]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/geom/raid3/g_raid3.c
sys/{x86,amd64}: remove one of doubled ;s
[FreeBSD/FreeBSD.git] / sys / geom / raid3 / g_raid3.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2004-2006 Pawel Jakub Dawidek <pjd@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/module.h>
36 #include <sys/limits.h>
37 #include <sys/lock.h>
38 #include <sys/mutex.h>
39 #include <sys/bio.h>
40 #include <sys/sbuf.h>
41 #include <sys/sysctl.h>
42 #include <sys/malloc.h>
43 #include <sys/eventhandler.h>
44 #include <vm/uma.h>
45 #include <geom/geom.h>
46 #include <geom/geom_dbg.h>
47 #include <sys/proc.h>
48 #include <sys/kthread.h>
49 #include <sys/sched.h>
50 #include <geom/raid3/g_raid3.h>
51
52 FEATURE(geom_raid3, "GEOM RAID-3 functionality");
53
54 static MALLOC_DEFINE(M_RAID3, "raid3_data", "GEOM_RAID3 Data");
55
56 SYSCTL_DECL(_kern_geom);
57 static SYSCTL_NODE(_kern_geom, OID_AUTO, raid3, CTLFLAG_RW, 0,
58     "GEOM_RAID3 stuff");
59 u_int g_raid3_debug = 0;
60 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, debug, CTLFLAG_RWTUN, &g_raid3_debug, 0,
61     "Debug level");
62 static u_int g_raid3_timeout = 4;
63 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, timeout, CTLFLAG_RWTUN, &g_raid3_timeout,
64     0, "Time to wait on all raid3 components");
65 static u_int g_raid3_idletime = 5;
66 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, idletime, CTLFLAG_RWTUN,
67     &g_raid3_idletime, 0, "Mark components as clean when idling");
68 static u_int g_raid3_disconnect_on_failure = 1;
69 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, disconnect_on_failure, CTLFLAG_RWTUN,
70     &g_raid3_disconnect_on_failure, 0, "Disconnect component on I/O failure.");
71 static u_int g_raid3_syncreqs = 2;
72 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, sync_requests, CTLFLAG_RDTUN,
73     &g_raid3_syncreqs, 0, "Parallel synchronization I/O requests.");
74 static u_int g_raid3_use_malloc = 0;
75 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, use_malloc, CTLFLAG_RDTUN,
76     &g_raid3_use_malloc, 0, "Use malloc(9) instead of uma(9).");
77
78 static u_int g_raid3_n64k = 50;
79 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n64k, CTLFLAG_RDTUN, &g_raid3_n64k, 0,
80     "Maximum number of 64kB allocations");
81 static u_int g_raid3_n16k = 200;
82 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n16k, CTLFLAG_RDTUN, &g_raid3_n16k, 0,
83     "Maximum number of 16kB allocations");
84 static u_int g_raid3_n4k = 1200;
85 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n4k, CTLFLAG_RDTUN, &g_raid3_n4k, 0,
86     "Maximum number of 4kB allocations");
87
88 static SYSCTL_NODE(_kern_geom_raid3, OID_AUTO, stat, CTLFLAG_RW, 0,
89     "GEOM_RAID3 statistics");
90 static u_int g_raid3_parity_mismatch = 0;
91 SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, parity_mismatch, CTLFLAG_RD,
92     &g_raid3_parity_mismatch, 0, "Number of failures in VERIFY mode");
93
94 #define MSLEEP(ident, mtx, priority, wmesg, timeout)    do {            \
95         G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, (ident));        \
96         msleep((ident), (mtx), (priority), (wmesg), (timeout));         \
97         G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, (ident));        \
98 } while (0)
99
100 static eventhandler_tag g_raid3_post_sync = NULL;
101 static int g_raid3_shutdown = 0;
102
103 static int g_raid3_destroy_geom(struct gctl_req *req, struct g_class *mp,
104     struct g_geom *gp);
105 static g_taste_t g_raid3_taste;
106 static void g_raid3_init(struct g_class *mp);
107 static void g_raid3_fini(struct g_class *mp);
108
109 struct g_class g_raid3_class = {
110         .name = G_RAID3_CLASS_NAME,
111         .version = G_VERSION,
112         .ctlreq = g_raid3_config,
113         .taste = g_raid3_taste,
114         .destroy_geom = g_raid3_destroy_geom,
115         .init = g_raid3_init,
116         .fini = g_raid3_fini
117 };
118
119
120 static void g_raid3_destroy_provider(struct g_raid3_softc *sc);
121 static int g_raid3_update_disk(struct g_raid3_disk *disk, u_int state);
122 static void g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force);
123 static void g_raid3_dumpconf(struct sbuf *sb, const char *indent,
124     struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp);
125 static void g_raid3_sync_stop(struct g_raid3_softc *sc, int type);
126 static int g_raid3_register_request(struct bio *pbp);
127 static void g_raid3_sync_release(struct g_raid3_softc *sc);
128
129
130 static const char *
131 g_raid3_disk_state2str(int state)
132 {
133
134         switch (state) {
135         case G_RAID3_DISK_STATE_NODISK:
136                 return ("NODISK");
137         case G_RAID3_DISK_STATE_NONE:
138                 return ("NONE");
139         case G_RAID3_DISK_STATE_NEW:
140                 return ("NEW");
141         case G_RAID3_DISK_STATE_ACTIVE:
142                 return ("ACTIVE");
143         case G_RAID3_DISK_STATE_STALE:
144                 return ("STALE");
145         case G_RAID3_DISK_STATE_SYNCHRONIZING:
146                 return ("SYNCHRONIZING");
147         case G_RAID3_DISK_STATE_DISCONNECTED:
148                 return ("DISCONNECTED");
149         default:
150                 return ("INVALID");
151         }
152 }
153
154 static const char *
155 g_raid3_device_state2str(int state)
156 {
157
158         switch (state) {
159         case G_RAID3_DEVICE_STATE_STARTING:
160                 return ("STARTING");
161         case G_RAID3_DEVICE_STATE_DEGRADED:
162                 return ("DEGRADED");
163         case G_RAID3_DEVICE_STATE_COMPLETE:
164                 return ("COMPLETE");
165         default:
166                 return ("INVALID");
167         }
168 }
169
170 const char *
171 g_raid3_get_diskname(struct g_raid3_disk *disk)
172 {
173
174         if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL)
175                 return ("[unknown]");
176         return (disk->d_name);
177 }
178
179 static void *
180 g_raid3_alloc(struct g_raid3_softc *sc, size_t size, int flags)
181 {
182         void *ptr;
183         enum g_raid3_zones zone;
184
185         if (g_raid3_use_malloc ||
186             (zone = g_raid3_zone(size)) == G_RAID3_NUM_ZONES)
187                 ptr = malloc(size, M_RAID3, flags);
188         else {
189                 ptr = uma_zalloc_arg(sc->sc_zones[zone].sz_zone,
190                    &sc->sc_zones[zone], flags);
191                 sc->sc_zones[zone].sz_requested++;
192                 if (ptr == NULL)
193                         sc->sc_zones[zone].sz_failed++;
194         }
195         return (ptr);
196 }
197
198 static void
199 g_raid3_free(struct g_raid3_softc *sc, void *ptr, size_t size)
200 {
201         enum g_raid3_zones zone;
202
203         if (g_raid3_use_malloc ||
204             (zone = g_raid3_zone(size)) == G_RAID3_NUM_ZONES)
205                 free(ptr, M_RAID3);
206         else {
207                 uma_zfree_arg(sc->sc_zones[zone].sz_zone,
208                     ptr, &sc->sc_zones[zone]);
209         }
210 }
211
212 static int
213 g_raid3_uma_ctor(void *mem, int size, void *arg, int flags)
214 {
215         struct g_raid3_zone *sz = arg;
216
217         if (sz->sz_max > 0 && sz->sz_inuse == sz->sz_max)
218                 return (ENOMEM);
219         sz->sz_inuse++;
220         return (0);
221 }
222
223 static void
224 g_raid3_uma_dtor(void *mem, int size, void *arg)
225 {
226         struct g_raid3_zone *sz = arg;
227
228         sz->sz_inuse--;
229 }
230
231 #define g_raid3_xor(src, dst, size)                                     \
232         _g_raid3_xor((uint64_t *)(src),                                 \
233             (uint64_t *)(dst), (size_t)size)
234 static void
235 _g_raid3_xor(uint64_t *src, uint64_t *dst, size_t size)
236 {
237
238         KASSERT((size % 128) == 0, ("Invalid size: %zu.", size));
239         for (; size > 0; size -= 128) {
240                 *dst++ ^= (*src++);
241                 *dst++ ^= (*src++);
242                 *dst++ ^= (*src++);
243                 *dst++ ^= (*src++);
244                 *dst++ ^= (*src++);
245                 *dst++ ^= (*src++);
246                 *dst++ ^= (*src++);
247                 *dst++ ^= (*src++);
248                 *dst++ ^= (*src++);
249                 *dst++ ^= (*src++);
250                 *dst++ ^= (*src++);
251                 *dst++ ^= (*src++);
252                 *dst++ ^= (*src++);
253                 *dst++ ^= (*src++);
254                 *dst++ ^= (*src++);
255                 *dst++ ^= (*src++);
256         }
257 }
258
259 static int
260 g_raid3_is_zero(struct bio *bp)
261 {
262         static const uint64_t zeros[] = {
263             0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
264         };
265         u_char *addr;
266         ssize_t size;
267
268         size = bp->bio_length;
269         addr = (u_char *)bp->bio_data;
270         for (; size > 0; size -= sizeof(zeros), addr += sizeof(zeros)) {
271                 if (bcmp(addr, zeros, sizeof(zeros)) != 0)
272                         return (0);
273         }
274         return (1);
275 }
276
277 /*
278  * --- Events handling functions ---
279  * Events in geom_raid3 are used to maintain disks and device status
280  * from one thread to simplify locking.
281  */
282 static void
283 g_raid3_event_free(struct g_raid3_event *ep)
284 {
285
286         free(ep, M_RAID3);
287 }
288
289 int
290 g_raid3_event_send(void *arg, int state, int flags)
291 {
292         struct g_raid3_softc *sc;
293         struct g_raid3_disk *disk;
294         struct g_raid3_event *ep;
295         int error;
296
297         ep = malloc(sizeof(*ep), M_RAID3, M_WAITOK);
298         G_RAID3_DEBUG(4, "%s: Sending event %p.", __func__, ep);
299         if ((flags & G_RAID3_EVENT_DEVICE) != 0) {
300                 disk = NULL;
301                 sc = arg;
302         } else {
303                 disk = arg;
304                 sc = disk->d_softc;
305         }
306         ep->e_disk = disk;
307         ep->e_state = state;
308         ep->e_flags = flags;
309         ep->e_error = 0;
310         mtx_lock(&sc->sc_events_mtx);
311         TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next);
312         mtx_unlock(&sc->sc_events_mtx);
313         G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
314         mtx_lock(&sc->sc_queue_mtx);
315         wakeup(sc);
316         wakeup(&sc->sc_queue);
317         mtx_unlock(&sc->sc_queue_mtx);
318         if ((flags & G_RAID3_EVENT_DONTWAIT) != 0)
319                 return (0);
320         sx_assert(&sc->sc_lock, SX_XLOCKED);
321         G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, ep);
322         sx_xunlock(&sc->sc_lock);
323         while ((ep->e_flags & G_RAID3_EVENT_DONE) == 0) {
324                 mtx_lock(&sc->sc_events_mtx);
325                 MSLEEP(ep, &sc->sc_events_mtx, PRIBIO | PDROP, "r3:event",
326                     hz * 5);
327         }
328         error = ep->e_error;
329         g_raid3_event_free(ep);
330         sx_xlock(&sc->sc_lock);
331         return (error);
332 }
333
334 static struct g_raid3_event *
335 g_raid3_event_get(struct g_raid3_softc *sc)
336 {
337         struct g_raid3_event *ep;
338
339         mtx_lock(&sc->sc_events_mtx);
340         ep = TAILQ_FIRST(&sc->sc_events);
341         mtx_unlock(&sc->sc_events_mtx);
342         return (ep);
343 }
344
345 static void
346 g_raid3_event_remove(struct g_raid3_softc *sc, struct g_raid3_event *ep)
347 {
348
349         mtx_lock(&sc->sc_events_mtx);
350         TAILQ_REMOVE(&sc->sc_events, ep, e_next);
351         mtx_unlock(&sc->sc_events_mtx);
352 }
353
354 static void
355 g_raid3_event_cancel(struct g_raid3_disk *disk)
356 {
357         struct g_raid3_softc *sc;
358         struct g_raid3_event *ep, *tmpep;
359
360         sc = disk->d_softc;
361         sx_assert(&sc->sc_lock, SX_XLOCKED);
362
363         mtx_lock(&sc->sc_events_mtx);
364         TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) {
365                 if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0)
366                         continue;
367                 if (ep->e_disk != disk)
368                         continue;
369                 TAILQ_REMOVE(&sc->sc_events, ep, e_next);
370                 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0)
371                         g_raid3_event_free(ep);
372                 else {
373                         ep->e_error = ECANCELED;
374                         wakeup(ep);
375                 }
376         }
377         mtx_unlock(&sc->sc_events_mtx);
378 }
379
380 /*
381  * Return the number of disks in the given state.
382  * If state is equal to -1, count all connected disks.
383  */
384 u_int
385 g_raid3_ndisks(struct g_raid3_softc *sc, int state)
386 {
387         struct g_raid3_disk *disk;
388         u_int n, ndisks;
389
390         sx_assert(&sc->sc_lock, SX_LOCKED);
391
392         for (n = ndisks = 0; n < sc->sc_ndisks; n++) {
393                 disk = &sc->sc_disks[n];
394                 if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
395                         continue;
396                 if (state == -1 || disk->d_state == state)
397                         ndisks++;
398         }
399         return (ndisks);
400 }
401
402 static u_int
403 g_raid3_nrequests(struct g_raid3_softc *sc, struct g_consumer *cp)
404 {
405         struct bio *bp;
406         u_int nreqs = 0;
407
408         mtx_lock(&sc->sc_queue_mtx);
409         TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
410                 if (bp->bio_from == cp)
411                         nreqs++;
412         }
413         mtx_unlock(&sc->sc_queue_mtx);
414         return (nreqs);
415 }
416
417 static int
418 g_raid3_is_busy(struct g_raid3_softc *sc, struct g_consumer *cp)
419 {
420
421         if (cp->index > 0) {
422                 G_RAID3_DEBUG(2,
423                     "I/O requests for %s exist, can't destroy it now.",
424                     cp->provider->name);
425                 return (1);
426         }
427         if (g_raid3_nrequests(sc, cp) > 0) {
428                 G_RAID3_DEBUG(2,
429                     "I/O requests for %s in queue, can't destroy it now.",
430                     cp->provider->name);
431                 return (1);
432         }
433         return (0);
434 }
435
436 static void
437 g_raid3_destroy_consumer(void *arg, int flags __unused)
438 {
439         struct g_consumer *cp;
440
441         g_topology_assert();
442
443         cp = arg;
444         G_RAID3_DEBUG(1, "Consumer %s destroyed.", cp->provider->name);
445         g_detach(cp);
446         g_destroy_consumer(cp);
447 }
448
449 static void
450 g_raid3_kill_consumer(struct g_raid3_softc *sc, struct g_consumer *cp)
451 {
452         struct g_provider *pp;
453         int retaste_wait;
454
455         g_topology_assert();
456
457         cp->private = NULL;
458         if (g_raid3_is_busy(sc, cp))
459                 return;
460         G_RAID3_DEBUG(2, "Consumer %s destroyed.", cp->provider->name);
461         pp = cp->provider;
462         retaste_wait = 0;
463         if (cp->acw == 1) {
464                 if ((pp->geom->flags & G_GEOM_WITHER) == 0)
465                         retaste_wait = 1;
466         }
467         G_RAID3_DEBUG(2, "Access %s r%dw%de%d = %d", pp->name, -cp->acr,
468             -cp->acw, -cp->ace, 0);
469         if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0)
470                 g_access(cp, -cp->acr, -cp->acw, -cp->ace);
471         if (retaste_wait) {
472                 /*
473                  * After retaste event was send (inside g_access()), we can send
474                  * event to detach and destroy consumer.
475                  * A class, which has consumer to the given provider connected
476                  * will not receive retaste event for the provider.
477                  * This is the way how I ignore retaste events when I close
478                  * consumers opened for write: I detach and destroy consumer
479                  * after retaste event is sent.
