
1197             g_raid_is_in_locked_range(vol, bp)) {
1198                 G_RAID_LOGREQ(3, bp, "Defer request.");
1199                 bioq_insert_tail(&vol->v_locked, bp);
1200                 return;
1201         }
1202
1203         /*
1204          * If we're actually going to do the write/delete, then
1205          * update the idle stats for the volume.
1206          */
1207         if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) {
1208                 if (!vol->v_dirty)
1209                         g_raid_dirty(vol);
1210                 vol->v_writes++;
1211         }
1212
1213         /*
1214          * Put request onto inflight queue, so we can check if new
1215          * synchronization requests don't collide with it.  Then tell
1216          * the transformation layer to start the I/O.
1217          */
1218         bioq_insert_tail(&vol->v_inflight, bp);
1219         G_RAID_LOGREQ(4, bp, "Request started");
1220         G_RAID_TR_IOSTART(vol->v_tr, bp);
1221 }
1222
1223 static void
1224 g_raid_finish_with_locked_ranges(struct g_raid_volume *vol, struct bio *bp)
1225 {
1226         off_t off, len;
1227         struct bio *nbp;
1228         struct g_raid_lock *lp;
1229
1230         vol->v_pending_lock = 0;
1231         LIST_FOREACH(lp, &vol->v_locks, l_next) {
1232                 if (lp->l_pending) {
1233                         off = lp->l_offset;
1234                         len = lp->l_length;
1235                         lp->l_pending = 0;
1236                         TAILQ_FOREACH(nbp, &vol->v_inflight.queue, bio_queue) {
1237                                 if (g_raid_bio_overlaps(nbp, off, len))
1238                                         lp->l_pending++;
1239                         }
1240                         if (lp->l_pending) {
1241                                 vol->v_pending_lock = 1;
1242                                 G_RAID_DEBUG1(4, vol->v_softc,
1243                                     "Deferred lock(%jd, %jd) has %d pending",
1244                                     (intmax_t)off, (intmax_t)(off + len),
1245                                     lp->l_pending);
1246                                 continue;
1247                         }
1248                         G_RAID_DEBUG1(4, vol->v_softc,
1249                             "Deferred lock of %jd to %jd completed",
1250                             (intmax_t)off, (intmax_t)(off + len));
1251                         G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg);
1252                 }
1253         }
1254 }
1255
1256 void
1257 g_raid_iodone(struct bio *bp, int error)
1258 {
1259         struct g_raid_softc *sc __diagused;
1260         struct g_raid_volume *vol;
1261
1262         sc = bp->bio_to->geom->softc;
1263         sx_assert(&sc->sc_lock, SX_LOCKED);
1264         vol = bp->bio_to->private;
1265         G_RAID_LOGREQ(3, bp, "Request done: %d.", error);
1266
1267         /* Update stats if we done write/delete. */
1268         if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) {
1269                 vol->v_writes--;
1270                 vol->v_last_write = time_uptime;
1271         }
1272
1273         bioq_remove(&vol->v_inflight, bp);
1274         if (vol->v_pending_lock && g_raid_is_in_locked_range(vol, bp))
1275                 g_raid_finish_with_locked_ranges(vol, bp);
1276         getmicrouptime(&vol->v_last_done);
1277         g_io_deliver(bp, error);
1278 }
1279
1280 int
1281 g_raid_lock_range(struct g_raid_volume *vol, off_t off, off_t len,
1282     struct bio *ignore, void *argp)
1283 {
1284         struct g_raid_softc *sc;
1285         struct g_raid_lock *lp;
1286         struct bio *bp;
1287
1288         sc = vol->v_softc;
1289         lp = malloc(sizeof(*lp), M_RAID, M_WAITOK | M_ZERO);
1290         LIST_INSERT_HEAD(&vol->v_locks, lp, l_next);
1291         lp->l_offset = off;
1292         lp->l_length = len;
1293         lp->l_callback_arg = argp;
1294
1295         lp->l_pending = 0;
1296         TAILQ_FOREACH(bp, &vol->v_inflight.queue, bio_queue) {
1297                 if (bp != ignore && g_raid_bio_overlaps(bp, off, len))
1298                         lp->l_pending++;
1299         }       
1300
1301         /*
1302          * If there are any writes that are pending, we return EBUSY.  All
1303          * callers will have to wait until all pending writes clear.
1304          */
1305         if (lp->l_pending > 0) {
1306                 vol->v_pending_lock = 1;
1307                 G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd deferred %d pend",
1308                     (intmax_t)off, (intmax_t)(off+len), lp->l_pending);
1309                 return (EBUSY);
1310         }
1311         G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd",
1312             (intmax_t)off, (intmax_t)(off+len));
1313         G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg);
1314         return (0);
1315 }
1316
1317 int
1318 g_raid_unlock_range(struct g_raid_volume *vol, off_t off, off_t len)
1319 {
1320         struct g_raid_lock *lp;
1321         struct g_raid_softc *sc;
1322         struct bio *bp;
1323
1324         sc = vol->v_softc;
1325         LIST_FOREACH(lp, &vol->v_locks, l_next) {
1326                 if (lp->l_offset == off && lp->l_length == len) {
1327                         LIST_REMOVE(lp, l_next);
1328                         /* XXX
1329                          * Right now we just put them all back on the queue
1330                          * and hope for the best.  We hope this because any
1331                          * locked ranges will go right back on this list
1332                          * when the worker thread runs.
1333                          * XXX
1334                          */
1335                         G_RAID_DEBUG1(4, sc, "Unlocked %jd to %jd",
1336                             (intmax_t)lp->l_offset,
1337                             (intmax_t)(lp->l_offset+lp->l_length));
1338                         mtx_lock(&sc->sc_queue_mtx);
1339                         while ((bp = bioq_takefirst(&vol->v_locked)) != NULL)
1340                                 bioq_insert_tail(&sc->sc_queue, bp);
1341                         mtx_unlock(&sc->sc_queue_mtx);
1342                         free(lp, M_RAID);
1343                         return (0);
1344                 }
1345         }
1346         return (EINVAL);
1347 }
1348
1349 void
1350 g_raid_subdisk_iostart(struct g_raid_subdisk *sd, struct bio *bp)
1351 {
1352         struct g_consumer *cp;
1353         struct g_raid_disk *disk, *tdisk;
1354
1355         bp->bio_caller1 = sd;
1356
1357         /*
1358          * Make sure that the disk is present. Generally it is a task of
1359          * transformation layers to not send requests to absent disks, but
1360          * it is better to be safe and report situation then sorry.
