]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_clocksource.c
zfs: merge openzfs/zfs@688514e47
[FreeBSD/FreeBSD.git] / sys / kern / kern_clocksource.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2010-2013 Alexander Motin <mav@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer,
12  *    without modification, immediately at the beginning of the file.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 /*
31  * Common routines to manage event timers hardware.
32  */
33
34 #include "opt_device_polling.h"
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/bus.h>
39 #include <sys/limits.h>
40 #include <sys/lock.h>
41 #include <sys/kdb.h>
42 #include <sys/ktr.h>
43 #include <sys/mutex.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/sched.h>
47 #include <sys/smp.h>
48 #include <sys/sysctl.h>
49 #include <sys/timeet.h>
50 #include <sys/timetc.h>
51
52 #include <machine/atomic.h>
53 #include <machine/clock.h>
54 #include <machine/cpu.h>
55 #include <machine/smp.h>
56
57 int                     cpu_disable_c2_sleep = 0; /* Timer dies in C2. */
58 int                     cpu_disable_c3_sleep = 0; /* Timer dies in C3. */
59
60 static void             setuptimer(void);
61 static void             loadtimer(sbintime_t now, int first);
62 static int              doconfigtimer(void);
63 static void             configtimer(int start);
64 static int              round_freq(struct eventtimer *et, int freq);
65
66 struct pcpu_state;
67 static sbintime_t       getnextcpuevent(struct pcpu_state *state, int idle);
68 static sbintime_t       getnextevent(struct pcpu_state *state);
69 static int              handleevents(sbintime_t now, int fake);
70
71 static struct mtx       et_hw_mtx;
72
73 #define ET_HW_LOCK(state)                                               \
74         {                                                               \
75                 if (timer->et_flags & ET_FLAGS_PERCPU)                  \
76                         mtx_lock_spin(&(state)->et_hw_mtx);             \
77                 else                                                    \
78                         mtx_lock_spin(&et_hw_mtx);                      \
79         }
80
81 #define ET_HW_UNLOCK(state)                                             \
82         {                                                               \
83                 if (timer->et_flags & ET_FLAGS_PERCPU)                  \
84                         mtx_unlock_spin(&(state)->et_hw_mtx);           \
85                 else                                                    \
86                         mtx_unlock_spin(&et_hw_mtx);                    \
87         }
88
89 static struct eventtimer *timer = NULL;
90 static sbintime_t       timerperiod;    /* Timer period for periodic mode. */
91 static sbintime_t       statperiod;     /* statclock() events period. */
92 static sbintime_t       profperiod;     /* profclock() events period. */
93 static sbintime_t       nexttick;       /* Next global timer tick time. */
94 static u_int            busy = 1;       /* Reconfiguration is in progress. */
95 static int              profiling;      /* Profiling events enabled. */
96
97 static char             timername[32];  /* Wanted timer. */
98 TUNABLE_STR("kern.eventtimer.timer", timername, sizeof(timername));
99
100 static int              singlemul;      /* Multiplier for periodic mode. */
101 SYSCTL_INT(_kern_eventtimer, OID_AUTO, singlemul, CTLFLAG_RWTUN, &singlemul,
102     0, "Multiplier for periodic mode");
103
104 static u_int            idletick;       /* Run periodic events when idle. */
105 SYSCTL_UINT(_kern_eventtimer, OID_AUTO, idletick, CTLFLAG_RWTUN, &idletick,
106     0, "Run periodic events when idle");
107
108 static int              periodic;       /* Periodic or one-shot mode. */
109 static int              want_periodic;  /* What mode to prefer. */
110 TUNABLE_INT("kern.eventtimer.periodic", &want_periodic);
111
112 struct pcpu_state {
113         struct mtx      et_hw_mtx;      /* Per-CPU timer mutex. */
114         u_int           action;         /* Reconfiguration requests. */
115         u_int           handle;         /* Immediate handle resuests. */
116         sbintime_t      now;            /* Last tick time. */
117         sbintime_t      nextevent;      /* Next scheduled event on this CPU. */
118         sbintime_t      nexttick;       /* Next timer tick time. */
119         sbintime_t      nexthard;       /* Next hardclock() event. */
120         sbintime_t      nextstat;       /* Next statclock() event. */
121         sbintime_t      nextprof;       /* Next profclock() event. */
122         sbintime_t      nextcall;       /* Next callout event. */
123         sbintime_t      nextcallopt;    /* Next optional callout event. */
124         int             ipi;            /* This CPU needs IPI. */
125         int             idle;           /* This CPU is in idle mode. */
126 };
127
128 DPCPU_DEFINE_STATIC(struct pcpu_state, timerstate);
129 DPCPU_DEFINE(sbintime_t, hardclocktime);
130
131 /*
132  * Timer broadcast IPI handler.