480                  */
481                 g_post_event(g_raid3_destroy_consumer, cp, M_WAITOK, NULL);
482                 return;
483         }
484         G_RAID3_DEBUG(1, "Consumer %s destroyed.", pp->name);
485         g_detach(cp);
486         g_destroy_consumer(cp);
487 }
488
489 static int
490 g_raid3_connect_disk(struct g_raid3_disk *disk, struct g_provider *pp)
491 {
492         struct g_consumer *cp;
493         int error;
494
495         g_topology_assert_not();
496         KASSERT(disk->d_consumer == NULL,
497             ("Disk already connected (device %s).", disk->d_softc->sc_name));
498
499         g_topology_lock();
500         cp = g_new_consumer(disk->d_softc->sc_geom);
501         error = g_attach(cp, pp);
502         if (error != 0) {
503                 g_destroy_consumer(cp);
504                 g_topology_unlock();
505                 return (error);
506         }
507         error = g_access(cp, 1, 1, 1);
508                 g_topology_unlock();
509         if (error != 0) {
510                 g_detach(cp);
511                 g_destroy_consumer(cp);
512                 G_RAID3_DEBUG(0, "Cannot open consumer %s (error=%d).",
513                     pp->name, error);
514                 return (error);
515         }
516         disk->d_consumer = cp;
517         disk->d_consumer->private = disk;
518         disk->d_consumer->index = 0;
519         G_RAID3_DEBUG(2, "Disk %s connected.", g_raid3_get_diskname(disk));
520         return (0);
521 }
522
523 static void
524 g_raid3_disconnect_consumer(struct g_raid3_softc *sc, struct g_consumer *cp)
525 {
526
527         g_topology_assert();
528
529         if (cp == NULL)
530                 return;
531         if (cp->provider != NULL)
532                 g_raid3_kill_consumer(sc, cp);
533         else
534                 g_destroy_consumer(cp);
535 }
536
537 /*
538  * Initialize disk. This means allocate memory, create consumer, attach it
539  * to the provider and open access (r1w1e1) to it.
540  */
541 static struct g_raid3_disk *
542 g_raid3_init_disk(struct g_raid3_softc *sc, struct g_provider *pp,
543     struct g_raid3_metadata *md, int *errorp)
544 {
545         struct g_raid3_disk *disk;
546         int error;
547
548         disk = &sc->sc_disks[md->md_no];
549         error = g_raid3_connect_disk(disk, pp);
550         if (error != 0) {
551                 if (errorp != NULL)
552                         *errorp = error;
553                 return (NULL);
554         }
555         disk->d_state = G_RAID3_DISK_STATE_NONE;
556         disk->d_flags = md->md_dflags;
557         if (md->md_provider[0] != '\0')
558                 disk->d_flags |= G_RAID3_DISK_FLAG_HARDCODED;
559         disk->d_sync.ds_consumer = NULL;
560         disk->d_sync.ds_offset = md->md_sync_offset;
561         disk->d_sync.ds_offset_done = md->md_sync_offset;
562         disk->d_genid = md->md_genid;
563         disk->d_sync.ds_syncid = md->md_syncid;
564         if (errorp != NULL)
565                 *errorp = 0;
566         return (disk);
567 }
568
569 static void
570 g_raid3_destroy_disk(struct g_raid3_disk *disk)
571 {
572         struct g_raid3_softc *sc;
573
574         g_topology_assert_not();
575         sc = disk->d_softc;
576         sx_assert(&sc->sc_lock, SX_XLOCKED);
577
578         if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
579                 return;
580         g_raid3_event_cancel(disk);
581         switch (disk->d_state) {
582         case G_RAID3_DISK_STATE_SYNCHRONIZING:
583                 if (sc->sc_syncdisk != NULL)
584                         g_raid3_sync_stop(sc, 1);
585                 /* FALLTHROUGH */
586         case G_RAID3_DISK_STATE_NEW:
587         case G_RAID3_DISK_STATE_STALE:
588         case G_RAID3_DISK_STATE_ACTIVE:
589                 g_topology_lock();
590                 g_raid3_disconnect_consumer(sc, disk->d_consumer);
591                 g_topology_unlock();
592                 disk->d_consumer = NULL;
593                 break;
594         default:
595                 KASSERT(0 == 1, ("Wrong disk state (%s, %s).",
596                     g_raid3_get_diskname(disk),
597                     g_raid3_disk_state2str(disk->d_state)));
598         }
599         disk->d_state = G_RAID3_DISK_STATE_NODISK;
600 }
601
602 static void
603 g_raid3_destroy_device(struct g_raid3_softc *sc)
604 {
605         struct g_raid3_event *ep;
606         struct g_raid3_disk *disk;
607         struct g_geom *gp;
608         struct g_consumer *cp;
609         u_int n;
610
611         g_topology_assert_not();
612         sx_assert(&sc->sc_lock, SX_XLOCKED);
613
614         gp = sc->sc_geom;
615         if (sc->sc_provider != NULL)
616                 g_raid3_destroy_provider(sc);
617         for (n = 0; n < sc->sc_ndisks; n++) {
618                 disk = &sc->sc_disks[n];
619                 if (disk->d_state != G_RAID3_DISK_STATE_NODISK) {
620                         disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
621                         g_raid3_update_metadata(disk);
622                         g_raid3_destroy_disk(disk);
623                 }
624         }
625         while ((ep = g_raid3_event_get(sc)) != NULL) {
626                 g_raid3_event_remove(sc, ep);
627                 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0)
628                         g_raid3_event_free(ep);
629                 else {
630                         ep->e_error = ECANCELED;
631                         ep->e_flags |= G_RAID3_EVENT_DONE;
632                         G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, ep);
633                         mtx_lock(&sc->sc_events_mtx);
634                         wakeup(ep);
635                         mtx_unlock(&sc->sc_events_mtx);
636                 }
637         }
638         callout_drain(&sc->sc_callout);
639         cp = LIST_FIRST(&sc->sc_sync.ds_geom->consumer);
640         g_topology_lock();
641         if (cp != NULL)
642                 g_raid3_disconnect_consumer(sc, cp);
643         g_wither_geom(sc->sc_sync.ds_geom, ENXIO);
644         G_RAID3_DEBUG(0, "Device %s destroyed.", gp->name);
645         g_wither_geom(gp, ENXIO);
646         g_topology_unlock();
647         if (!g_raid3_use_malloc) {
648                 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone);
649                 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone);
650                 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone);
651         }
652         mtx_destroy(&sc->sc_queue_mtx);
653         mtx_destroy(&sc->sc_events_mtx);
654         sx_xunlock(&sc->sc_lock);
655         sx_destroy(&sc->sc_lock);
656 }
657
658 static void
659 g_raid3_orphan(struct g_consumer *cp)
660 {
661         struct g_raid3_disk *disk;
662
663         g_topology_assert();
664
665         disk = cp->private;
666         if (disk == NULL)
667                 return;
668         disk->d_softc->sc_bump_id = G_RAID3_BUMP_SYNCID;
669         g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED,
670             G_RAID3_EVENT_DONTWAIT);
671 }
672
673 static int
674 g_raid3_write_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md)
675 {
676         struct g_raid3_softc *sc;
677         struct g_consumer *cp;
678         off_t offset, length;
679         u_char *sector;
680         int error = 0;
681
682         g_topology_assert_not();
683         sc = disk->d_softc;
684         sx_assert(&sc->sc_lock, SX_LOCKED);
685
686         cp = disk->d_consumer;
687         KASSERT(cp != NULL, ("NULL consumer (%s).", sc->sc_name));
688         KASSERT(cp->provider != NULL, ("NULL provider (%s).", sc->sc_name));
689         KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
690             ("Consumer %s closed? (r%dw%de%d).", cp->provider->name, cp->acr,
691             cp->acw, cp->ace));
692         length = cp->provider->sectorsize;
693         offset = cp->provider->mediasize - length;
694         sector = malloc((size_t)length, M_RAID3, M_WAITOK | M_ZERO);
695         if (md != NULL)
696                 raid3_metadata_encode(md, sector);
697         error = g_write_data(cp, offset, sector, length);
698         free(sector, M_RAID3);
699         if (error != 0) {
700                 if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
701                         G_RAID3_DEBUG(0, "Cannot write metadata on %s "
702                             "(device=%s, error=%d).",
703                             g_raid3_get_diskname(disk), sc->sc_name, error);
704                         disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
705                 } else {
706                         G_RAID3_DEBUG(1, "Cannot write metadata on %s "
707                             "(device=%s, error=%d).",
708                             g_raid3_get_diskname(disk), sc->sc_name, error);
709                 }
710                 if (g_raid3_disconnect_on_failure &&
711                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
712                         sc->sc_bump_id |= G_RAID3_BUMP_GENID;
713                         g_raid3_event_send(disk,
714                             G_RAID3_DISK_STATE_DISCONNECTED,
715                             G_RAID3_EVENT_DONTWAIT);
716                 }
717         }
718         return (error);
719 }
720
721 int
722 g_raid3_clear_metadata(struct g_raid3_disk *disk)
723 {
724         int error;
725
726         g_topology_assert_not();
727         sx_assert(&disk->d_softc->sc_lock, SX_LOCKED);
728
729         error = g_raid3_write_metadata(disk, NULL);
730         if (error == 0) {
731                 G_RAID3_DEBUG(2, "Metadata on %s cleared.",
732                     g_raid3_get_diskname(disk));
733         } else {
734                 G_RAID3_DEBUG(0,
735                     "Cannot clear metadata on disk %s (error=%d).",
736                     g_raid3_get_diskname(disk), error);
737         }
738         return (error);
739 }
740
741 void
742 g_raid3_fill_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md)
743 {
744         struct g_raid3_softc *sc;
745         struct g_provider *pp;
746
747         sc = disk->d_softc;
748         strlcpy(md->md_magic, G_RAID3_MAGIC, sizeof(md->md_magic));
749         md->md_version = G_RAID3_VERSION;
750         strlcpy(md->md_name, sc->sc_name, sizeof(md->md_name));
751         md->md_id = sc->sc_id;
752         md->md_all = sc->sc_ndisks;
753         md->md_genid = sc->sc_genid;
754         md->md_mediasize = sc->sc_mediasize;
755         md->md_sectorsize = sc->sc_sectorsize;
756         md->md_mflags = (sc->sc_flags & G_RAID3_DEVICE_FLAG_MASK);
757         md->md_no = disk->d_no;
758         md->md_syncid = disk->d_sync.ds_syncid;
759         md->md_dflags = (disk->d_flags & G_RAID3_DISK_FLAG_MASK);
760         if (disk->d_state != G_RAID3_DISK_STATE_SYNCHRONIZING)
761                 md->md_sync_offset = 0;
762         else {
763                 md->md_sync_offset =
764                     disk->d_sync.ds_offset_done / (sc->sc_ndisks - 1);
765         }
766         if (disk->d_consumer != NULL && disk->d_consumer->provider != NULL)
767                 pp = disk->d_consumer->provider;
768         else
769                 pp = NULL;
770         if ((disk->d_flags & G_RAID3_DISK_FLAG_HARDCODED) != 0 && pp != NULL)
771                 strlcpy(md->md_provider, pp->name, sizeof(md->md_provider));
772         else
773                 bzero(md->md_provider, sizeof(md->md_provider));
774         if (pp != NULL)
775                 md->md_provsize = pp->mediasize;
776         else
777                 md->md_provsize = 0;
778 }
779
780 void
781 g_raid3_update_metadata(struct g_raid3_disk *disk)
782 {
783         struct g_raid3_softc *sc;
784         struct g_raid3_metadata md;
785         int error;
786
787         g_topology_assert_not();
788         sc = disk->d_softc;
789         sx_assert(&sc->sc_lock, SX_LOCKED);
790
791         g_raid3_fill_metadata(disk, &md);
792         error = g_raid3_write_metadata(disk, &md);
793         if (error == 0) {
794                 G_RAID3_DEBUG(2, "Metadata on %s updated.",
795                     g_raid3_get_diskname(disk));
796         } else {
797                 G_RAID3_DEBUG(0,
798                     "Cannot update metadata on disk %s (error=%d).",
799                     g_raid3_get_diskname(disk), error);
800         }
801 }
802
803 static void
804 g_raid3_bump_syncid(struct g_raid3_softc *sc)
805 {
806         struct g_raid3_disk *disk;
807         u_int n;
808
809         g_topology_assert_not();
810         sx_assert(&sc->sc_lock, SX_XLOCKED);
811         KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0,
812             ("%s called with no active disks (device=%s).", __func__,
813             sc->sc_name));
814
815         sc->sc_syncid++;
816         G_RAID3_DEBUG(1, "Device %s: syncid bumped to %u.", sc->sc_name,
817             sc->sc_syncid);
818         for (n = 0; n < sc->sc_ndisks; n++) {
819                 disk = &sc->sc_disks[n];
820                 if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
821                     disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
822                         disk->d_sync.ds_syncid = sc->sc_syncid;
823                         g_raid3_update_metadata(disk);
824                 }
825         }
826 }
827
828 static void
829 g_raid3_bump_genid(struct g_raid3_softc *sc)
830 {
831         struct g_raid3_disk *disk;
832         u_int n;
833
834         g_topology_assert_not();
835         sx_assert(&sc->sc_lock, SX_XLOCKED);
836         KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0,
837             ("%s called with no active disks (device=%s).", __func__,
838             sc->sc_name));
839
840         sc->sc_genid++;
841         G_RAID3_DEBUG(1, "Device %s: genid bumped to %u.", sc->sc_name,
842             sc->sc_genid);
843         for (n = 0; n < sc->sc_ndisks; n++) {
844                 disk = &sc->sc_disks[n];
845                 if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
846                     disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
847                         disk->d_genid = sc->sc_genid;
848                         g_raid3_update_metadata(disk);
849                 }
850         }
851 }
852
853 static int
854 g_raid3_idle(struct g_raid3_softc *sc, int acw)
855 {
856         struct g_raid3_disk *disk;
857         u_int i;
858         int timeout;
859
860         g_topology_assert_not();
861         sx_assert(&sc->sc_lock, SX_XLOCKED);
862
863         if (sc->sc_provider == NULL)
864                 return (0);
865         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
866                 return (0);
867         if (sc->sc_idle)
868                 return (0);
869         if (sc->sc_writes > 0)
870                 return (0);
871         if (acw > 0 || (acw == -1 && sc->sc_provider->acw > 0)) {
872                 timeout = g_raid3_idletime - (time_uptime - sc->sc_last_write);
873                 if (!g_raid3_shutdown && timeout > 0)
874                         return (timeout);
875         }
876         sc->sc_idle = 1;
877         for (i = 0; i < sc->sc_ndisks; i++) {
878                 disk = &sc->sc_disks[i];
879                 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
880                         continue;
881                 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.",
882                     g_raid3_get_diskname(disk), sc->sc_name);
883                 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
884                 g_raid3_update_metadata(disk);
885         }
886         return (0);
887 }
888
889 static void
890 g_raid3_unidle(struct g_raid3_softc *sc)
891 {
892         struct g_raid3_disk *disk;
893         u_int i;
894
895         g_topology_assert_not();
896         sx_assert(&sc->sc_lock, SX_XLOCKED);
897
898         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
899                 return;
900         sc->sc_idle = 0;
901         sc->sc_last_write = time_uptime;
902         for (i = 0; i < sc->sc_ndisks; i++) {
903                 disk = &sc->sc_disks[i];
904                 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
905                         continue;
906                 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.",
907                     g_raid3_get_diskname(disk), sc->sc_name);
908                 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
909                 g_raid3_update_metadata(disk);
910         }
911 }
912
913 /*
914  * Treat bio_driver1 field in parent bio as list head and field bio_caller1
915  * in child bio as pointer to the next element on the list.