1361          */
1362         if (sd->sd_disk == NULL) {
1363                 G_RAID_LOGREQ(0, bp, "Warning! I/O request to an absent disk!");
1364 nodisk:
1365                 bp->bio_from = NULL;
1366                 bp->bio_to = NULL;
1367                 bp->bio_error = ENXIO;
1368                 g_raid_disk_done(bp);
1369                 return;
1370         }
1371         disk = sd->sd_disk;
1372         if (disk->d_state != G_RAID_DISK_S_ACTIVE &&
1373             disk->d_state != G_RAID_DISK_S_FAILED) {
1374                 G_RAID_LOGREQ(0, bp, "Warning! I/O request to a disk in a "
1375                     "wrong state (%s)!", g_raid_disk_state2str(disk->d_state));
1376                 goto nodisk;
1377         }
1378
1379         cp = disk->d_consumer;
1380         bp->bio_from = cp;
1381         bp->bio_to = cp->provider;
1382         cp->index++;
1383
1384         /* Update average disks load. */
1385         TAILQ_FOREACH(tdisk, &sd->sd_softc->sc_disks, d_next) {
1386                 if (tdisk->d_consumer == NULL)
1387                         tdisk->d_load = 0;
1388                 else
1389                         tdisk->d_load = (tdisk->d_consumer->index *
1390                             G_RAID_SUBDISK_LOAD_SCALE + tdisk->d_load * 7) / 8;
1391         }
1392
1393         disk->d_last_offset = bp->bio_offset + bp->bio_length;
1394         if (dumping) {
1395                 G_RAID_LOGREQ(3, bp, "Sending dumping request.");
1396                 if (bp->bio_cmd == BIO_WRITE) {
1397                         bp->bio_error = g_raid_subdisk_kerneldump(sd,
1398                             bp->bio_data, bp->bio_offset, bp->bio_length);
1399                 } else
1400                         bp->bio_error = EOPNOTSUPP;
1401                 g_raid_disk_done(bp);
1402         } else {
1403                 bp->bio_done = g_raid_disk_done;
1404                 bp->bio_offset += sd->sd_offset;
1405                 G_RAID_LOGREQ(3, bp, "Sending request.");
1406                 g_io_request(bp, cp);
1407         }
1408 }
1409
1410 int
1411 g_raid_subdisk_kerneldump(struct g_raid_subdisk *sd, void *virtual,
1412     off_t offset, size_t length)
1413 {
1414
1415         if (sd->sd_disk == NULL)
1416                 return (ENXIO);
1417         if (sd->sd_disk->d_kd.di.dumper == NULL)
1418                 return (EOPNOTSUPP);
1419         return (dump_write(&sd->sd_disk->d_kd.di, virtual,
1420             sd->sd_disk->d_kd.di.mediaoffset + sd->sd_offset + offset, length));
1421 }
1422
1423 static void
1424 g_raid_disk_done(struct bio *bp)
1425 {
1426         struct g_raid_softc *sc;
1427         struct g_raid_subdisk *sd;
1428
1429         sd = bp->bio_caller1;
1430         sc = sd->sd_softc;
1431         mtx_lock(&sc->sc_queue_mtx);
1432         bioq_insert_tail(&sc->sc_queue, bp);
1433         mtx_unlock(&sc->sc_queue_mtx);
1434         if (!dumping)
1435                 wakeup(sc);
1436 }
1437
1438 static void
1439 g_raid_disk_done_request(struct bio *bp)
1440 {
1441         struct g_raid_softc *sc;
1442         struct g_raid_disk *disk;
1443         struct g_raid_subdisk *sd;
1444         struct g_raid_volume *vol;
1445
1446         g_topology_assert_not();
1447
1448         G_RAID_LOGREQ(3, bp, "Disk request done: %d.", bp->bio_error);
1449         sd = bp->bio_caller1;
1450         sc = sd->sd_softc;
1451         vol = sd->sd_volume;
1452         if (bp->bio_from != NULL) {
1453                 bp->bio_from->index--;
1454                 disk = bp->bio_from->private;
1455                 if (disk == NULL)
1456                         g_raid_kill_consumer(sc, bp->bio_from);
1457         }
1458         bp->bio_offset -= sd->sd_offset;
1459
1460         G_RAID_TR_IODONE(vol->v_tr, sd, bp);
1461 }
1462
1463 static void
1464 g_raid_handle_event(struct g_raid_softc *sc, struct g_raid_event *ep)
1465 {
1466
1467         if ((ep->e_flags & G_RAID_EVENT_VOLUME) != 0)
1468                 ep->e_error = g_raid_update_volume(ep->e_tgt, ep->e_event);
1469         else if ((ep->e_flags & G_RAID_EVENT_DISK) != 0)
1470                 ep->e_error = g_raid_update_disk(ep->e_tgt, ep->e_event);
1471         else if ((ep->e_flags & G_RAID_EVENT_SUBDISK) != 0)
1472                 ep->e_error = g_raid_update_subdisk(ep->e_tgt, ep->e_event);
1473         else
1474                 ep->e_error = g_raid_update_node(ep->e_tgt, ep->e_event);
1475         if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) {
1476                 KASSERT(ep->e_error == 0,
1477                     ("Error cannot be handled."));
1478                 g_raid_event_free(ep);
1479         } else {
1480                 ep->e_flags |= G_RAID_EVENT_DONE;
1481                 G_RAID_DEBUG1(4, sc, "Waking up %p.", ep);
1482                 mtx_lock(&sc->sc_queue_mtx);
1483                 wakeup(ep);
1484                 mtx_unlock(&sc->sc_queue_mtx);
1485         }
1486 }
1487
1488 /*
1489  * Worker thread.
1490  */
1491 static void
1492 g_raid_worker(void *arg)
1493 {
1494         struct g_raid_softc *sc;
1495         struct g_raid_event *ep;
1496         struct g_raid_volume *vol;
1497         struct bio *bp;
1498         struct timeval now, t;
1499         int timeout, rv;
1500
1501         sc = arg;
1502         thread_lock(curthread);
1503         sched_prio(curthread, PRIBIO);
1504         thread_unlock(curthread);
1505
1506         sx_xlock(&sc->sc_lock);
1507         for (;;) {
1508                 mtx_lock(&sc->sc_queue_mtx);
1509                 /*
1510                  * First take a look at events.
1511                  * This is important to handle events before any I/O requests.
1512                  */
1513                 bp = NULL;
1514                 vol = NULL;
1515                 rv = 0;
1516                 ep = TAILQ_FIRST(&sc->sc_events);
1517                 if (ep != NULL)
1518                         TAILQ_REMOVE(&sc->sc_events, ep, e_next);
1519                 else if ((bp = bioq_takefirst(&sc->sc_queue)) != NULL)
1520                         ;
1521                 else {
1522                         getmicrouptime(&now);
1523                         t = now;
1524                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1525                                 if (bioq_first(&vol->v_inflight) == NULL &&
1526                                     vol->v_tr &&
1527                                     timevalcmp(&vol->v_last_done, &t, < ))
1528                                         t = vol->v_last_done;
1529                         }
1530                         timevalsub(&t, &now);
1531                         timeout = g_raid_idle_threshold +
1532                             t.tv_sec * 1000000 + t.tv_usec;
1533                         if (timeout > 0) {
1534                                 /*
1535                                  * Two steps to avoid overflows at HZ=1000
1536                                  * and idle timeouts > 2.1s.  Some rounding
1537                                  * errors can occur, but they are < 1tick,
1538                                  * which is deemed to be close enough for
1539                                  * this purpose.
