]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/geom/raid/g_raid.c
MFV r344878:
[FreeBSD/FreeBSD.git] / sys / geom / raid / g_raid.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/module.h>
36 #include <sys/limits.h>
37 #include <sys/lock.h>
38 #include <sys/mutex.h>
39 #include <sys/bio.h>
40 #include <sys/sbuf.h>
41 #include <sys/sysctl.h>
42 #include <sys/malloc.h>
43 #include <sys/eventhandler.h>
44 #include <vm/uma.h>
45 #include <geom/geom.h>
46 #include <sys/proc.h>
47 #include <sys/kthread.h>
48 #include <sys/sched.h>
49 #include <geom/raid/g_raid.h>
50 #include "g_raid_md_if.h"
51 #include "g_raid_tr_if.h"
52
53 static MALLOC_DEFINE(M_RAID, "raid_data", "GEOM_RAID Data");
54
55 SYSCTL_DECL(_kern_geom);
56 SYSCTL_NODE(_kern_geom, OID_AUTO, raid, CTLFLAG_RW, 0, "GEOM_RAID stuff");
57 int g_raid_enable = 1;
58 SYSCTL_INT(_kern_geom_raid, OID_AUTO, enable, CTLFLAG_RWTUN,
59     &g_raid_enable, 0, "Enable on-disk metadata taste");
60 u_int g_raid_aggressive_spare = 0;
61 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, aggressive_spare, CTLFLAG_RWTUN,
62     &g_raid_aggressive_spare, 0, "Use disks without metadata as spare");
63 u_int g_raid_debug = 0;
64 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, debug, CTLFLAG_RWTUN, &g_raid_debug, 0,
65     "Debug level");
66 int g_raid_read_err_thresh = 10;
67 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, read_err_thresh, CTLFLAG_RWTUN,
68     &g_raid_read_err_thresh, 0,
69     "Number of read errors equated to disk failure");
70 u_int g_raid_start_timeout = 30;
71 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, start_timeout, CTLFLAG_RWTUN,
72     &g_raid_start_timeout, 0,
73     "Time to wait for all array components");
74 static u_int g_raid_clean_time = 5;
75 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, clean_time, CTLFLAG_RWTUN,
76     &g_raid_clean_time, 0, "Mark volume as clean when idling");
77 static u_int g_raid_disconnect_on_failure = 1;
78 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, disconnect_on_failure, CTLFLAG_RWTUN,
79     &g_raid_disconnect_on_failure, 0, "Disconnect component on I/O failure.");
80 static u_int g_raid_name_format = 0;
81 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, name_format, CTLFLAG_RWTUN,
82     &g_raid_name_format, 0, "Providers name format.");
83 static u_int g_raid_idle_threshold = 1000000;
84 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, idle_threshold, CTLFLAG_RWTUN,
85     &g_raid_idle_threshold, 1000000,
86     "Time in microseconds to consider a volume idle.");
87
88 #define MSLEEP(rv, ident, mtx, priority, wmesg, timeout)        do {    \
89         G_RAID_DEBUG(4, "%s: Sleeping %p.", __func__, (ident));         \
90         rv = msleep((ident), (mtx), (priority), (wmesg), (timeout));    \
91         G_RAID_DEBUG(4, "%s: Woken up %p.", __func__, (ident));         \
92 } while (0)
93
94 LIST_HEAD(, g_raid_md_class) g_raid_md_classes =
95     LIST_HEAD_INITIALIZER(g_raid_md_classes);
96
97 LIST_HEAD(, g_raid_tr_class) g_raid_tr_classes =
98     LIST_HEAD_INITIALIZER(g_raid_tr_classes);
99
100 LIST_HEAD(, g_raid_volume) g_raid_volumes =
101     LIST_HEAD_INITIALIZER(g_raid_volumes);
102
103 static eventhandler_tag g_raid_post_sync = NULL;
104 static int g_raid_started = 0;
105 static int g_raid_shutdown = 0;
106
107 static int g_raid_destroy_geom(struct gctl_req *req, struct g_class *mp,
108     struct g_geom *gp);
109 static g_taste_t g_raid_taste;
110 static void g_raid_init(struct g_class *mp);
111 static void g_raid_fini(struct g_class *mp);
112
113 struct g_class g_raid_class = {
114         .name = G_RAID_CLASS_NAME,
115         .version = G_VERSION,
116         .ctlreq = g_raid_ctl,
117         .taste = g_raid_taste,
118         .destroy_geom = g_raid_destroy_geom,
119         .init = g_raid_init,
120         .fini = g_raid_fini
121 };
122
123 static void g_raid_destroy_provider(struct g_raid_volume *vol);
124 static int g_raid_update_disk(struct g_raid_disk *disk, u_int event);
125 static int g_raid_update_subdisk(struct g_raid_subdisk *subdisk, u_int event);
126 static int g_raid_update_volume(struct g_raid_volume *vol, u_int event);
127 static int g_raid_update_node(struct g_raid_softc *sc, u_int event);
128 static void g_raid_dumpconf(struct sbuf *sb, const char *indent,
129     struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp);
130 static void g_raid_start(struct bio *bp);
131 static void g_raid_start_request(struct bio *bp);
132 static void g_raid_disk_done(struct bio *bp);
133 static void g_raid_poll(struct g_raid_softc *sc);
134
135 static const char *
136 g_raid_node_event2str(int event)
137 {
138
139         switch (event) {
140         case G_RAID_NODE_E_WAKE:
141                 return ("WAKE");
142         case G_RAID_NODE_E_START:
143                 return ("START");
144         default:
145                 return ("INVALID");
146         }
147 }
148
149 const char *
150 g_raid_disk_state2str(int state)
151 {
152
153         switch (state) {
154         case G_RAID_DISK_S_NONE:
155                 return ("NONE");
156         case G_RAID_DISK_S_OFFLINE:
157                 return ("OFFLINE");
158         case G_RAID_DISK_S_DISABLED:
159                 return ("DISABLED");
160         case G_RAID_DISK_S_FAILED:
161                 return ("FAILED");
162         case G_RAID_DISK_S_STALE_FAILED:
163                 return ("STALE_FAILED");
164         case G_RAID_DISK_S_SPARE:
165                 return ("SPARE");
166         case G_RAID_DISK_S_STALE:
167                 return ("STALE");
168         case G_RAID_DISK_S_ACTIVE:
169                 return ("ACTIVE");
170         default:
171                 return ("INVALID");
172         }
173 }
174
175 static const char *
176 g_raid_disk_event2str(int event)
177 {
178
179         switch (event) {
180         case G_RAID_DISK_E_DISCONNECTED:
181                 return ("DISCONNECTED");
182         default:
183                 return ("INVALID");
184         }
185 }
186
187 const char *
188 g_raid_subdisk_state2str(int state)
189 {
190
191         switch (state) {
192         case G_RAID_SUBDISK_S_NONE:
193                 return ("NONE");
194         case G_RAID_SUBDISK_S_FAILED:
195                 return ("FAILED");
196         case G_RAID_SUBDISK_S_NEW:
197                 return ("NEW");
198         case G_RAID_SUBDISK_S_REBUILD:
199                 return ("REBUILD");
200         case G_RAID_SUBDISK_S_UNINITIALIZED:
201                 return ("UNINITIALIZED");
202         case G_RAID_SUBDISK_S_STALE:
203                 return ("STALE");
204         case G_RAID_SUBDISK_S_RESYNC:
205                 return ("RESYNC");
206         case G_RAID_SUBDISK_S_ACTIVE:
207                 return ("ACTIVE");
208         default:
209                 return ("INVALID");
210         }
211 }
212
213 static const char *
214 g_raid_subdisk_event2str(int event)
215 {
216
217         switch (event) {
218         case G_RAID_SUBDISK_E_NEW:
219                 return ("NEW");
220         case G_RAID_SUBDISK_E_FAILED:
221                 return ("FAILED");
222         case G_RAID_SUBDISK_E_DISCONNECTED:
223                 return ("DISCONNECTED");
224         default:
225                 return ("INVALID");
226         }
227 }
228
229 const char *
230 g_raid_volume_state2str(int state)
231 {
232
233         switch (state) {
234         case G_RAID_VOLUME_S_STARTING:
235                 return ("STARTING");
236         case G_RAID_VOLUME_S_BROKEN:
237                 return ("BROKEN");
238         case G_RAID_VOLUME_S_DEGRADED:
239                 return ("DEGRADED");
240         case G_RAID_VOLUME_S_SUBOPTIMAL:
241                 return ("SUBOPTIMAL");
242         case G_RAID_VOLUME_S_OPTIMAL:
243                 return ("OPTIMAL");
244         case G_RAID_VOLUME_S_UNSUPPORTED:
245                 return ("UNSUPPORTED");
246         case G_RAID_VOLUME_S_STOPPED:
247                 return ("STOPPED");
248         default:
249                 return ("INVALID");
250         }
251 }
252
253 static const char *
254 g_raid_volume_event2str(int event)
255 {
256
257         switch (event) {
258         case G_RAID_VOLUME_E_UP:
259                 return ("UP");
260         case G_RAID_VOLUME_E_DOWN:
261                 return ("DOWN");
262         case G_RAID_VOLUME_E_START:
263                 return ("START");
264         case G_RAID_VOLUME_E_STARTMD:
265                 return ("STARTMD");
266         default:
267                 return ("INVALID");
268         }
269 }
270
271 const char *
272 g_raid_volume_level2str(int level, int qual)
273 {
274
275         switch (level) {
276         case G_RAID_VOLUME_RL_RAID0:
277                 return ("RAID0");
278         case G_RAID_VOLUME_RL_RAID1:
279                 return ("RAID1");
280         case G_RAID_VOLUME_RL_RAID3:
281                 if (qual == G_RAID_VOLUME_RLQ_R3P0)
282                         return ("RAID3-P0");
283                 if (qual == G_RAID_VOLUME_RLQ_R3PN)
284                         return ("RAID3-PN");
285                 return ("RAID3");
286         case G_RAID_VOLUME_RL_RAID4:
287                 if (qual == G_RAID_VOLUME_RLQ_R4P0)
288                         return ("RAID4-P0");
289                 if (qual == G_RAID_VOLUME_RLQ_R4PN)
290                         return ("RAID4-PN");
291                 return ("RAID4");
292         case G_RAID_VOLUME_RL_RAID5:
293                 if (qual == G_RAID_VOLUME_RLQ_R5RA)
294                         return ("RAID5-RA");
295                 if (qual == G_RAID_VOLUME_RLQ_R5RS)
296                         return ("RAID5-RS");
297                 if (qual == G_RAID_VOLUME_RLQ_R5LA)
298                         return ("RAID5-LA");
299                 if (qual == G_RAID_VOLUME_RLQ_R5LS)
300                         return ("RAID5-LS");
301                 return ("RAID5");
302         case G_RAID_VOLUME_RL_RAID6:
303                 if (qual == G_RAID_VOLUME_RLQ_R6RA)
304                         return ("RAID6-RA");
305                 if (qual == G_RAID_VOLUME_RLQ_R6RS)
306                         return ("RAID6-RS");
307                 if (qual == G_RAID_VOLUME_RLQ_R6LA)
308                         return ("RAID6-LA");
309                 if (qual == G_RAID_VOLUME_RLQ_R6LS)
310                         return ("RAID6-LS");
311                 return ("RAID6");
312         case G_RAID_VOLUME_RL_RAIDMDF:
313                 if (qual == G_RAID_VOLUME_RLQ_RMDFRA)
314                         return ("RAIDMDF-RA");
315                 if (qual == G_RAID_VOLUME_RLQ_RMDFRS)
316                         return ("RAIDMDF-RS");
317                 if (qual == G_RAID_VOLUME_RLQ_RMDFLA)
318                         return ("RAIDMDF-LA");
319                 if (qual == G_RAID_VOLUME_RLQ_RMDFLS)
320                         return ("RAIDMDF-LS");
321                 return ("RAIDMDF");
322         case G_RAID_VOLUME_RL_RAID1E:
323                 if (qual == G_RAID_VOLUME_RLQ_R1EA)
324                         return ("RAID1E-A");
325                 if (qual == G_RAID_VOLUME_RLQ_R1EO)
326                         return ("RAID1E-O");
327                 return ("RAID1E");
328         case G_RAID_VOLUME_RL_SINGLE:
329                 return ("SINGLE");
330         case G_RAID_VOLUME_RL_CONCAT:
331                 return ("CONCAT");
332         case G_RAID_VOLUME_RL_RAID5E:
333                 if (qual == G_RAID_VOLUME_RLQ_R5ERA)
334                         return ("RAID5E-RA");
335                 if (qual == G_RAID_VOLUME_RLQ_R5ERS)
336                         return ("RAID5E-RS");
337                 if (qual == G_RAID_VOLUME_RLQ_R5ELA)
338                         return ("RAID5E-LA");
339                 if (qual == G_RAID_VOLUME_RLQ_R5ELS)