916  */
917 #define G_RAID3_HEAD_BIO(pbp)   (pbp)->bio_driver1
918
919 #define G_RAID3_NEXT_BIO(cbp)   (cbp)->bio_caller1
920
921 #define G_RAID3_FOREACH_BIO(pbp, bp)                                    \
922         for ((bp) = G_RAID3_HEAD_BIO(pbp); (bp) != NULL;                \
923             (bp) = G_RAID3_NEXT_BIO(bp))
924
925 #define G_RAID3_FOREACH_SAFE_BIO(pbp, bp, tmpbp)                        \
926         for ((bp) = G_RAID3_HEAD_BIO(pbp);                              \
927             (bp) != NULL && ((tmpbp) = G_RAID3_NEXT_BIO(bp), 1);        \
928             (bp) = (tmpbp))
929
930 static void
931 g_raid3_init_bio(struct bio *pbp)
932 {
933
934         G_RAID3_HEAD_BIO(pbp) = NULL;
935 }
936
937 static void
938 g_raid3_remove_bio(struct bio *cbp)
939 {
940         struct bio *pbp, *bp;
941
942         pbp = cbp->bio_parent;
943         if (G_RAID3_HEAD_BIO(pbp) == cbp)
944                 G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp);
945         else {
946                 G_RAID3_FOREACH_BIO(pbp, bp) {
947                         if (G_RAID3_NEXT_BIO(bp) == cbp) {
948                                 G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp);
949                                 break;
950                         }
951                 }
952         }
953         G_RAID3_NEXT_BIO(cbp) = NULL;
954 }
955
956 static void
957 g_raid3_replace_bio(struct bio *sbp, struct bio *dbp)
958 {
959         struct bio *pbp, *bp;
960
961         g_raid3_remove_bio(sbp);
962         pbp = dbp->bio_parent;
963         G_RAID3_NEXT_BIO(sbp) = G_RAID3_NEXT_BIO(dbp);
964         if (G_RAID3_HEAD_BIO(pbp) == dbp)
965                 G_RAID3_HEAD_BIO(pbp) = sbp;
966         else {
967                 G_RAID3_FOREACH_BIO(pbp, bp) {
968                         if (G_RAID3_NEXT_BIO(bp) == dbp) {
969                                 G_RAID3_NEXT_BIO(bp) = sbp;
970                                 break;
971                         }
972                 }
973         }
974         G_RAID3_NEXT_BIO(dbp) = NULL;
975 }
976
977 static void
978 g_raid3_destroy_bio(struct g_raid3_softc *sc, struct bio *cbp)
979 {
980         struct bio *bp, *pbp;
981         size_t size;
982
983         pbp = cbp->bio_parent;
984         pbp->bio_children--;
985         KASSERT(cbp->bio_data != NULL, ("NULL bio_data"));
986         size = pbp->bio_length / (sc->sc_ndisks - 1);
987         g_raid3_free(sc, cbp->bio_data, size);
988         if (G_RAID3_HEAD_BIO(pbp) == cbp) {
989                 G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp);
990                 G_RAID3_NEXT_BIO(cbp) = NULL;
991                 g_destroy_bio(cbp);
992         } else {
993                 G_RAID3_FOREACH_BIO(pbp, bp) {
994                         if (G_RAID3_NEXT_BIO(bp) == cbp)
995                                 break;
996                 }
997                 if (bp != NULL) {
998                         KASSERT(G_RAID3_NEXT_BIO(bp) != NULL,
999                             ("NULL bp->bio_driver1"));
1000                         G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp);
1001                         G_RAID3_NEXT_BIO(cbp) = NULL;
1002                 }
1003                 g_destroy_bio(cbp);
1004         }
1005 }
1006
1007 static struct bio *
1008 g_raid3_clone_bio(struct g_raid3_softc *sc, struct bio *pbp)
1009 {
1010         struct bio *bp, *cbp;
1011         size_t size;
1012         int memflag;
1013
1014         cbp = g_clone_bio(pbp);
1015         if (cbp == NULL)
1016                 return (NULL);
1017         size = pbp->bio_length / (sc->sc_ndisks - 1);
1018         if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0)
1019                 memflag = M_WAITOK;
1020         else
1021                 memflag = M_NOWAIT;
1022         cbp->bio_data = g_raid3_alloc(sc, size, memflag);
1023         if (cbp->bio_data == NULL) {
1024                 pbp->bio_children--;
1025                 g_destroy_bio(cbp);
1026                 return (NULL);
1027         }
1028         G_RAID3_NEXT_BIO(cbp) = NULL;
1029         if (G_RAID3_HEAD_BIO(pbp) == NULL)
1030                 G_RAID3_HEAD_BIO(pbp) = cbp;
1031         else {
1032                 G_RAID3_FOREACH_BIO(pbp, bp) {
1033                         if (G_RAID3_NEXT_BIO(bp) == NULL) {
1034                                 G_RAID3_NEXT_BIO(bp) = cbp;
1035                                 break;
1036                         }
1037                 }
1038         }
1039         return (cbp);
1040 }
1041
1042 static void
1043 g_raid3_scatter(struct bio *pbp)
1044 {
1045         struct g_raid3_softc *sc;
1046         struct g_raid3_disk *disk;
1047         struct bio *bp, *cbp, *tmpbp;
1048         off_t atom, cadd, padd, left;
1049         int first;
1050
1051         sc = pbp->bio_to->geom->softc;
1052         bp = NULL;
1053         if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) {
1054                 /*
1055                  * Find bio for which we should calculate data.
1056                  */
1057                 G_RAID3_FOREACH_BIO(pbp, cbp) {
1058                         if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) {
1059                                 bp = cbp;
1060                                 break;
1061                         }
1062                 }
1063                 KASSERT(bp != NULL, ("NULL parity bio."));
1064         }
1065         atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
1066         cadd = padd = 0;
1067         for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) {
1068                 G_RAID3_FOREACH_BIO(pbp, cbp) {
1069                         if (cbp == bp)
1070                                 continue;
1071                         bcopy(pbp->bio_data + padd, cbp->bio_data + cadd, atom);
1072                         padd += atom;
1073                 }
1074                 cadd += atom;
1075         }
1076         if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) {
1077                 /*
1078                  * Calculate parity.
1079                  */
1080                 first = 1;
1081                 G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
1082                         if (cbp == bp)
1083                                 continue;
1084                         if (first) {
1085                                 bcopy(cbp->bio_data, bp->bio_data,
1086                                     bp->bio_length);
1087                                 first = 0;
1088                         } else {
1089                                 g_raid3_xor(cbp->bio_data, bp->bio_data,
1090                                     bp->bio_length);
1091                         }
1092                         if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_NODISK) != 0)
1093                                 g_raid3_destroy_bio(sc, cbp);
1094                 }
1095         }
1096         G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
1097                 struct g_consumer *cp;
1098
1099                 disk = cbp->bio_caller2;
1100                 cp = disk->d_consumer;
1101                 cbp->bio_to = cp->provider;
1102                 G_RAID3_LOGREQ(3, cbp, "Sending request.");
1103                 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1104                     ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
1105                     cp->acr, cp->acw, cp->ace));
1106                 cp->index++;
1107                 sc->sc_writes++;
1108                 g_io_request(cbp, cp);
1109         }
1110 }
1111
1112 static void
1113 g_raid3_gather(struct bio *pbp)
1114 {
1115         struct g_raid3_softc *sc;
1116         struct g_raid3_disk *disk;
1117         struct bio *xbp, *fbp, *cbp;
1118         off_t atom, cadd, padd, left;
1119
1120         sc = pbp->bio_to->geom->softc;
1121         /*
1122          * Find bio for which we have to calculate data.
1123          * While going through this path, check if all requests
1124          * succeeded, if not, deny whole request.
1125          * If we're in COMPLETE mode, we allow one request to fail,
1126          * so if we find one, we're sending it to the parity consumer.
1127          * If there are more failed requests, we deny whole request.
1128          */
1129         xbp = fbp = NULL;
1130         G_RAID3_FOREACH_BIO(pbp, cbp) {
1131                 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) {
1132                         KASSERT(xbp == NULL, ("More than one parity bio."));
1133                         xbp = cbp;
1134                 }
1135                 if (cbp->bio_error == 0)
1136                         continue;
1137                 /*
1138                  * Found failed request.
1139                  */
1140                 if (fbp == NULL) {
1141                         if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_DEGRADED) != 0) {
1142                                 /*
1143                                  * We are already in degraded mode, so we can't
1144                                  * accept any failures.
1145                                  */
1146                                 if (pbp->bio_error == 0)
1147                                         pbp->bio_error = cbp->bio_error;
1148                         } else {
1149                                 fbp = cbp;
1150                         }
1151                 } else {
1152                         /*
1153                          * Next failed request, that's too many.
1154                          */
1155                         if (pbp->bio_error == 0)
1156                                 pbp->bio_error = fbp->bio_error;
1157                 }
1158                 disk = cbp->bio_caller2;
1159                 if (disk == NULL)
1160                         continue;
1161                 if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
1162                         disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
1163                         G_RAID3_LOGREQ(0, cbp, "Request failed (error=%d).",
1164                             cbp->bio_error);
1165                 } else {
1166                         G_RAID3_LOGREQ(1, cbp, "Request failed (error=%d).",
1167                             cbp->bio_error);
1168                 }
1169                 if (g_raid3_disconnect_on_failure &&
1170                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
1171                         sc->sc_bump_id |= G_RAID3_BUMP_GENID;
1172                         g_raid3_event_send(disk,
1173                             G_RAID3_DISK_STATE_DISCONNECTED,
1174                             G_RAID3_EVENT_DONTWAIT);
1175                 }
1176         }
1177         if (pbp->bio_error != 0)
1178                 goto finish;
1179         if (fbp != NULL && (pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) {
1180                 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_VERIFY;
1181                 if (xbp != fbp)
1182                         g_raid3_replace_bio(xbp, fbp);
1183                 g_raid3_destroy_bio(sc, fbp);
1184         } else if (fbp != NULL) {
1185                 struct g_consumer *cp;
1186
1187                 /*
1188                  * One request failed, so send the same request to
1189                  * the parity consumer.
1190                  */
1191                 disk = pbp->bio_driver2;
1192                 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) {
1193                         pbp->bio_error = fbp->bio_error;
1194                         goto finish;
1195                 }
1196                 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
1197                 pbp->bio_inbed--;
1198                 fbp->bio_flags &= ~(BIO_DONE | BIO_ERROR);
1199                 if (disk->d_no == sc->sc_ndisks - 1)
1200                         fbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
1201                 fbp->bio_error = 0;
1202                 fbp->bio_completed = 0;
1203                 fbp->bio_children = 0;
1204                 fbp->bio_inbed = 0;
1205                 cp = disk->d_consumer;
1206                 fbp->bio_caller2 = disk;
1207                 fbp->bio_to = cp->provider;
1208                 G_RAID3_LOGREQ(3, fbp, "Sending request (recover).");
1209                 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1210                     ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
1211                     cp->acr, cp->acw, cp->ace));
1212                 cp->index++;
1213                 g_io_request(fbp, cp);
1214                 return;
1215         }
1216         if (xbp != NULL) {
1217                 /*
1218                  * Calculate parity.
1219                  */
1220                 G_RAID3_FOREACH_BIO(pbp, cbp) {
1221                         if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0)
1222                                 continue;
1223                         g_raid3_xor(cbp->bio_data, xbp->bio_data,
1224                             xbp->bio_length);
1225                 }
1226                 xbp->bio_cflags &= ~G_RAID3_BIO_CFLAG_PARITY;
1227                 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) {
1228                         if (!g_raid3_is_zero(xbp)) {
1229                                 g_raid3_parity_mismatch++;
1230                                 pbp->bio_error = EIO;
1231                                 goto finish;
1232                         }
1233                         g_raid3_destroy_bio(sc, xbp);
1234                 }
1235         }
1236         atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
1237         cadd = padd = 0;
1238         for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) {
1239                 G_RAID3_FOREACH_BIO(pbp, cbp) {
1240                         bcopy(cbp->bio_data + cadd, pbp->bio_data + padd, atom);
1241                         pbp->bio_completed += atom;
1242                         padd += atom;
1243                 }
1244                 cadd += atom;
1245         }
1246 finish:
1247         if (pbp->bio_error == 0)
1248                 G_RAID3_LOGREQ(3, pbp, "Request finished.");
1249         else {
1250                 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0)
1251                         G_RAID3_LOGREQ(1, pbp, "Verification error.");
1252                 else
1253                         G_RAID3_LOGREQ(0, pbp, "Request failed.");
1254         }
1255         pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_MASK;
1256         while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL)
1257                 g_raid3_destroy_bio(sc, cbp);
1258         g_io_deliver(pbp, pbp->bio_error);
1259 }
1260
1261 static void
1262 g_raid3_done(struct bio *bp)
1263 {
1264         struct g_raid3_softc *sc;
1265
1266         sc = bp->bio_from->geom->softc;
1267         bp->bio_cflags |= G_RAID3_BIO_CFLAG_REGULAR;
1268         G_RAID3_LOGREQ(3, bp, "Regular request done (error=%d).", bp->bio_error);
1269         mtx_lock(&sc->sc_queue_mtx);
1270         bioq_insert_head(&sc->sc_queue, bp);
1271         mtx_unlock(&sc->sc_queue_mtx);
1272         wakeup(sc);
1273         wakeup(&sc->sc_queue);
1274 }
1275
1276 static void
1277 g_raid3_regular_request(struct bio *cbp)
1278 {
1279         struct g_raid3_softc *sc;
1280         struct g_raid3_disk *disk;
1281         struct bio *pbp;
1282
1283         g_topology_assert_not();
1284
1285         pbp = cbp->bio_parent;
1286         sc = pbp->bio_to->geom->softc;
1287         cbp->bio_from->index--;
1288         if (cbp->bio_cmd == BIO_WRITE)
1289                 sc->sc_writes--;
1290         disk = cbp->bio_from->private;
1291         if (disk == NULL) {
1292                 g_topology_lock();
1293                 g_raid3_kill_consumer(sc, cbp->bio_from);
1294                 g_topology_unlock();
1295         }
1296
1297         G_RAID3_LOGREQ(3, cbp, "Request finished.");
1298         pbp->bio_inbed++;
1299         KASSERT(pbp->bio_inbed <= pbp->bio_children,
1300             ("bio_inbed (%u) is bigger than bio_children (%u).", pbp->bio_inbed,
1301             pbp->bio_children));
1302         if (pbp->bio_inbed != pbp->bio_children)
1303                 return;
1304         switch (pbp->bio_cmd) {
1305         case BIO_READ:
1306                 g_raid3_gather(pbp);
1307                 break;
1308         case BIO_WRITE:
1309         case BIO_DELETE:
1310             {
1311                 int error = 0;
1312
1313                 pbp->bio_completed = pbp->bio_length;
1314                 while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) {
1315                         if (cbp->bio_error == 0) {
1316                                 g_raid3_destroy_bio(sc, cbp);
1317                                 continue;
1318                         }
1319
1320                         if (error == 0)
1321                                 error = cbp->bio_error;
1322                         else if (pbp->bio_error == 0) {
1323                                 /*
1324                                  * Next failed request, that's too many.
1325                                  */
1326                                 pbp->bio_error = error;
1327                         }
1328
1329                         disk = cbp->bio_caller2;
1330                         if (disk == NULL) {
1331                                 g_raid3_destroy_bio(sc, cbp);
1332                                 continue;
1333                         }
1334
1335                         if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
1336                                 disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
1337                                 G_RAID3_LOGREQ(0, cbp,
1338                                     "Request failed (error=%d).",
1339                                     cbp->bio_error);
1340                         } else {
1341                                 G_RAID3_LOGREQ(1, cbp,
1342                                     "Request failed (error=%d).",
1343                                     cbp->bio_error);
1344                         }
1345                         if (g_raid3_disconnect_on_failure &&
1346                             sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
1347                                 sc->sc_bump_id |= G_RAID3_BUMP_GENID;
1348                                 g_raid3_event_send(disk,
1349                                     G_RAID3_DISK_STATE_DISCONNECTED,
1350                                     G_RAID3_EVENT_DONTWAIT);
1351                         }
1352                         g_raid3_destroy_bio(sc, cbp);
1353                 }
1354                 if (pbp->bio_error == 0)
1355                         G_RAID3_LOGREQ(3, pbp, "Request finished.");
1356                 else
1357                         G_RAID3_LOGREQ(0, pbp, "Request failed.");
1358                 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_DEGRADED;
1359                 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_NOPARITY;
1360                 bioq_remove(&sc->sc_inflight, pbp);
1361                 /* Release delayed sync requests if possible. */
1362                 g_raid3_sync_release(sc);
1363                 g_io_deliver(pbp, pbp->bio_error);
1364                 break;
1365             }
1366         }
1367 }
1368
1369 static void
1370 g_raid3_sync_done(struct bio *bp)
1371 {
1372         struct g_raid3_softc *sc;
1373
1374         G_RAID3_LOGREQ(3, bp, "Synchronization request delivered.");
1375         sc = bp->bio_from->geom->softc;
1376         bp->bio_cflags |= G_RAID3_BIO_CFLAG_SYNC;
1377         mtx_lock(&sc->sc_queue_mtx);
1378         bioq_insert_head(&sc->sc_queue, bp);
1379         mtx_unlock(&sc->sc_queue_mtx);
1380         wakeup(sc);
1381         wakeup(&sc->sc_queue);
1382 }
1383
1384 static void
1385 g_raid3_flush(struct g_raid3_softc *sc, struct bio *bp)
1386 {
1387         struct bio_queue_head queue;
1388         struct g_raid3_disk *disk;
1389         struct g_consumer *cp;
1390         struct bio *cbp;
1391         u_int i;
1392
1393         bioq_init(&queue);
1394         for (i = 0; i < sc->sc_ndisks; i++) {
1395                 disk = &sc->sc_disks[i];
1396                 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
1397                         continue;
1398                 cbp = g_clone_bio(bp);
1399                 if (cbp == NULL) {
1400                         for (cbp = bioq_first(&queue); cbp != NULL;
1401                             cbp = bioq_first(&queue)) {
1402                                 bioq_remove(&queue, cbp);
1403                                 g_destroy_bio(cbp);
1404                         }
1405                         if (bp->bio_error == 0)
1406                                 bp->bio_error = ENOMEM;
1407                         g_io_deliver(bp, bp->bio_error);
1408                         return;
1409                 }
1410                 bioq_insert_tail(&queue, cbp);
1411                 cbp->bio_done = g_std_done;
1412                 cbp->bio_caller1 = disk;
1413                 cbp->bio_to = disk->d_consumer->provider;
1414         }
1415         for (cbp = bioq_first(&queue); cbp != NULL; cbp = bioq_first(&queue)) {
1416                 bioq_remove(&queue, cbp);
1417                 G_RAID3_LOGREQ(3, cbp, "Sending request.");
1418                 disk = cbp->bio_caller1;
1419                 cbp->bio_caller1 = NULL;
1420                 cp = disk->d_consumer;
1421                 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1422                     ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
1423                     cp->acr, cp->acw, cp->ace));
1424                 g_io_request(cbp, disk->d_consumer);
1425         }
1426 }
1427
1428 static void
1429 g_raid3_start(struct bio *bp)
1430 {
1431         struct g_raid3_softc *sc;
1432
1433         sc = bp->bio_to->geom->softc;
1434         /*
1435          * If sc == NULL or there are no valid disks, provider's error
1436          * should be set and g_raid3_start() should not be called at all.