1540                                  */
1541                                 int micpertic = 1000000 / hz;
1542                                 timeout = (timeout + micpertic - 1) / micpertic;
1543                                 sx_xunlock(&sc->sc_lock);
1544                                 MSLEEP(rv, sc, &sc->sc_queue_mtx,
1545                                     PRIBIO | PDROP, "-", timeout);
1546                                 sx_xlock(&sc->sc_lock);
1547                                 goto process;
1548                         } else
1549                                 rv = EWOULDBLOCK;
1550                 }
1551                 mtx_unlock(&sc->sc_queue_mtx);
1552 process:
1553                 if (ep != NULL) {
1554                         g_raid_handle_event(sc, ep);
1555                 } else if (bp != NULL) {
1556                         if (bp->bio_to != NULL &&
1557                             bp->bio_to->geom == sc->sc_geom)
1558                                 g_raid_start_request(bp);
1559                         else
1560                                 g_raid_disk_done_request(bp);
1561                 } else if (rv == EWOULDBLOCK) {
1562                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1563                                 g_raid_clean(vol, -1);
1564                                 if (bioq_first(&vol->v_inflight) == NULL &&
1565                                     vol->v_tr) {
1566                                         t.tv_sec = g_raid_idle_threshold / 1000000;
1567                                         t.tv_usec = g_raid_idle_threshold % 1000000;
1568                                         timevaladd(&t, &vol->v_last_done);
1569                                         getmicrouptime(&now);
1570                                         if (timevalcmp(&t, &now, <= )) {
1571                                                 G_RAID_TR_IDLE(vol->v_tr);
1572                                                 vol->v_last_done = now;
1573                                         }
1574                                 }
1575                         }
1576                 }
1577                 if (sc->sc_stopping == G_RAID_DESTROY_HARD)
1578                         g_raid_destroy_node(sc, 1);     /* May not return. */
1579         }
1580 }
1581
1582 static void
1583 g_raid_poll(struct g_raid_softc *sc)
1584 {
1585         struct g_raid_event *ep;
1586         struct bio *bp;
1587
1588         sx_xlock(&sc->sc_lock);
1589         mtx_lock(&sc->sc_queue_mtx);
1590         /*
1591          * First take a look at events.
1592          * This is important to handle events before any I/O requests.
1593          */
1594         ep = TAILQ_FIRST(&sc->sc_events);
1595         if (ep != NULL) {
1596                 TAILQ_REMOVE(&sc->sc_events, ep, e_next);
1597                 mtx_unlock(&sc->sc_queue_mtx);
1598                 g_raid_handle_event(sc, ep);
1599                 goto out;
1600         }
1601         bp = bioq_takefirst(&sc->sc_queue);
1602         if (bp != NULL) {
1603                 mtx_unlock(&sc->sc_queue_mtx);
1604                 if (bp->bio_from == NULL ||
1605                     bp->bio_from->geom != sc->sc_geom)
1606                         g_raid_start_request(bp);
1607                 else
1608                         g_raid_disk_done_request(bp);
1609         }
1610 out:
1611         sx_xunlock(&sc->sc_lock);
1612 }
1613
1614 static void
1615 g_raid_launch_provider(struct g_raid_volume *vol)
1616 {
1617         struct g_raid_disk *disk;
1618         struct g_raid_subdisk *sd;
1619         struct g_raid_softc *sc;
1620         struct g_provider *pp;
1621         char name[G_RAID_MAX_VOLUMENAME];
1622         off_t off;
1623         int i;
1624
1625         sc = vol->v_softc;
1626         sx_assert(&sc->sc_lock, SX_LOCKED);
1627
1628         g_topology_lock();
1629         /* Try to name provider with volume name. */
1630         snprintf(name, sizeof(name), "raid/%s", vol->v_name);
1631         if (g_raid_name_format == 0 || vol->v_name[0] == 0 ||
1632             g_provider_by_name(name) != NULL) {
1633                 /* Otherwise use sequential volume number. */
1634                 snprintf(name, sizeof(name), "raid/r%d", vol->v_global_id);
1635         }
1636
1637         pp = g_new_providerf(sc->sc_geom, "%s", name);
1638         pp->flags |= G_PF_DIRECT_RECEIVE;
1639         if (vol->v_tr->tro_class->trc_accept_unmapped) {
1640                 pp->flags |= G_PF_ACCEPT_UNMAPPED;
1641                 for (i = 0; i < vol->v_disks_count; i++) {
1642                         sd = &vol->v_subdisks[i];
1643                         if (sd->sd_state == G_RAID_SUBDISK_S_NONE)
1644                                 continue;
1645                         if ((sd->sd_disk->d_consumer->provider->flags &
1646                             G_PF_ACCEPT_UNMAPPED) == 0)
1647                                 pp->flags &= ~G_PF_ACCEPT_UNMAPPED;
1648                 }
1649         }
1650         pp->private = vol;
1651         pp->mediasize = vol->v_mediasize;
1652         pp->sectorsize = vol->v_sectorsize;
1653         pp->stripesize = 0;
1654         pp->stripeoffset = 0;
1655         if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 ||
1656             vol->v_raid_level == G_RAID_VOLUME_RL_RAID3 ||
1657             vol->v_raid_level == G_RAID_VOLUME_RL_SINGLE ||
1658             vol->v_raid_level == G_RAID_VOLUME_RL_CONCAT) {
1659                 if ((disk = vol->v_subdisks[0].sd_disk) != NULL &&
1660                     disk->d_consumer != NULL &&
1661                     disk->d_consumer->provider != NULL) {
1662                         pp->stripesize = disk->d_consumer->provider->stripesize;
1663                         off = disk->d_consumer->provider->stripeoffset;
1664                         pp->stripeoffset = off + vol->v_subdisks[0].sd_offset;
1665                         if (off > 0)
1666                                 pp->stripeoffset %= off;
1667                 }
1668                 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID3) {
1669                         pp->stripesize *= (vol->v_disks_count - 1);
1670                         pp->stripeoffset *= (vol->v_disks_count - 1);
1671                 }
1672         } else
1673                 pp->stripesize = vol->v_strip_size;
1674         vol->v_provider = pp;
1675         g_error_provider(pp, 0);
1676         g_topology_unlock();
1677         G_RAID_DEBUG1(0, sc, "Provider %s for volume %s created.",
1678             pp->name, vol->v_name);
1679 }
1680
1681 static void
1682 g_raid_destroy_provider(struct g_raid_volume *vol)
1683 {
1684         struct g_raid_softc *sc;
1685         struct g_provider *pp;
1686         struct bio *bp, *tmp;
1687
1688         g_topology_assert_not();
1689         sc = vol->v_softc;
1690         pp = vol->v_provider;
1691         KASSERT(pp != NULL, ("NULL provider (volume=%s).", vol->v_name));
1692
1693         g_topology_lock();
1694         g_error_provider(pp, ENXIO);
1695         mtx_lock(&sc->sc_queue_mtx);
1696         TAILQ_FOREACH_SAFE(bp, &sc->sc_queue.queue, bio_queue, tmp) {
1697                 if (bp->bio_to != pp)
1698                         continue;
1699                 bioq_remove(&sc->sc_queue, bp);
1700                 g_io_deliver(bp, ENXIO);
1701         }
1702         mtx_unlock(&sc->sc_queue_mtx);
1703         G_RAID_DEBUG1(0, sc, "Provider %s for volume %s destroyed.",
1704             pp->name, vol->v_name);
1705         g_wither_provider(pp, ENXIO);
1706         g_topology_unlock();
1707         vol->v_provider = NULL;
1708 }
1709
1710 /*
1711  * Update device state.
