]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/i386/i386/vm86.c
Upgrade to OpenSSH 7.8p1.
[FreeBSD/FreeBSD.git] / sys / i386 / i386 / vm86.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1997 Jonathan Lemon
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/priv.h>
35 #include <sys/proc.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mutex.h>
39
40 #include <vm/vm.h>
41 #include <vm/pmap.h>
42 #include <vm/vm_map.h>
43 #include <vm/vm_page.h>
44
45 #include <machine/md_var.h>
46 #include <machine/pcb.h>
47 #include <machine/pcb_ext.h>
48 #include <machine/psl.h>
49 #include <machine/specialreg.h>
50 #include <machine/sysarch.h>
51
52 extern int vm86pa;
53 extern struct pcb *vm86pcb;
54
55 static struct mtx vm86_lock;
56
57 extern int vm86_bioscall(struct vm86frame *);
58 extern void vm86_biosret(struct vm86frame *);
59
60 void vm86_prepcall(struct vm86frame *);
61
62 struct system_map {
63         int             type;
64         vm_offset_t     start;
65         vm_offset_t     end;
66 };
67
68 #define HLT     0xf4
69 #define CLI     0xfa
70 #define STI     0xfb
71 #define PUSHF   0x9c
72 #define POPF    0x9d
73 #define INTn    0xcd
74 #define IRET    0xcf
75 #define CALLm   0xff
76 #define OPERAND_SIZE_PREFIX     0x66
77 #define ADDRESS_SIZE_PREFIX     0x67
78 #define PUSH_MASK       ~(PSL_VM | PSL_RF | PSL_I)
79 #define POP_MASK        ~(PSL_VIP | PSL_VIF | PSL_VM | PSL_RF | PSL_IOPL)
80
81 static int
82 vm86_suword16(volatile void *base, int word)
83 {
84
85         if (curthread->td_critnest != 0) {
86                 *(volatile uint16_t *)base = word;
87                 return (0);
88         }
89         return (suword16(base, word));
90 }
91
92 static int
93 vm86_suword(volatile void *base, long word)
94 {
95
96         if (curthread->td_critnest != 0) {
97                 *(volatile long *)base = word;
98                 return (0);
99         }
100         return (suword(base, word));
101 }
102
103 static int
104 vm86_fubyte(volatile const void *base)
105 {
106
107         if (curthread->td_critnest != 0)
108                 return (*(volatile const u_char *)base);
109         return (fubyte(base));
110 }
111
112 static int
113 vm86_fuword16(volatile const void *base)
114 {
115
116         if (curthread->td_critnest != 0)
117                 return (*(volatile const uint16_t *)base);
118         return (fuword16(base));
119 }
120
121 static long
122 vm86_fuword(volatile const void *base)
123 {
124
125         if (curthread->td_critnest != 0)
126                 return (*(volatile const long *)base);
127         return (fuword(base));
128 }
129
130 static __inline caddr_t
131 MAKE_ADDR(u_short sel, u_short off)
132 {
133         return ((caddr_t)((sel << 4) + off));
134 }
135
136 static __inline void
137 GET_VEC(u_int vec, u_short *sel, u_short *off)
138 {
139         *sel = vec >> 16;
140         *off = vec & 0xffff;
141 }
142
143 static __inline u_int
144 MAKE_VEC(u_short sel, u_short off)
145 {
146         return ((sel << 16) | off);
147 }
148
149 static __inline void
150 PUSH(u_short x, struct vm86frame *vmf)
151 {
152         vmf->vmf_sp -= 2;
153         vm86_suword16(MAKE_ADDR(vmf->vmf_ss, vmf->vmf_sp), x);
154 }
155
156 static __inline void
157 PUSHL(u_int x, struct vm86frame *vmf)
158 {
159         vmf->vmf_sp -= 4;
160         vm86_suword(MAKE_ADDR(vmf->vmf_ss, vmf->vmf_sp), x);
161 }
162
163 static __inline u_short
164 POP(struct vm86frame *vmf)
165 {
166         u_short x = vm86_fuword16(MAKE_ADDR(vmf->vmf_ss, vmf->vmf_sp));
167
168         vmf->vmf_sp += 2;
169         return (x);
170 }
171
172 static __inline u_int
173 POPL(struct vm86frame *vmf)
174 {
175         u_int x = vm86_fuword(MAKE_ADDR(vmf->vmf_ss, vmf->vmf_sp));
176
177         vmf->vmf_sp += 4;
178         return (x);
179 }
180
181 int
182 vm86_emulate(struct vm86frame *vmf)
183 {
184         struct vm86_kernel *vm86;
185         caddr_t addr;
186         u_char i_byte;
187         u_int temp_flags;
188         int inc_ip = 1;