1437          */
1438         KASSERT(sc != NULL && (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
1439             sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE),
1440             ("Provider's error should be set (error=%d)(device=%s).",
1441             bp->bio_to->error, bp->bio_to->name));
1442         G_RAID3_LOGREQ(3, bp, "Request received.");
1443
1444         switch (bp->bio_cmd) {
1445         case BIO_READ:
1446         case BIO_WRITE:
1447         case BIO_DELETE:
1448                 break;
1449         case BIO_FLUSH:
1450                 g_raid3_flush(sc, bp);
1451                 return;
1452         case BIO_GETATTR:
1453         default:
1454                 g_io_deliver(bp, EOPNOTSUPP);
1455                 return;
1456         }
1457         mtx_lock(&sc->sc_queue_mtx);
1458         bioq_insert_tail(&sc->sc_queue, bp);
1459         mtx_unlock(&sc->sc_queue_mtx);
1460         G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
1461         wakeup(sc);
1462 }
1463
1464 /*
1465  * Return TRUE if the given request is colliding with a in-progress
1466  * synchronization request.
1467  */
1468 static int
1469 g_raid3_sync_collision(struct g_raid3_softc *sc, struct bio *bp)
1470 {
1471         struct g_raid3_disk *disk;
1472         struct bio *sbp;
1473         off_t rstart, rend, sstart, send;
1474         int i;
1475
1476         disk = sc->sc_syncdisk;
1477         if (disk == NULL)
1478                 return (0);
1479         rstart = bp->bio_offset;
1480         rend = bp->bio_offset + bp->bio_length;
1481         for (i = 0; i < g_raid3_syncreqs; i++) {
1482                 sbp = disk->d_sync.ds_bios[i];
1483                 if (sbp == NULL)
1484                         continue;
1485                 sstart = sbp->bio_offset;
1486                 send = sbp->bio_length;
1487                 if (sbp->bio_cmd == BIO_WRITE) {
1488                         sstart *= sc->sc_ndisks - 1;
1489                         send *= sc->sc_ndisks - 1;
1490                 }
1491                 send += sstart;
1492                 if (rend > sstart && rstart < send)
1493                         return (1);
1494         }
1495         return (0);
1496 }
1497
1498 /*
1499  * Return TRUE if the given sync request is colliding with a in-progress regular
1500  * request.
1501  */
1502 static int
1503 g_raid3_regular_collision(struct g_raid3_softc *sc, struct bio *sbp)
1504 {
1505         off_t rstart, rend, sstart, send;
1506         struct bio *bp;
1507
1508         if (sc->sc_syncdisk == NULL)
1509                 return (0);
1510         sstart = sbp->bio_offset;
1511         send = sstart + sbp->bio_length;
1512         TAILQ_FOREACH(bp, &sc->sc_inflight.queue, bio_queue) {
1513                 rstart = bp->bio_offset;
1514                 rend = bp->bio_offset + bp->bio_length;
1515                 if (rend > sstart && rstart < send)
1516                         return (1);
1517         }
1518         return (0);
1519 }
1520
1521 /*
1522  * Puts request onto delayed queue.
1523  */
1524 static void
1525 g_raid3_regular_delay(struct g_raid3_softc *sc, struct bio *bp)
1526 {
1527
1528         G_RAID3_LOGREQ(2, bp, "Delaying request.");
1529         bioq_insert_head(&sc->sc_regular_delayed, bp);
1530 }
1531
1532 /*
1533  * Puts synchronization request onto delayed queue.
1534  */
1535 static void
1536 g_raid3_sync_delay(struct g_raid3_softc *sc, struct bio *bp)
1537 {
1538
1539         G_RAID3_LOGREQ(2, bp, "Delaying synchronization request.");
1540         bioq_insert_tail(&sc->sc_sync_delayed, bp);
1541 }
1542
1543 /*
1544  * Releases delayed regular requests which don't collide anymore with sync
1545  * requests.
1546  */
1547 static void
1548 g_raid3_regular_release(struct g_raid3_softc *sc)
1549 {
1550         struct bio *bp, *bp2;
1551
1552         TAILQ_FOREACH_SAFE(bp, &sc->sc_regular_delayed.queue, bio_queue, bp2) {
1553                 if (g_raid3_sync_collision(sc, bp))
1554                         continue;
1555                 bioq_remove(&sc->sc_regular_delayed, bp);
1556                 G_RAID3_LOGREQ(2, bp, "Releasing delayed request (%p).", bp);
1557                 mtx_lock(&sc->sc_queue_mtx);
1558                 bioq_insert_head(&sc->sc_queue, bp);
1559 #if 0
1560                 /*
1561                  * wakeup() is not needed, because this function is called from
1562                  * the worker thread.
1563                  */
1564                 wakeup(&sc->sc_queue);
1565 #endif
1566                 mtx_unlock(&sc->sc_queue_mtx);
1567         }
1568 }
1569
1570 /*
1571  * Releases delayed sync requests which don't collide anymore with regular
1572  * requests.
1573  */
1574 static void
1575 g_raid3_sync_release(struct g_raid3_softc *sc)
1576 {
1577         struct bio *bp, *bp2;
1578
1579         TAILQ_FOREACH_SAFE(bp, &sc->sc_sync_delayed.queue, bio_queue, bp2) {
1580                 if (g_raid3_regular_collision(sc, bp))
1581                         continue;
1582                 bioq_remove(&sc->sc_sync_delayed, bp);
1583                 G_RAID3_LOGREQ(2, bp,
1584                     "Releasing delayed synchronization request.");
1585                 g_io_request(bp, bp->bio_from);
1586         }
1587 }
1588
1589 /*
1590  * Handle synchronization requests.
1591  * Every synchronization request is two-steps process: first, READ request is
1592  * send to active provider and then WRITE request (with read data) to the provider
1593  * being synchronized. When WRITE is finished, new synchronization request is
1594  * send.
1595  */
1596 static void
1597 g_raid3_sync_request(struct bio *bp)
1598 {
1599         struct g_raid3_softc *sc;
1600         struct g_raid3_disk *disk;
1601
1602         bp->bio_from->index--;
1603         sc = bp->bio_from->geom->softc;
1604         disk = bp->bio_from->private;
1605         if (disk == NULL) {
1606                 sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */
1607                 g_topology_lock();
1608                 g_raid3_kill_consumer(sc, bp->bio_from);
1609                 g_topology_unlock();
1610                 free(bp->bio_data, M_RAID3);
1611                 g_destroy_bio(bp);
1612                 sx_xlock(&sc->sc_lock);
1613                 return;
1614         }
1615
1616         /*
1617          * Synchronization request.
1618          */
1619         switch (bp->bio_cmd) {
1620         case BIO_READ:
1621             {
1622                 struct g_consumer *cp;
1623                 u_char *dst, *src;
1624                 off_t left;
1625                 u_int atom;
1626
1627                 if (bp->bio_error != 0) {
1628                         G_RAID3_LOGREQ(0, bp,
1629                             "Synchronization request failed (error=%d).",
1630                             bp->bio_error);
1631                         g_destroy_bio(bp);
1632                         return;
1633                 }
1634                 G_RAID3_LOGREQ(3, bp, "Synchronization request finished.");
1635                 atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
1636                 dst = src = bp->bio_data;
1637                 if (disk->d_no == sc->sc_ndisks - 1) {
1638                         u_int n;
1639
1640                         /* Parity component. */
1641                         for (left = bp->bio_length; left > 0;
1642                             left -= sc->sc_sectorsize) {
1643                                 bcopy(src, dst, atom);
1644                                 src += atom;
1645                                 for (n = 1; n < sc->sc_ndisks - 1; n++) {
1646                                         g_raid3_xor(src, dst, atom);
1647                                         src += atom;
1648                                 }
1649                                 dst += atom;
1650                         }
1651                 } else {
1652                         /* Regular component. */
1653                         src += atom * disk->d_no;
1654                         for (left = bp->bio_length; left > 0;
1655                             left -= sc->sc_sectorsize) {
1656                                 bcopy(src, dst, atom);
1657                                 src += sc->sc_sectorsize;
1658                                 dst += atom;
1659                         }
1660                 }
1661                 bp->bio_driver1 = bp->bio_driver2 = NULL;
1662                 bp->bio_pflags = 0;
1663                 bp->bio_offset /= sc->sc_ndisks - 1;
1664                 bp->bio_length /= sc->sc_ndisks - 1;
1665                 bp->bio_cmd = BIO_WRITE;
1666                 bp->bio_cflags = 0;
1667                 bp->bio_children = bp->bio_inbed = 0;
1668                 cp = disk->d_consumer;
1669                 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1670                     ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
1671                     cp->acr, cp->acw, cp->ace));
1672                 cp->index++;
1673                 g_io_request(bp, cp);
1674                 return;
1675             }
1676         case BIO_WRITE:
1677             {
1678                 struct g_raid3_disk_sync *sync;
1679                 off_t boffset, moffset;
1680                 void *data;
1681                 int i;
1682
1683                 if (bp->bio_error != 0) {
1684                         G_RAID3_LOGREQ(0, bp,
1685                             "Synchronization request failed (error=%d).",
1686                             bp->bio_error);
1687                         g_destroy_bio(bp);
1688                         sc->sc_bump_id |= G_RAID3_BUMP_GENID;
1689                         g_raid3_event_send(disk,
1690                             G_RAID3_DISK_STATE_DISCONNECTED,
1691                             G_RAID3_EVENT_DONTWAIT);
1692                         return;
1693                 }
1694                 G_RAID3_LOGREQ(3, bp, "Synchronization request finished.");
1695                 sync = &disk->d_sync;
1696                 if (sync->ds_offset == sc->sc_mediasize / (sc->sc_ndisks - 1) ||
1697                     sync->ds_consumer == NULL ||
1698                     (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
1699                         /* Don't send more synchronization requests. */
1700                         sync->ds_inflight--;
1701                         if (sync->ds_bios != NULL) {
1702                                 i = (int)(uintptr_t)bp->bio_caller1;
1703                                 sync->ds_bios[i] = NULL;
1704                         }
1705                         free(bp->bio_data, M_RAID3);
1706                         g_destroy_bio(bp);
1707                         if (sync->ds_inflight > 0)
1708                                 return;
1709                         if (sync->ds_consumer == NULL ||
1710                             (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
1711                                 return;
1712                         }
1713                         /*
1714                          * Disk up-to-date, activate it.
1715                          */
1716                         g_raid3_event_send(disk, G_RAID3_DISK_STATE_ACTIVE,
1717                             G_RAID3_EVENT_DONTWAIT);
1718                         return;
1719                 }
1720
1721                 /* Send next synchronization request. */
1722                 data = bp->bio_data;
1723                 g_reset_bio(bp);
1724                 bp->bio_cmd = BIO_READ;
1725                 bp->bio_offset = sync->ds_offset * (sc->sc_ndisks - 1);
1726                 bp->bio_length = MIN(MAXPHYS, sc->sc_mediasize - bp->bio_offset);
1727                 sync->ds_offset += bp->bio_length / (sc->sc_ndisks - 1);
1728                 bp->bio_done = g_raid3_sync_done;
1729                 bp->bio_data = data;
1730                 bp->bio_from = sync->ds_consumer;
1731                 bp->bio_to = sc->sc_provider;
1732                 G_RAID3_LOGREQ(3, bp, "Sending synchronization request.");
1733                 sync->ds_consumer->index++;
1734                 /*
1735                  * Delay the request if it is colliding with a regular request.
1736                  */
1737                 if (g_raid3_regular_collision(sc, bp))
1738                         g_raid3_sync_delay(sc, bp);
1739                 else
1740                         g_io_request(bp, sync->ds_consumer);
1741
1742                 /* Release delayed requests if possible. */
1743                 g_raid3_regular_release(sc);
1744
1745                 /* Find the smallest offset. */
1746                 moffset = sc->sc_mediasize;
1747                 for (i = 0; i < g_raid3_syncreqs; i++) {
1748                         bp = sync->ds_bios[i];
1749                         boffset = bp->bio_offset;
1750                         if (bp->bio_cmd == BIO_WRITE)
1751                                 boffset *= sc->sc_ndisks - 1;
1752                         if (boffset < moffset)
1753                                 moffset = boffset;
1754                 }
1755                 if (sync->ds_offset_done + (MAXPHYS * 100) < moffset) {
1756                         /* Update offset_done on every 100 blocks. */
1757                         sync->ds_offset_done = moffset;
1758                         g_raid3_update_metadata(disk);
1759                 }
1760                 return;
1761             }
1762         default:
1763                 KASSERT(1 == 0, ("Invalid command here: %u (device=%s)",
1764                     bp->bio_cmd, sc->sc_name));
1765                 break;
1766         }
1767 }
1768
1769 static int
1770 g_raid3_register_request(struct bio *pbp)
1771 {
1772         struct g_raid3_softc *sc;
1773         struct g_raid3_disk *disk;
1774         struct g_consumer *cp;
1775         struct bio *cbp, *tmpbp;
1776         off_t offset, length;
1777         u_int n, ndisks;
1778         int round_robin, verify;
1779
1780         ndisks = 0;
1781         sc = pbp->bio_to->geom->softc;
1782         if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGSYNC) != 0 &&
1783             sc->sc_syncdisk == NULL) {
1784                 g_io_deliver(pbp, EIO);
1785                 return (0);
1786         }
1787         g_raid3_init_bio(pbp);
1788         length = pbp->bio_length / (sc->sc_ndisks - 1);
1789         offset = pbp->bio_offset / (sc->sc_ndisks - 1);
1790         round_robin = verify = 0;
1791         switch (pbp->bio_cmd) {
1792         case BIO_READ:
1793                 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 &&
1794                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
1795                         pbp->bio_pflags |= G_RAID3_BIO_PFLAG_VERIFY;
1796                         verify = 1;
1797                         ndisks = sc->sc_ndisks;
1798                 } else {
1799                         verify = 0;
1800                         ndisks = sc->sc_ndisks - 1;
1801                 }
1802                 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0 &&
1803                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
1804                         round_robin = 1;
1805                 } else {
1806                         round_robin = 0;
1807                 }
1808                 KASSERT(!round_robin || !verify,
1809                     ("ROUND-ROBIN and VERIFY are mutually exclusive."));
1810                 pbp->bio_driver2 = &sc->sc_disks[sc->sc_ndisks - 1];
1811                 break;
1812         case BIO_WRITE:
1813         case BIO_DELETE:
1814                 /*
1815                  * Delay the request if it is colliding with a synchronization
1816                  * request.
1817                  */
1818                 if (g_raid3_sync_collision(sc, pbp)) {
1819                         g_raid3_regular_delay(sc, pbp);
1820                         return (0);
1821                 }
1822
1823                 if (sc->sc_idle)
1824                         g_raid3_unidle(sc);
1825                 else
1826                         sc->sc_last_write = time_uptime;
1827
1828                 ndisks = sc->sc_ndisks;
1829                 break;
1830         }
1831         for (n = 0; n < ndisks; n++) {
1832                 disk = &sc->sc_disks[n];
1833                 cbp = g_raid3_clone_bio(sc, pbp);
1834                 if (cbp == NULL) {
1835                         while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL)
1836                                 g_raid3_destroy_bio(sc, cbp);
1837                         /*
1838                          * To prevent deadlock, we must run back up
1839                          * with the ENOMEM for failed requests of any
1840                          * of our consumers.  Our own sync requests
1841                          * can stick around, as they are finite.
1842                          */
1843                         if ((pbp->bio_cflags &
1844                             G_RAID3_BIO_CFLAG_REGULAR) != 0) {
1845                                 g_io_deliver(pbp, ENOMEM);
1846                                 return (0);
1847                         }
1848                         return (ENOMEM);
1849                 }
1850                 cbp->bio_offset = offset;
1851                 cbp->bio_length = length;
1852                 cbp->bio_done = g_raid3_done;
1853                 switch (pbp->bio_cmd) {
1854                 case BIO_READ:
1855                         if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) {
1856                                 /*
1857                                  * Replace invalid component with the parity
1858                                  * component.
1859                                  */
1860                                 disk = &sc->sc_disks[sc->sc_ndisks - 1];
1861                                 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
1862                                 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
1863                         } else if (round_robin &&
1864                             disk->d_no == sc->sc_round_robin) {
1865                                 /*
1866                                  * In round-robin mode skip one data component
1867                                  * and use parity component when reading.
1868                                  */
1869                                 pbp->bio_driver2 = disk;
1870                                 disk = &sc->sc_disks[sc->sc_ndisks - 1];
1871                                 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
1872                                 sc->sc_round_robin++;
1873                                 round_robin = 0;
1874                         } else if (verify && disk->d_no == sc->sc_ndisks - 1) {
1875                                 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
1876                         }
1877                         break;
1878                 case BIO_WRITE:
1879                 case BIO_DELETE:
1880                         if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
1881                             disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
1882                                 if (n == ndisks - 1) {
1883                                         /*
1884                                          * Active parity component, mark it as such.
1885                                          */
1886                                         cbp->bio_cflags |=
1887                                             G_RAID3_BIO_CFLAG_PARITY;
1888                                 }
1889                         } else {
1890                                 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
1891                                 if (n == ndisks - 1) {
1892                                         /*
1893                                          * Parity component is not connected,
1894                                          * so destroy its request.