133  */
134 int
135 hardclockintr(void)
136 {
137         sbintime_t now;
138         struct pcpu_state *state;
139         int done;
140
141         if (doconfigtimer() || busy)
142                 return (FILTER_HANDLED);
143         state = DPCPU_PTR(timerstate);
144         now = state->now;
145         CTR2(KTR_SPARE2, "ipi:    now  %d.%08x",
146             (int)(now >> 32), (u_int)(now & 0xffffffff));
147         done = handleevents(now, 0);
148         return (done ? FILTER_HANDLED : FILTER_STRAY);
149 }
150
151 /*
152  * Handle all events for specified time on this CPU
153  */
154 static int
155 handleevents(sbintime_t now, int fake)
156 {
157         sbintime_t t, *hct;
158         struct trapframe *frame;
159         struct pcpu_state *state;
160         int usermode;
161         int done, runs;
162
163         CTR2(KTR_SPARE2, "handle:  now  %d.%08x",
164             (int)(now >> 32), (u_int)(now & 0xffffffff));
165         done = 0;
166         if (fake) {
167                 frame = NULL;
168                 usermode = 0;
169         } else {
170                 frame = curthread->td_intr_frame;
171                 usermode = TRAPF_USERMODE(frame);
172         }
173
174         state = DPCPU_PTR(timerstate);
175
176         runs = 0;
177         while (now >= state->nexthard) {
178                 state->nexthard += tick_sbt;
179                 runs++;
180         }
181         if (runs) {
182                 hct = DPCPU_PTR(hardclocktime);
183                 *hct = state->nexthard - tick_sbt;
184                 if (fake < 2) {
185                         hardclock(runs, usermode);
186                         done = 1;
187                 }
188         }
189         runs = 0;
190         while (now >= state->nextstat) {
191                 state->nextstat += statperiod;
192                 runs++;
193         }
194         if (runs && fake < 2) {
195                 statclock(runs, usermode);
196                 done = 1;
197         }
198         if (profiling) {
199                 runs = 0;
200                 while (now >= state->nextprof) {
201                         state->nextprof += profperiod;
202                         runs++;
203                 }
204                 if (runs && !fake) {
205                         profclock(runs, usermode, TRAPF_PC(frame));
206                         done = 1;
207                 }
208         } else
209                 state->nextprof = state->nextstat;
210         if (now >= state->nextcallopt || now >= state->nextcall) {
211                 state->nextcall = state->nextcallopt = SBT_MAX;
212                 callout_process(now);
213         }
214
215         ET_HW_LOCK(state);
216         t = getnextcpuevent(state, 0);
217         if (!busy) {
218                 state->idle = 0;
219                 state->nextevent = t;
220                 loadtimer(now, (fake == 2) &&
221                     (timer->et_flags & ET_FLAGS_PERCPU));
222         }
223         ET_HW_UNLOCK(state);
224         return (done);
225 }
226
227 /*
228  * Schedule binuptime of the next event on current CPU.