189         int retcode = 0;
190
191         /*
192          * pcb_ext contains the address of the extension area, or zero if
193          * the extension is not present.  (This check should not be needed,
194          * as we can't enter vm86 mode until we set up an extension area)
195          */
196         if (curpcb->pcb_ext == 0)
197                 return (SIGBUS);
198         vm86 = &curpcb->pcb_ext->ext_vm86;
199
200         if (vmf->vmf_eflags & PSL_T)
201                 retcode = SIGTRAP;
202
203         addr = MAKE_ADDR(vmf->vmf_cs, vmf->vmf_ip);
204         i_byte = vm86_fubyte(addr);
205         if (i_byte == ADDRESS_SIZE_PREFIX) {
206                 i_byte = vm86_fubyte(++addr);
207                 inc_ip++;
208         }
209
210         if (vm86->vm86_has_vme) {
211                 switch (i_byte) {
212                 case OPERAND_SIZE_PREFIX:
213                         i_byte = vm86_fubyte(++addr);
214                         inc_ip++;
215                         switch (i_byte) {
216                         case PUSHF:
217                                 if (vmf->vmf_eflags & PSL_VIF)
218                                         PUSHL((vmf->vmf_eflags & PUSH_MASK)
219                                             | PSL_IOPL | PSL_I, vmf);
220                                 else
221                                         PUSHL((vmf->vmf_eflags & PUSH_MASK)
222                                             | PSL_IOPL, vmf);
223                                 vmf->vmf_ip += inc_ip;
224                                 return (retcode);
225
226                         case POPF:
227                                 temp_flags = POPL(vmf) & POP_MASK;
228                                 vmf->vmf_eflags = (vmf->vmf_eflags & ~POP_MASK)
229                                     | temp_flags | PSL_VM | PSL_I;
230                                 vmf->vmf_ip += inc_ip;
231                                 if (temp_flags & PSL_I) {
232                                         vmf->vmf_eflags |= PSL_VIF;
233                                         if (vmf->vmf_eflags & PSL_VIP)
234                                                 break;
235                                 } else {
236                                         vmf->vmf_eflags &= ~PSL_VIF;
237                                 }
238                                 return (retcode);
239                         }
240                         break;
241
242                 /* VME faults here if VIP is set, but does not set VIF. */
243                 case STI:
244                         vmf->vmf_eflags |= PSL_VIF;
245                         vmf->vmf_ip += inc_ip;
246                         if ((vmf->vmf_eflags & PSL_VIP) == 0) {
247                                 uprintf("fatal sti\n");
248                                 return (SIGKILL);
249                         }
250                         break;
251
252                 /* VME if no redirection support */
253                 case INTn:
254                         break;
255
256                 /* VME if trying to set PSL_T, or PSL_I when VIP is set */
257                 case POPF:
258                         temp_flags = POP(vmf) & POP_MASK;
259                         vmf->vmf_flags = (vmf->vmf_flags & ~POP_MASK)
260                             | temp_flags | PSL_VM | PSL_I;
261                         vmf->vmf_ip += inc_ip;
262                         if (temp_flags & PSL_I) {
263                                 vmf->vmf_eflags |= PSL_VIF;
264                                 if (vmf->vmf_eflags & PSL_VIP)
265                                         break;
266                         } else {
267                                 vmf->vmf_eflags &= ~PSL_VIF;
268                         }
269                         return (retcode);
270
271                 /* VME if trying to set PSL_T, or PSL_I when VIP is set */
272                 case IRET:
273                         vmf->vmf_ip = POP(vmf);