1895                                          */
1896                                         pbp->bio_pflags |=
1897                                             G_RAID3_BIO_PFLAG_NOPARITY;
1898                                         g_raid3_destroy_bio(sc, cbp);
1899                                         cbp = NULL;
1900                                 } else {
1901                                         cbp->bio_cflags |=
1902                                             G_RAID3_BIO_CFLAG_NODISK;
1903                                         disk = NULL;
1904                                 }
1905                         }
1906                         break;
1907                 }
1908                 if (cbp != NULL)
1909                         cbp->bio_caller2 = disk;
1910         }
1911         switch (pbp->bio_cmd) {
1912         case BIO_READ:
1913                 if (round_robin) {
1914                         /*
1915                          * If we are in round-robin mode and 'round_robin' is
1916                          * still 1, it means, that we skipped parity component
1917                          * for this read and must reset sc_round_robin field.
1918                          */
1919                         sc->sc_round_robin = 0;
1920                 }
1921                 G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
1922                         disk = cbp->bio_caller2;
1923                         cp = disk->d_consumer;
1924                         cbp->bio_to = cp->provider;
1925                         G_RAID3_LOGREQ(3, cbp, "Sending request.");
1926                         KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1927                             ("Consumer %s not opened (r%dw%de%d).",
1928                             cp->provider->name, cp->acr, cp->acw, cp->ace));
1929                         cp->index++;
1930                         g_io_request(cbp, cp);
1931                 }
1932                 break;
1933         case BIO_WRITE:
1934         case BIO_DELETE:
1935                 /*
1936                  * Put request onto inflight queue, so we can check if new
1937                  * synchronization requests don't collide with it.
1938                  */
1939                 bioq_insert_tail(&sc->sc_inflight, pbp);
1940
1941                 /*
1942                  * Bump syncid on first write.
1943                  */
1944                 if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0) {
1945                         sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID;
1946                         g_raid3_bump_syncid(sc);
1947                 }
1948                 g_raid3_scatter(pbp);
1949                 break;
1950         }
1951         return (0);
1952 }
1953
1954 static int
1955 g_raid3_can_destroy(struct g_raid3_softc *sc)
1956 {
1957         struct g_geom *gp;
1958         struct g_consumer *cp;
1959
1960         g_topology_assert();
1961         gp = sc->sc_geom;
1962         if (gp->softc == NULL)
1963                 return (1);
1964         LIST_FOREACH(cp, &gp->consumer, consumer) {
1965                 if (g_raid3_is_busy(sc, cp))
1966                         return (0);
1967         }
1968         gp = sc->sc_sync.ds_geom;
1969         LIST_FOREACH(cp, &gp->consumer, consumer) {
1970                 if (g_raid3_is_busy(sc, cp))
1971                         return (0);
1972         }
1973         G_RAID3_DEBUG(2, "No I/O requests for %s, it can be destroyed.",
1974             sc->sc_name);
1975         return (1);
1976 }
1977
1978 static int
1979 g_raid3_try_destroy(struct g_raid3_softc *sc)
1980 {
1981
1982         g_topology_assert_not();
1983         sx_assert(&sc->sc_lock, SX_XLOCKED);
1984
1985         if (sc->sc_rootmount != NULL) {
1986                 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
1987                     sc->sc_rootmount);
1988                 root_mount_rel(sc->sc_rootmount);
1989                 sc->sc_rootmount = NULL;
1990         }
1991
1992         g_topology_lock();
1993         if (!g_raid3_can_destroy(sc)) {
1994                 g_topology_unlock();
1995                 return (0);
1996         }
1997         sc->sc_geom->softc = NULL;
1998         sc->sc_sync.ds_geom->softc = NULL;
1999         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_WAIT) != 0) {
2000                 g_topology_unlock();
2001                 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__,
2002                     &sc->sc_worker);
2003                 /* Unlock sc_lock here, as it can be destroyed after wakeup. */
2004                 sx_xunlock(&sc->sc_lock);
2005                 wakeup(&sc->sc_worker);
2006                 sc->sc_worker = NULL;
2007         } else {
2008                 g_topology_unlock();
2009                 g_raid3_destroy_device(sc);
2010                 free(sc->sc_disks, M_RAID3);
2011                 free(sc, M_RAID3);
2012         }
2013         return (1);
2014 }
2015
2016 /*
2017  * Worker thread.
2018  */
2019 static void
2020 g_raid3_worker(void *arg)
2021 {
2022         struct g_raid3_softc *sc;
2023         struct g_raid3_event *ep;
2024         struct bio *bp;
2025         int timeout;
2026
2027         sc = arg;
2028         thread_lock(curthread);
2029         sched_prio(curthread, PRIBIO);
2030         thread_unlock(curthread);
2031
2032         sx_xlock(&sc->sc_lock);
2033         for (;;) {
2034                 G_RAID3_DEBUG(5, "%s: Let's see...", __func__);
2035                 /*
2036                  * First take a look at events.
2037                  * This is important to handle events before any I/O requests.
2038                  */
2039                 ep = g_raid3_event_get(sc);
2040                 if (ep != NULL) {
2041                         g_raid3_event_remove(sc, ep);
2042                         if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0) {
2043                                 /* Update only device status. */
2044                                 G_RAID3_DEBUG(3,
2045                                     "Running event for device %s.",
2046                                     sc->sc_name);
2047                                 ep->e_error = 0;
2048                                 g_raid3_update_device(sc, 1);
2049                         } else {
2050                                 /* Update disk status. */
2051                                 G_RAID3_DEBUG(3, "Running event for disk %s.",
2052                                      g_raid3_get_diskname(ep->e_disk));
2053                                 ep->e_error = g_raid3_update_disk(ep->e_disk,
2054                                     ep->e_state);
2055                                 if (ep->e_error == 0)
2056                                         g_raid3_update_device(sc, 0);
2057                         }
2058                         if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) {
2059                                 KASSERT(ep->e_error == 0,
2060                                     ("Error cannot be handled."));
2061                                 g_raid3_event_free(ep);
2062                         } else {
2063                                 ep->e_flags |= G_RAID3_EVENT_DONE;
2064                                 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__,
2065                                     ep);
2066                                 mtx_lock(&sc->sc_events_mtx);
2067                                 wakeup(ep);
2068                                 mtx_unlock(&sc->sc_events_mtx);
2069                         }
2070                         if ((sc->sc_flags &
2071                             G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
2072                                 if (g_raid3_try_destroy(sc)) {
2073                                         curthread->td_pflags &= ~TDP_GEOM;
2074                                         G_RAID3_DEBUG(1, "Thread exiting.");
2075                                         kproc_exit(0);
2076                                 }
2077                         }
2078                         G_RAID3_DEBUG(5, "%s: I'm here 1.", __func__);
2079                         continue;
2080                 }
2081                 /*
2082                  * Check if we can mark array as CLEAN and if we can't take
2083                  * how much seconds should we wait.
2084                  */
2085                 timeout = g_raid3_idle(sc, -1);
2086                 /*
2087                  * Now I/O requests.
2088                  */
2089                 /* Get first request from the queue. */
2090                 mtx_lock(&sc->sc_queue_mtx);
2091                 bp = bioq_first(&sc->sc_queue);
2092                 if (bp == NULL) {
2093                         if ((sc->sc_flags &
2094                             G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
2095                                 mtx_unlock(&sc->sc_queue_mtx);
2096                                 if (g_raid3_try_destroy(sc)) {
2097                                         curthread->td_pflags &= ~TDP_GEOM;
2098                                         G_RAID3_DEBUG(1, "Thread exiting.");
2099                                         kproc_exit(0);
2100                                 }
2101                                 mtx_lock(&sc->sc_queue_mtx);
2102                         }
2103                         sx_xunlock(&sc->sc_lock);
2104                         /*
2105                          * XXX: We can miss an event here, because an event
2106                          *      can be added without sx-device-lock and without
2107                          *      mtx-queue-lock. Maybe I should just stop using
2108                          *      dedicated mutex for events synchronization and
2109                          *      stick with the queue lock?
2110                          *      The event will hang here until next I/O request
2111                          *      or next event is received.
2112                          */
2113                         MSLEEP(sc, &sc->sc_queue_mtx, PRIBIO | PDROP, "r3:w1",
2114                             timeout * hz);
2115                         sx_xlock(&sc->sc_lock);
2116                         G_RAID3_DEBUG(5, "%s: I'm here 4.", __func__);
2117                         continue;
2118                 }
2119 process:
2120                 bioq_remove(&sc->sc_queue, bp);
2121                 mtx_unlock(&sc->sc_queue_mtx);
2122
2123                 if (bp->bio_from->geom == sc->sc_sync.ds_geom &&
2124                     (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0) {
2125                         g_raid3_sync_request(bp);       /* READ */
2126                 } else if (bp->bio_to != sc->sc_provider) {
2127                         if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0)
2128                                 g_raid3_regular_request(bp);
2129                         else if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0)
2130                                 g_raid3_sync_request(bp);       /* WRITE */
2131                         else {
2132                                 KASSERT(0,
2133                                     ("Invalid request cflags=0x%hx to=%s.",
2134                                     bp->bio_cflags, bp->bio_to->name));
2135                         }
2136                 } else if (g_raid3_register_request(bp) != 0) {
2137                         mtx_lock(&sc->sc_queue_mtx);
2138                         bioq_insert_head(&sc->sc_queue, bp);
2139                         /*
2140                          * We are short in memory, let see if there are finished
2141                          * request we can free.
2142                          */
2143                         TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
2144                                 if (bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR)
2145                                         goto process;
2146                         }
2147                         /*
2148                          * No finished regular request, so at least keep
2149                          * synchronization running.
2150                          */
2151                         TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
2152                                 if (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC)
2153                                         goto process;
2154                         }
2155                         sx_xunlock(&sc->sc_lock);
2156                         MSLEEP(&sc->sc_queue, &sc->sc_queue_mtx, PRIBIO | PDROP,
2157                             "r3:lowmem", hz / 10);
2158                         sx_xlock(&sc->sc_lock);
2159                 }
2160                 G_RAID3_DEBUG(5, "%s: I'm here 9.", __func__);
2161         }
2162 }
2163
2164 static void
2165 g_raid3_update_idle(struct g_raid3_softc *sc, struct g_raid3_disk *disk)
2166 {
2167
2168         sx_assert(&sc->sc_lock, SX_LOCKED);
2169         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
2170                 return;
2171         if (!sc->sc_idle && (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) == 0) {
2172                 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.",
2173                     g_raid3_get_diskname(disk), sc->sc_name);
2174                 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
2175         } else if (sc->sc_idle &&
2176             (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0) {
2177                 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.",
2178                     g_raid3_get_diskname(disk), sc->sc_name);
2179                 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
2180         }
2181 }
2182
2183 static void
2184 g_raid3_sync_start(struct g_raid3_softc *sc)
2185 {
2186         struct g_raid3_disk *disk;
2187         struct g_consumer *cp;
2188         struct bio *bp;
2189         int error;
2190         u_int n;
2191
2192         g_topology_assert_not();
2193         sx_assert(&sc->sc_lock, SX_XLOCKED);
2194
2195         KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED,
2196             ("Device not in DEGRADED state (%s, %u).", sc->sc_name,
2197             sc->sc_state));
2198         KASSERT(sc->sc_syncdisk == NULL, ("Syncdisk is not NULL (%s, %u).",
2199             sc->sc_name, sc->sc_state));
2200         disk = NULL;
2201         for (n = 0; n < sc->sc_ndisks; n++) {
2202                 if (sc->sc_disks[n].d_state != G_RAID3_DISK_STATE_SYNCHRONIZING)
2203                         continue;
2204                 disk = &sc->sc_disks[n];
2205                 break;
2206         }
2207         if (disk == NULL)
2208                 return;
2209
2210         sx_xunlock(&sc->sc_lock);
2211         g_topology_lock();
2212         cp = g_new_consumer(sc->sc_sync.ds_geom);
2213         error = g_attach(cp, sc->sc_provider);
2214         KASSERT(error == 0,
2215             ("Cannot attach to %s (error=%d).", sc->sc_name, error));
2216         error = g_access(cp, 1, 0, 0);
2217         KASSERT(error == 0, ("Cannot open %s (error=%d).", sc->sc_name, error));
2218         g_topology_unlock();
2219         sx_xlock(&sc->sc_lock);
2220
2221         G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s.", sc->sc_name,
2222             g_raid3_get_diskname(disk));
2223         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) == 0)
2224                 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
2225         KASSERT(disk->d_sync.ds_consumer == NULL,
2226             ("Sync consumer already exists (device=%s, disk=%s).",
2227             sc->sc_name, g_raid3_get_diskname(disk)));
2228
2229         disk->d_sync.ds_consumer = cp;
2230         disk->d_sync.ds_consumer->private = disk;
2231         disk->d_sync.ds_consumer->index = 0;
2232         sc->sc_syncdisk = disk;
2233
2234         /*
2235          * Allocate memory for synchronization bios and initialize them.
2236          */
2237         disk->d_sync.ds_bios = malloc(sizeof(struct bio *) * g_raid3_syncreqs,
2238             M_RAID3, M_WAITOK);
2239         for (n = 0; n < g_raid3_syncreqs; n++) {
2240                 bp = g_alloc_bio();
2241                 disk->d_sync.ds_bios[n] = bp;
2242                 bp->bio_parent = NULL;
2243                 bp->bio_cmd = BIO_READ;
2244                 bp->bio_data = malloc(MAXPHYS, M_RAID3, M_WAITOK);
2245                 bp->bio_cflags = 0;
2246                 bp->bio_offset = disk->d_sync.ds_offset * (sc->sc_ndisks - 1);
2247                 bp->bio_length = MIN(MAXPHYS, sc->sc_mediasize - bp->bio_offset);
2248                 disk->d_sync.ds_offset += bp->bio_length / (sc->sc_ndisks - 1);
2249                 bp->bio_done = g_raid3_sync_done;
2250                 bp->bio_from = disk->d_sync.ds_consumer;
2251                 bp->bio_to = sc->sc_provider;
2252                 bp->bio_caller1 = (void *)(uintptr_t)n;
2253         }
2254
2255         /* Set the number of in-flight synchronization requests. */
2256         disk->d_sync.ds_inflight = g_raid3_syncreqs;
2257
2258         /*
2259          * Fire off first synchronization requests.
2260          */
2261         for (n = 0; n < g_raid3_syncreqs; n++) {
2262                 bp = disk->d_sync.ds_bios[n];
2263                 G_RAID3_LOGREQ(3, bp, "Sending synchronization request.");
2264                 disk->d_sync.ds_consumer->index++;
2265                 /*
2266                  * Delay the request if it is colliding with a regular request.
2267                  */
2268                 if (g_raid3_regular_collision(sc, bp))
2269                         g_raid3_sync_delay(sc, bp);
2270                 else
2271                         g_io_request(bp, disk->d_sync.ds_consumer);
2272         }
2273 }
2274
2275 /*
2276  * Stop synchronization process.
2277  * type: 0 - synchronization finished
2278  *       1 - synchronization stopped
2279  */
2280 static void
2281 g_raid3_sync_stop(struct g_raid3_softc *sc, int type)
2282 {
2283         struct g_raid3_disk *disk;
2284         struct g_consumer *cp;
2285
2286         g_topology_assert_not();
2287         sx_assert(&sc->sc_lock, SX_LOCKED);
2288
2289         KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED,
2290             ("Device not in DEGRADED state (%s, %u).", sc->sc_name,
2291             sc->sc_state));
2292         disk = sc->sc_syncdisk;
2293         sc->sc_syncdisk = NULL;
2294         KASSERT(disk != NULL, ("No disk was synchronized (%s).", sc->sc_name));
2295         KASSERT(disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
2296             ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2297             g_raid3_disk_state2str(disk->d_state)));
2298         if (disk->d_sync.ds_consumer == NULL)
2299                 return;
2300
2301         if (type == 0) {
2302                 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s finished.",
2303                     sc->sc_name, g_raid3_get_diskname(disk));
2304         } else /* if (type == 1) */ {
2305                 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s stopped.",
2306                     sc->sc_name, g_raid3_get_diskname(disk));
2307         }
2308         free(disk->d_sync.ds_bios, M_RAID3);
2309         disk->d_sync.ds_bios = NULL;
2310         cp = disk->d_sync.ds_consumer;
2311         disk->d_sync.ds_consumer = NULL;
2312         disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
2313         sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */
2314         g_topology_lock();
2315         g_raid3_kill_consumer(sc, cp);
2316         g_topology_unlock();
2317         sx_xlock(&sc->sc_lock);
2318 }
2319
2320 static void
2321 g_raid3_launch_provider(struct g_raid3_softc *sc)
2322 {
2323         struct g_provider *pp;
2324         struct g_raid3_disk *disk;
2325         int n;
2326
2327         sx_assert(&sc->sc_lock, SX_LOCKED);
2328
2329         g_topology_lock();
2330         pp = g_new_providerf(sc->sc_geom, "raid3/%s", sc->sc_name);
2331         pp->mediasize = sc->sc_mediasize;
2332         pp->sectorsize = sc->sc_sectorsize;
2333         pp->stripesize = 0;
2334         pp->stripeoffset = 0;
2335         for (n = 0; n < sc->sc_ndisks; n++) {
2336                 disk = &sc->sc_disks[n];
2337                 if (disk->d_consumer && disk->d_consumer->provider &&
2338                     disk->d_consumer->provider->stripesize > pp->stripesize) {
2339                         pp->stripesize = disk->d_consumer->provider->stripesize;
2340                         pp->stripeoffset = disk->d_consumer->provider->stripeoffset;
2341                 }
2342         }
2343         pp->stripesize *= sc->sc_ndisks - 1;
2344         pp->stripeoffset *= sc->sc_ndisks - 1;
2345         sc->sc_provider = pp;
2346         g_error_provider(pp, 0);
2347         g_topology_unlock();
2348         G_RAID3_DEBUG(0, "Device %s launched (%u/%u).", pp->name,
2349             g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE), sc->sc_ndisks);
2350
2351         if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED)
2352                 g_raid3_sync_start(sc);
2353 }
2354
2355 static void
2356 g_raid3_destroy_provider(struct g_raid3_softc *sc)
2357 {
2358         struct bio *bp;
2359
2360         g_topology_assert_not();
2361         KASSERT(sc->sc_provider != NULL, ("NULL provider (device=%s).",
2362             sc->sc_name));
2363
2364         g_topology_lock();
2365         g_error_provider(sc->sc_provider, ENXIO);
2366         mtx_lock(&sc->sc_queue_mtx);
2367         while ((bp = bioq_first(&sc->sc_queue)) != NULL) {
2368                 bioq_remove(&sc->sc_queue, bp);
2369                 g_io_deliver(bp, ENXIO);
2370         }
2371         mtx_unlock(&sc->sc_queue_mtx);
2372         G_RAID3_DEBUG(0, "Device %s: provider %s destroyed.", sc->sc_name,
2373             sc->sc_provider->name);
2374         g_wither_provider(sc->sc_provider, ENXIO);
2375         g_topology_unlock();
2376         sc->sc_provider = NULL;
2377         if (sc->sc_syncdisk != NULL)
2378                 g_raid3_sync_stop(sc, 1);
2379 }
2380
2381 static void
2382 g_raid3_go(void *arg)
2383 {
2384         struct g_raid3_softc *sc;
2385
2386         sc = arg;
2387         G_RAID3_DEBUG(0, "Force device %s start due to timeout.", sc->sc_name);
2388         g_raid3_event_send(sc, 0,
2389             G_RAID3_EVENT_DONTWAIT | G_RAID3_EVENT_DEVICE);
2390 }
2391
2392 static u_int
2393 g_raid3_determine_state(struct g_raid3_disk *disk)
2394 {
2395         struct g_raid3_softc *sc;
2396         u_int state;
2397
2398         sc = disk->d_softc;
2399         if (sc->sc_syncid == disk->d_sync.ds_syncid) {
2400                 if ((disk->d_flags &
2401                     G_RAID3_DISK_FLAG_SYNCHRONIZING) == 0) {
2402                         /* Disk does not need synchronization. */
2403                         state = G_RAID3_DISK_STATE_ACTIVE;
2404                 } else {
2405                         if ((sc->sc_flags &
2406                              G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 ||
2407                             (disk->d_flags &
2408                              G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) {
2409                                 /*
2410                                  * We can start synchronization from
2411                                  * the stored offset.