340                         return ("RAID5E-LS");
341                 return ("RAID5E");
342         case G_RAID_VOLUME_RL_RAID5EE:
343                 if (qual == G_RAID_VOLUME_RLQ_R5EERA)
344                         return ("RAID5EE-RA");
345                 if (qual == G_RAID_VOLUME_RLQ_R5EERS)
346                         return ("RAID5EE-RS");
347                 if (qual == G_RAID_VOLUME_RLQ_R5EELA)
348                         return ("RAID5EE-LA");
349                 if (qual == G_RAID_VOLUME_RLQ_R5EELS)
350                         return ("RAID5EE-LS");
351                 return ("RAID5EE");
352         case G_RAID_VOLUME_RL_RAID5R:
353                 if (qual == G_RAID_VOLUME_RLQ_R5RRA)
354                         return ("RAID5R-RA");
355                 if (qual == G_RAID_VOLUME_RLQ_R5RRS)
356                         return ("RAID5R-RS");
357                 if (qual == G_RAID_VOLUME_RLQ_R5RLA)
358                         return ("RAID5R-LA");
359                 if (qual == G_RAID_VOLUME_RLQ_R5RLS)
360                         return ("RAID5R-LS");
361                 return ("RAID5E");
362         default:
363                 return ("UNKNOWN");
364         }
365 }
366
367 int
368 g_raid_volume_str2level(const char *str, int *level, int *qual)
369 {
370
371         *level = G_RAID_VOLUME_RL_UNKNOWN;
372         *qual = G_RAID_VOLUME_RLQ_NONE;
373         if (strcasecmp(str, "RAID0") == 0)
374                 *level = G_RAID_VOLUME_RL_RAID0;
375         else if (strcasecmp(str, "RAID1") == 0)
376                 *level = G_RAID_VOLUME_RL_RAID1;
377         else if (strcasecmp(str, "RAID3-P0") == 0) {
378                 *level = G_RAID_VOLUME_RL_RAID3;
379                 *qual = G_RAID_VOLUME_RLQ_R3P0;
380         } else if (strcasecmp(str, "RAID3-PN") == 0 ||
381                    strcasecmp(str, "RAID3") == 0) {
382                 *level = G_RAID_VOLUME_RL_RAID3;
383                 *qual = G_RAID_VOLUME_RLQ_R3PN;
384         } else if (strcasecmp(str, "RAID4-P0") == 0) {
385                 *level = G_RAID_VOLUME_RL_RAID4;
386                 *qual = G_RAID_VOLUME_RLQ_R4P0;
387         } else if (strcasecmp(str, "RAID4-PN") == 0 ||
388                    strcasecmp(str, "RAID4") == 0) {
389                 *level = G_RAID_VOLUME_RL_RAID4;
390                 *qual = G_RAID_VOLUME_RLQ_R4PN;
391         } else if (strcasecmp(str, "RAID5-RA") == 0) {
392                 *level = G_RAID_VOLUME_RL_RAID5;
393                 *qual = G_RAID_VOLUME_RLQ_R5RA;
394         } else if (strcasecmp(str, "RAID5-RS") == 0) {
395                 *level = G_RAID_VOLUME_RL_RAID5;
396                 *qual = G_RAID_VOLUME_RLQ_R5RS;
397         } else if (strcasecmp(str, "RAID5") == 0 ||
398                    strcasecmp(str, "RAID5-LA") == 0) {
399                 *level = G_RAID_VOLUME_RL_RAID5;
400                 *qual = G_RAID_VOLUME_RLQ_R5LA;
401         } else if (strcasecmp(str, "RAID5-LS") == 0) {
402                 *level = G_RAID_VOLUME_RL_RAID5;
403                 *qual = G_RAID_VOLUME_RLQ_R5LS;
404         } else if (strcasecmp(str, "RAID6-RA") == 0) {
405                 *level = G_RAID_VOLUME_RL_RAID6;
406                 *qual = G_RAID_VOLUME_RLQ_R6RA;
407         } else if (strcasecmp(str, "RAID6-RS") == 0) {
408                 *level = G_RAID_VOLUME_RL_RAID6;
409                 *qual = G_RAID_VOLUME_RLQ_R6RS;
410         } else if (strcasecmp(str, "RAID6") == 0 ||
411                    strcasecmp(str, "RAID6-LA") == 0) {
412                 *level = G_RAID_VOLUME_RL_RAID6;
413                 *qual = G_RAID_VOLUME_RLQ_R6LA;
414         } else if (strcasecmp(str, "RAID6-LS") == 0) {
415                 *level = G_RAID_VOLUME_RL_RAID6;
416                 *qual = G_RAID_VOLUME_RLQ_R6LS;
417         } else if (strcasecmp(str, "RAIDMDF-RA") == 0) {
418                 *level = G_RAID_VOLUME_RL_RAIDMDF;
419                 *qual = G_RAID_VOLUME_RLQ_RMDFRA;
420         } else if (strcasecmp(str, "RAIDMDF-RS") == 0) {
421                 *level = G_RAID_VOLUME_RL_RAIDMDF;
422                 *qual = G_RAID_VOLUME_RLQ_RMDFRS;
423         } else if (strcasecmp(str, "RAIDMDF") == 0 ||
424                    strcasecmp(str, "RAIDMDF-LA") == 0) {
425                 *level = G_RAID_VOLUME_RL_RAIDMDF;
426                 *qual = G_RAID_VOLUME_RLQ_RMDFLA;
427         } else if (strcasecmp(str, "RAIDMDF-LS") == 0) {
428                 *level = G_RAID_VOLUME_RL_RAIDMDF;
429                 *qual = G_RAID_VOLUME_RLQ_RMDFLS;
430         } else if (strcasecmp(str, "RAID10") == 0 ||
431                    strcasecmp(str, "RAID1E") == 0 ||
432                    strcasecmp(str, "RAID1E-A") == 0) {
433                 *level = G_RAID_VOLUME_RL_RAID1E;
434                 *qual = G_RAID_VOLUME_RLQ_R1EA;
435         } else if (strcasecmp(str, "RAID1E-O") == 0) {
436                 *level = G_RAID_VOLUME_RL_RAID1E;
437                 *qual = G_RAID_VOLUME_RLQ_R1EO;
438         } else if (strcasecmp(str, "SINGLE") == 0)
439                 *level = G_RAID_VOLUME_RL_SINGLE;
440         else if (strcasecmp(str, "CONCAT") == 0)
441                 *level = G_RAID_VOLUME_RL_CONCAT;
442         else if (strcasecmp(str, "RAID5E-RA") == 0) {
443                 *level = G_RAID_VOLUME_RL_RAID5E;
444                 *qual = G_RAID_VOLUME_RLQ_R5ERA;
445         } else if (strcasecmp(str, "RAID5E-RS") == 0) {
446                 *level = G_RAID_VOLUME_RL_RAID5E;
447                 *qual = G_RAID_VOLUME_RLQ_R5ERS;
448         } else if (strcasecmp(str, "RAID5E") == 0 ||
449                    strcasecmp(str, "RAID5E-LA") == 0) {
450                 *level = G_RAID_VOLUME_RL_RAID5E;
451                 *qual = G_RAID_VOLUME_RLQ_R5ELA;
452         } else if (strcasecmp(str, "RAID5E-LS") == 0) {
453                 *level = G_RAID_VOLUME_RL_RAID5E;
454                 *qual = G_RAID_VOLUME_RLQ_R5ELS;
455         } else if (strcasecmp(str, "RAID5EE-RA") == 0) {
456                 *level = G_RAID_VOLUME_RL_RAID5EE;
457                 *qual = G_RAID_VOLUME_RLQ_R5EERA;
458         } else if (strcasecmp(str, "RAID5EE-RS") == 0) {
459                 *level = G_RAID_VOLUME_RL_RAID5EE;
460                 *qual = G_RAID_VOLUME_RLQ_R5EERS;
461         } else if (strcasecmp(str, "RAID5EE") == 0 ||
462                    strcasecmp(str, "RAID5EE-LA") == 0) {
463                 *level = G_RAID_VOLUME_RL_RAID5EE;
464                 *qual = G_RAID_VOLUME_RLQ_R5EELA;
465         } else if (strcasecmp(str, "RAID5EE-LS") == 0) {
466                 *level = G_RAID_VOLUME_RL_RAID5EE;
467                 *qual = G_RAID_VOLUME_RLQ_R5EELS;
468         } else if (strcasecmp(str, "RAID5R-RA") == 0) {
469                 *level = G_RAID_VOLUME_RL_RAID5R;
470                 *qual = G_RAID_VOLUME_RLQ_R5RRA;
471         } else if (strcasecmp(str, "RAID5R-RS") == 0) {
472                 *level = G_RAID_VOLUME_RL_RAID5R;
473                 *qual = G_RAID_VOLUME_RLQ_R5RRS;
474         } else if (strcasecmp(str, "RAID5R") == 0 ||
475                    strcasecmp(str, "RAID5R-LA") == 0) {
476                 *level = G_RAID_VOLUME_RL_RAID5R;
477                 *qual = G_RAID_VOLUME_RLQ_R5RLA;
478         } else if (strcasecmp(str, "RAID5R-LS") == 0) {
479                 *level = G_RAID_VOLUME_RL_RAID5R;
480                 *qual = G_RAID_VOLUME_RLQ_R5RLS;
481         } else
482                 return (-1);
483         return (0);
484 }
485
486 const char *
487 g_raid_get_diskname(struct g_raid_disk *disk)
488 {
489
490         if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL)
491                 return ("[unknown]");
492         return (disk->d_consumer->provider->name);
493 }
494
495 void
496 g_raid_get_disk_info(struct g_raid_disk *disk)
497 {
498         struct g_consumer *cp = disk->d_consumer;
499         int error, len;
500
501         /* Read kernel dumping information. */
502         disk->d_kd.offset = 0;
503         disk->d_kd.length = OFF_MAX;
504         len = sizeof(disk->d_kd);
505         error = g_io_getattr("GEOM::kerneldump", cp, &len, &disk->d_kd);
506         if (error)
507                 disk->d_kd.di.dumper = NULL;
508         if (disk->d_kd.di.dumper == NULL)
509                 G_RAID_DEBUG1(2, disk->d_softc,
510                     "Dumping not supported by %s: %d.", 
511                     cp->provider->name, error);
512
513         /* Read BIO_DELETE support. */
514         error = g_getattr("GEOM::candelete", cp, &disk->d_candelete);
515         if (error)
516                 disk->d_candelete = 0;
517         if (!disk->d_candelete)
518                 G_RAID_DEBUG1(2, disk->d_softc,
519                     "BIO_DELETE not supported by %s: %d.", 
520                     cp->provider->name, error);
521 }
522
523 void
524 g_raid_report_disk_state(struct g_raid_disk *disk)
525 {
526         struct g_raid_subdisk *sd;
527         int len, state;
528         uint32_t s;
529
530         if (disk->d_consumer == NULL)
531                 return;
532         if (disk->d_state == G_RAID_DISK_S_DISABLED) {
533                 s = G_STATE_ACTIVE; /* XXX */
534         } else if (disk->d_state == G_RAID_DISK_S_FAILED ||
535             disk->d_state == G_RAID_DISK_S_STALE_FAILED) {
536                 s = G_STATE_FAILED;
537         } else {
538                 state = G_RAID_SUBDISK_S_ACTIVE;
539                 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
540                         if (sd->sd_state < state)
541                                 state = sd->sd_state;
542                 }
543                 if (state == G_RAID_SUBDISK_S_FAILED)
544                         s = G_STATE_FAILED;
545                 else if (state == G_RAID_SUBDISK_S_NEW ||
546                     state == G_RAID_SUBDISK_S_REBUILD)
547                         s = G_STATE_REBUILD;
548                 else if (state == G_RAID_SUBDISK_S_STALE ||
549                     state == G_RAID_SUBDISK_S_RESYNC)
550                         s = G_STATE_RESYNC;
551                 else
552                         s = G_STATE_ACTIVE;
553         }
554         len = sizeof(s);
555         g_io_getattr("GEOM::setstate", disk->d_consumer, &len, &s);
556         G_RAID_DEBUG1(2, disk->d_softc, "Disk %s state reported as %d.",
557             g_raid_get_diskname(disk), s);
558 }
559
560 void
561 g_raid_change_disk_state(struct g_raid_disk *disk, int state)
562 {
563
564         G_RAID_DEBUG1(0, disk->d_softc, "Disk %s state changed from %s to %s.",
565             g_raid_get_diskname(disk),
566             g_raid_disk_state2str(disk->d_state),
567             g_raid_disk_state2str(state));
568         disk->d_state = state;
569         g_raid_report_disk_state(disk);
570 }
571
572 void
573 g_raid_change_subdisk_state(struct g_raid_subdisk *sd, int state)
574 {
575
576         G_RAID_DEBUG1(0, sd->sd_softc,
577             "Subdisk %s:%d-%s state changed from %s to %s.",
578             sd->sd_volume->v_name, sd->sd_pos,
579             sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]",
580             g_raid_subdisk_state2str(sd->sd_state),
581             g_raid_subdisk_state2str(state));
582         sd->sd_state = state;
583         if (sd->sd_disk)
584                 g_raid_report_disk_state(sd->sd_disk);
585 }
586
587 void
588 g_raid_change_volume_state(struct g_raid_volume *vol, int state)
589 {
590
591         G_RAID_DEBUG1(0, vol->v_softc,
592             "Volume %s state changed from %s to %s.",
593             vol->v_name,
594             g_raid_volume_state2str(vol->v_state),
595             g_raid_volume_state2str(state));
596         vol->v_state = state;
597 }
598
599 /*
600  * --- Events handling functions ---
601  * Events in geom_raid are used to maintain subdisks and volumes status
602  * from one thread to simplify locking.