274                         vmf->vmf_cs = POP(vmf);
275                         temp_flags = POP(vmf) & POP_MASK;
276                         vmf->vmf_flags = (vmf->vmf_flags & ~POP_MASK)
277                             | temp_flags | PSL_VM | PSL_I;
278                         if (temp_flags & PSL_I) {
279                                 vmf->vmf_eflags |= PSL_VIF;
280                                 if (vmf->vmf_eflags & PSL_VIP)
281                                         break;
282                         } else {
283                                 vmf->vmf_eflags &= ~PSL_VIF;
284                         }
285                         return (retcode);
286
287                 }
288                 return (SIGBUS);
289         }
290
291         switch (i_byte) {
292         case OPERAND_SIZE_PREFIX:
293                 i_byte = vm86_fubyte(++addr);
294                 inc_ip++;
295                 switch (i_byte) {
296                 case PUSHF:
297                         if (vm86->vm86_eflags & PSL_VIF)
298                                 PUSHL((vmf->vmf_flags & PUSH_MASK)
299                                     | PSL_IOPL | PSL_I, vmf);
300                         else
301                                 PUSHL((vmf->vmf_flags & PUSH_MASK)
302                                     | PSL_IOPL, vmf);
303                         vmf->vmf_ip += inc_ip;
304                         return (retcode);
305
306                 case POPF:
307                         temp_flags = POPL(vmf) & POP_MASK;
308                         vmf->vmf_eflags = (vmf->vmf_eflags & ~POP_MASK)
309                             | temp_flags | PSL_VM | PSL_I;
310                         vmf->vmf_ip += inc_ip;
311                         if (temp_flags & PSL_I) {
312                                 vm86->vm86_eflags |= PSL_VIF;
313                                 if (vm86->vm86_eflags & PSL_VIP)
314                                         break;
315                         } else {
316                                 vm86->vm86_eflags &= ~PSL_VIF;
317                         }
318                         return (retcode);
319                 }
320                 return (SIGBUS);
321
322         case CLI:
323                 vm86->vm86_eflags &= ~PSL_VIF;
324                 vmf->vmf_ip += inc_ip;
325                 return (retcode);
326
327         case STI:
328                 /* if there is a pending interrupt, go to the emulator */
329                 vm86->vm86_eflags |= PSL_VIF;
330                 vmf->vmf_ip += inc_ip;
331                 if (vm86->vm86_eflags & PSL_VIP)
332                         break;
333                 return (retcode);
334
335         case PUSHF:
336                 if (vm86->vm86_eflags & PSL_VIF)
337                         PUSH((vmf->vmf_flags & PUSH_MASK)
338                             | PSL_IOPL | PSL_I, vmf);
339                 else
340                         PUSH((vmf->vmf_flags & PUSH_MASK) | PSL_IOPL, vmf);
341                 vmf->vmf_ip += inc_ip;
342                 return (retcode);
343
344         case INTn:
345                 i_byte = vm86_fubyte(addr + 1);
346                 if ((vm86->vm86_intmap[i_byte >> 3] & (1 << (i_byte & 7))) != 0)
347                         break;
348                 if (vm86->vm86_eflags & PSL_VIF)
349                         PUSH((vmf->vmf_flags & PUSH_MASK)
350                             | PSL_IOPL | PSL_I, vmf);
351                 else
352                         PUSH((vmf->vmf_flags & PUSH_MASK) | PSL_IOPL, vmf);
353                 PUSH(vmf->vmf_cs, vmf);
354                 PUSH(vmf->vmf_ip + inc_ip + 1, vmf);    /* increment IP */
355                 GET_VEC(vm86_fuword((caddr_t)(i_byte * 4)),
356                      &vmf->vmf_cs, &vmf->vmf_ip);
357                 vmf->vmf_flags &= ~PSL_T;
358                 vm86->vm86_eflags &= ~PSL_VIF;
359                 return (retcode);
360
361         case IRET:
362                 vmf->vmf_ip = POP(vmf);