1712  */
1713 static int
1714 g_raid_update_volume(struct g_raid_volume *vol, u_int event)
1715 {
1716         struct g_raid_softc *sc;
1717
1718         sc = vol->v_softc;
1719         sx_assert(&sc->sc_lock, SX_XLOCKED);
1720
1721         G_RAID_DEBUG1(2, sc, "Event %s for volume %s.",
1722             g_raid_volume_event2str(event),
1723             vol->v_name);
1724         switch (event) {
1725         case G_RAID_VOLUME_E_DOWN:
1726                 if (vol->v_provider != NULL)
1727                         g_raid_destroy_provider(vol);
1728                 break;
1729         case G_RAID_VOLUME_E_UP:
1730                 if (vol->v_provider == NULL)
1731                         g_raid_launch_provider(vol);
1732                 break;
1733         case G_RAID_VOLUME_E_START:
1734                 if (vol->v_tr)
1735                         G_RAID_TR_START(vol->v_tr);
1736                 return (0);
1737         default:
1738                 if (sc->sc_md)
1739                         G_RAID_MD_VOLUME_EVENT(sc->sc_md, vol, event);
1740                 return (0);
1741         }
1742
1743         /* Manage root mount release. */
1744         if (vol->v_starting) {
1745                 vol->v_starting = 0;
1746                 G_RAID_DEBUG1(1, sc, "root_mount_rel %p", vol->v_rootmount);
1747                 root_mount_rel(vol->v_rootmount);
1748                 vol->v_rootmount = NULL;
1749         }
1750         if (vol->v_stopping && vol->v_provider_open == 0)
1751                 g_raid_destroy_volume(vol);
1752         return (0);
1753 }
1754
1755 /*
1756  * Update subdisk state.
1757  */
1758 static int
1759 g_raid_update_subdisk(struct g_raid_subdisk *sd, u_int event)
1760 {
1761         struct g_raid_softc *sc;
1762         struct g_raid_volume *vol;
1763
1764         sc = sd->sd_softc;
1765         vol = sd->sd_volume;
1766         sx_assert(&sc->sc_lock, SX_XLOCKED);
1767
1768         G_RAID_DEBUG1(2, sc, "Event %s for subdisk %s:%d-%s.",
1769             g_raid_subdisk_event2str(event),
1770             vol->v_name, sd->sd_pos,
1771             sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]");
1772         if (vol->v_tr)
1773                 G_RAID_TR_EVENT(vol->v_tr, sd, event);
1774
1775         return (0);
1776 }
1777
1778 /*
1779  * Update disk state.
1780  */
1781 static int
1782 g_raid_update_disk(struct g_raid_disk *disk, u_int event)
1783 {
1784         struct g_raid_softc *sc;
1785
1786         sc = disk->d_softc;
1787         sx_assert(&sc->sc_lock, SX_XLOCKED);
1788
1789         G_RAID_DEBUG1(2, sc, "Event %s for disk %s.",
1790             g_raid_disk_event2str(event),
1791             g_raid_get_diskname(disk));
1792
1793         if (sc->sc_md)
1794                 G_RAID_MD_EVENT(sc->sc_md, disk, event);
1795         return (0);
1796 }
1797
1798 /*
1799  * Node event.
1800  */
1801 static int
1802 g_raid_update_node(struct g_raid_softc *sc, u_int event)
1803 {
1804         sx_assert(&sc->sc_lock, SX_XLOCKED);
1805
1806         G_RAID_DEBUG1(2, sc, "Event %s for the array.",
1807             g_raid_node_event2str(event));
1808
1809         if (event == G_RAID_NODE_E_WAKE)
1810                 return (0);
1811         if (sc->sc_md)
1812                 G_RAID_MD_EVENT(sc->sc_md, NULL, event);
1813         return (0);
1814 }
1815
1816 static int
1817 g_raid_access(struct g_provider *pp, int acr, int acw, int ace)
1818 {
1819         struct g_raid_volume *vol;
1820         struct g_raid_softc *sc;
1821         int dcw, opens, error = 0;
1822
1823         g_topology_assert();
1824         sc = pp->geom->softc;
1825         vol = pp->private;
1826         KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name));
1827         KASSERT(vol != NULL, ("NULL volume (provider=%s).", pp->name));
1828
1829         G_RAID_DEBUG1(2, sc, "Access request for %s: r%dw%de%d.", pp->name,
1830             acr, acw, ace);
1831         dcw = pp->acw + acw;
1832
1833         g_topology_unlock();
1834         sx_xlock(&sc->sc_lock);
1835         /* Deny new opens while dying. */
1836         if (sc->sc_stopping != 0 && (acr > 0 || acw > 0 || ace > 0)) {
1837                 error = ENXIO;
1838                 goto out;
1839         }
1840         /* Deny write opens for read-only volumes. */
1841         if (vol->v_read_only && acw > 0) {
1842                 error = EROFS;
1843                 goto out;
1844         }
1845         if (dcw == 0)
1846                 g_raid_clean(vol, dcw);
1847         vol->v_provider_open += acr + acw + ace;
1848         /* Handle delayed node destruction. */
1849         if (sc->sc_stopping == G_RAID_DESTROY_DELAYED &&
1850             vol->v_provider_open == 0) {
1851                 /* Count open volumes. */
1852                 opens = g_raid_nopens(sc);
1853                 if (opens == 0) {
1854                         sc->sc_stopping = G_RAID_DESTROY_HARD;
1855                         /* Wake up worker to make it selfdestruct. */
1856                         g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
1857                 }
1858         }
1859         /* Handle open volume destruction. */
1860         if (vol->v_stopping && vol->v_provider_open == 0)
1861                 g_raid_destroy_volume(vol);
1862 out:
1863         sx_xunlock(&sc->sc_lock);
1864         g_topology_lock();
1865         return (error);
1866 }
1867
1868 struct g_raid_softc *
1869 g_raid_create_node(struct g_class *mp,
1870     const char *name, struct g_raid_md_object *md)
1871 {
1872         struct g_raid_softc *sc;
1873         struct g_geom *gp;
1874         int error;
1875
1876         g_topology_assert();
1877         G_RAID_DEBUG(1, "Creating array %s.", name);
1878
1879         gp = g_new_geomf(mp, "%s", name);
1880         sc = malloc(sizeof(*sc), M_RAID, M_WAITOK | M_ZERO);
1881         gp->start = g_raid_start;
1882         gp->orphan = g_raid_orphan;
1883         gp->access = g_raid_access;
1884         gp->dumpconf = g_raid_dumpconf;
1885
1886         sc->sc_md = md;
1887         sc->sc_geom = gp;
1888         sc->sc_flags = 0;
1889         TAILQ_INIT(&sc->sc_volumes);
1890         TAILQ_INIT(&sc->sc_disks);
1891         sx_init(&sc->sc_lock, "graid:lock");
1892         mtx_init(&sc->sc_queue_mtx, "graid:queue", NULL, MTX_DEF);
1893         TAILQ_INIT(&sc->sc_events);
1894         bioq_init(&sc->sc_queue);
1895         gp->softc = sc;
1896         error = kproc_create(g_raid_worker, sc, &sc->sc_worker, 0, 0,
1897             "g_raid %s", name);