603  */
604 static void
605 g_raid_event_free(struct g_raid_event *ep)
606 {
607
608         free(ep, M_RAID);
609 }
610
611 int
612 g_raid_event_send(void *arg, int event, int flags)
613 {
614         struct g_raid_softc *sc;
615         struct g_raid_event *ep;
616         int error;
617
618         if ((flags & G_RAID_EVENT_VOLUME) != 0) {
619                 sc = ((struct g_raid_volume *)arg)->v_softc;
620         } else if ((flags & G_RAID_EVENT_DISK) != 0) {
621                 sc = ((struct g_raid_disk *)arg)->d_softc;
622         } else if ((flags & G_RAID_EVENT_SUBDISK) != 0) {
623                 sc = ((struct g_raid_subdisk *)arg)->sd_softc;
624         } else {
625                 sc = arg;
626         }
627         ep = malloc(sizeof(*ep), M_RAID,
628             sx_xlocked(&sc->sc_lock) ? M_WAITOK : M_NOWAIT);
629         if (ep == NULL)
630                 return (ENOMEM);
631         ep->e_tgt = arg;
632         ep->e_event = event;
633         ep->e_flags = flags;
634         ep->e_error = 0;
635         G_RAID_DEBUG1(4, sc, "Sending event %p. Waking up %p.", ep, sc);
636         mtx_lock(&sc->sc_queue_mtx);
637         TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next);
638         mtx_unlock(&sc->sc_queue_mtx);
639         wakeup(sc);
640
641         if ((flags & G_RAID_EVENT_WAIT) == 0)
642                 return (0);
643
644         sx_assert(&sc->sc_lock, SX_XLOCKED);
645         G_RAID_DEBUG1(4, sc, "Sleeping on %p.", ep);
646         sx_xunlock(&sc->sc_lock);
647         while ((ep->e_flags & G_RAID_EVENT_DONE) == 0) {
648                 mtx_lock(&sc->sc_queue_mtx);
649                 MSLEEP(error, ep, &sc->sc_queue_mtx, PRIBIO | PDROP, "m:event",
650                     hz * 5);
651         }
652         error = ep->e_error;
653         g_raid_event_free(ep);
654         sx_xlock(&sc->sc_lock);
655         return (error);
656 }
657
658 static void
659 g_raid_event_cancel(struct g_raid_softc *sc, void *tgt)
660 {
661         struct g_raid_event *ep, *tmpep;
662
663         sx_assert(&sc->sc_lock, SX_XLOCKED);
664
665         mtx_lock(&sc->sc_queue_mtx);
666         TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) {
667                 if (ep->e_tgt != tgt)
668                         continue;
669                 TAILQ_REMOVE(&sc->sc_events, ep, e_next);
670                 if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0)
671                         g_raid_event_free(ep);
672                 else {
673                         ep->e_error = ECANCELED;
674                         wakeup(ep);
675                 }
676         }
677         mtx_unlock(&sc->sc_queue_mtx);
678 }
679
680 static int
681 g_raid_event_check(struct g_raid_softc *sc, void *tgt)
682 {
683         struct g_raid_event *ep;
684         int     res = 0;
685
686         sx_assert(&sc->sc_lock, SX_XLOCKED);
687
688         mtx_lock(&sc->sc_queue_mtx);
689         TAILQ_FOREACH(ep, &sc->sc_events, e_next) {
690                 if (ep->e_tgt != tgt)
691                         continue;
692                 res = 1;
693                 break;
694         }
695         mtx_unlock(&sc->sc_queue_mtx);
696         return (res);
697 }
698
699 /*
700  * Return the number of disks in given state.
701  * If state is equal to -1, count all connected disks.
702  */
703 u_int
704 g_raid_ndisks(struct g_raid_softc *sc, int state)
705 {
706         struct g_raid_disk *disk;
707         u_int n;
708
709         sx_assert(&sc->sc_lock, SX_LOCKED);
710
711         n = 0;
712         TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
713                 if (disk->d_state == state || state == -1)
714                         n++;
715         }
716         return (n);
717 }
718
719 /*
720  * Return the number of subdisks in given state.
721  * If state is equal to -1, count all connected disks.
722  */
723 u_int
724 g_raid_nsubdisks(struct g_raid_volume *vol, int state)
725 {
726         struct g_raid_subdisk *subdisk;
727         struct g_raid_softc *sc;
728         u_int i, n ;
729
730         sc = vol->v_softc;
731         sx_assert(&sc->sc_lock, SX_LOCKED);
732
733         n = 0;
734         for (i = 0; i < vol->v_disks_count; i++) {
735                 subdisk = &vol->v_subdisks[i];
736                 if ((state == -1 &&
737                      subdisk->sd_state != G_RAID_SUBDISK_S_NONE) ||
738                     subdisk->sd_state == state)
739                         n++;
740         }
741         return (n);
742 }
743
744 /*
745  * Return the first subdisk in given state.
746  * If state is equal to -1, then the first connected disks.
747  */
748 struct g_raid_subdisk *
749 g_raid_get_subdisk(struct g_raid_volume *vol, int state)
750 {
751         struct g_raid_subdisk *sd;
752         struct g_raid_softc *sc;
753         u_int i;
754
755         sc = vol->v_softc;
756         sx_assert(&sc->sc_lock, SX_LOCKED);
757
758         for (i = 0; i < vol->v_disks_count; i++) {
759                 sd = &vol->v_subdisks[i];
760                 if ((state == -1 &&
761                      sd->sd_state != G_RAID_SUBDISK_S_NONE) ||
762                     sd->sd_state == state)
763                         return (sd);
764         }
765         return (NULL);
766 }
767
768 struct g_consumer *
769 g_raid_open_consumer(struct g_raid_softc *sc, const char *name)
770 {
771         struct g_consumer *cp;
772         struct g_provider *pp;
773
774         g_topology_assert();
775
776         if (strncmp(name, "/dev/", 5) == 0)
777                 name += 5;
778         pp = g_provider_by_name(name);
779         if (pp == NULL)
780                 return (NULL);
781         cp = g_new_consumer(sc->sc_geom);
782         cp->flags |= G_CF_DIRECT_RECEIVE;
783         if (g_attach(cp, pp) != 0) {
784                 g_destroy_consumer(cp);
785                 return (NULL);
786         }
787         if (g_access(cp, 1, 1, 1) != 0) {
788                 g_detach(cp);
789                 g_destroy_consumer(cp);
790                 return (NULL);
791         }
792         return (cp);
793 }
794
795 static u_int
796 g_raid_nrequests(struct g_raid_softc *sc, struct g_consumer *cp)
797 {
798         struct bio *bp;
799         u_int nreqs = 0;
800
801         mtx_lock(&sc->sc_queue_mtx);
802         TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
803                 if (bp->bio_from == cp)
804                         nreqs++;
805         }
806         mtx_unlock(&sc->sc_queue_mtx);
807         return (nreqs);
808 }
809
810 u_int
811 g_raid_nopens(struct g_raid_softc *sc)
812 {
813         struct g_raid_volume *vol;
814         u_int opens;
815
816         opens = 0;
817         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
818                 if (vol->v_provider_open != 0)
819                         opens++;
820         }
821         return (opens);
822 }
823
824 static int
825 g_raid_consumer_is_busy(struct g_raid_softc *sc, struct g_consumer *cp)
826 {
827
828         if (cp->index > 0) {
829                 G_RAID_DEBUG1(2, sc,
830                     "I/O requests for %s exist, can't destroy it now.",
831                     cp->provider->name);
832                 return (1);
833         }
834         if (g_raid_nrequests(sc, cp) > 0) {
835                 G_RAID_DEBUG1(2, sc,
836                     "I/O requests for %s in queue, can't destroy it now.",
837                     cp->provider->name);
838                 return (1);
839         }
840         return (0);
841 }
842
843 static void
844 g_raid_destroy_consumer(void *arg, int flags __unused)
845 {
846         struct g_consumer *cp;
847
848         g_topology_assert();
849
850         cp = arg;
851         G_RAID_DEBUG(1, "Consumer %s destroyed.", cp->provider->name);
852         g_detach(cp);
853         g_destroy_consumer(cp);
854 }
855
856 void
857 g_raid_kill_consumer(struct g_raid_softc *sc, struct g_consumer *cp)
858 {
859         struct g_provider *pp;
860         int retaste_wait;
861
862         g_topology_assert_not();
863
864         g_topology_lock();
865         cp->private = NULL;
866         if (g_raid_consumer_is_busy(sc, cp))
867                 goto out;
868         pp = cp->provider;
869         retaste_wait = 0;
870         if (cp->acw == 1) {
871                 if ((pp->geom->flags & G_GEOM_WITHER) == 0)
872                         retaste_wait = 1;
873         }
874         if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0)
875                 g_access(cp, -cp->acr, -cp->acw, -cp->ace);
876         if (retaste_wait) {
877                 /*
878                  * After retaste event was send (inside g_access()), we can send
879                  * event to detach and destroy consumer.
880                  * A class, which has consumer to the given provider connected
881                  * will not receive retaste event for the provider.
882                  * This is the way how I ignore retaste events when I close
883                  * consumers opened for write: I detach and destroy consumer
884                  * after retaste event is sent.
885                  */
886                 g_post_event(g_raid_destroy_consumer, cp, M_WAITOK, NULL);
887                 goto out;
888         }
889         G_RAID_DEBUG(1, "Consumer %s destroyed.", pp->name);
890         g_detach(cp);
891         g_destroy_consumer(cp);
892 out:
893         g_topology_unlock();
894 }
895
896 static void
897 g_raid_orphan(struct g_consumer *cp)
898 {
899         struct g_raid_disk *disk;
900
901         g_topology_assert();
902
903         disk = cp->private;
904         if (disk == NULL)
905                 return;
906         g_raid_event_send(disk, G_RAID_DISK_E_DISCONNECTED,
907             G_RAID_EVENT_DISK);
908 }
909
910 static void
911 g_raid_clean(struct g_raid_volume *vol, int acw)
912 {
913         struct g_raid_softc *sc;
914         int timeout;
915
916         sc = vol->v_softc;
917         g_topology_assert_not();
918         sx_assert(&sc->sc_lock, SX_XLOCKED);
919
920 //      if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0)
921 //              return;
922         if (!vol->v_dirty)
923                 return;
924         if (vol->v_writes > 0)
925                 return;
926         if (acw > 0 || (acw == -1 &&
927             vol->v_provider != NULL && vol->v_provider->acw > 0)) {
928                 timeout = g_raid_clean_time - (time_uptime - vol->v_last_write);
929                 if (!g_raid_shutdown && timeout > 0)
930                         return;
931         }
932         vol->v_dirty = 0;
933         G_RAID_DEBUG1(1, sc, "Volume %s marked as clean.",
934             vol->v_name);
935         g_raid_write_metadata(sc, vol, NULL, NULL);
936 }
937
938 static void
939 g_raid_dirty(struct g_raid_volume *vol)
940 {
941         struct g_raid_softc *sc;
942
943         sc = vol->v_softc;
944         g_topology_assert_not();
945         sx_assert(&sc->sc_lock, SX_XLOCKED);
946
947 //      if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0)
948 //              return;
949         vol->v_dirty = 1;
950         G_RAID_DEBUG1(1, sc, "Volume %s marked as dirty.",
951             vol->v_name);
952         g_raid_write_metadata(sc, vol, NULL, NULL);
953 }
954
955 void
956 g_raid_tr_flush_common(struct g_raid_tr_object *tr, struct bio *bp)
957 {
958         struct g_raid_volume *vol;
959         struct g_raid_subdisk *sd;
960         struct bio_queue_head queue;
961         struct bio *cbp;
962         int i;
963
964         vol = tr->tro_volume;
965
966         /*
967          * Allocate all bios before sending any request, so we can return
968          * ENOMEM in nice and clean way.