363                 vmf->vmf_cs = POP(vmf);
364                 temp_flags = POP(vmf) & POP_MASK;
365                 vmf->vmf_flags = (vmf->vmf_flags & ~POP_MASK)
366                     | temp_flags | PSL_VM | PSL_I;
367                 if (temp_flags & PSL_I) {
368                         vm86->vm86_eflags |= PSL_VIF;
369                         if (vm86->vm86_eflags & PSL_VIP)
370                                 break;
371                 } else {
372                         vm86->vm86_eflags &= ~PSL_VIF;
373                 }
374                 return (retcode);
375
376         case POPF:
377                 temp_flags = POP(vmf) & POP_MASK;
378                 vmf->vmf_flags = (vmf->vmf_flags & ~POP_MASK)
379                     | temp_flags | PSL_VM | PSL_I;
380                 vmf->vmf_ip += inc_ip;
381                 if (temp_flags & PSL_I) {
382                         vm86->vm86_eflags |= PSL_VIF;
383                         if (vm86->vm86_eflags & PSL_VIP)
384                                 break;
385                 } else {
386                         vm86->vm86_eflags &= ~PSL_VIF;
387                 }
388                 return (retcode);
389         }
390         return (SIGBUS);
391 }
392
393 #define PGTABLE_SIZE    ((1024 + 64) * 1024 / PAGE_SIZE)
394 #define INTMAP_SIZE     32
395 #define IOMAP_SIZE      ctob(IOPAGES)
396 #define TSS_SIZE \
397         (sizeof(struct pcb_ext) - sizeof(struct segment_descriptor) + \
398          INTMAP_SIZE + IOMAP_SIZE + 1)
399
400 struct vm86_layout {
401         pt_entry_t      vml_pgtbl[PGTABLE_SIZE];
402         struct  pcb vml_pcb;
403         struct  pcb_ext vml_ext;
404         char    vml_intmap[INTMAP_SIZE];
405         char    vml_iomap[IOMAP_SIZE];
406         char    vml_iomap_trailer;
407 };
408
409 void
410 vm86_initialize(void)
411 {
412         int i;
413         u_int *addr;
414         struct vm86_layout *vml = (struct vm86_layout *)vm86paddr;
415         struct pcb *pcb;
416         struct pcb_ext *ext;
417         struct soft_segment_descriptor ssd = {
418                 0,                      /* segment base address (overwritten) */
419                 0,                      /* length (overwritten) */
420                 SDT_SYS386TSS,          /* segment type */
421                 0,                      /* priority level */
422                 1,                      /* descriptor present */
423                 0, 0,
424                 0,                      /* default 16 size */
425                 0                       /* granularity */
426         };
427
428         /*
429          * this should be a compile time error, but cpp doesn't grok sizeof().
430          */
431         if (sizeof(struct vm86_layout) > ctob(3))
432                 panic("struct vm86_layout exceeds space allocated in locore.s");
433
434         /*
435          * Below is the memory layout that we use for the vm86 region.
436          *
437          * +--------+
438          * |        | 
439          * |        |
440          * | page 0 |       
441          * |        | +--------+
442          * |        | | stack  |
443          * +--------+ +--------+ <--------- vm86paddr
444          * |        | |Page Tbl| 1M + 64K = 272 entries = 1088 bytes
445          * |        | +--------+
446          * |        | |  PCB   | size: ~240 bytes
447          * | page 1 | |PCB Ext | size: ~140 bytes (includes TSS)
448          * |        | +--------+
449          * |        | |int map |
450          * |        | +--------+
451          * +--------+ |        |
452          * | page 2 | |  I/O   |
453          * +--------+ | bitmap |
454          * | page 3 | |        |
455          * |        | +--------+
456          * +--------+ 
457          */
458
459         /*
460          * A rudimentary PCB must be installed, in order to get to the
461          * PCB extension area.  We use the PCB area as a scratchpad for
462          * data storage, the layout of which is shown below.