1898         if (error != 0) {
1899                 G_RAID_DEBUG(0, "Cannot create kernel thread for %s.", name);
1900                 mtx_destroy(&sc->sc_queue_mtx);
1901                 sx_destroy(&sc->sc_lock);
1902                 g_destroy_geom(sc->sc_geom);
1903                 free(sc, M_RAID);
1904                 return (NULL);
1905         }
1906
1907         G_RAID_DEBUG1(0, sc, "Array %s created.", name);
1908         return (sc);
1909 }
1910
1911 struct g_raid_volume *
1912 g_raid_create_volume(struct g_raid_softc *sc, const char *name, int id)
1913 {
1914         struct g_raid_volume    *vol, *vol1;
1915         int i;
1916
1917         G_RAID_DEBUG1(1, sc, "Creating volume %s.", name);
1918         vol = malloc(sizeof(*vol), M_RAID, M_WAITOK | M_ZERO);
1919         vol->v_softc = sc;
1920         strlcpy(vol->v_name, name, G_RAID_MAX_VOLUMENAME);
1921         vol->v_state = G_RAID_VOLUME_S_STARTING;
1922         vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN;
1923         vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_UNKNOWN;
1924         vol->v_rotate_parity = 1;
1925         bioq_init(&vol->v_inflight);
1926         bioq_init(&vol->v_locked);
1927         LIST_INIT(&vol->v_locks);
1928         for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) {
1929                 vol->v_subdisks[i].sd_softc = sc;
1930                 vol->v_subdisks[i].sd_volume = vol;
1931                 vol->v_subdisks[i].sd_pos = i;
1932                 vol->v_subdisks[i].sd_state = G_RAID_DISK_S_NONE;
1933         }
1934
1935         /* Find free ID for this volume. */
1936         g_topology_lock();
1937         vol1 = vol;
1938         if (id >= 0) {
1939                 LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) {
1940                         if (vol1->v_global_id == id)
1941                                 break;
1942                 }
1943         }
1944         if (vol1 != NULL) {
1945                 for (id = 0; ; id++) {
1946                         LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) {
1947                                 if (vol1->v_global_id == id)
1948                                         break;
1949                         }
1950                         if (vol1 == NULL)
1951                                 break;
1952                 }
1953         }
1954         vol->v_global_id = id;
1955         LIST_INSERT_HEAD(&g_raid_volumes, vol, v_global_next);
1956         g_topology_unlock();
1957
1958         /* Delay root mounting. */
1959         vol->v_rootmount = root_mount_hold("GRAID");
1960         G_RAID_DEBUG1(1, sc, "root_mount_hold %p", vol->v_rootmount);
1961         vol->v_starting = 1;
1962         TAILQ_INSERT_TAIL(&sc->sc_volumes, vol, v_next);
1963         return (vol);
1964 }
1965
1966 struct g_raid_disk *
1967 g_raid_create_disk(struct g_raid_softc *sc)
1968 {
1969         struct g_raid_disk      *disk;
1970
1971         G_RAID_DEBUG1(1, sc, "Creating disk.");
1972         disk = malloc(sizeof(*disk), M_RAID, M_WAITOK | M_ZERO);
1973         disk->d_softc = sc;
1974         disk->d_state = G_RAID_DISK_S_NONE;
1975         TAILQ_INIT(&disk->d_subdisks);
1976         TAILQ_INSERT_TAIL(&sc->sc_disks, disk, d_next);
1977         return (disk);
1978 }
1979
1980 int g_raid_start_volume(struct g_raid_volume *vol)
1981 {
1982         struct g_raid_tr_class *class;
1983         struct g_raid_tr_object *obj;
1984         int status;
1985
1986         G_RAID_DEBUG1(2, vol->v_softc, "Starting volume %s.", vol->v_name);
1987         LIST_FOREACH(class, &g_raid_tr_classes, trc_list) {
1988                 if (!class->trc_enable)
1989                         continue;
1990                 G_RAID_DEBUG1(2, vol->v_softc,
1991                     "Tasting volume %s for %s transformation.",
1992                     vol->v_name, class->name);
1993                 obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
1994                     M_WAITOK);
1995                 obj->tro_class = class;
1996                 obj->tro_volume = vol;
1997                 status = G_RAID_TR_TASTE(obj, vol);
1998                 if (status != G_RAID_TR_TASTE_FAIL)
1999                         break;
2000                 kobj_delete((kobj_t)obj, M_RAID);
2001         }
2002         if (class == NULL) {
2003                 G_RAID_DEBUG1(0, vol->v_softc,
2004                     "No transformation module found for %s.",
2005                     vol->v_name);
2006                 vol->v_tr = NULL;
2007                 g_raid_change_volume_state(vol, G_RAID_VOLUME_S_UNSUPPORTED);
2008                 g_raid_event_send(vol, G_RAID_VOLUME_E_DOWN,
2009                     G_RAID_EVENT_VOLUME);
2010                 return (-1);
2011         }
2012         G_RAID_DEBUG1(2, vol->v_softc,
2013             "Transformation module %s chosen for %s.",
2014             class->name, vol->v_name);
2015         vol->v_tr = obj;
2016         return (0);
2017 }
2018
2019 int
2020 g_raid_destroy_node(struct g_raid_softc *sc, int worker)
2021 {
2022         struct g_raid_volume *vol, *tmpv;
2023         struct g_raid_disk *disk, *tmpd;
2024         int error = 0;
2025
2026         sc->sc_stopping = G_RAID_DESTROY_HARD;
2027         TAILQ_FOREACH_SAFE(vol, &sc->sc_volumes, v_next, tmpv) {
2028                 if (g_raid_destroy_volume(vol))
2029                         error = EBUSY;
2030         }
2031         if (error)
2032                 return (error);
2033         TAILQ_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tmpd) {
2034                 if (g_raid_destroy_disk(disk))
2035                         error = EBUSY;
2036         }
2037         if (error)
2038                 return (error);
2039         if (sc->sc_md) {
2040                 G_RAID_MD_FREE(sc->sc_md);
2041                 kobj_delete((kobj_t)sc->sc_md, M_RAID);
2042                 sc->sc_md = NULL;
2043         }
2044         if (sc->sc_geom != NULL) {
2045                 G_RAID_DEBUG1(0, sc, "Array %s destroyed.", sc->sc_name);
2046                 g_topology_lock();
2047                 sc->sc_geom->softc = NULL;
2048                 g_wither_geom(sc->sc_geom, ENXIO);
2049                 g_topology_unlock();
2050                 sc->sc_geom = NULL;
2051         } else
2052                 G_RAID_DEBUG(1, "Array destroyed.");
2053         if (worker) {
2054                 g_raid_event_cancel(sc, sc);
2055                 mtx_destroy(&sc->sc_queue_mtx);
2056                 sx_xunlock(&sc->sc_lock);