969          */
970         bioq_init(&queue);
971         for (i = 0; i < vol->v_disks_count; i++) {
972                 sd = &vol->v_subdisks[i];
973                 if (sd->sd_state == G_RAID_SUBDISK_S_NONE ||
974                     sd->sd_state == G_RAID_SUBDISK_S_FAILED)
975                         continue;
976                 cbp = g_clone_bio(bp);
977                 if (cbp == NULL)
978                         goto failure;
979                 cbp->bio_caller1 = sd;
980                 bioq_insert_tail(&queue, cbp);
981         }
982         while ((cbp = bioq_takefirst(&queue)) != NULL) {
983                 sd = cbp->bio_caller1;
984                 cbp->bio_caller1 = NULL;
985                 g_raid_subdisk_iostart(sd, cbp);
986         }
987         return;
988 failure:
989         while ((cbp = bioq_takefirst(&queue)) != NULL)
990                 g_destroy_bio(cbp);
991         if (bp->bio_error == 0)
992                 bp->bio_error = ENOMEM;
993         g_raid_iodone(bp, bp->bio_error);
994 }
995
996 static void
997 g_raid_tr_kerneldump_common_done(struct bio *bp)
998 {
999
1000         bp->bio_flags |= BIO_DONE;
1001 }
1002
1003 int
1004 g_raid_tr_kerneldump_common(struct g_raid_tr_object *tr,
1005     void *virtual, vm_offset_t physical, off_t offset, size_t length)
1006 {
1007         struct g_raid_softc *sc;
1008         struct g_raid_volume *vol;
1009         struct bio bp;
1010
1011         vol = tr->tro_volume;
1012         sc = vol->v_softc;
1013
1014         g_reset_bio(&bp);
1015         bp.bio_cmd = BIO_WRITE;
1016         bp.bio_done = g_raid_tr_kerneldump_common_done;
1017         bp.bio_attribute = NULL;
1018         bp.bio_offset = offset;
1019         bp.bio_length = length;
1020         bp.bio_data = virtual;
1021         bp.bio_to = vol->v_provider;
1022
1023         g_raid_start(&bp);
1024         while (!(bp.bio_flags & BIO_DONE)) {
1025                 G_RAID_DEBUG1(4, sc, "Poll...");
1026                 g_raid_poll(sc);
1027                 DELAY(10);
1028         }
1029
1030         return (bp.bio_error != 0 ? EIO : 0);
1031 }
1032
1033 static int
1034 g_raid_dump(void *arg,
1035     void *virtual, vm_offset_t physical, off_t offset, size_t length)
1036 {
1037         struct g_raid_volume *vol;
1038         int error;
1039
1040         vol = (struct g_raid_volume *)arg;
1041         G_RAID_DEBUG1(3, vol->v_softc, "Dumping at off %llu len %llu.",
1042             (long long unsigned)offset, (long long unsigned)length);
1043
1044         error = G_RAID_TR_KERNELDUMP(vol->v_tr,
1045             virtual, physical, offset, length);
1046         return (error);
1047 }
1048
1049 static void
1050 g_raid_kerneldump(struct g_raid_softc *sc, struct bio *bp)
1051 {
1052         struct g_kerneldump *gkd;
1053         struct g_provider *pp;
1054         struct g_raid_volume *vol;
1055
1056         gkd = (struct g_kerneldump*)bp->bio_data;
1057         pp = bp->bio_to;
1058         vol = pp->private;
1059         g_trace(G_T_TOPOLOGY, "g_raid_kerneldump(%s, %jd, %jd)",
1060                 pp->name, (intmax_t)gkd->offset, (intmax_t)gkd->length);
1061         gkd->di.dumper = g_raid_dump;
1062         gkd->di.priv = vol;
1063         gkd->di.blocksize = vol->v_sectorsize;
1064         gkd->di.maxiosize = DFLTPHYS;
1065         gkd->di.mediaoffset = gkd->offset;
1066         if ((gkd->offset + gkd->length) > vol->v_mediasize)
1067                 gkd->length = vol->v_mediasize - gkd->offset;
1068         gkd->di.mediasize = gkd->length;
1069         g_io_deliver(bp, 0);
1070 }
1071
1072 static void
1073 g_raid_candelete(struct g_raid_softc *sc, struct bio *bp)
1074 {
1075         struct g_provider *pp;
1076         struct g_raid_volume *vol;
1077         struct g_raid_subdisk *sd;
1078         int i, val;
1079
1080         pp = bp->bio_to;
1081         vol = pp->private;
1082         for (i = 0; i < vol->v_disks_count; i++) {
1083                 sd = &vol->v_subdisks[i];
1084                 if (sd->sd_state == G_RAID_SUBDISK_S_NONE)
1085                         continue;
1086                 if (sd->sd_disk->d_candelete)
1087                         break;
1088         }
1089         val = i < vol->v_disks_count;
1090         g_handleattr(bp, "GEOM::candelete", &val, sizeof(val));
1091 }
1092
1093 static void
1094 g_raid_start(struct bio *bp)
1095 {
1096         struct g_raid_softc *sc;
1097
1098         sc = bp->bio_to->geom->softc;
1099         /*
1100          * If sc == NULL or there are no valid disks, provider's error
1101          * should be set and g_raid_start() should not be called at all.
1102          */
1103 //      KASSERT(sc != NULL && sc->sc_state == G_RAID_VOLUME_S_RUNNING,
1104 //          ("Provider's error should be set (error=%d)(mirror=%s).",
1105 //          bp->bio_to->error, bp->bio_to->name));
1106         G_RAID_LOGREQ(3, bp, "Request received.");
1107
1108         switch (bp->bio_cmd) {
1109         case BIO_READ:
1110         case BIO_WRITE:
1111         case BIO_DELETE:
1112         case BIO_FLUSH:
1113                 break;
1114         case BIO_GETATTR:
1115                 if (!strcmp(bp->bio_attribute, "GEOM::candelete"))
1116                         g_raid_candelete(sc, bp);
1117                 else if (!strcmp(bp->bio_attribute, "GEOM::kerneldump"))
1118                         g_raid_kerneldump(sc, bp);
1119                 else
1120                         g_io_deliver(bp, EOPNOTSUPP);
1121                 return;
1122         default:
1123                 g_io_deliver(bp, EOPNOTSUPP);
1124                 return;
1125         }
1126         mtx_lock(&sc->sc_queue_mtx);
1127         bioq_insert_tail(&sc->sc_queue, bp);
1128         mtx_unlock(&sc->sc_queue_mtx);
1129         if (!dumping) {
1130                 G_RAID_DEBUG1(4, sc, "Waking up %p.", sc);
1131                 wakeup(sc);
1132         }
1133 }
1134
1135 static int
1136 g_raid_bio_overlaps(const struct bio *bp, off_t lstart, off_t len)
1137 {
1138         /*
1139          * 5 cases:
1140          * (1) bp entirely below NO
1141          * (2) bp entirely above NO
1142          * (3) bp start below, but end in range YES
1143          * (4) bp entirely within YES
1144          * (5) bp starts within, ends above YES
1145          *
1146          * lock range 10-19 (offset 10 length 10)
1147          * (1) 1-5: first if kicks it out
1148          * (2) 30-35: second if kicks it out
1149          * (3) 5-15: passes both ifs
1150          * (4) 12-14: passes both ifs
1151          * (5) 19-20: passes both
1152          */
1153         off_t lend = lstart + len - 1;
1154         off_t bstart = bp->bio_offset;
1155         off_t bend = bp->bio_offset + bp->bio_length - 1;
1156
1157         if (bend < lstart)
1158                 return (0);
1159         if (lend < bstart)
1160                 return (0);
1161         return (1);
1162 }
1163
1164 static int
1165 g_raid_is_in_locked_range(struct g_raid_volume *vol, const struct bio *bp)
1166 {
1167         struct g_raid_lock *lp;
1168
1169         sx_assert(&vol->v_softc->sc_lock, SX_LOCKED);
1170
1171         LIST_FOREACH(lp, &vol->v_locks, l_next) {
1172                 if (g_raid_bio_overlaps(bp, lp->l_offset, lp->l_length))
1173                         return (1);
1174         }
1175         return (0);
1176 }
1177
1178 static void
1179 g_raid_start_request(struct bio *bp)
1180 {
1181         struct g_raid_softc *sc;
1182         struct g_raid_volume *vol;
1183
1184         sc = bp->bio_to->geom->softc;
1185         sx_assert(&sc->sc_lock, SX_LOCKED);
1186         vol = bp->bio_to->private;
1187
1188         /*
1189          * Check to see if this item is in a locked range.  If so,
1190          * queue it to our locked queue and return.  We'll requeue
1191          * it when the range is unlocked.  Internal I/O for the
1192          * rebuild/rescan/recovery process is excluded from this
1193          * check so we can actually do the recovery.
1194          */
1195         if (!(bp->bio_cflags & G_RAID_BIO_FLAG_SPECIAL) &&
1196             g_raid_is_in_locked_range(vol, bp)) {
1197                 G_RAID_LOGREQ(3, bp, "Defer request.");
1198                 bioq_insert_tail(&vol->v_locked, bp);
1199                 return;
1200         }
1201
1202         /*
1203          * If we're actually going to do the write/delete, then
1204          * update the idle stats for the volume.
1205          */
1206         if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) {
1207                 if (!vol->v_dirty)
1208                         g_raid_dirty(vol);
1209                 vol->v_writes++;
1210         }
1211
1212         /*
1213          * Put request onto inflight queue, so we can check if new
1214          * synchronization requests don't collide with it.  Then tell
1215          * the transformation layer to start the I/O.
1216          */
1217         bioq_insert_tail(&vol->v_inflight, bp);
1218         G_RAID_LOGREQ(4, bp, "Request started");
1219         G_RAID_TR_IOSTART(vol->v_tr, bp);
1220 }
1221
1222 static void
1223 g_raid_finish_with_locked_ranges(struct g_raid_volume *vol, struct bio *bp)
1224 {
1225         off_t off, len;
1226         struct bio *nbp;
1227         struct g_raid_lock *lp;
1228
1229         vol->v_pending_lock = 0;
1230         LIST_FOREACH(lp, &vol->v_locks, l_next) {
1231                 if (lp->l_pending) {
1232                         off = lp->l_offset;
1233                         len = lp->l_length;
1234                         lp->l_pending = 0;
1235                         TAILQ_FOREACH(nbp, &vol->v_inflight.queue, bio_queue) {
1236                                 if (g_raid_bio_overlaps(nbp, off, len))
1237                                         lp->l_pending++;
1238                         }
1239                         if (lp->l_pending) {
1240                                 vol->v_pending_lock = 1;
1241                                 G_RAID_DEBUG1(4, vol->v_softc,
1242                                     "Deferred lock(%jd, %jd) has %d pending",
1243                                     (intmax_t)off, (intmax_t)(off + len),
1244                                     lp->l_pending);
1245                                 continue;
1246                         }
1247                         G_RAID_DEBUG1(4, vol->v_softc,
1248                             "Deferred lock of %jd to %jd completed",
1249                             (intmax_t)off, (intmax_t)(off + len));
1250                         G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg);
1251                 }
1252         }
1253 }
1254
1255 void
1256 g_raid_iodone(struct bio *bp, int error)
1257 {
1258         struct g_raid_softc *sc;
1259         struct g_raid_volume *vol;
1260
1261         sc = bp->bio_to->geom->softc;
1262         sx_assert(&sc->sc_lock, SX_LOCKED);
1263         vol = bp->bio_to->private;
1264         G_RAID_LOGREQ(3, bp, "Request done: %d.", error);
1265
1266         /* Update stats if we done write/delete. */
1267         if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) {
1268                 vol->v_writes--;
1269                 vol->v_last_write = time_uptime;
1270         }
1271
1272         bioq_remove(&vol->v_inflight, bp);
1273         if (vol->v_pending_lock && g_raid_is_in_locked_range(vol, bp))
1274                 g_raid_finish_with_locked_ranges(vol, bp);
1275         getmicrouptime(&vol->v_last_done);
1276         g_io_deliver(bp, error);
1277 }
1278
1279 int
1280 g_raid_lock_range(struct g_raid_volume *vol, off_t off, off_t len,
1281     struct bio *ignore, void *argp)
1282 {
1283         struct g_raid_softc *sc;
1284         struct g_raid_lock *lp;
1285         struct bio *bp;
1286
1287         sc = vol->v_softc;
1288         lp = malloc(sizeof(*lp), M_RAID, M_WAITOK | M_ZERO);
1289         LIST_INSERT_HEAD(&vol->v_locks, lp, l_next);
1290         lp->l_offset = off;
1291         lp->l_length = len;
1292         lp->l_callback_arg = argp;
1293
1294         lp->l_pending = 0;
1295         TAILQ_FOREACH(bp, &vol->v_inflight.queue, bio_queue) {
1296                 if (bp != ignore && g_raid_bio_overlaps(bp, off, len))
1297                         lp->l_pending++;
1298         }       
1299
1300         /*
1301          * If there are any writes that are pending, we return EBUSY.  All
1302          * callers will have to wait until all pending writes clear.