463          *
464          * pcb_esi      = new PTD entry 0
465          * pcb_ebp      = pointer to frame on vm86 stack
466          * pcb_esp      =    stack frame pointer at time of switch
467          * pcb_ebx      = va of vm86 page table
468          * pcb_eip      =    argument pointer to initial call
469          * pcb_vm86[0]  =    saved TSS descriptor, word 0
470          * pcb_vm86[1]  =    saved TSS descriptor, word 1
471          */
472 #define new_ptd         pcb_esi
473 #define vm86_frame      pcb_ebp
474 #define pgtable_va      pcb_ebx
475
476         pcb = &vml->vml_pcb;
477         ext = &vml->vml_ext;
478
479         mtx_init(&vm86_lock, "vm86 lock", NULL, MTX_DEF);
480
481         bzero(pcb, sizeof(struct pcb));
482         pcb->new_ptd = vm86pa | PG_V | PG_RW | PG_U;
483         pcb->vm86_frame = vm86paddr - sizeof(struct vm86frame);
484         pcb->pgtable_va = vm86paddr;
485         pcb->pcb_flags = PCB_VM86CALL; 
486         pcb->pcb_ext = ext;
487
488         bzero(ext, sizeof(struct pcb_ext)); 
489         ext->ext_tss.tss_esp0 = vm86paddr;
490         ext->ext_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
491         ext->ext_tss.tss_ioopt = 
492                 ((u_int)vml->vml_iomap - (u_int)&ext->ext_tss) << 16;
493         ext->ext_iomap = vml->vml_iomap;
494         ext->ext_vm86.vm86_intmap = vml->vml_intmap;
495
496         if (cpu_feature & CPUID_VME)
497                 ext->ext_vm86.vm86_has_vme = (rcr4() & CR4_VME ? 1 : 0);
498
499         addr = (u_int *)ext->ext_vm86.vm86_intmap;
500         for (i = 0; i < (INTMAP_SIZE + IOMAP_SIZE) / sizeof(u_int); i++)
501                 *addr++ = 0;
502         vml->vml_iomap_trailer = 0xff;
503
504         ssd.ssd_base = (u_int)&ext->ext_tss;
505         ssd.ssd_limit = TSS_SIZE - 1; 
506         ssdtosd(&ssd, &ext->ext_tssd);
507
508         vm86pcb = pcb;
509
510 #if 0
511         /*
512          * use whatever is leftover of the vm86 page layout as a
513          * message buffer so we can capture early output.
514          */
515         msgbufinit((vm_offset_t)vm86paddr + sizeof(struct vm86_layout),
516             ctob(3) - sizeof(struct vm86_layout));
517 #endif
518 }
519
520 vm_offset_t
521 vm86_getpage(struct vm86context *vmc, int pagenum)
522 {
523         int i;
524
525         for (i = 0; i < vmc->npages; i++)
526                 if (vmc->pmap[i].pte_num == pagenum)
527                         return (vmc->pmap[i].kva);
528         return (0);
529 }
530
531 vm_offset_t
532 vm86_addpage(struct vm86context *vmc, int pagenum, vm_offset_t kva)
533 {
534         int i, flags = 0;
535
536         for (i = 0; i < vmc->npages; i++)
537                 if (vmc->pmap[i].pte_num == pagenum)
538                         goto overlap;
539
540         if (vmc->npages == VM86_PMAPSIZE)
541                 goto full;                      /* XXX grow map? */
542
543         if (kva == 0) {
544                 kva = (vm_offset_t)malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
545                 flags = VMAP_MALLOC;
546         }
547
548         i = vmc->npages++;
549         vmc->pmap[i].flags = flags;
550         vmc->pmap[i].kva = kva;
551         vmc->pmap[i].pte_num = pagenum;
552         return (kva);
553 overlap:
554         panic("vm86_addpage: overlap");
555 full:
556         panic("vm86_addpage: not enough room");
557 }
558
559 /*
560  * called from vm86_bioscall, while in vm86 address space, to finalize setup.