2057                 sx_destroy(&sc->sc_lock);
2058                 wakeup(&sc->sc_stopping);
2059                 free(sc, M_RAID);
2060                 curthread->td_pflags &= ~TDP_GEOM;
2061                 G_RAID_DEBUG(1, "Thread exiting.");
2062                 kproc_exit(0);
2063         } else {
2064                 /* Wake up worker to make it selfdestruct. */
2065                 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
2066         }
2067         return (0);
2068 }
2069
2070 int
2071 g_raid_destroy_volume(struct g_raid_volume *vol)
2072 {
2073         struct g_raid_softc *sc;
2074         struct g_raid_disk *disk;
2075         int i;
2076
2077         sc = vol->v_softc;
2078         G_RAID_DEBUG1(2, sc, "Destroying volume %s.", vol->v_name);
2079         vol->v_stopping = 1;
2080         if (vol->v_state != G_RAID_VOLUME_S_STOPPED) {
2081                 if (vol->v_tr) {
2082                         G_RAID_TR_STOP(vol->v_tr);
2083                         return (EBUSY);
2084                 } else
2085                         vol->v_state = G_RAID_VOLUME_S_STOPPED;
2086         }
2087         if (g_raid_event_check(sc, vol) != 0)
2088                 return (EBUSY);
2089         if (vol->v_provider != NULL)
2090                 return (EBUSY);
2091         if (vol->v_provider_open != 0)
2092                 return (EBUSY);
2093         if (vol->v_tr) {
2094                 G_RAID_TR_FREE(vol->v_tr);
2095                 kobj_delete((kobj_t)vol->v_tr, M_RAID);
2096                 vol->v_tr = NULL;
2097         }
2098         if (vol->v_rootmount)
2099                 root_mount_rel(vol->v_rootmount);
2100         g_topology_lock();
2101         LIST_REMOVE(vol, v_global_next);
2102         g_topology_unlock();
2103         TAILQ_REMOVE(&sc->sc_volumes, vol, v_next);
2104         for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) {
2105                 g_raid_event_cancel(sc, &vol->v_subdisks[i]);
2106                 disk = vol->v_subdisks[i].sd_disk;
2107                 if (disk == NULL)
2108                         continue;
2109                 TAILQ_REMOVE(&disk->d_subdisks, &vol->v_subdisks[i], sd_next);
2110         }
2111         G_RAID_DEBUG1(2, sc, "Volume %s destroyed.", vol->v_name);
2112         if (sc->sc_md)
2113                 G_RAID_MD_FREE_VOLUME(sc->sc_md, vol);
2114         g_raid_event_cancel(sc, vol);
2115         free(vol, M_RAID);
2116         if (sc->sc_stopping == G_RAID_DESTROY_HARD) {
2117                 /* Wake up worker to let it selfdestruct. */
2118                 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
2119         }
2120         return (0);
2121 }
2122
2123 int
2124 g_raid_destroy_disk(struct g_raid_disk *disk)
2125 {
2126         struct g_raid_softc *sc;
2127         struct g_raid_subdisk *sd, *tmp;
2128
2129         sc = disk->d_softc;
2130         G_RAID_DEBUG1(2, sc, "Destroying disk.");
2131         if (disk->d_consumer) {
2132                 g_raid_kill_consumer(sc, disk->d_consumer);
2133                 disk->d_consumer = NULL;
2134         }
2135         TAILQ_FOREACH_SAFE(sd, &disk->d_subdisks, sd_next, tmp) {
2136                 g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_NONE);
2137                 g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED,
2138                     G_RAID_EVENT_SUBDISK);
2139                 TAILQ_REMOVE(&disk->d_subdisks, sd, sd_next);
2140                 sd->sd_disk = NULL;
2141         }
2142         TAILQ_REMOVE(&sc->sc_disks, disk, d_next);
2143         if (sc->sc_md)
2144                 G_RAID_MD_FREE_DISK(sc->sc_md, disk);
2145         g_raid_event_cancel(sc, disk);
2146         free(disk, M_RAID);
2147         return (0);
2148 }
2149
2150 int
2151 g_raid_destroy(struct g_raid_softc *sc, int how)
2152 {
2153         int error, opens;
2154
2155         g_topology_assert_not();
2156         if (sc == NULL)
2157                 return (ENXIO);
2158         sx_assert(&sc->sc_lock, SX_XLOCKED);
2159
2160         /* Count open volumes. */
2161         opens = g_raid_nopens(sc);
2162
2163         /* React on some opened volumes. */
2164         if (opens > 0) {
2165                 switch (how) {
2166                 case G_RAID_DESTROY_SOFT:
2167                         G_RAID_DEBUG1(1, sc,
2168                             "%d volumes are still open.",
2169                             opens);
2170                         sx_xunlock(&sc->sc_lock);
2171                         return (EBUSY);
2172                 case G_RAID_DESTROY_DELAYED:
2173                         G_RAID_DEBUG1(1, sc,
2174                             "Array will be destroyed on last close.");
2175                         sc->sc_stopping = G_RAID_DESTROY_DELAYED;
2176                         sx_xunlock(&sc->sc_lock);
2177                         return (EBUSY);
2178                 case G_RAID_DESTROY_HARD:
2179                         G_RAID_DEBUG1(1, sc,
2180                             "%d volumes are still open.",
2181                             opens);
2182                 }
2183         }
2184
2185         /* Mark node for destruction. */
2186         sc->sc_stopping = G_RAID_DESTROY_HARD;
2187         /* Wake up worker to let it selfdestruct. */
2188         g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
2189         /* Sleep until node destroyed. */
2190         error = sx_sleep(&sc->sc_stopping, &sc->sc_lock,
2191             PRIBIO | PDROP, "r:destroy", hz * 3);
2192         return (error == EWOULDBLOCK ? EBUSY : 0);
2193 }
2194
2195 static void
2196 g_raid_taste_orphan(struct g_consumer *cp)
2197 {
2198
2199         KASSERT(1 == 0, ("%s called while tasting %s.", __func__,
2200             cp->provider->name));
2201 }
2202
2203 static struct g_geom *
2204 g_raid_taste(struct g_class *mp, struct g_provider *pp, int flags __unused)
2205 {
2206         struct g_consumer *cp;
2207         struct g_geom *gp, *geom;
2208         struct g_raid_md_class *class;
2209         struct g_raid_md_object *obj;
2210         int status;
2211
2212         g_topology_assert();
2213         g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name);
2214         if (!g_raid_enable)
2215                 return (NULL);
2216         G_RAID_DEBUG(2, "Tasting provider %s.", pp->name);
2217
2218         geom = NULL;
2219         status = G_RAID_MD_TASTE_FAIL;
2220         gp = g_new_geomf(mp, "raid:taste");
2221         /*
2222          * This orphan function should be never called.