1303          */
1304         if (lp->l_pending > 0) {
1305                 vol->v_pending_lock = 1;
1306                 G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd deferred %d pend",
1307                     (intmax_t)off, (intmax_t)(off+len), lp->l_pending);
1308                 return (EBUSY);
1309         }
1310         G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd",
1311             (intmax_t)off, (intmax_t)(off+len));
1312         G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg);
1313         return (0);
1314 }
1315
1316 int
1317 g_raid_unlock_range(struct g_raid_volume *vol, off_t off, off_t len)
1318 {
1319         struct g_raid_lock *lp;
1320         struct g_raid_softc *sc;
1321         struct bio *bp;
1322
1323         sc = vol->v_softc;
1324         LIST_FOREACH(lp, &vol->v_locks, l_next) {
1325                 if (lp->l_offset == off && lp->l_length == len) {
1326                         LIST_REMOVE(lp, l_next);
1327                         /* XXX
1328                          * Right now we just put them all back on the queue
1329                          * and hope for the best.  We hope this because any
1330                          * locked ranges will go right back on this list
1331                          * when the worker thread runs.
1332                          * XXX
1333                          */
1334                         G_RAID_DEBUG1(4, sc, "Unlocked %jd to %jd",
1335                             (intmax_t)lp->l_offset,
1336                             (intmax_t)(lp->l_offset+lp->l_length));
1337                         mtx_lock(&sc->sc_queue_mtx);
1338                         while ((bp = bioq_takefirst(&vol->v_locked)) != NULL)
1339                                 bioq_insert_tail(&sc->sc_queue, bp);
1340                         mtx_unlock(&sc->sc_queue_mtx);
1341                         free(lp, M_RAID);
1342                         return (0);
1343                 }
1344         }
1345         return (EINVAL);
1346 }
1347
1348 void
1349 g_raid_subdisk_iostart(struct g_raid_subdisk *sd, struct bio *bp)
1350 {
1351         struct g_consumer *cp;
1352         struct g_raid_disk *disk, *tdisk;
1353
1354         bp->bio_caller1 = sd;
1355
1356         /*
1357          * Make sure that the disk is present. Generally it is a task of
1358          * transformation layers to not send requests to absent disks, but
1359          * it is better to be safe and report situation then sorry.
1360          */
1361         if (sd->sd_disk == NULL) {
1362                 G_RAID_LOGREQ(0, bp, "Warning! I/O request to an absent disk!");
1363 nodisk:
1364                 bp->bio_from = NULL;
1365                 bp->bio_to = NULL;
1366                 bp->bio_error = ENXIO;
1367                 g_raid_disk_done(bp);
1368                 return;
1369         }
1370         disk = sd->sd_disk;
1371         if (disk->d_state != G_RAID_DISK_S_ACTIVE &&
1372             disk->d_state != G_RAID_DISK_S_FAILED) {
1373                 G_RAID_LOGREQ(0, bp, "Warning! I/O request to a disk in a "
1374                     "wrong state (%s)!", g_raid_disk_state2str(disk->d_state));
1375                 goto nodisk;
1376         }
1377
1378         cp = disk->d_consumer;
1379         bp->bio_from = cp;
1380         bp->bio_to = cp->provider;
1381         cp->index++;
1382
1383         /* Update average disks load. */
1384         TAILQ_FOREACH(tdisk, &sd->sd_softc->sc_disks, d_next) {
1385                 if (tdisk->d_consumer == NULL)
1386                         tdisk->d_load = 0;
1387                 else
1388                         tdisk->d_load = (tdisk->d_consumer->index *
1389                             G_RAID_SUBDISK_LOAD_SCALE + tdisk->d_load * 7) / 8;
1390         }
1391
1392         disk->d_last_offset = bp->bio_offset + bp->bio_length;
1393         if (dumping) {
1394                 G_RAID_LOGREQ(3, bp, "Sending dumping request.");
1395                 if (bp->bio_cmd == BIO_WRITE) {
1396                         bp->bio_error = g_raid_subdisk_kerneldump(sd,
1397                             bp->bio_data, 0, bp->bio_offset, bp->bio_length);
1398                 } else
1399                         bp->bio_error = EOPNOTSUPP;
1400                 g_raid_disk_done(bp);
1401         } else {
1402                 bp->bio_done = g_raid_disk_done;
1403                 bp->bio_offset += sd->sd_offset;
1404                 G_RAID_LOGREQ(3, bp, "Sending request.");
1405                 g_io_request(bp, cp);
1406         }
1407 }
1408
1409 int
1410 g_raid_subdisk_kerneldump(struct g_raid_subdisk *sd,
1411     void *virtual, vm_offset_t physical, off_t offset, size_t length)
1412 {
1413
1414         if (sd->sd_disk == NULL)
1415                 return (ENXIO);
1416         if (sd->sd_disk->d_kd.di.dumper == NULL)
1417                 return (EOPNOTSUPP);
1418         return (dump_write(&sd->sd_disk->d_kd.di,
1419             virtual, physical,
1420             sd->sd_disk->d_kd.di.mediaoffset + sd->sd_offset + offset,
1421             length));
1422 }
1423
1424 static void
1425 g_raid_disk_done(struct bio *bp)
1426 {
1427         struct g_raid_softc *sc;
1428         struct g_raid_subdisk *sd;
1429
1430         sd = bp->bio_caller1;
1431         sc = sd->sd_softc;
1432         mtx_lock(&sc->sc_queue_mtx);
1433         bioq_insert_tail(&sc->sc_queue, bp);
1434         mtx_unlock(&sc->sc_queue_mtx);
1435         if (!dumping)
1436                 wakeup(sc);
1437 }
1438
1439 static void
1440 g_raid_disk_done_request(struct bio *bp)
1441 {
1442         struct g_raid_softc *sc;
1443         struct g_raid_disk *disk;
1444         struct g_raid_subdisk *sd;
1445         struct g_raid_volume *vol;
1446
1447         g_topology_assert_not();
1448
1449         G_RAID_LOGREQ(3, bp, "Disk request done: %d.", bp->bio_error);
1450         sd = bp->bio_caller1;
1451         sc = sd->sd_softc;
1452         vol = sd->sd_volume;
1453         if (bp->bio_from != NULL) {
1454                 bp->bio_from->index--;
1455                 disk = bp->bio_from->private;
1456                 if (disk == NULL)
1457                         g_raid_kill_consumer(sc, bp->bio_from);
1458         }
1459         bp->bio_offset -= sd->sd_offset;
1460
1461         G_RAID_TR_IODONE(vol->v_tr, sd, bp);
1462 }
1463
1464 static void
1465 g_raid_handle_event(struct g_raid_softc *sc, struct g_raid_event *ep)
1466 {
1467
1468         if ((ep->e_flags & G_RAID_EVENT_VOLUME) != 0)
1469                 ep->e_error = g_raid_update_volume(ep->e_tgt, ep->e_event);
1470         else if ((ep->e_flags & G_RAID_EVENT_DISK) != 0)
1471                 ep->e_error = g_raid_update_disk(ep->e_tgt, ep->e_event);
1472         else if ((ep->e_flags & G_RAID_EVENT_SUBDISK) != 0)
1473                 ep->e_error = g_raid_update_subdisk(ep->e_tgt, ep->e_event);
1474         else
1475                 ep->e_error = g_raid_update_node(ep->e_tgt, ep->e_event);
1476         if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) {
1477                 KASSERT(ep->e_error == 0,
1478                     ("Error cannot be handled."));
1479                 g_raid_event_free(ep);
1480         } else {
1481                 ep->e_flags |= G_RAID_EVENT_DONE;
1482                 G_RAID_DEBUG1(4, sc, "Waking up %p.", ep);
1483                 mtx_lock(&sc->sc_queue_mtx);
1484                 wakeup(ep);
1485                 mtx_unlock(&sc->sc_queue_mtx);
1486         }
1487 }
1488
1489 /*
1490  * Worker thread.
1491  */
1492 static void
1493 g_raid_worker(void *arg)
1494 {
1495         struct g_raid_softc *sc;
1496         struct g_raid_event *ep;
1497         struct g_raid_volume *vol;
1498         struct bio *bp;
1499         struct timeval now, t;
1500         int timeout, rv;
1501
1502         sc = arg;
1503         thread_lock(curthread);
1504         sched_prio(curthread, PRIBIO);
1505         thread_unlock(curthread);
1506
1507         sx_xlock(&sc->sc_lock);
1508         for (;;) {
1509                 mtx_lock(&sc->sc_queue_mtx);
1510                 /*
1511                  * First take a look at events.
1512                  * This is important to handle events before any I/O requests.
1513                  */
1514                 bp = NULL;
1515                 vol = NULL;
1516                 rv = 0;
1517                 ep = TAILQ_FIRST(&sc->sc_events);
1518                 if (ep != NULL)
1519                         TAILQ_REMOVE(&sc->sc_events, ep, e_next);
1520                 else if ((bp = bioq_takefirst(&sc->sc_queue)) != NULL)
1521                         ;
1522                 else {
1523                         getmicrouptime(&now);
1524                         t = now;
1525                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1526                                 if (bioq_first(&vol->v_inflight) == NULL &&
1527                                     vol->v_tr &&
1528                                     timevalcmp(&vol->v_last_done, &t, < ))
1529                                         t = vol->v_last_done;
1530                         }
1531                         timevalsub(&t, &now);
1532                         timeout = g_raid_idle_threshold +
1533                             t.tv_sec * 1000000 + t.tv_usec;
1534                         if (timeout > 0) {
1535                                 /*
1536                                  * Two steps to avoid overflows at HZ=1000
1537                                  * and idle timeouts > 2.1s.  Some rounding
1538                                  * errors can occur, but they are < 1tick,
1539                                  * which is deemed to be close enough for
1540                                  * this purpose.
1541                                  */
1542                                 int micpertic = 1000000 / hz;
1543                                 timeout = (timeout + micpertic - 1) / micpertic;
1544                                 sx_xunlock(&sc->sc_lock);
1545                                 MSLEEP(rv, sc, &sc->sc_queue_mtx,
1546                                     PRIBIO | PDROP, "-", timeout);
1547                                 sx_xlock(&sc->sc_lock);
1548                                 goto process;
1549                         } else
1550                                 rv = EWOULDBLOCK;
1551                 }
1552                 mtx_unlock(&sc->sc_queue_mtx);
1553 process:
1554                 if (ep != NULL) {
1555                         g_raid_handle_event(sc, ep);
1556                 } else if (bp != NULL) {
1557                         if (bp->bio_to != NULL &&
1558                             bp->bio_to->geom == sc->sc_geom)
1559                                 g_raid_start_request(bp);
1560                         else
1561                                 g_raid_disk_done_request(bp);
1562                 } else if (rv == EWOULDBLOCK) {
1563                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1564                                 g_raid_clean(vol, -1);
1565                                 if (bioq_first(&vol->v_inflight) == NULL &&
1566                                     vol->v_tr) {
1567                                         t.tv_sec = g_raid_idle_threshold / 1000000;
1568                                         t.tv_usec = g_raid_idle_threshold % 1000000;
1569                                         timevaladd(&t, &vol->v_last_done);
1570                                         getmicrouptime(&now);
1571                                         if (timevalcmp(&t, &now, <= )) {
1572                                                 G_RAID_TR_IDLE(vol->v_tr);
1573                                                 vol->v_last_done = now;
1574                                         }
1575                                 }
1576                         }
1577                 }
1578                 if (sc->sc_stopping == G_RAID_DESTROY_HARD)
1579                         g_raid_destroy_node(sc, 1);     /* May not return. */
1580         }
1581 }
1582
1583 static void
1584 g_raid_poll(struct g_raid_softc *sc)
1585 {
1586         struct g_raid_event *ep;
1587         struct bio *bp;
1588
1589         sx_xlock(&sc->sc_lock);
1590         mtx_lock(&sc->sc_queue_mtx);
1591         /*
1592          * First take a look at events.
1593          * This is important to handle events before any I/O requests.