2412                                  */
2413                                 state = G_RAID3_DISK_STATE_SYNCHRONIZING;
2414                         } else {
2415                                 state = G_RAID3_DISK_STATE_STALE;
2416                         }
2417                 }
2418         } else if (disk->d_sync.ds_syncid < sc->sc_syncid) {
2419                 /*
2420                  * Reset all synchronization data for this disk,
2421                  * because if it even was synchronized, it was
2422                  * synchronized to disks with different syncid.
2423                  */
2424                 disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING;
2425                 disk->d_sync.ds_offset = 0;
2426                 disk->d_sync.ds_offset_done = 0;
2427                 disk->d_sync.ds_syncid = sc->sc_syncid;
2428                 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 ||
2429                     (disk->d_flags & G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) {
2430                         state = G_RAID3_DISK_STATE_SYNCHRONIZING;
2431                 } else {
2432                         state = G_RAID3_DISK_STATE_STALE;
2433                 }
2434         } else /* if (sc->sc_syncid < disk->d_sync.ds_syncid) */ {
2435                 /*
2436                  * Not good, NOT GOOD!
2437                  * It means that device was started on stale disks
2438                  * and more fresh disk just arrive.
2439                  * If there were writes, device is broken, sorry.
2440                  * I think the best choice here is don't touch
2441                  * this disk and inform the user loudly.
2442                  */
2443                 G_RAID3_DEBUG(0, "Device %s was started before the freshest "
2444                     "disk (%s) arrives!! It will not be connected to the "
2445                     "running device.", sc->sc_name,
2446                     g_raid3_get_diskname(disk));
2447                 g_raid3_destroy_disk(disk);
2448                 state = G_RAID3_DISK_STATE_NONE;
2449                 /* Return immediately, because disk was destroyed. */
2450                 return (state);
2451         }
2452         G_RAID3_DEBUG(3, "State for %s disk: %s.",
2453             g_raid3_get_diskname(disk), g_raid3_disk_state2str(state));
2454         return (state);
2455 }
2456
2457 /*
2458  * Update device state.
2459  */
2460 static void
2461 g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force)
2462 {
2463         struct g_raid3_disk *disk;
2464         u_int state;
2465
2466         sx_assert(&sc->sc_lock, SX_XLOCKED);
2467
2468         switch (sc->sc_state) {
2469         case G_RAID3_DEVICE_STATE_STARTING:
2470             {
2471                 u_int n, ndirty, ndisks, genid, syncid;
2472
2473                 KASSERT(sc->sc_provider == NULL,
2474                     ("Non-NULL provider in STARTING state (%s).", sc->sc_name));
2475                 /*
2476                  * Are we ready? We are, if all disks are connected or
2477                  * one disk is missing and 'force' is true.
2478                  */
2479                 if (g_raid3_ndisks(sc, -1) + force == sc->sc_ndisks) {
2480                         if (!force)
2481                                 callout_drain(&sc->sc_callout);
2482                 } else {
2483                         if (force) {
2484                                 /*
2485                                  * Timeout expired, so destroy device.
2486                                  */
2487                                 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
2488                                 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p",
2489                                     __LINE__, sc->sc_rootmount);
2490                                 root_mount_rel(sc->sc_rootmount);
2491                                 sc->sc_rootmount = NULL;
2492                         }
2493                         return;
2494                 }
2495
2496                 /*
2497                  * Find the biggest genid.
2498                  */
2499                 genid = 0;
2500                 for (n = 0; n < sc->sc_ndisks; n++) {
2501                         disk = &sc->sc_disks[n];
2502                         if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
2503                                 continue;
2504                         if (disk->d_genid > genid)
2505                                 genid = disk->d_genid;
2506                 }
2507                 sc->sc_genid = genid;
2508                 /*
2509                  * Remove all disks without the biggest genid.
2510                  */
2511                 for (n = 0; n < sc->sc_ndisks; n++) {
2512                         disk = &sc->sc_disks[n];
2513                         if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
2514                                 continue;
2515                         if (disk->d_genid < genid) {
2516                                 G_RAID3_DEBUG(0,
2517                                     "Component %s (device %s) broken, skipping.",
2518                                     g_raid3_get_diskname(disk), sc->sc_name);
2519                                 g_raid3_destroy_disk(disk);
2520                         }
2521                 }
2522
2523                 /*
2524                  * There must be at least 'sc->sc_ndisks - 1' components
2525                  * with the same syncid and without SYNCHRONIZING flag.
2526                  */
2527
2528                 /*
2529                  * Find the biggest syncid, number of valid components and
2530                  * number of dirty components.
2531                  */
2532                 ndirty = ndisks = syncid = 0;
2533                 for (n = 0; n < sc->sc_ndisks; n++) {
2534                         disk = &sc->sc_disks[n];
2535                         if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
2536                                 continue;
2537                         if ((disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0)
2538                                 ndirty++;
2539                         if (disk->d_sync.ds_syncid > syncid) {
2540                                 syncid = disk->d_sync.ds_syncid;
2541                                 ndisks = 0;
2542                         } else if (disk->d_sync.ds_syncid < syncid) {
2543                                 continue;
2544                         }
2545                         if ((disk->d_flags &
2546                             G_RAID3_DISK_FLAG_SYNCHRONIZING) != 0) {
2547                                 continue;
2548                         }
2549                         ndisks++;
2550                 }
2551                 /*
2552                  * Do we have enough valid components?
2553                  */
2554                 if (ndisks + 1 < sc->sc_ndisks) {
2555                         G_RAID3_DEBUG(0,
2556                             "Device %s is broken, too few valid components.",
2557                             sc->sc_name);
2558                         sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
2559                         return;
2560                 }
2561                 /*
2562                  * If there is one DIRTY component and all disks are present,
2563                  * mark it for synchronization. If there is more than one DIRTY
2564                  * component, mark parity component for synchronization.
2565                  */
2566                 if (ndisks == sc->sc_ndisks && ndirty == 1) {
2567                         for (n = 0; n < sc->sc_ndisks; n++) {
2568                                 disk = &sc->sc_disks[n];
2569                                 if ((disk->d_flags &
2570                                     G_RAID3_DISK_FLAG_DIRTY) == 0) {
2571                                         continue;
2572                                 }
2573                                 disk->d_flags |=
2574                                     G_RAID3_DISK_FLAG_SYNCHRONIZING;
2575                         }
2576                 } else if (ndisks == sc->sc_ndisks && ndirty > 1) {
2577                         disk = &sc->sc_disks[sc->sc_ndisks - 1];
2578                         disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING;
2579                 }
2580
2581                 sc->sc_syncid = syncid;
2582                 if (force) {
2583                         /* Remember to bump syncid on first write. */
2584                         sc->sc_bump_id |= G_RAID3_BUMP_SYNCID;
2585                 }
2586                 if (ndisks == sc->sc_ndisks)
2587                         state = G_RAID3_DEVICE_STATE_COMPLETE;
2588                 else /* if (ndisks == sc->sc_ndisks - 1) */
2589                         state = G_RAID3_DEVICE_STATE_DEGRADED;
2590                 G_RAID3_DEBUG(1, "Device %s state changed from %s to %s.",
2591                     sc->sc_name, g_raid3_device_state2str(sc->sc_state),
2592                     g_raid3_device_state2str(state));
2593                 sc->sc_state = state;
2594                 for (n = 0; n < sc->sc_ndisks; n++) {
2595                         disk = &sc->sc_disks[n];
2596                         if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
2597                                 continue;
2598                         state = g_raid3_determine_state(disk);
2599                         g_raid3_event_send(disk, state, G_RAID3_EVENT_DONTWAIT);
2600                         if (state == G_RAID3_DISK_STATE_STALE)
2601                                 sc->sc_bump_id |= G_RAID3_BUMP_SYNCID;
2602                 }
2603                 break;
2604             }
2605         case G_RAID3_DEVICE_STATE_DEGRADED:
2606                 /*
2607                  * Genid need to be bumped immediately, so do it here.
2608                  */
2609                 if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) {
2610                         sc->sc_bump_id &= ~G_RAID3_BUMP_GENID;
2611                         g_raid3_bump_genid(sc);
2612                 }
2613
2614                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0)
2615                         return;
2616                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) <
2617                     sc->sc_ndisks - 1) {
2618                         if (sc->sc_provider != NULL)
2619                                 g_raid3_destroy_provider(sc);
2620                         sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
2621                         return;
2622                 }
2623                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) ==
2624                     sc->sc_ndisks) {
2625                         state = G_RAID3_DEVICE_STATE_COMPLETE;
2626                         G_RAID3_DEBUG(1,
2627                             "Device %s state changed from %s to %s.",
2628                             sc->sc_name, g_raid3_device_state2str(sc->sc_state),
2629                             g_raid3_device_state2str(state));
2630                         sc->sc_state = state;
2631                 }
2632                 if (sc->sc_provider == NULL)
2633                         g_raid3_launch_provider(sc);
2634                 if (sc->sc_rootmount != NULL) {
2635                         G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
2636                             sc->sc_rootmount);
2637                         root_mount_rel(sc->sc_rootmount);
2638                         sc->sc_rootmount = NULL;
2639                 }
2640                 break;
2641         case G_RAID3_DEVICE_STATE_COMPLETE:
2642                 /*
2643                  * Genid need to be bumped immediately, so do it here.
2644                  */
2645                 if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) {
2646                         sc->sc_bump_id &= ~G_RAID3_BUMP_GENID;
2647                         g_raid3_bump_genid(sc);
2648                 }
2649
2650                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0)
2651                         return;
2652                 KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) >=
2653                     sc->sc_ndisks - 1,
2654                     ("Too few ACTIVE components in COMPLETE state (device %s).",
2655                     sc->sc_name));
2656                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) ==
2657                     sc->sc_ndisks - 1) {
2658                         state = G_RAID3_DEVICE_STATE_DEGRADED;
2659                         G_RAID3_DEBUG(1,
2660                             "Device %s state changed from %s to %s.",
2661                             sc->sc_name, g_raid3_device_state2str(sc->sc_state),
2662                             g_raid3_device_state2str(state));
2663                         sc->sc_state = state;
2664                 }
2665                 if (sc->sc_provider == NULL)
2666                         g_raid3_launch_provider(sc);
2667                 if (sc->sc_rootmount != NULL) {
2668                         G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
2669                             sc->sc_rootmount);
2670                         root_mount_rel(sc->sc_rootmount);
2671                         sc->sc_rootmount = NULL;
2672                 }
2673                 break;
2674         default:
2675                 KASSERT(1 == 0, ("Wrong device state (%s, %s).", sc->sc_name,
2676                     g_raid3_device_state2str(sc->sc_state)));
2677                 break;
2678         }
2679 }
2680
2681 /*
2682  * Update disk state and device state if needed.
2683  */
2684 #define DISK_STATE_CHANGED()    G_RAID3_DEBUG(1,                        \
2685         "Disk %s state changed from %s to %s (device %s).",             \
2686         g_raid3_get_diskname(disk),                                     \
2687         g_raid3_disk_state2str(disk->d_state),                          \
2688         g_raid3_disk_state2str(state), sc->sc_name)
2689 static int
2690 g_raid3_update_disk(struct g_raid3_disk *disk, u_int state)
2691 {
2692         struct g_raid3_softc *sc;
2693
2694         sc = disk->d_softc;
2695         sx_assert(&sc->sc_lock, SX_XLOCKED);
2696
2697 again:
2698         G_RAID3_DEBUG(3, "Changing disk %s state from %s to %s.",
2699             g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state),
2700             g_raid3_disk_state2str(state));
2701         switch (state) {
2702         case G_RAID3_DISK_STATE_NEW:
2703                 /*
2704                  * Possible scenarios:
2705                  * 1. New disk arrive.
2706                  */
2707                 /* Previous state should be NONE. */
2708                 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NONE,
2709                     ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2710                     g_raid3_disk_state2str(disk->d_state)));
2711                 DISK_STATE_CHANGED();
2712
2713                 disk->d_state = state;
2714                 G_RAID3_DEBUG(1, "Device %s: provider %s detected.",
2715                     sc->sc_name, g_raid3_get_diskname(disk));
2716                 if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING)
2717                         break;
2718                 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2719                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
2720                     ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2721                     g_raid3_device_state2str(sc->sc_state),
2722                     g_raid3_get_diskname(disk),
2723                     g_raid3_disk_state2str(disk->d_state)));
2724                 state = g_raid3_determine_state(disk);
2725                 if (state != G_RAID3_DISK_STATE_NONE)
2726                         goto again;
2727                 break;
2728         case G_RAID3_DISK_STATE_ACTIVE:
2729                 /*
2730                  * Possible scenarios:
2731                  * 1. New disk does not need synchronization.
2732                  * 2. Synchronization process finished successfully.
2733                  */
2734                 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2735                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
2736                     ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2737                     g_raid3_device_state2str(sc->sc_state),
2738                     g_raid3_get_diskname(disk),
2739                     g_raid3_disk_state2str(disk->d_state)));
2740                 /* Previous state should be NEW or SYNCHRONIZING. */
2741                 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW ||
2742                     disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
2743                     ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2744                     g_raid3_disk_state2str(disk->d_state)));
2745                 DISK_STATE_CHANGED();
2746
2747                 if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
2748                         disk->d_flags &= ~G_RAID3_DISK_FLAG_SYNCHRONIZING;
2749                         disk->d_flags &= ~G_RAID3_DISK_FLAG_FORCE_SYNC;
2750                         g_raid3_sync_stop(sc, 0);
2751                 }
2752                 disk->d_state = state;
2753                 disk->d_sync.ds_offset = 0;
2754                 disk->d_sync.ds_offset_done = 0;
2755                 g_raid3_update_idle(sc, disk);
2756                 g_raid3_update_metadata(disk);
2757                 G_RAID3_DEBUG(1, "Device %s: provider %s activated.",
2758                     sc->sc_name, g_raid3_get_diskname(disk));
2759                 break;
2760         case G_RAID3_DISK_STATE_STALE:
2761                 /*
2762                  * Possible scenarios:
2763                  * 1. Stale disk was connected.
2764                  */
2765                 /* Previous state should be NEW. */
2766                 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
2767                     ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2768                     g_raid3_disk_state2str(disk->d_state)));
2769                 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2770                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
2771                     ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2772                     g_raid3_device_state2str(sc->sc_state),
2773                     g_raid3_get_diskname(disk),
2774                     g_raid3_disk_state2str(disk->d_state)));
2775                 /*
2776                  * STALE state is only possible if device is marked
2777                  * NOAUTOSYNC.