2223          */
2224         gp->orphan = g_raid_taste_orphan;
2225         cp = g_new_consumer(gp);
2226         cp->flags |= G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2227         if (g_attach(cp, pp) != 0)
2228                 goto ofail2;
2229         if (g_access(cp, 1, 0, 0) != 0)
2230                 goto ofail;
2231
2232         LIST_FOREACH(class, &g_raid_md_classes, mdc_list) {
2233                 if (!class->mdc_enable)
2234                         continue;
2235                 G_RAID_DEBUG(2, "Tasting provider %s for %s metadata.",
2236                     pp->name, class->name);
2237                 obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
2238                     M_WAITOK);
2239                 obj->mdo_class = class;
2240                 status = G_RAID_MD_TASTE(obj, mp, cp, &geom);
2241                 if (status != G_RAID_MD_TASTE_NEW)
2242                         kobj_delete((kobj_t)obj, M_RAID);
2243                 if (status != G_RAID_MD_TASTE_FAIL)
2244                         break;
2245         }
2246
2247         if (status == G_RAID_MD_TASTE_FAIL)
2248                 (void)g_access(cp, -1, 0, 0);
2249 ofail:
2250         g_detach(cp);
2251 ofail2:
2252         g_destroy_consumer(cp);
2253         g_destroy_geom(gp);
2254         G_RAID_DEBUG(2, "Tasting provider %s done.", pp->name);
2255         return (geom);
2256 }
2257
2258 int
2259 g_raid_create_node_format(const char *format, struct gctl_req *req,
2260     struct g_geom **gp)
2261 {
2262         struct g_raid_md_class *class;
2263         struct g_raid_md_object *obj;
2264         int status;
2265
2266         G_RAID_DEBUG(2, "Creating array for %s metadata.", format);
2267         LIST_FOREACH(class, &g_raid_md_classes, mdc_list) {
2268                 if (strcasecmp(class->name, format) == 0)
2269                         break;
2270         }
2271         if (class == NULL) {
2272                 G_RAID_DEBUG(1, "No support for %s metadata.", format);
2273                 return (G_RAID_MD_TASTE_FAIL);
2274         }
2275         obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
2276             M_WAITOK);
2277         obj->mdo_class = class;
2278         status = G_RAID_MD_CREATE_REQ(obj, &g_raid_class, req, gp);
2279         if (status != G_RAID_MD_TASTE_NEW)
2280                 kobj_delete((kobj_t)obj, M_RAID);
2281         return (status);
2282 }
2283
2284 static int
2285 g_raid_destroy_geom(struct gctl_req *req __unused,
2286     struct g_class *mp __unused, struct g_geom *gp)
2287 {
2288         struct g_raid_softc *sc;
2289         int error;
2290
2291         g_topology_unlock();
2292         sc = gp->softc;
2293         sx_xlock(&sc->sc_lock);
2294         g_cancel_event(sc);
2295         error = g_raid_destroy(gp->softc, G_RAID_DESTROY_SOFT);
2296         g_topology_lock();
2297         return (error);
2298 }
2299
2300 void g_raid_write_metadata(struct g_raid_softc *sc, struct g_raid_volume *vol,
2301     struct g_raid_subdisk *sd, struct g_raid_disk *disk)
2302 {
2303
2304         if (sc->sc_stopping == G_RAID_DESTROY_HARD)
2305                 return;
2306         if (sc->sc_md)
2307                 G_RAID_MD_WRITE(sc->sc_md, vol, sd, disk);
2308 }
2309
2310 void g_raid_fail_disk(struct g_raid_softc *sc,
2311     struct g_raid_subdisk *sd, struct g_raid_disk *disk)
2312 {
2313
2314         if (disk == NULL)
2315                 disk = sd->sd_disk;
2316         if (disk == NULL) {
2317                 G_RAID_DEBUG1(0, sc, "Warning! Fail request to an absent disk!");
2318                 return;
2319         }
2320         if (disk->d_state != G_RAID_DISK_S_ACTIVE) {
2321                 G_RAID_DEBUG1(0, sc, "Warning! Fail request to a disk in a "
2322                     "wrong state (%s)!", g_raid_disk_state2str(disk->d_state));
2323                 return;
2324         }
2325         if (sc->sc_md)
2326                 G_RAID_MD_FAIL_DISK(sc->sc_md, sd, disk);
2327 }
2328
2329 static void
2330 g_raid_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp,
2331     struct g_consumer *cp, struct g_provider *pp)
2332 {
2333         struct g_raid_softc *sc;
2334         struct g_raid_volume *vol;
2335         struct g_raid_subdisk *sd;
2336         struct g_raid_disk *disk;
2337         int i, s;
2338
2339         g_topology_assert();
2340
2341         sc = gp->softc;
2342         if (sc == NULL)
2343                 return;
2344         if (pp != NULL) {
2345                 vol = pp->private;
2346                 g_topology_unlock();
2347                 sx_xlock(&sc->sc_lock);
2348                 sbuf_printf(sb, "%s<descr>%s %s volume</descr>\n", indent,
2349                     sc->sc_md->mdo_class->name,
2350                     g_raid_volume_level2str(vol->v_raid_level,
2351                     vol->v_raid_level_qualifier));
2352                 sbuf_printf(sb, "%s<Label>%s</Label>\n", indent,
2353                     vol->v_name);
2354                 sbuf_printf(sb, "%s<RAIDLevel>%s</RAIDLevel>\n", indent,
2355                     g_raid_volume_level2str(vol->v_raid_level,
2356                     vol->v_raid_level_qualifier));
2357                 sbuf_printf(sb,
2358                     "%s<Transformation>%s</Transformation>\n", indent,
2359                     vol->v_tr ? vol->v_tr->tro_class->name : "NONE");
2360                 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent,
2361                     vol->v_disks_count);
2362                 sbuf_printf(sb, "%s<Strip>%u</Strip>\n", indent,
2363                     vol->v_strip_size);
2364                 sbuf_printf(sb, "%s<State>%s</State>\n", indent,
2365                     g_raid_volume_state2str(vol->v_state));
2366                 sbuf_printf(sb, "%s<Dirty>%s</Dirty>\n", indent,
2367                     vol->v_dirty ? "Yes" : "No");
2368                 sbuf_printf(sb, "%s<Subdisks>", indent);
2369                 for (i = 0; i < vol->v_disks_count; i++) {
2370                         sd = &vol->v_subdisks[i];
2371                         if (sd->sd_disk != NULL &&
2372                             sd->sd_disk->d_consumer != NULL) {
2373                                 sbuf_printf(sb, "%s ",
2374                                     g_raid_get_diskname(sd->sd_disk));
2375                         } else {
2376                                 sbuf_cat(sb, "NONE ");
2377                         }
2378                         sbuf_printf(sb, "(%s",
2379                             g_raid_subdisk_state2str(sd->sd_state));
2380                         if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
2381                             sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
2382                                 sbuf_printf(sb, " %d%%",
2383                                     (int)(sd->sd_rebuild_pos * 100 /
2384                                      sd->sd_size));
2385                         }
2386                         sbuf_cat(sb, ")");
2387                         if (i + 1 < vol->v_disks_count)
2388                                 sbuf_cat(sb, ", ");
2389                 }
2390                 sbuf_cat(sb, "</Subdisks>\n");
2391                 sx_xunlock(&sc->sc_lock);
2392                 g_topology_lock();
2393         } else if (cp != NULL) {