1594          */
1595         ep = TAILQ_FIRST(&sc->sc_events);
1596         if (ep != NULL) {
1597                 TAILQ_REMOVE(&sc->sc_events, ep, e_next);
1598                 mtx_unlock(&sc->sc_queue_mtx);
1599                 g_raid_handle_event(sc, ep);
1600                 goto out;
1601         }
1602         bp = bioq_takefirst(&sc->sc_queue);
1603         if (bp != NULL) {
1604                 mtx_unlock(&sc->sc_queue_mtx);
1605                 if (bp->bio_from == NULL ||
1606                     bp->bio_from->geom != sc->sc_geom)
1607                         g_raid_start_request(bp);
1608                 else
1609                         g_raid_disk_done_request(bp);
1610         }
1611 out:
1612         sx_xunlock(&sc->sc_lock);
1613 }
1614
1615 static void
1616 g_raid_launch_provider(struct g_raid_volume *vol)
1617 {
1618         struct g_raid_disk *disk;
1619         struct g_raid_subdisk *sd;
1620         struct g_raid_softc *sc;
1621         struct g_provider *pp;
1622         char name[G_RAID_MAX_VOLUMENAME];
1623         off_t off;
1624         int i;
1625
1626         sc = vol->v_softc;
1627         sx_assert(&sc->sc_lock, SX_LOCKED);
1628
1629         g_topology_lock();
1630         /* Try to name provider with volume name. */
1631         snprintf(name, sizeof(name), "raid/%s", vol->v_name);
1632         if (g_raid_name_format == 0 || vol->v_name[0] == 0 ||
1633             g_provider_by_name(name) != NULL) {
1634                 /* Otherwise use sequential volume number. */
1635                 snprintf(name, sizeof(name), "raid/r%d", vol->v_global_id);
1636         }
1637
1638         pp = g_new_providerf(sc->sc_geom, "%s", name);
1639         pp->flags |= G_PF_DIRECT_RECEIVE;
1640         if (vol->v_tr->tro_class->trc_accept_unmapped) {
1641                 pp->flags |= G_PF_ACCEPT_UNMAPPED;
1642                 for (i = 0; i < vol->v_disks_count; i++) {
1643                         sd = &vol->v_subdisks[i];
1644                         if (sd->sd_state == G_RAID_SUBDISK_S_NONE)
1645                                 continue;
1646                         if ((sd->sd_disk->d_consumer->provider->flags &
1647                             G_PF_ACCEPT_UNMAPPED) == 0)
1648                                 pp->flags &= ~G_PF_ACCEPT_UNMAPPED;
1649                 }
1650         }
1651         pp->private = vol;
1652         pp->mediasize = vol->v_mediasize;
1653         pp->sectorsize = vol->v_sectorsize;
1654         pp->stripesize = 0;
1655         pp->stripeoffset = 0;
1656         if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 ||
1657             vol->v_raid_level == G_RAID_VOLUME_RL_RAID3 ||
1658             vol->v_raid_level == G_RAID_VOLUME_RL_SINGLE ||
1659             vol->v_raid_level == G_RAID_VOLUME_RL_CONCAT) {
1660                 if ((disk = vol->v_subdisks[0].sd_disk) != NULL &&
1661                     disk->d_consumer != NULL &&
1662                     disk->d_consumer->provider != NULL) {
1663                         pp->stripesize = disk->d_consumer->provider->stripesize;
1664                         off = disk->d_consumer->provider->stripeoffset;
1665                         pp->stripeoffset = off + vol->v_subdisks[0].sd_offset;
1666                         if (off > 0)
1667                                 pp->stripeoffset %= off;
1668                 }
1669                 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID3) {
1670                         pp->stripesize *= (vol->v_disks_count - 1);
1671                         pp->stripeoffset *= (vol->v_disks_count - 1);
1672                 }
1673         } else
1674                 pp->stripesize = vol->v_strip_size;
1675         vol->v_provider = pp;
1676         g_error_provider(pp, 0);
1677         g_topology_unlock();
1678         G_RAID_DEBUG1(0, sc, "Provider %s for volume %s created.",
1679             pp->name, vol->v_name);
1680 }
1681
1682 static void
1683 g_raid_destroy_provider(struct g_raid_volume *vol)
1684 {
1685         struct g_raid_softc *sc;
1686         struct g_provider *pp;
1687         struct bio *bp, *tmp;
1688
1689         g_topology_assert_not();
1690         sc = vol->v_softc;
1691         pp = vol->v_provider;
1692         KASSERT(pp != NULL, ("NULL provider (volume=%s).", vol->v_name));
1693
1694         g_topology_lock();
1695         g_error_provider(pp, ENXIO);
1696         mtx_lock(&sc->sc_queue_mtx);
1697         TAILQ_FOREACH_SAFE(bp, &sc->sc_queue.queue, bio_queue, tmp) {
1698                 if (bp->bio_to != pp)
1699                         continue;
1700                 bioq_remove(&sc->sc_queue, bp);
1701                 g_io_deliver(bp, ENXIO);
1702         }
1703         mtx_unlock(&sc->sc_queue_mtx);
1704         G_RAID_DEBUG1(0, sc, "Provider %s for volume %s destroyed.",
1705             pp->name, vol->v_name);
1706         g_wither_provider(pp, ENXIO);
1707         g_topology_unlock();
1708         vol->v_provider = NULL;
1709 }
1710
1711 /*
1712  * Update device state.
1713  */
1714 static int
1715 g_raid_update_volume(struct g_raid_volume *vol, u_int event)
1716 {
1717         struct g_raid_softc *sc;
1718
1719         sc = vol->v_softc;
1720         sx_assert(&sc->sc_lock, SX_XLOCKED);
1721
1722         G_RAID_DEBUG1(2, sc, "Event %s for volume %s.",
1723             g_raid_volume_event2str(event),
1724             vol->v_name);
1725         switch (event) {
1726         case G_RAID_VOLUME_E_DOWN:
1727                 if (vol->v_provider != NULL)
1728                         g_raid_destroy_provider(vol);
1729                 break;
1730         case G_RAID_VOLUME_E_UP:
1731                 if (vol->v_provider == NULL)
1732                         g_raid_launch_provider(vol);
1733                 break;
1734         case G_RAID_VOLUME_E_START:
1735                 if (vol->v_tr)
1736                         G_RAID_TR_START(vol->v_tr);
1737                 return (0);
1738         default:
1739                 if (sc->sc_md)
1740                         G_RAID_MD_VOLUME_EVENT(sc->sc_md, vol, event);
1741                 return (0);
1742         }
1743
1744         /* Manage root mount release. */
1745         if (vol->v_starting) {
1746                 vol->v_starting = 0;
1747                 G_RAID_DEBUG1(1, sc, "root_mount_rel %p", vol->v_rootmount);
1748                 root_mount_rel(vol->v_rootmount);
1749                 vol->v_rootmount = NULL;
1750         }
1751         if (vol->v_stopping && vol->v_provider_open == 0)
1752                 g_raid_destroy_volume(vol);
1753         return (0);
1754 }
1755
1756 /*
1757  * Update subdisk state.
1758  */
1759 static int
1760 g_raid_update_subdisk(struct g_raid_subdisk *sd, u_int event)
1761 {
1762         struct g_raid_softc *sc;
1763         struct g_raid_volume *vol;
1764
1765         sc = sd->sd_softc;
1766         vol = sd->sd_volume;
1767         sx_assert(&sc->sc_lock, SX_XLOCKED);
1768
1769         G_RAID_DEBUG1(2, sc, "Event %s for subdisk %s:%d-%s.",
1770             g_raid_subdisk_event2str(event),
1771             vol->v_name, sd->sd_pos,
1772             sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]");
1773         if (vol->v_tr)
1774                 G_RAID_TR_EVENT(vol->v_tr, sd, event);
1775
1776         return (0);
1777 }
1778
1779 /*
1780  * Update disk state.
1781  */
1782 static int
1783 g_raid_update_disk(struct g_raid_disk *disk, u_int event)
1784 {
1785         struct g_raid_softc *sc;
1786
1787         sc = disk->d_softc;
1788         sx_assert(&sc->sc_lock, SX_XLOCKED);
1789
1790         G_RAID_DEBUG1(2, sc, "Event %s for disk %s.",
1791             g_raid_disk_event2str(event),
1792             g_raid_get_diskname(disk));
1793
1794         if (sc->sc_md)
1795                 G_RAID_MD_EVENT(sc->sc_md, disk, event);
1796         return (0);
1797 }
1798
1799 /*
1800  * Node event.
1801  */
1802 static int
1803 g_raid_update_node(struct g_raid_softc *sc, u_int event)
1804 {
1805         sx_assert(&sc->sc_lock, SX_XLOCKED);
1806
1807         G_RAID_DEBUG1(2, sc, "Event %s for the array.",
1808             g_raid_node_event2str(event));
1809
1810         if (event == G_RAID_NODE_E_WAKE)
1811                 return (0);
1812         if (sc->sc_md)
1813                 G_RAID_MD_EVENT(sc->sc_md, NULL, event);
1814         return (0);
1815 }
1816
1817 static int
1818 g_raid_access(struct g_provider *pp, int acr, int acw, int ace)
1819 {
1820         struct g_raid_volume *vol;
1821         struct g_raid_softc *sc;
1822         int dcw, opens, error = 0;
1823
1824         g_topology_assert();
1825         sc = pp->geom->softc;
1826         vol = pp->private;
1827         KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name));
1828         KASSERT(vol != NULL, ("NULL volume (provider=%s).", pp->name));
1829
1830         G_RAID_DEBUG1(2, sc, "Access request for %s: r%dw%de%d.", pp->name,
1831             acr, acw, ace);
1832         dcw = pp->acw + acw;
1833
1834         g_topology_unlock();
1835         sx_xlock(&sc->sc_lock);
1836         /* Deny new opens while dying. */
1837         if (sc->sc_stopping != 0 && (acr > 0 || acw > 0 || ace > 0)) {
1838                 error = ENXIO;
1839                 goto out;
1840         }
1841         /* Deny write opens for read-only volumes. */
1842         if (vol->v_read_only && acw > 0) {
1843                 error = EROFS;
1844                 goto out;
1845         }
1846         if (dcw == 0)
1847                 g_raid_clean(vol, dcw);
1848         vol->v_provider_open += acr + acw + ace;
1849         /* Handle delayed node destruction. */
1850         if (sc->sc_stopping == G_RAID_DESTROY_DELAYED &&
1851             vol->v_provider_open == 0) {
1852                 /* Count open volumes. */
1853                 opens = g_raid_nopens(sc);
1854                 if (opens == 0) {
1855                         sc->sc_stopping = G_RAID_DESTROY_HARD;
1856                         /* Wake up worker to make it selfdestruct. */
1857                         g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
1858                 }
1859         }
1860         /* Handle open volume destruction. */
1861         if (vol->v_stopping && vol->v_provider_open == 0)
1862                 g_raid_destroy_volume(vol);
1863 out:
1864         sx_xunlock(&sc->sc_lock);
1865         g_topology_lock();
1866         return (error);
1867 }
1868
1869 struct g_raid_softc *
1870 g_raid_create_node(struct g_class *mp,
1871     const char *name, struct g_raid_md_object *md)
1872 {
1873         struct g_raid_softc *sc;
1874         struct g_geom *gp;
1875         int error;
1876
1877         g_topology_assert();
1878         G_RAID_DEBUG(1, "Creating array %s.", name);
1879
1880         gp = g_new_geomf(mp, "%s", name);
1881         sc = malloc(sizeof(*sc), M_RAID, M_WAITOK | M_ZERO);
1882         gp->start = g_raid_start;
1883         gp->orphan = g_raid_orphan;
1884         gp->access = g_raid_access;
1885         gp->dumpconf = g_raid_dumpconf;
1886
1887         sc->sc_md = md;
1888         sc->sc_geom = gp;
1889         sc->sc_flags = 0;
1890         TAILQ_INIT(&sc->sc_volumes);
1891         TAILQ_INIT(&sc->sc_disks);
1892         sx_init(&sc->sc_lock, "graid:lock");
1893         mtx_init(&sc->sc_queue_mtx, "graid:queue", NULL, MTX_DEF);
1894         TAILQ_INIT(&sc->sc_events);
1895         bioq_init(&sc->sc_queue);
1896         gp->softc = sc;
1897         error = kproc_create(g_raid_worker, sc, &sc->sc_worker, 0, 0,
1898             "g_raid %s", name);
1899         if (error != 0) {
1900                 G_RAID_DEBUG(0, "Cannot create kernel thread for %s.", name);
1901                 mtx_destroy(&sc->sc_queue_mtx);
1902                 sx_destroy(&sc->sc_lock);
1903                 g_destroy_geom(sc->sc_geom);
1904                 free(sc, M_RAID);
1905                 return (NULL);
1906         }
1907
1908         G_RAID_DEBUG1(0, sc, "Array %s created.", name);
1909         return (sc);
1910 }
1911
1912 struct g_raid_volume *
1913 g_raid_create_volume(struct g_raid_softc *sc, const char *name, int id)
1914 {
1915         struct g_raid_volume    *vol, *vol1;
1916         int i;
1917
1918         G_RAID_DEBUG1(1, sc, "Creating volume %s.", name);
1919         vol = malloc(sizeof(*vol), M_RAID, M_WAITOK | M_ZERO);