2778                  */
2779                 KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) != 0,
2780                     ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2781                     g_raid3_device_state2str(sc->sc_state),
2782                     g_raid3_get_diskname(disk),
2783                     g_raid3_disk_state2str(disk->d_state)));
2784                 DISK_STATE_CHANGED();
2785
2786                 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
2787                 disk->d_state = state;
2788                 g_raid3_update_metadata(disk);
2789                 G_RAID3_DEBUG(0, "Device %s: provider %s is stale.",
2790                     sc->sc_name, g_raid3_get_diskname(disk));
2791                 break;
2792         case G_RAID3_DISK_STATE_SYNCHRONIZING:
2793                 /*
2794                  * Possible scenarios:
2795                  * 1. Disk which needs synchronization was connected.
2796                  */
2797                 /* Previous state should be NEW. */
2798                 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
2799                     ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2800                     g_raid3_disk_state2str(disk->d_state)));
2801                 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2802                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
2803                     ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2804                     g_raid3_device_state2str(sc->sc_state),
2805                     g_raid3_get_diskname(disk),
2806                     g_raid3_disk_state2str(disk->d_state)));
2807                 DISK_STATE_CHANGED();
2808
2809                 if (disk->d_state == G_RAID3_DISK_STATE_NEW)
2810                         disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
2811                 disk->d_state = state;
2812                 if (sc->sc_provider != NULL) {
2813                         g_raid3_sync_start(sc);
2814                         g_raid3_update_metadata(disk);
2815                 }
2816                 break;
2817         case G_RAID3_DISK_STATE_DISCONNECTED:
2818                 /*
2819                  * Possible scenarios:
2820                  * 1. Device wasn't running yet, but disk disappear.
2821                  * 2. Disk was active and disapppear.
2822                  * 3. Disk disappear during synchronization process.
2823                  */
2824                 if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2825                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
2826                         /*
2827                          * Previous state should be ACTIVE, STALE or
2828                          * SYNCHRONIZING.
2829                          */
2830                         KASSERT(disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
2831                             disk->d_state == G_RAID3_DISK_STATE_STALE ||
2832                             disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
2833                             ("Wrong disk state (%s, %s).",
2834                             g_raid3_get_diskname(disk),
2835                             g_raid3_disk_state2str(disk->d_state)));
2836                 } else if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING) {
2837                         /* Previous state should be NEW. */
2838                         KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
2839                             ("Wrong disk state (%s, %s).",
2840                             g_raid3_get_diskname(disk),
2841                             g_raid3_disk_state2str(disk->d_state)));
2842                         /*
2843                          * Reset bumping syncid if disk disappeared in STARTING
2844                          * state.
2845                          */
2846                         if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0)
2847                                 sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID;
2848 #ifdef  INVARIANTS
2849                 } else {
2850                         KASSERT(1 == 0, ("Wrong device state (%s, %s, %s, %s).",
2851                             sc->sc_name,
2852                             g_raid3_device_state2str(sc->sc_state),
2853                             g_raid3_get_diskname(disk),
2854                             g_raid3_disk_state2str(disk->d_state)));
2855 #endif
2856                 }
2857                 DISK_STATE_CHANGED();
2858                 G_RAID3_DEBUG(0, "Device %s: provider %s disconnected.",
2859                     sc->sc_name, g_raid3_get_diskname(disk));
2860
2861                 g_raid3_destroy_disk(disk);
2862                 break;
2863         default:
2864                 KASSERT(1 == 0, ("Unknown state (%u).", state));
2865                 break;
2866         }
2867         return (0);
2868 }
2869 #undef  DISK_STATE_CHANGED
2870
2871 int
2872 g_raid3_read_metadata(struct g_consumer *cp, struct g_raid3_metadata *md)
2873 {
2874         struct g_provider *pp;
2875         u_char *buf;
2876         int error;
2877
2878         g_topology_assert();
2879
2880         error = g_access(cp, 1, 0, 0);
2881         if (error != 0)
2882                 return (error);
2883         pp = cp->provider;
2884         g_topology_unlock();
2885         /* Metadata are stored on last sector. */
2886         buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize,
2887             &error);
2888         g_topology_lock();
2889         g_access(cp, -1, 0, 0);
2890         if (buf == NULL) {
2891                 G_RAID3_DEBUG(1, "Cannot read metadata from %s (error=%d).",
2892                     cp->provider->name, error);
2893                 return (error);
2894         }
2895
2896         /* Decode metadata. */
2897         error = raid3_metadata_decode(buf, md);
2898         g_free(buf);
2899         if (strcmp(md->md_magic, G_RAID3_MAGIC) != 0)
2900                 return (EINVAL);
2901         if (md->md_version > G_RAID3_VERSION) {
2902                 G_RAID3_DEBUG(0,
2903                     "Kernel module is too old to handle metadata from %s.",
2904                     cp->provider->name);
2905                 return (EINVAL);
2906         }
2907         if (error != 0) {
2908                 G_RAID3_DEBUG(1, "MD5 metadata hash mismatch for provider %s.",
2909                     cp->provider->name);
2910                 return (error);
2911         }
2912         if (md->md_sectorsize > MAXPHYS) {
2913                 G_RAID3_DEBUG(0, "The blocksize is too big.");
2914                 return (EINVAL);
2915         }
2916
2917         return (0);
2918 }
2919
2920 static int
2921 g_raid3_check_metadata(struct g_raid3_softc *sc, struct g_provider *pp,
2922     struct g_raid3_metadata *md)
2923 {
2924
2925         if (md->md_no >= sc->sc_ndisks) {
2926                 G_RAID3_DEBUG(1, "Invalid disk %s number (no=%u), skipping.",
2927                     pp->name, md->md_no);
2928                 return (EINVAL);
2929         }
2930         if (sc->sc_disks[md->md_no].d_state != G_RAID3_DISK_STATE_NODISK) {
2931                 G_RAID3_DEBUG(1, "Disk %s (no=%u) already exists, skipping.",
2932                     pp->name, md->md_no);
2933                 return (EEXIST);
2934         }
2935         if (md->md_all != sc->sc_ndisks) {
2936                 G_RAID3_DEBUG(1,
2937                     "Invalid '%s' field on disk %s (device %s), skipping.",
2938                     "md_all", pp->name, sc->sc_name);
2939                 return (EINVAL);
2940         }
2941         if ((md->md_mediasize % md->md_sectorsize) != 0) {
2942                 G_RAID3_DEBUG(1, "Invalid metadata (mediasize %% sectorsize != "
2943                     "0) on disk %s (device %s), skipping.", pp->name,
2944                     sc->sc_name);
2945                 return (EINVAL);
2946         }
2947         if (md->md_mediasize != sc->sc_mediasize) {
2948                 G_RAID3_DEBUG(1,
2949                     "Invalid '%s' field on disk %s (device %s), skipping.",
2950                     "md_mediasize", pp->name, sc->sc_name);
2951                 return (EINVAL);
2952         }
2953         if ((md->md_mediasize % (sc->sc_ndisks - 1)) != 0) {
2954                 G_RAID3_DEBUG(1,
2955                     "Invalid '%s' field on disk %s (device %s), skipping.",
2956                     "md_mediasize", pp->name, sc->sc_name);
2957                 return (EINVAL);
2958         }
2959         if ((sc->sc_mediasize / (sc->sc_ndisks - 1)) > pp->mediasize) {
2960                 G_RAID3_DEBUG(1,
2961                     "Invalid size of disk %s (device %s), skipping.", pp->name,
2962                     sc->sc_name);
2963                 return (EINVAL);
2964         }
2965         if ((md->md_sectorsize / pp->sectorsize) < sc->sc_ndisks - 1) {
2966                 G_RAID3_DEBUG(1,
2967                     "Invalid '%s' field on disk %s (device %s), skipping.",
2968                     "md_sectorsize", pp->name, sc->sc_name);
2969                 return (EINVAL);
2970         }
2971         if (md->md_sectorsize != sc->sc_sectorsize) {
2972                 G_RAID3_DEBUG(1,
2973                     "Invalid '%s' field on disk %s (device %s), skipping.",
2974                     "md_sectorsize", pp->name, sc->sc_name);
2975                 return (EINVAL);
2976         }
2977         if ((sc->sc_sectorsize % pp->sectorsize) != 0) {
2978                 G_RAID3_DEBUG(1,
2979                     "Invalid sector size of disk %s (device %s), skipping.",
2980                     pp->name, sc->sc_name);
2981                 return (EINVAL);
2982         }
2983         if ((md->md_mflags & ~G_RAID3_DEVICE_FLAG_MASK) != 0) {
2984                 G_RAID3_DEBUG(1,
2985                     "Invalid device flags on disk %s (device %s), skipping.",
2986                     pp->name, sc->sc_name);
2987                 return (EINVAL);
2988         }
2989         if ((md->md_mflags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 &&
2990             (md->md_mflags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0) {
2991                 /*
2992                  * VERIFY and ROUND-ROBIN options are mutally exclusive.
2993                  */
2994                 G_RAID3_DEBUG(1, "Both VERIFY and ROUND-ROBIN flags exist on "
2995                     "disk %s (device %s), skipping.", pp->name, sc->sc_name);
2996                 return (EINVAL);
2997         }
2998         if ((md->md_dflags & ~G_RAID3_DISK_FLAG_MASK) != 0) {
2999                 G_RAID3_DEBUG(1,
3000                     "Invalid disk flags on disk %s (device %s), skipping.",
3001                     pp->name, sc->sc_name);
3002                 return (EINVAL);
3003         }
3004         return (0);
3005 }
3006
3007 int
3008 g_raid3_add_disk(struct g_raid3_softc *sc, struct g_provider *pp,
3009     struct g_raid3_metadata *md)
3010 {
3011         struct g_raid3_disk *disk;
3012         int error;
3013
3014         g_topology_assert_not();
3015         G_RAID3_DEBUG(2, "Adding disk %s.", pp->name);
3016
3017         error = g_raid3_check_metadata(sc, pp, md);
3018         if (error != 0)
3019                 return (error);
3020         if (sc->sc_state != G_RAID3_DEVICE_STATE_STARTING &&
3021             md->md_genid < sc->sc_genid) {
3022                 G_RAID3_DEBUG(0, "Component %s (device %s) broken, skipping.",
3023                     pp->name, sc->sc_name);
3024                 return (EINVAL);
3025         }
3026         disk = g_raid3_init_disk(sc, pp, md, &error);
3027         if (disk == NULL)
3028                 return (error);
3029         error = g_raid3_event_send(disk, G_RAID3_DISK_STATE_NEW,
3030             G_RAID3_EVENT_WAIT);
3031         if (error != 0)
3032                 return (error);
3033         if (md->md_version < G_RAID3_VERSION) {
3034                 G_RAID3_DEBUG(0, "Upgrading metadata on %s (v%d->v%d).",
3035                     pp->name, md->md_version, G_RAID3_VERSION);
3036                 g_raid3_update_metadata(disk);
3037         }
3038         return (0);
3039 }
3040
3041 static void
3042 g_raid3_destroy_delayed(void *arg, int flag)
3043 {
3044         struct g_raid3_softc *sc;
3045         int error;
3046
3047         if (flag == EV_CANCEL) {
3048                 G_RAID3_DEBUG(1, "Destroying canceled.");
3049                 return;
3050         }
3051         sc = arg;
3052         g_topology_unlock();
3053         sx_xlock(&sc->sc_lock);
3054         KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) == 0,
3055             ("DESTROY flag set on %s.", sc->sc_name));
3056         KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0,
3057             ("DESTROYING flag not set on %s.", sc->sc_name));
3058         G_RAID3_DEBUG(0, "Destroying %s (delayed).", sc->sc_name);
3059         error = g_raid3_destroy(sc, G_RAID3_DESTROY_SOFT);
3060         if (error != 0) {
3061                 G_RAID3_DEBUG(0, "Cannot destroy %s.", sc->sc_name);
3062                 sx_xunlock(&sc->sc_lock);
3063         }
3064         g_topology_lock();
3065 }
3066
3067 static int
3068 g_raid3_access(struct g_provider *pp, int acr, int acw, int ace)
3069 {
3070         struct g_raid3_softc *sc;
3071         int dcr, dcw, dce, error = 0;
3072
3073         g_topology_assert();
3074         G_RAID3_DEBUG(2, "Access request for %s: r%dw%de%d.", pp->name, acr,
3075             acw, ace);
3076
3077         sc = pp->geom->softc;
3078         if (sc == NULL && acr <= 0 && acw <= 0 && ace <= 0)
3079                 return (0);
3080         KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name));
3081
3082         dcr = pp->acr + acr;
3083         dcw = pp->acw + acw;
3084         dce = pp->ace + ace;
3085
3086         g_topology_unlock();
3087         sx_xlock(&sc->sc_lock);
3088         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0 ||
3089             g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) < sc->sc_ndisks - 1) {
3090                 if (acr > 0 || acw > 0 || ace > 0)
3091                         error = ENXIO;
3092                 goto end;
3093         }
3094         if (dcw == 0)
3095                 g_raid3_idle(sc, dcw);
3096         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0) {
3097                 if (acr > 0 || acw > 0 || ace > 0) {
3098                         error = ENXIO;
3099                         goto end;
3100                 }
3101                 if (dcr == 0 && dcw == 0 && dce == 0) {
3102                         g_post_event(g_raid3_destroy_delayed, sc, M_WAITOK,
3103                             sc, NULL);
3104                 }
3105         }
3106 end:
3107         sx_xunlock(&sc->sc_lock);
3108         g_topology_lock();
3109         return (error);
3110 }
3111
3112 static struct g_geom *
3113 g_raid3_create(struct g_class *mp, const struct g_raid3_metadata *md)
3114 {
3115         struct g_raid3_softc *sc;
3116         struct g_geom *gp;
3117         int error, timeout;
3118         u_int n;
3119
3120         g_topology_assert();
3121         G_RAID3_DEBUG(1, "Creating device %s (id=%u).", md->md_name, md->md_id);
3122
3123         /* One disk is minimum. */
3124         if (md->md_all < 1)
3125                 return (NULL);
3126         /*
3127          * Action geom.
3128          */
3129         gp = g_new_geomf(mp, "%s", md->md_name);
3130         sc = malloc(sizeof(*sc), M_RAID3, M_WAITOK | M_ZERO);
3131         sc->sc_disks = malloc(sizeof(struct g_raid3_disk) * md->md_all, M_RAID3,
3132             M_WAITOK | M_ZERO);
3133         gp->start = g_raid3_start;
3134         gp->orphan = g_raid3_orphan;
3135         gp->access = g_raid3_access;
3136         gp->dumpconf = g_raid3_dumpconf;
3137
3138         sc->sc_id = md->md_id;
3139         sc->sc_mediasize = md->md_mediasize;
3140         sc->sc_sectorsize = md->md_sectorsize;
3141         sc->sc_ndisks = md->md_all;
3142         sc->sc_round_robin = 0;
3143         sc->sc_flags = md->md_mflags;
3144         sc->sc_bump_id = 0;
3145         sc->sc_idle = 1;
3146         sc->sc_last_write = time_uptime;
3147         sc->sc_writes = 0;
3148         for (n = 0; n < sc->sc_ndisks; n++) {
3149                 sc->sc_disks[n].d_softc = sc;
3150                 sc->sc_disks[n].d_no = n;
3151                 sc->sc_disks[n].d_state = G_RAID3_DISK_STATE_NODISK;
3152         }
3153         sx_init(&sc->sc_lock, "graid3:lock");
3154         bioq_init(&sc->sc_queue);
3155         mtx_init(&sc->sc_queue_mtx, "graid3:queue", NULL, MTX_DEF);
3156         bioq_init(&sc->sc_regular_delayed);
3157         bioq_init(&sc->sc_inflight);
3158         bioq_init(&sc->sc_sync_delayed);
3159         TAILQ_INIT(&sc->sc_events);
3160         mtx_init(&sc->sc_events_mtx, "graid3:events", NULL, MTX_DEF);
3161         callout_init(&sc->sc_callout, 1);
3162         sc->sc_state = G_RAID3_DEVICE_STATE_STARTING;
3163         gp->softc = sc;
3164         sc->sc_geom = gp;
3165         sc->sc_provider = NULL;
3166         /*
3167          * Synchronization geom.