561  */
562 void
563 vm86_prepcall(struct vm86frame *vmf)
564 {
565         struct vm86_kernel *vm86;
566         uint32_t *stack;
567         uint8_t *code;
568
569         code = (void *)0xa00;
570         stack = (void *)(0x1000 - 2);   /* keep aligned */
571         if ((vmf->vmf_trapno & PAGE_MASK) <= 0xff) {
572                 /* interrupt call requested */
573                 code[0] = INTn;
574                 code[1] = vmf->vmf_trapno & 0xff;
575                 code[2] = HLT;
576                 vmf->vmf_ip = (uintptr_t)code;
577                 vmf->vmf_cs = 0;
578         } else {
579                 code[0] = HLT;
580                 stack--;
581                 stack[0] = MAKE_VEC(0, (uintptr_t)code);
582         }
583         vmf->vmf_sp = (uintptr_t)stack;
584         vmf->vmf_ss = 0;
585         vmf->kernel_fs = vmf->kernel_es = vmf->kernel_ds = 0;
586         vmf->vmf_eflags = PSL_VIF | PSL_VM | PSL_USER;
587
588         vm86 = &curpcb->pcb_ext->ext_vm86;
589         if (!vm86->vm86_has_vme) 
590                 vm86->vm86_eflags = vmf->vmf_eflags;  /* save VIF, VIP */
591 }
592
593 /*
594  * vm86 trap handler; determines whether routine succeeded or not.
595  * Called while in vm86 space, returns to calling process.
596  */
597 void
598 vm86_trap(struct vm86frame *vmf)
599 {
600         void (*p)(struct vm86frame *);
601         caddr_t addr;
602
603         /* "should not happen" */
604         if ((vmf->vmf_eflags & PSL_VM) == 0)
605                 panic("vm86_trap called, but not in vm86 mode");
606
607         addr = MAKE_ADDR(vmf->vmf_cs, vmf->vmf_ip);
608         if (*(u_char *)addr == HLT)
609                 vmf->vmf_trapno = vmf->vmf_eflags & PSL_C;
610         else
611                 vmf->vmf_trapno = vmf->vmf_trapno << 16;
612
613         p = (void (*)(struct vm86frame *))((uintptr_t)vm86_biosret +
614             setidt_disp);
615         p(vmf);
616 }
617
618 int
619 vm86_intcall(int intnum, struct vm86frame *vmf)
620 {
621         int (*p)(struct vm86frame *);
622         int retval;
623
624         if (intnum < 0 || intnum > 0xff)
625                 return (EINVAL);
626
627         vmf->vmf_trapno = intnum;
628         p = (int (*)(struct vm86frame *))((uintptr_t)vm86_bioscall +
629             setidt_disp);
630         mtx_lock(&vm86_lock);
631         critical_enter();
632         retval = p(vmf);
633         critical_exit();
634         mtx_unlock(&vm86_lock);
635         return (retval);
636 }
637
638 /*
639  * struct vm86context contains the page table to use when making
640  * vm86 calls.  If intnum is a valid interrupt number (0-255), then
641  * the "interrupt trampoline" will be used, otherwise we use the
642  * caller's cs:ip routine.  