1920         vol->v_softc = sc;
1921         strlcpy(vol->v_name, name, G_RAID_MAX_VOLUMENAME);
1922         vol->v_state = G_RAID_VOLUME_S_STARTING;
1923         vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN;
1924         vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_UNKNOWN;
1925         vol->v_rotate_parity = 1;
1926         bioq_init(&vol->v_inflight);
1927         bioq_init(&vol->v_locked);
1928         LIST_INIT(&vol->v_locks);
1929         for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) {
1930                 vol->v_subdisks[i].sd_softc = sc;
1931                 vol->v_subdisks[i].sd_volume = vol;
1932                 vol->v_subdisks[i].sd_pos = i;
1933                 vol->v_subdisks[i].sd_state = G_RAID_DISK_S_NONE;
1934         }
1935
1936         /* Find free ID for this volume. */
1937         g_topology_lock();
1938         vol1 = vol;
1939         if (id >= 0) {
1940                 LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) {
1941                         if (vol1->v_global_id == id)
1942                                 break;
1943                 }
1944         }
1945         if (vol1 != NULL) {
1946                 for (id = 0; ; id++) {
1947                         LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) {
1948                                 if (vol1->v_global_id == id)
1949                                         break;
1950                         }
1951                         if (vol1 == NULL)
1952                                 break;
1953                 }
1954         }
1955         vol->v_global_id = id;
1956         LIST_INSERT_HEAD(&g_raid_volumes, vol, v_global_next);
1957         g_topology_unlock();
1958
1959         /* Delay root mounting. */
1960         vol->v_rootmount = root_mount_hold("GRAID");
1961         G_RAID_DEBUG1(1, sc, "root_mount_hold %p", vol->v_rootmount);
1962         vol->v_starting = 1;
1963         TAILQ_INSERT_TAIL(&sc->sc_volumes, vol, v_next);
1964         return (vol);
1965 }
1966
1967 struct g_raid_disk *
1968 g_raid_create_disk(struct g_raid_softc *sc)
1969 {
1970         struct g_raid_disk      *disk;
1971
1972         G_RAID_DEBUG1(1, sc, "Creating disk.");
1973         disk = malloc(sizeof(*disk), M_RAID, M_WAITOK | M_ZERO);
1974         disk->d_softc = sc;
1975         disk->d_state = G_RAID_DISK_S_NONE;
1976         TAILQ_INIT(&disk->d_subdisks);
1977         TAILQ_INSERT_TAIL(&sc->sc_disks, disk, d_next);
1978         return (disk);
1979 }
1980
1981 int g_raid_start_volume(struct g_raid_volume *vol)
1982 {
1983         struct g_raid_tr_class *class;
1984         struct g_raid_tr_object *obj;
1985         int status;
1986
1987         G_RAID_DEBUG1(2, vol->v_softc, "Starting volume %s.", vol->v_name);
1988         LIST_FOREACH(class, &g_raid_tr_classes, trc_list) {
1989                 if (!class->trc_enable)
1990                         continue;
1991                 G_RAID_DEBUG1(2, vol->v_softc,
1992                     "Tasting volume %s for %s transformation.",
1993                     vol->v_name, class->name);
1994                 obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
1995                     M_WAITOK);
1996                 obj->tro_class = class;
1997                 obj->tro_volume = vol;
1998                 status = G_RAID_TR_TASTE(obj, vol);
1999                 if (status != G_RAID_TR_TASTE_FAIL)
2000                         break;
2001                 kobj_delete((kobj_t)obj, M_RAID);
2002         }
2003         if (class == NULL) {
2004                 G_RAID_DEBUG1(0, vol->v_softc,
2005                     "No transformation module found for %s.",
2006                     vol->v_name);
2007                 vol->v_tr = NULL;
2008                 g_raid_change_volume_state(vol, G_RAID_VOLUME_S_UNSUPPORTED);
2009                 g_raid_event_send(vol, G_RAID_VOLUME_E_DOWN,
2010                     G_RAID_EVENT_VOLUME);
2011                 return (-1);
2012         }
2013         G_RAID_DEBUG1(2, vol->v_softc,
2014             "Transformation module %s chosen for %s.",
2015             class->name, vol->v_name);
2016         vol->v_tr = obj;
2017         return (0);
2018 }
2019
2020 int
2021 g_raid_destroy_node(struct g_raid_softc *sc, int worker)
2022 {
2023         struct g_raid_volume *vol, *tmpv;
2024         struct g_raid_disk *disk, *tmpd;
2025         int error = 0;
2026
2027         sc->sc_stopping = G_RAID_DESTROY_HARD;
2028         TAILQ_FOREACH_SAFE(vol, &sc->sc_volumes, v_next, tmpv) {
2029                 if (g_raid_destroy_volume(vol))
2030                         error = EBUSY;
2031         }
2032         if (error)
2033                 return (error);
2034         TAILQ_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tmpd) {
2035                 if (g_raid_destroy_disk(disk))
2036                         error = EBUSY;
2037         }
2038         if (error)
2039                 return (error);
2040         if (sc->sc_md) {
2041                 G_RAID_MD_FREE(sc->sc_md);
2042                 kobj_delete((kobj_t)sc->sc_md, M_RAID);
2043                 sc->sc_md = NULL;
2044         }
2045         if (sc->sc_geom != NULL) {
2046                 G_RAID_DEBUG1(0, sc, "Array %s destroyed.", sc->sc_name);
2047                 g_topology_lock();
2048                 sc->sc_geom->softc = NULL;
2049                 g_wither_geom(sc->sc_geom, ENXIO);
2050                 g_topology_unlock();
2051                 sc->sc_geom = NULL;
2052         } else
2053                 G_RAID_DEBUG(1, "Array destroyed.");
2054         if (worker) {
2055                 g_raid_event_cancel(sc, sc);
2056                 mtx_destroy(&sc->sc_queue_mtx);
2057                 sx_xunlock(&sc->sc_lock);
2058                 sx_destroy(&sc->sc_lock);
2059                 wakeup(&sc->sc_stopping);
2060                 free(sc, M_RAID);
2061                 curthread->td_pflags &= ~TDP_GEOM;
2062                 G_RAID_DEBUG(1, "Thread exiting.");
2063                 kproc_exit(0);
2064         } else {
2065                 /* Wake up worker to make it selfdestruct. */
2066                 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
2067         }
2068         return (0);
2069 }
2070
2071 int
2072 g_raid_destroy_volume(struct g_raid_volume *vol)
2073 {
2074         struct g_raid_softc *sc;
2075         struct g_raid_disk *disk;
2076         int i;
2077
2078         sc = vol->v_softc;
2079         G_RAID_DEBUG1(2, sc, "Destroying volume %s.", vol->v_name);
2080         vol->v_stopping = 1;
2081         if (vol->v_state != G_RAID_VOLUME_S_STOPPED) {
2082                 if (vol->v_tr) {
2083                         G_RAID_TR_STOP(vol->v_tr);
2084                         return (EBUSY);
2085                 } else
2086                         vol->v_state = G_RAID_VOLUME_S_STOPPED;
2087         }
2088         if (g_raid_event_check(sc, vol) != 0)
2089                 return (EBUSY);
2090         if (vol->v_provider != NULL)
2091                 return (EBUSY);
2092         if (vol->v_provider_open != 0)
2093                 return (EBUSY);
2094         if (vol->v_tr) {
2095                 G_RAID_TR_FREE(vol->v_tr);
2096                 kobj_delete((kobj_t)vol->v_tr, M_RAID);
2097                 vol->v_tr = NULL;
2098         }
2099         if (vol->v_rootmount)
2100                 root_mount_rel(vol->v_rootmount);
2101         g_topology_lock();
2102         LIST_REMOVE(vol, v_global_next);
2103         g_topology_unlock();
2104         TAILQ_REMOVE(&sc->sc_volumes, vol, v_next);
2105         for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) {
2106                 g_raid_event_cancel(sc, &vol->v_subdisks[i]);
2107                 disk = vol->v_subdisks[i].sd_disk;
2108                 if (disk == NULL)
2109                         continue;
2110                 TAILQ_REMOVE(&disk->d_subdisks, &vol->v_subdisks[i], sd_next);
2111         }
2112         G_RAID_DEBUG1(2, sc, "Volume %s destroyed.", vol->v_name);
2113         if (sc->sc_md)
2114                 G_RAID_MD_FREE_VOLUME(sc->sc_md, vol);
2115         g_raid_event_cancel(sc, vol);
2116         free(vol, M_RAID);
2117         if (sc->sc_stopping == G_RAID_DESTROY_HARD) {
2118                 /* Wake up worker to let it selfdestruct. */
2119                 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
2120         }
2121         return (0);
2122 }
2123
2124 int
2125 g_raid_destroy_disk(struct g_raid_disk *disk)
2126 {
2127         struct g_raid_softc *sc;
2128         struct g_raid_subdisk *sd, *tmp;
2129
2130         sc = disk->d_softc;
2131         G_RAID_DEBUG1(2, sc, "Destroying disk.");
2132         if (disk->d_consumer) {
2133                 g_raid_kill_consumer(sc, disk->d_consumer);
2134                 disk->d_consumer = NULL;
2135         }
2136         TAILQ_FOREACH_SAFE(sd, &disk->d_subdisks, sd_next, tmp) {
2137                 g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_NONE);
2138                 g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED,
2139                     G_RAID_EVENT_SUBDISK);
2140                 TAILQ_REMOVE(&disk->d_subdisks, sd, sd_next);
2141                 sd->sd_disk = NULL;
2142         }
2143         TAILQ_REMOVE(&sc->sc_disks, disk, d_next);
2144         if (sc->sc_md)
2145                 G_RAID_MD_FREE_DISK(sc->sc_md, disk);
2146         g_raid_event_cancel(sc, disk);
2147         free(disk, M_RAID);
2148         return (0);
2149 }
2150
2151 int
2152 g_raid_destroy(struct g_raid_softc *sc, int how)
2153 {
2154         int error, opens;
2155
2156         g_topology_assert_not();
2157         if (sc == NULL)
2158                 return (ENXIO);
2159         sx_assert(&sc->sc_lock, SX_XLOCKED);
2160
2161         /* Count open volumes. */
2162         opens = g_raid_nopens(sc);
2163
2164         /* React on some opened volumes. */
2165         if (opens > 0) {
2166                 switch (how) {
2167                 case G_RAID_DESTROY_SOFT:
2168                         G_RAID_DEBUG1(1, sc,
2169                             "%d volumes are still open.",
2170                             opens);
2171                         sx_xunlock(&sc->sc_lock);
2172                         return (EBUSY);
2173                 case G_RAID_DESTROY_DELAYED:
2174                         G_RAID_DEBUG1(1, sc,
2175                             "Array will be destroyed on last close.");
2176                         sc->sc_stopping = G_RAID_DESTROY_DELAYED;
2177                         sx_xunlock(&sc->sc_lock);
2178                         return (EBUSY);
2179                 case G_RAID_DESTROY_HARD:
2180                         G_RAID_DEBUG1(1, sc,
2181                             "%d volumes are still open.",
2182                             opens);
2183                 }
2184         }
2185
2186         /* Mark node for destruction. */
2187         sc->sc_stopping = G_RAID_DESTROY_HARD;
2188         /* Wake up worker to let it selfdestruct. */
2189         g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
2190         /* Sleep until node destroyed. */
2191         error = sx_sleep(&sc->sc_stopping, &sc->sc_lock,
2192             PRIBIO | PDROP, "r:destroy", hz * 3);
2193         return (error == EWOULDBLOCK ? EBUSY : 0);
2194 }
2195
2196 static void
2197 g_raid_taste_orphan(struct g_consumer *cp)
2198 {
2199
2200         KASSERT(1 == 0, ("%s called while tasting %s.", __func__,
2201             cp->provider->name));
2202 }
2203
2204 static struct g_geom *
2205 g_raid_taste(struct g_class *mp, struct g_provider *pp, int flags __unused)
2206 {
2207         struct g_consumer *cp;
2208         struct g_geom *gp, *geom;
2209         struct g_raid_md_class *class;
2210         struct g_raid_md_object *obj;
2211         int status;
2212
2213         g_topology_assert();
2214         g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name);
2215         if (!g_raid_enable)
2216                 return (NULL);
2217         G_RAID_DEBUG(2, "Tasting provider %s.", pp->name);
2218
2219         geom = NULL;
2220         status = G_RAID_MD_TASTE_FAIL;
2221         gp = g_new_geomf(mp, "raid:taste");
2222         /*
2223          * This orphan function should be never called.