3168          */
3169         gp = g_new_geomf(mp, "%s.sync", md->md_name);
3170         gp->softc = sc;
3171         gp->orphan = g_raid3_orphan;
3172         sc->sc_sync.ds_geom = gp;
3173
3174         if (!g_raid3_use_malloc) {
3175                 sc->sc_zones[G_RAID3_ZONE_64K].sz_zone = uma_zcreate("gr3:64k",
3176                     65536, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
3177                     UMA_ALIGN_PTR, 0);
3178                 sc->sc_zones[G_RAID3_ZONE_64K].sz_inuse = 0;
3179                 sc->sc_zones[G_RAID3_ZONE_64K].sz_max = g_raid3_n64k;
3180                 sc->sc_zones[G_RAID3_ZONE_64K].sz_requested =
3181                     sc->sc_zones[G_RAID3_ZONE_64K].sz_failed = 0;
3182                 sc->sc_zones[G_RAID3_ZONE_16K].sz_zone = uma_zcreate("gr3:16k",
3183                     16384, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
3184                     UMA_ALIGN_PTR, 0);
3185                 sc->sc_zones[G_RAID3_ZONE_16K].sz_inuse = 0;
3186                 sc->sc_zones[G_RAID3_ZONE_16K].sz_max = g_raid3_n16k;
3187                 sc->sc_zones[G_RAID3_ZONE_16K].sz_requested =
3188                     sc->sc_zones[G_RAID3_ZONE_16K].sz_failed = 0;
3189                 sc->sc_zones[G_RAID3_ZONE_4K].sz_zone = uma_zcreate("gr3:4k",
3190                     4096, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
3191                     UMA_ALIGN_PTR, 0);
3192                 sc->sc_zones[G_RAID3_ZONE_4K].sz_inuse = 0;
3193                 sc->sc_zones[G_RAID3_ZONE_4K].sz_max = g_raid3_n4k;
3194                 sc->sc_zones[G_RAID3_ZONE_4K].sz_requested =
3195                     sc->sc_zones[G_RAID3_ZONE_4K].sz_failed = 0;
3196         }
3197
3198         error = kproc_create(g_raid3_worker, sc, &sc->sc_worker, 0, 0,
3199             "g_raid3 %s", md->md_name);
3200         if (error != 0) {
3201                 G_RAID3_DEBUG(1, "Cannot create kernel thread for %s.",
3202                     sc->sc_name);
3203                 if (!g_raid3_use_malloc) {
3204                         uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone);
3205                         uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone);
3206                         uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone);
3207                 }
3208                 g_destroy_geom(sc->sc_sync.ds_geom);
3209                 mtx_destroy(&sc->sc_events_mtx);
3210                 mtx_destroy(&sc->sc_queue_mtx);
3211                 sx_destroy(&sc->sc_lock);
3212                 g_destroy_geom(sc->sc_geom);
3213                 free(sc->sc_disks, M_RAID3);
3214                 free(sc, M_RAID3);
3215                 return (NULL);
3216         }
3217
3218         G_RAID3_DEBUG(1, "Device %s created (%u components, id=%u).",
3219             sc->sc_name, sc->sc_ndisks, sc->sc_id);
3220
3221         sc->sc_rootmount = root_mount_hold("GRAID3");
3222         G_RAID3_DEBUG(1, "root_mount_hold %p", sc->sc_rootmount);
3223
3224         /*
3225          * Run timeout.
3226          */
3227         timeout = atomic_load_acq_int(&g_raid3_timeout);
3228         callout_reset(&sc->sc_callout, timeout * hz, g_raid3_go, sc);
3229         return (sc->sc_geom);
3230 }
3231
3232 int
3233 g_raid3_destroy(struct g_raid3_softc *sc, int how)
3234 {
3235         struct g_provider *pp;
3236
3237         g_topology_assert_not();
3238         if (sc == NULL)
3239                 return (ENXIO);
3240         sx_assert(&sc->sc_lock, SX_XLOCKED);
3241
3242         pp = sc->sc_provider;
3243         if (pp != NULL && (pp->acr != 0 || pp->acw != 0 || pp->ace != 0)) {
3244                 switch (how) {
3245                 case G_RAID3_DESTROY_SOFT:
3246                         G_RAID3_DEBUG(1,
3247                             "Device %s is still open (r%dw%de%d).", pp->name,
3248                             pp->acr, pp->acw, pp->ace);
3249                         return (EBUSY);
3250                 case G_RAID3_DESTROY_DELAYED:
3251                         G_RAID3_DEBUG(1,
3252                             "Device %s will be destroyed on last close.",
3253                             pp->name);
3254                         if (sc->sc_syncdisk != NULL)
3255                                 g_raid3_sync_stop(sc, 1);
3256                         sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROYING;
3257                         return (EBUSY);
3258                 case G_RAID3_DESTROY_HARD:
3259                         G_RAID3_DEBUG(1, "Device %s is still open, so it "
3260                             "can't be definitely removed.", pp->name);
3261                         break;
3262                 }
3263         }
3264
3265         g_topology_lock();
3266         if (sc->sc_geom->softc == NULL) {
3267                 g_topology_unlock();
3268                 return (0);
3269         }
3270         sc->sc_geom->softc = NULL;
3271         sc->sc_sync.ds_geom->softc = NULL;
3272         g_topology_unlock();
3273
3274         sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
3275         sc->sc_flags |= G_RAID3_DEVICE_FLAG_WAIT;
3276         G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
3277         sx_xunlock(&sc->sc_lock);
3278         mtx_lock(&sc->sc_queue_mtx);
3279         wakeup(sc);
3280         wakeup(&sc->sc_queue);
3281         mtx_unlock(&sc->sc_queue_mtx);
3282         G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, &sc->sc_worker);
3283         while (sc->sc_worker != NULL)
3284                 tsleep(&sc->sc_worker, PRIBIO, "r3:destroy", hz / 5);
3285         G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, &sc->sc_worker);
3286         sx_xlock(&sc->sc_lock);
3287         g_raid3_destroy_device(sc);
3288         free(sc->sc_disks, M_RAID3);
3289         free(sc, M_RAID3);
3290         return (0);
3291 }
3292
3293 static void
3294 g_raid3_taste_orphan(struct g_consumer *cp)
3295 {
3296
3297         KASSERT(1 == 0, ("%s called while tasting %s.", __func__,
3298             cp->provider->name));
3299 }
3300
3301 static struct g_geom *
3302 g_raid3_taste(struct g_class *mp, struct g_provider *pp, int flags __unused)
3303 {
3304         struct g_raid3_metadata md;
3305         struct g_raid3_softc *sc;
3306         struct g_consumer *cp;
3307         struct g_geom *gp;
3308         int error;
3309
3310         g_topology_assert();
3311         g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name);
3312         G_RAID3_DEBUG(2, "Tasting %s.", pp->name);
3313
3314         gp = g_new_geomf(mp, "raid3:taste");
3315         /* This orphan function should be never called. */
3316         gp->orphan = g_raid3_taste_orphan;
3317         cp = g_new_consumer(gp);
3318         g_attach(cp, pp);
3319         error = g_raid3_read_metadata(cp, &md);
3320         g_detach(cp);
3321         g_destroy_consumer(cp);
3322         g_destroy_geom(gp);
3323         if (error != 0)
3324                 return (NULL);
3325         gp = NULL;
3326
3327         if (md.md_provider[0] != '\0' &&
3328             !g_compare_names(md.md_provider, pp->name))
3329                 return (NULL);
3330         if (md.md_provsize != 0 && md.md_provsize != pp->mediasize)
3331                 return (NULL);
3332         if (g_raid3_debug >= 2)
3333                 raid3_metadata_dump(&md);
3334
3335         /*
3336          * Let's check if device already exists.
3337          */
3338         sc = NULL;
3339         LIST_FOREACH(gp, &mp->geom, geom) {
3340                 sc = gp->softc;
3341                 if (sc == NULL)
3342                         continue;
3343                 if (sc->sc_sync.ds_geom == gp)
3344                         continue;
3345                 if (strcmp(md.md_name, sc->sc_name) != 0)
3346                         continue;
3347                 if (md.md_id != sc->sc_id) {
3348                         G_RAID3_DEBUG(0, "Device %s already configured.",
3349                             sc->sc_name);
3350                         return (NULL);
3351                 }
3352                 break;
3353         }
3354         if (gp == NULL) {
3355                 gp = g_raid3_create(mp, &md);
3356                 if (gp == NULL) {
3357                         G_RAID3_DEBUG(0, "Cannot create device %s.",
3358                             md.md_name);
3359                         return (NULL);
3360                 }
3361                 sc = gp->softc;
3362         }
3363         G_RAID3_DEBUG(1, "Adding disk %s to %s.", pp->name, gp->name);
3364         g_topology_unlock();
3365         sx_xlock(&sc->sc_lock);
3366         error = g_raid3_add_disk(sc, pp, &md);
3367         if (error != 0) {
3368                 G_RAID3_DEBUG(0, "Cannot add disk %s to %s (error=%d).",
3369                     pp->name, gp->name, error);
3370                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NODISK) ==
3371                     sc->sc_ndisks) {
3372                         g_cancel_event(sc);
3373                         g_raid3_destroy(sc, G_RAID3_DESTROY_HARD);
3374                         g_topology_lock();
3375                         return (NULL);
3376                 }
3377                 gp = NULL;
3378         }
3379         sx_xunlock(&sc->sc_lock);
3380         g_topology_lock();
3381         return (gp);
3382 }
3383
3384 static int
3385 g_raid3_destroy_geom(struct gctl_req *req __unused, struct g_class *mp __unused,
3386     struct g_geom *gp)
3387 {
3388         struct g_raid3_softc *sc;
3389         int error;
3390
3391         g_topology_unlock();
3392         sc = gp->softc;
3393         sx_xlock(&sc->sc_lock);
3394         g_cancel_event(sc);
3395         error = g_raid3_destroy(gp->softc, G_RAID3_DESTROY_SOFT);
3396         if (error != 0)
3397                 sx_xunlock(&sc->sc_lock);
3398         g_topology_lock();
3399         return (error);
3400 }
3401
3402 static void
3403 g_raid3_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp,
3404     struct g_consumer *cp, struct g_provider *pp)
3405 {
3406         struct g_raid3_softc *sc;
3407
3408         g_topology_assert();
3409
3410         sc = gp->softc;
3411         if (sc == NULL)
3412                 return;
3413         /* Skip synchronization geom. */
3414         if (gp == sc->sc_sync.ds_geom)
3415                 return;
3416         if (pp != NULL) {
3417                 /* Nothing here. */
3418         } else if (cp != NULL) {
3419                 struct g_raid3_disk *disk;
3420
3421                 disk = cp->private;
3422                 if (disk == NULL)
3423                         return;
3424                 g_topology_unlock();
3425                 sx_xlock(&sc->sc_lock);
3426                 sbuf_printf(sb, "%s<Type>", indent);
3427                 if (disk->d_no == sc->sc_ndisks - 1)
3428                         sbuf_cat(sb, "PARITY");
3429                 else
3430                         sbuf_cat(sb, "DATA");
3431                 sbuf_cat(sb, "</Type>\n");
3432                 sbuf_printf(sb, "%s<Number>%u</Number>\n", indent,
3433                     (u_int)disk->d_no);
3434                 if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
3435                         sbuf_printf(sb, "%s<Synchronized>", indent);
3436                         if (disk->d_sync.ds_offset == 0)
3437                                 sbuf_cat(sb, "0%");
3438                         else {
3439                                 sbuf_printf(sb, "%u%%",
3440                                     (u_int)((disk->d_sync.ds_offset * 100) /
3441                                     (sc->sc_mediasize / (sc->sc_ndisks - 1))));
3442                         }
3443                         sbuf_cat(sb, "</Synchronized>\n");
3444                         if (disk->d_sync.ds_offset > 0) {
3445                                 sbuf_printf(sb, "%s<BytesSynced>%jd"
3446                                     "</BytesSynced>\n", indent,
3447                                     (intmax_t)disk->d_sync.ds_offset);
3448                         }
3449                 }
3450                 sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent,
3451                     disk->d_sync.ds_syncid);
3452                 sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, disk->d_genid);
3453                 sbuf_printf(sb, "%s<Flags>", indent);
3454                 if (disk->d_flags == 0)
3455                         sbuf_cat(sb, "NONE");
3456                 else {
3457                         int first = 1;
3458
3459 #define ADD_FLAG(flag, name)    do {                                    \
3460         if ((disk->d_flags & (flag)) != 0) {                            \
3461                 if (!first)                                             \
3462                         sbuf_cat(sb, ", ");                             \
3463                 else                                                    \
3464                         first = 0;                                      \
3465                 sbuf_cat(sb, name);                                     \
3466         }                                                               \
3467 } while (0)
3468                         ADD_FLAG(G_RAID3_DISK_FLAG_DIRTY, "DIRTY");
3469                         ADD_FLAG(G_RAID3_DISK_FLAG_HARDCODED, "HARDCODED");
3470                         ADD_FLAG(G_RAID3_DISK_FLAG_SYNCHRONIZING,
3471                             "SYNCHRONIZING");
3472                         ADD_FLAG(G_RAID3_DISK_FLAG_FORCE_SYNC, "FORCE_SYNC");
3473                         ADD_FLAG(G_RAID3_DISK_FLAG_BROKEN, "BROKEN");
3474 #undef  ADD_FLAG
3475                 }
3476                 sbuf_cat(sb, "</Flags>\n");
3477                 sbuf_printf(sb, "%s<State>%s</State>\n", indent,
3478                     g_raid3_disk_state2str(disk->d_state));
3479                 sx_xunlock(&sc->sc_lock);
3480                 g_topology_lock();
3481         } else {
3482                 g_topology_unlock();
3483                 sx_xlock(&sc->sc_lock);
3484                 if (!g_raid3_use_malloc) {
3485                         sbuf_printf(sb,
3486                             "%s<Zone4kRequested>%u</Zone4kRequested>\n", indent,
3487                             sc->sc_zones[G_RAID3_ZONE_4K].sz_requested);
3488                         sbuf_printf(sb,
3489                             "%s<Zone4kFailed>%u</Zone4kFailed>\n", indent,
3490                             sc->sc_zones[G_RAID3_ZONE_4K].sz_failed);
3491                         sbuf_printf(sb,
3492                             "%s<Zone16kRequested>%u</Zone16kRequested>\n", indent,
3493                             sc->sc_zones[G_RAID3_ZONE_16K].sz_requested);
3494                         sbuf_printf(sb,
3495                             "%s<Zone16kFailed>%u</Zone16kFailed>\n", indent,
3496                             sc->sc_zones[G_RAID3_ZONE_16K].sz_failed);
3497                         sbuf_printf(sb,
3498                             "%s<Zone64kRequested>%u</Zone64kRequested>\n", indent,
3499                             sc->sc_zones[G_RAID3_ZONE_64K].sz_requested);
3500                         sbuf_printf(sb,
3501                             "%s<Zone64kFailed>%u</Zone64kFailed>\n", indent,
3502                             sc->sc_zones[G_RAID3_ZONE_64K].sz_failed);
3503                 }
3504                 sbuf_printf(sb, "%s<ID>%u</ID>\n", indent, (u_int)sc->sc_id);
3505                 sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent, sc->sc_syncid);
3506                 sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, sc->sc_genid);
3507                 sbuf_printf(sb, "%s<Flags>", indent);
3508                 if (sc->sc_flags == 0)
3509                         sbuf_cat(sb, "NONE");
3510                 else {
3511                         int first = 1;
3512
3513 #define ADD_FLAG(flag, name)    do {                                    \
3514         if ((sc->sc_flags & (flag)) != 0) {                             \
3515                 if (!first)                                             \
3516                         sbuf_cat(sb, ", ");                             \
3517                 else                                                    \
3518                         first = 0;                                      \
3519                 sbuf_cat(sb, name);                                     \
3520         }                                                               \
3521 } while (0)
3522                         ADD_FLAG(G_RAID3_DEVICE_FLAG_NOFAILSYNC, "NOFAILSYNC");
3523                         ADD_FLAG(G_RAID3_DEVICE_FLAG_NOAUTOSYNC, "NOAUTOSYNC");
3524                         ADD_FLAG(G_RAID3_DEVICE_FLAG_ROUND_ROBIN,
3525                             "ROUND-ROBIN");
3526                         ADD_FLAG(G_RAID3_DEVICE_FLAG_VERIFY, "VERIFY");
3527 #undef  ADD_FLAG
3528                 }
3529                 sbuf_cat(sb, "</Flags>\n");
3530                 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent,
3531                     sc->sc_ndisks);
3532                 sbuf_printf(sb, "%s<State>%s</State>\n", indent,
3533                     g_raid3_device_state2str(sc->sc_state));
3534                 sx_xunlock(&sc->sc_lock);
3535                 g_topology_lock();
3536         }
3537 }
3538
3539 static void
3540 g_raid3_shutdown_post_sync(void *arg, int howto)
3541 {
3542         struct g_class *mp;
3543         struct g_geom *gp, *gp2;
3544         struct g_raid3_softc *sc;
3545         int error;
3546
3547         mp = arg;
3548         g_topology_lock();
3549         g_raid3_shutdown = 1;
3550         LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) {
3551                 if ((sc = gp->softc) == NULL)
3552                         continue;
3553                 /* Skip synchronization geom. */
3554                 if (gp == sc->sc_sync.ds_geom)
3555                         continue;
3556                 g_topology_unlock();
3557                 sx_xlock(&sc->sc_lock);
3558                 g_raid3_idle(sc, -1);
3559                 g_cancel_event(sc);
3560                 error = g_raid3_destroy(sc, G_RAID3_DESTROY_DELAYED);
3561                 if (error != 0)
3562                         sx_xunlock(&sc->sc_lock);
3563                 g_topology_lock();
3564         }
3565         g_topology_unlock();
3566 }
3567
3568 static void
3569 g_raid3_init(struct g_class *mp)
3570 {
3571
3572         g_raid3_post_sync = EVENTHANDLER_REGISTER(shutdown_post_sync,
3573             g_raid3_shutdown_post_sync, mp, SHUTDOWN_PRI_FIRST);
3574         if (g_raid3_post_sync == NULL)
3575                 G_RAID3_DEBUG(0, "Warning! Cannot register shutdown event.");
3576 }
3577
3578 static void
3579 g_raid3_fini(struct g_class *mp)
3580 {
3581
3582         if (g_raid3_post_sync != NULL)
3583                 EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_raid3_post_sync);
3584 }
3585
3586 DECLARE_GEOM_CLASS(g_raid3_class, g_raid3);
3587 MODULE_VERSION(geom_raid3, 0);