2394                 disk = cp->private;
2395                 if (disk == NULL)
2396                         return;
2397                 g_topology_unlock();
2398                 sx_xlock(&sc->sc_lock);
2399                 sbuf_printf(sb, "%s<State>%s", indent,
2400                     g_raid_disk_state2str(disk->d_state));
2401                 if (!TAILQ_EMPTY(&disk->d_subdisks)) {
2402                         sbuf_cat(sb, " (");
2403                         TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
2404                                 sbuf_printf(sb, "%s",
2405                                     g_raid_subdisk_state2str(sd->sd_state));
2406                                 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
2407                                     sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
2408                                         sbuf_printf(sb, " %d%%",
2409                                             (int)(sd->sd_rebuild_pos * 100 /
2410                                              sd->sd_size));
2411                                 }
2412                                 if (TAILQ_NEXT(sd, sd_next))
2413                                         sbuf_cat(sb, ", ");
2414                         }
2415                         sbuf_cat(sb, ")");
2416                 }
2417                 sbuf_cat(sb, "</State>\n");
2418                 sbuf_printf(sb, "%s<Subdisks>", indent);
2419                 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
2420                         sbuf_printf(sb, "r%d(%s):%d@%ju",
2421                             sd->sd_volume->v_global_id,
2422                             sd->sd_volume->v_name,
2423                             sd->sd_pos, (uintmax_t)sd->sd_offset);
2424                         if (TAILQ_NEXT(sd, sd_next))
2425                                 sbuf_cat(sb, ", ");
2426                 }
2427                 sbuf_cat(sb, "</Subdisks>\n");
2428                 sbuf_printf(sb, "%s<ReadErrors>%d</ReadErrors>\n", indent,
2429                     disk->d_read_errs);
2430                 sx_xunlock(&sc->sc_lock);
2431                 g_topology_lock();
2432         } else {
2433                 g_topology_unlock();
2434                 sx_xlock(&sc->sc_lock);
2435                 if (sc->sc_md) {
2436                         sbuf_printf(sb, "%s<Metadata>%s</Metadata>\n", indent,
2437                             sc->sc_md->mdo_class->name);
2438                 }
2439                 if (!TAILQ_EMPTY(&sc->sc_volumes)) {
2440                         s = 0xff;
2441                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2442                                 if (vol->v_state < s)
2443                                         s = vol->v_state;
2444                         }
2445                         sbuf_printf(sb, "%s<State>%s</State>\n", indent,
2446                             g_raid_volume_state2str(s));
2447                 }
2448                 sx_xunlock(&sc->sc_lock);
2449                 g_topology_lock();
2450         }
2451 }
2452
2453 static void
2454 g_raid_shutdown_post_sync(void *arg, int howto)
2455 {
2456         struct g_class *mp;
2457         struct g_geom *gp, *gp2;
2458         struct g_raid_softc *sc;
2459         struct g_raid_volume *vol;
2460
2461         mp = arg;
2462         g_topology_lock();
2463         g_raid_shutdown = 1;
2464         LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) {
2465                 if ((sc = gp->softc) == NULL)
2466                         continue;
2467                 g_topology_unlock();
2468                 sx_xlock(&sc->sc_lock);
2469                 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next)
2470                         g_raid_clean(vol, -1);
2471                 g_cancel_event(sc);
2472                 g_raid_destroy(sc, G_RAID_DESTROY_DELAYED);
2473                 g_topology_lock();
2474         }
2475         g_topology_unlock();
2476 }
2477
2478 static void
2479 g_raid_init(struct g_class *mp)
2480 {
2481
2482         g_raid_post_sync = EVENTHANDLER_REGISTER(shutdown_post_sync,
2483             g_raid_shutdown_post_sync, mp, SHUTDOWN_PRI_FIRST);
2484         if (g_raid_post_sync == NULL)
2485                 G_RAID_DEBUG(0, "Warning! Cannot register shutdown event.");
2486         g_raid_started = 1;
2487 }
2488
2489 static void
2490 g_raid_fini(struct g_class *mp)
2491 {
2492
2493         if (g_raid_post_sync != NULL)
2494                 EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_raid_post_sync);
2495         g_raid_started = 0;
2496 }
2497
2498 int
2499 g_raid_md_modevent(module_t mod, int type, void *arg)
2500 {
2501         struct g_raid_md_class *class, *c, *nc;
2502         int error;
2503
2504         error = 0;
2505         class = arg;
2506         switch (type) {
2507         case MOD_LOAD:
2508                 c = LIST_FIRST(&g_raid_md_classes);
2509                 if (c == NULL || c->mdc_priority > class->mdc_priority)
2510                         LIST_INSERT_HEAD(&g_raid_md_classes, class, mdc_list);
2511                 else {
2512                         while ((nc = LIST_NEXT(c, mdc_list)) != NULL &&
2513                             nc->mdc_priority < class->mdc_priority)
2514                                 c = nc;
2515                         LIST_INSERT_AFTER(c, class, mdc_list);
2516                 }
2517                 if (g_raid_started)
2518                         g_retaste(&g_raid_class);
2519                 break;
2520         case MOD_UNLOAD:
2521                 LIST_REMOVE(class, mdc_list);
2522                 break;
2523         default:
2524                 error = EOPNOTSUPP;
2525                 break;
2526         }
2527
2528         return (error);
2529 }
2530
2531 int
2532 g_raid_tr_modevent(module_t mod, int type, void *arg)
2533 {
2534         struct g_raid_tr_class *class, *c, *nc;
2535         int error;
2536
2537         error = 0;
2538         class = arg;
2539         switch (type) {
2540         case MOD_LOAD:
2541                 c = LIST_FIRST(&g_raid_tr_classes);
2542                 if (c == NULL || c->trc_priority > class->trc_priority)
2543                         LIST_INSERT_HEAD(&g_raid_tr_classes, class, trc_list);
2544                 else {
2545                         while ((nc = LIST_NEXT(c, trc_list)) != NULL &&
2546                             nc->trc_priority < class->trc_priority)
2547                                 c = nc;
2548                         LIST_INSERT_AFTER(c, class, trc_list);
2549                 }
2550                 break;
2551         case MOD_UNLOAD:
2552                 LIST_REMOVE(class, trc_list);
2553                 break;
2554         default:
2555                 error = EOPNOTSUPP;
2556                 break;
2557         }
2558
2559         return (error);
2560 }
2561
2562 /*
2563  * Use local implementation of DECLARE_GEOM_CLASS(g_raid_class, g_raid)
2564  * to reduce module priority, allowing submodules to register them first.
2565  */
2566 static moduledata_t g_raid_mod = {
2567         "g_raid",
2568         g_modevent,
2569         &g_raid_class
2570 };
2571 DECLARE_MODULE(g_raid, g_raid_mod, SI_SUB_DRIVERS, SI_ORDER_THIRD);
2572 MODULE_VERSION(geom_raid, 0);