2224          */
2225         gp->orphan = g_raid_taste_orphan;
2226         cp = g_new_consumer(gp);
2227         cp->flags |= G_CF_DIRECT_RECEIVE;
2228         g_attach(cp, pp);
2229         if (g_access(cp, 1, 0, 0) != 0)
2230                 goto ofail;
2231
2232         LIST_FOREACH(class, &g_raid_md_classes, mdc_list) {
2233                 if (!class->mdc_enable)
2234                         continue;
2235                 G_RAID_DEBUG(2, "Tasting provider %s for %s metadata.",
2236                     pp->name, class->name);
2237                 obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
2238                     M_WAITOK);
2239                 obj->mdo_class = class;
2240                 status = G_RAID_MD_TASTE(obj, mp, cp, &geom);
2241                 if (status != G_RAID_MD_TASTE_NEW)
2242                         kobj_delete((kobj_t)obj, M_RAID);
2243                 if (status != G_RAID_MD_TASTE_FAIL)
2244                         break;
2245         }
2246
2247         if (status == G_RAID_MD_TASTE_FAIL)
2248                 (void)g_access(cp, -1, 0, 0);
2249 ofail:
2250         g_detach(cp);
2251         g_destroy_consumer(cp);
2252         g_destroy_geom(gp);
2253         G_RAID_DEBUG(2, "Tasting provider %s done.", pp->name);
2254         return (geom);
2255 }
2256
2257 int
2258 g_raid_create_node_format(const char *format, struct gctl_req *req,
2259     struct g_geom **gp)
2260 {
2261         struct g_raid_md_class *class;
2262         struct g_raid_md_object *obj;
2263         int status;
2264
2265         G_RAID_DEBUG(2, "Creating array for %s metadata.", format);
2266         LIST_FOREACH(class, &g_raid_md_classes, mdc_list) {
2267                 if (strcasecmp(class->name, format) == 0)
2268                         break;
2269         }
2270         if (class == NULL) {
2271                 G_RAID_DEBUG(1, "No support for %s metadata.", format);
2272                 return (G_RAID_MD_TASTE_FAIL);
2273         }
2274         obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
2275             M_WAITOK);
2276         obj->mdo_class = class;
2277         status = G_RAID_MD_CREATE_REQ(obj, &g_raid_class, req, gp);
2278         if (status != G_RAID_MD_TASTE_NEW)
2279                 kobj_delete((kobj_t)obj, M_RAID);
2280         return (status);
2281 }
2282
2283 static int
2284 g_raid_destroy_geom(struct gctl_req *req __unused,
2285     struct g_class *mp __unused, struct g_geom *gp)
2286 {
2287         struct g_raid_softc *sc;
2288         int error;
2289
2290         g_topology_unlock();
2291         sc = gp->softc;
2292         sx_xlock(&sc->sc_lock);
2293         g_cancel_event(sc);
2294         error = g_raid_destroy(gp->softc, G_RAID_DESTROY_SOFT);
2295         g_topology_lock();
2296         return (error);
2297 }
2298
2299 void g_raid_write_metadata(struct g_raid_softc *sc, struct g_raid_volume *vol,
2300     struct g_raid_subdisk *sd, struct g_raid_disk *disk)
2301 {
2302
2303         if (sc->sc_stopping == G_RAID_DESTROY_HARD)
2304                 return;
2305         if (sc->sc_md)
2306                 G_RAID_MD_WRITE(sc->sc_md, vol, sd, disk);
2307 }
2308
2309 void g_raid_fail_disk(struct g_raid_softc *sc,
2310     struct g_raid_subdisk *sd, struct g_raid_disk *disk)
2311 {
2312
2313         if (disk == NULL)
2314                 disk = sd->sd_disk;
2315         if (disk == NULL) {
2316                 G_RAID_DEBUG1(0, sc, "Warning! Fail request to an absent disk!");
2317                 return;
2318         }
2319         if (disk->d_state != G_RAID_DISK_S_ACTIVE) {
2320                 G_RAID_DEBUG1(0, sc, "Warning! Fail request to a disk in a "
2321                     "wrong state (%s)!", g_raid_disk_state2str(disk->d_state));
2322                 return;
2323         }
2324         if (sc->sc_md)
2325                 G_RAID_MD_FAIL_DISK(sc->sc_md, sd, disk);
2326 }
2327
2328 static void
2329 g_raid_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp,
2330     struct g_consumer *cp, struct g_provider *pp)
2331 {
2332         struct g_raid_softc *sc;
2333         struct g_raid_volume *vol;
2334         struct g_raid_subdisk *sd;
2335         struct g_raid_disk *disk;
2336         int i, s;
2337
2338         g_topology_assert();
2339
2340         sc = gp->softc;
2341         if (sc == NULL)
2342                 return;
2343         if (pp != NULL) {
2344                 vol = pp->private;
2345                 g_topology_unlock();
2346                 sx_xlock(&sc->sc_lock);
2347                 sbuf_printf(sb, "%s<descr>%s %s volume</descr>\n", indent,
2348                     sc->sc_md->mdo_class->name,
2349                     g_raid_volume_level2str(vol->v_raid_level,
2350                     vol->v_raid_level_qualifier));
2351                 sbuf_printf(sb, "%s<Label>%s</Label>\n", indent,
2352                     vol->v_name);
2353                 sbuf_printf(sb, "%s<RAIDLevel>%s</RAIDLevel>\n", indent,
2354                     g_raid_volume_level2str(vol->v_raid_level,
2355                     vol->v_raid_level_qualifier));
2356                 sbuf_printf(sb,
2357                     "%s<Transformation>%s</Transformation>\n", indent,
2358                     vol->v_tr ? vol->v_tr->tro_class->name : "NONE");
2359                 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent,
2360                     vol->v_disks_count);
2361                 sbuf_printf(sb, "%s<Strip>%u</Strip>\n", indent,
2362                     vol->v_strip_size);
2363                 sbuf_printf(sb, "%s<State>%s</State>\n", indent,
2364                     g_raid_volume_state2str(vol->v_state));
2365                 sbuf_printf(sb, "%s<Dirty>%s</Dirty>\n", indent,
2366                     vol->v_dirty ? "Yes" : "No");
2367                 sbuf_printf(sb, "%s<Subdisks>", indent);
2368                 for (i = 0; i < vol->v_disks_count; i++) {
2369                         sd = &vol->v_subdisks[i];
2370                         if (sd->sd_disk != NULL &&
2371                             sd->sd_disk->d_consumer != NULL) {
2372                                 sbuf_printf(sb, "%s ",
2373                                     g_raid_get_diskname(sd->sd_disk));
2374                         } else {
2375                                 sbuf_printf(sb, "NONE ");
2376                         }
2377                         sbuf_printf(sb, "(%s",
2378                             g_raid_subdisk_state2str(sd->sd_state));
2379                         if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
2380                             sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
2381                                 sbuf_printf(sb, " %d%%",
2382                                     (int)(sd->sd_rebuild_pos * 100 /
2383                                      sd->sd_size));
2384                         }
2385                         sbuf_printf(sb, ")");
2386                         if (i + 1 < vol->v_disks_count)
2387                                 sbuf_printf(sb, ", ");
2388                 }
2389                 sbuf_printf(sb, "</Subdisks>\n");
2390                 sx_xunlock(&sc->sc_lock);
2391                 g_topology_lock();
2392         } else if (cp != NULL) {
2393                 disk = cp->private;
2394                 if (disk == NULL)
2395                         return;
2396                 g_topology_unlock();
2397                 sx_xlock(&sc->sc_lock);
2398                 sbuf_printf(sb, "%s<State>%s", indent,
2399                     g_raid_disk_state2str(disk->d_state));
2400                 if (!TAILQ_EMPTY(&disk->d_subdisks)) {
2401                         sbuf_printf(sb, " (");
2402                         TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
2403                                 sbuf_printf(sb, "%s",
2404                                     g_raid_subdisk_state2str(sd->sd_state));
2405                                 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
2406                                     sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
2407                                         sbuf_printf(sb, " %d%%",
2408                                             (int)(sd->sd_rebuild_pos * 100 /
2409                                              sd->sd_size));
2410                                 }
2411                                 if (TAILQ_NEXT(sd, sd_next))
2412                                         sbuf_printf(sb, ", ");
2413                         }
2414                         sbuf_printf(sb, ")");
2415                 }
2416                 sbuf_printf(sb, "</State>\n");
2417                 sbuf_printf(sb, "%s<Subdisks>", indent);
2418                 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
2419                         sbuf_printf(sb, "r%d(%s):%d@%ju",
2420                             sd->sd_volume->v_global_id,
2421                             sd->sd_volume->v_name,
2422                             sd->sd_pos, (uintmax_t)sd->sd_offset);
2423                         if (TAILQ_NEXT(sd, sd_next))
2424                                 sbuf_printf(sb, ", ");
2425                 }
2426                 sbuf_printf(sb, "</Subdisks>\n");
2427                 sbuf_printf(sb, "%s<ReadErrors>%d</ReadErrors>\n", indent,
2428                     disk->d_read_errs);
2429                 sx_xunlock(&sc->sc_lock);
2430                 g_topology_lock();
2431         } else {
2432                 g_topology_unlock();
2433                 sx_xlock(&sc->sc_lock);
2434                 if (sc->sc_md) {
2435                         sbuf_printf(sb, "%s<Metadata>%s</Metadata>\n", indent,
2436                             sc->sc_md->mdo_class->name);
2437                 }
2438                 if (!TAILQ_EMPTY(&sc->sc_volumes)) {
2439                         s = 0xff;
2440                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2441                                 if (vol->v_state < s)
2442                                         s = vol->v_state;
2443                         }
2444                         sbuf_printf(sb, "%s<State>%s</State>\n", indent,
2445                             g_raid_volume_state2str(s));
2446                 }
2447                 sx_xunlock(&sc->sc_lock);
2448                 g_topology_lock();
2449         }
2450 }
2451
2452 static void
2453 g_raid_shutdown_post_sync(void *arg, int howto)
2454 {
2455         struct g_class *mp;
2456         struct g_geom *gp, *gp2;
2457         struct g_raid_softc *sc;
2458         struct g_raid_volume *vol;
2459
2460         mp = arg;
2461         g_topology_lock();
2462         g_raid_shutdown = 1;
2463         LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) {
2464                 if ((sc = gp->softc) == NULL)
2465                         continue;
2466                 g_topology_unlock();
2467                 sx_xlock(&sc->sc_lock);
2468                 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next)
2469                         g_raid_clean(vol, -1);
2470                 g_cancel_event(sc);
2471                 g_raid_destroy(sc, G_RAID_DESTROY_DELAYED);
2472                 g_topology_lock();
2473         }
2474         g_topology_unlock();
2475 }
2476
2477 static void
2478 g_raid_init(struct g_class *mp)
2479 {
2480
2481         g_raid_post_sync = EVENTHANDLER_REGISTER(shutdown_post_sync,
2482             g_raid_shutdown_post_sync, mp, SHUTDOWN_PRI_FIRST);
2483         if (g_raid_post_sync == NULL)
2484                 G_RAID_DEBUG(0, "Warning! Cannot register shutdown event.");
2485         g_raid_started = 1;
2486 }
2487
2488 static void
2489 g_raid_fini(struct g_class *mp)
2490 {
2491
2492         if (g_raid_post_sync != NULL)
2493                 EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_raid_post_sync);
2494         g_raid_started = 0;
2495 }
2496
2497 int
2498 g_raid_md_modevent(module_t mod, int type, void *arg)
2499 {
2500         struct g_raid_md_class *class, *c, *nc;
2501         int error;
2502
2503         error = 0;
2504         class = arg;
2505         switch (type) {
2506         case MOD_LOAD:
2507                 c = LIST_FIRST(&g_raid_md_classes);
2508                 if (c == NULL || c->mdc_priority > class->mdc_priority)
2509                         LIST_INSERT_HEAD(&g_raid_md_classes, class, mdc_list);
2510                 else {
2511                         while ((nc = LIST_NEXT(c, mdc_list)) != NULL &&
2512                             nc->mdc_priority < class->mdc_priority)
2513                                 c = nc;
2514                         LIST_INSERT_AFTER(c, class, mdc_list);
2515                 }
2516                 if (g_raid_started)
2517                         g_retaste(&g_raid_class);
2518                 break;
2519         case MOD_UNLOAD:
2520                 LIST_REMOVE(class, mdc_list);
2521                 break;
2522         default:
2523                 error = EOPNOTSUPP;
2524                 break;
2525         }
2526
2527         return (error);
2528 }
2529
2530 int
2531 g_raid_tr_modevent(module_t mod, int type, void *arg)
2532 {
2533         struct g_raid_tr_class *class, *c, *nc;
2534         int error;
2535
2536         error = 0;
2537         class = arg;
2538         switch (type) {
2539         case MOD_LOAD:
2540                 c = LIST_FIRST(&g_raid_tr_classes);
2541                 if (c == NULL || c->trc_priority > class->trc_priority)
2542                         LIST_INSERT_HEAD(&g_raid_tr_classes, class, trc_list);
2543                 else {
2544                         while ((nc = LIST_NEXT(c, trc_list)) != NULL &&
2545                             nc->trc_priority < class->trc_priority)
2546                                 c = nc;
2547                         LIST_INSERT_AFTER(c, class, trc_list);
2548                 }
2549                 break;
2550         case MOD_UNLOAD:
2551                 LIST_REMOVE(class, trc_list);
2552                 break;
2553         default:
2554                 error = EOPNOTSUPP;
2555                 break;
2556         }
2557
2558         return (error);
2559 }
2560
2561 /*
2562  * Use local implementation of DECLARE_GEOM_CLASS(g_raid_class, g_raid)
2563  * to reduce module priority, allowing submodules to register them first.
2564  */
2565 static moduledata_t g_raid_mod = {
2566         "g_raid",
2567         g_modevent,
2568         &g_raid_class
2569 };
2570 DECLARE_MODULE(g_raid, g_raid_mod, SI_SUB_DRIVERS, SI_ORDER_THIRD);
2571 MODULE_VERSION(geom_raid, 0);