643  */
644 int
645 vm86_datacall(int intnum, struct vm86frame *vmf, struct vm86context *vmc)
646 {
647         pt_entry_t *pte;
648         int (*p)(struct vm86frame *);
649         vm_paddr_t page;
650         int i, entry, retval;
651
652         pte = (pt_entry_t *)vm86paddr;
653         mtx_lock(&vm86_lock);
654         for (i = 0; i < vmc->npages; i++) {
655                 page = vtophys(vmc->pmap[i].kva & PG_FRAME);
656                 entry = vmc->pmap[i].pte_num; 
657                 vmc->pmap[i].old_pte = pte[entry];
658                 pte[entry] = page | PG_V | PG_RW | PG_U;
659                 pmap_invalidate_page(kernel_pmap, vmc->pmap[i].kva);
660         }
661
662         vmf->vmf_trapno = intnum;
663         p = (int (*)(struct vm86frame *))((uintptr_t)vm86_bioscall +
664             setidt_disp);
665         critical_enter();
666         retval = p(vmf);
667         critical_exit();
668
669         for (i = 0; i < vmc->npages; i++) {
670                 entry = vmc->pmap[i].pte_num;
671                 pte[entry] = vmc->pmap[i].old_pte;
672                 pmap_invalidate_page(kernel_pmap, vmc->pmap[i].kva);
673         }
674         mtx_unlock(&vm86_lock);
675
676         return (retval);
677 }
678
679 vm_offset_t
680 vm86_getaddr(struct vm86context *vmc, u_short sel, u_short off)
681 {
682         int i, page;
683         vm_offset_t addr;
684
685         addr = (vm_offset_t)MAKE_ADDR(sel, off);
686         page = addr >> PAGE_SHIFT;
687         for (i = 0; i < vmc->npages; i++)
688                 if (page == vmc->pmap[i].pte_num)
689                         return (vmc->pmap[i].kva + (addr & PAGE_MASK));
690         return (0);
691 }
692
693 int
694 vm86_getptr(struct vm86context *vmc, vm_offset_t kva, u_short *sel,
695      u_short *off)
696 {
697         int i;
698
699         for (i = 0; i < vmc->npages; i++)
700                 if (kva >= vmc->pmap[i].kva &&
701                     kva < vmc->pmap[i].kva + PAGE_SIZE) {
702                         *off = kva - vmc->pmap[i].kva;
703                         *sel = vmc->pmap[i].pte_num << 8;
704                         return (1);
705                 }
706         return (0);
707 }
708         
709 int
710 vm86_sysarch(struct thread *td, char *args)
711 {
712         int error = 0;
713         struct i386_vm86_args ua;
714         struct vm86_kernel *vm86;
715
716         if ((error = copyin(args, &ua, sizeof(struct i386_vm86_args))) != 0)
717                 return (error);
718
719         if (td->td_pcb->pcb_ext == 0)
720                 if ((error = i386_extend_pcb(td)) != 0)
721                         return (error);
722         vm86 = &td->td_pcb->pcb_ext->ext_vm86;
723
724         switch (ua.sub_op) {
725         case VM86_INIT: {
726                 struct vm86_init_args sa;
727
728                 if ((error = copyin(ua.sub_args, &sa, sizeof(sa))) != 0)
729                         return (error);
730                 if (cpu_feature & CPUID_VME)
731                         vm86->vm86_has_vme = (rcr4() & CR4_VME ? 1 : 0);
732                 else
733                         vm86->vm86_has_vme = 0;
734                 vm86->vm86_inited = 1;
735                 vm86->vm86_debug = sa.debug;
736                 bcopy(&sa.int_map, vm86->vm86_intmap, 32);
737                 }
738                 break;
739
740 #if 0
741         case VM86_SET_VME: {
742                 struct vm86_vme_args sa;
743         
744                 if ((cpu_feature & CPUID_VME) == 0)
745                         return (ENODEV);
746
747                 if (error = copyin(ua.sub_args, &sa, sizeof(sa)))
748                         return (error);
749                 if (sa.state)
750                         load_cr4(rcr4() | CR4_VME);
751                 else
752                         load_cr4(rcr4() & ~CR4_VME);
753                 }
754                 break;
755 #endif
756
757         case VM86_GET_VME: {
758                 struct vm86_vme_args sa;
759
760                 sa.state = (rcr4() & CR4_VME ? 1 : 0);
761                 error = copyout(&sa, ua.sub_args, sizeof(sa));
762                 }
763                 break;
764
765         case VM86_INTCALL: {
766                 struct vm86_intcall_args sa;
767
768                 if ((error = priv_check(td, PRIV_VM86_INTCALL)))
769                         return (error);
770                 if ((error = copyin(ua.sub_args, &sa, sizeof(sa))))
771                         return (error);
772                 if ((error = vm86_intcall(sa.intnum, &sa.vmf)))
773                         return (error);
774                 error = copyout(&sa, ua.sub_args, sizeof(sa));
775                 }
776                 break;
777
778         default:
779                 error = EINVAL;
780         }
781         return (error);
782 }