229  */
230 static sbintime_t
231 getnextcpuevent(struct pcpu_state *state, int idle)
232 {
233         sbintime_t event;
234         u_int hardfreq;
235
236         /* Handle hardclock() events, skipping some if CPU is idle. */
237         event = state->nexthard;
238         if (idle) {
239                 if (tc_min_ticktock_freq > 1
240 #ifdef SMP
241                     && curcpu == CPU_FIRST()
242 #endif
243                     )
244                         hardfreq = hz / tc_min_ticktock_freq;
245                 else
246                         hardfreq = hz;
247                 if (hardfreq > 1)
248                         event += tick_sbt * (hardfreq - 1);
249         }
250         /* Handle callout events. */
251         if (event > state->nextcall)
252                 event = state->nextcall;
253         if (!idle) { /* If CPU is active - handle other types of events. */
254                 if (event > state->nextstat)
255                         event = state->nextstat;
256                 if (profiling && event > state->nextprof)
257                         event = state->nextprof;
258         }
259         return (event);
260 }
261
262 /*
263  * Schedule binuptime of the next event on all CPUs.
264  */
265 static sbintime_t
266 getnextevent(struct pcpu_state *state)
267 {
268         sbintime_t event;
269 #ifdef SMP
270         int     cpu;
271 #endif
272 #ifdef KTR
273         int     c;
274
275         c = -1;
276 #endif
277         event = state->nextevent;
278 #ifdef SMP
279         if ((timer->et_flags & ET_FLAGS_PERCPU) == 0) {
280                 CPU_FOREACH(cpu) {
281                         state = DPCPU_ID_PTR(cpu, timerstate);
282                         if (event > state->nextevent) {
283                                 event = state->nextevent;
284 #ifdef KTR
285                                 c = cpu;
286 #endif
287                         }
288                 }
289         }
290 #endif
291         CTR3(KTR_SPARE2, "next:    next %d.%08x by %d",
292             (int)(event >> 32), (u_int)(event & 0xffffffff), c);
293         return (event);
294 }
295
296 /* Hardware timer callback function. */
297 static void
298 timercb(struct eventtimer *et, void *arg)
299 {
300         sbintime_t now;
301         sbintime_t *next;
302         struct pcpu_state *state;
303 #ifdef SMP
304         int cpu, bcast;
305 #endif
306
307         /* Do not touch anything if somebody reconfiguring timers. */
308         if (busy)
309                 return;
310         /* Update present and next tick times. */
311         state = DPCPU_PTR(timerstate);
312         if (et->et_flags & ET_FLAGS_PERCPU) {
313                 next = &state->nexttick;
314         } else
315                 next = &nexttick;
316         now = sbinuptime();
317         if (periodic)
318                 *next = now + timerperiod;
319         else
320                 *next = -1;     /* Next tick is not scheduled yet. */
321         state->now = now;
322         CTR2(KTR_SPARE2, "intr:    now  %d.%08x",
323             (int)(now >> 32), (u_int)(now & 0xffffffff));
324
325 #ifdef SMP
326 #ifdef EARLY_AP_STARTUP
327         MPASS(mp_ncpus == 1 || smp_started);
328 #endif
329         /* Prepare broadcasting to other CPUs for non-per-CPU timers. */
330         bcast = 0;
331 #ifdef EARLY_AP_STARTUP
332         if ((et->et_flags & ET_FLAGS_PERCPU) == 0) {
333 #else
334         if ((et->et_flags & ET_FLAGS_PERCPU) == 0 && smp_started) {
335 #endif
336                 CPU_FOREACH(cpu) {
337                         state = DPCPU_ID_PTR(cpu, timerstate);
338                         ET_HW_LOCK(state);
339                         state->now = now;
340                         if (now >= state->nextevent) {
341                                 state->nextevent += SBT_1S;
342                                 if (curcpu != cpu) {
343                                         state->ipi = 1;
344                                         bcast = 1;
345                                 }
346                         }
347                         ET_HW_UNLOCK(state);
348                 }
349         }
350 #endif
351
352         /* Handle events for this time on this CPU. */
353         handleevents(now, 0);
354
355 #ifdef SMP
356         /* Broadcast interrupt to other CPUs for non-per-CPU timers. */
357         if (bcast) {
358                 CPU_FOREACH(cpu) {
359                         if (curcpu == cpu)
360                                 continue;
361                         state = DPCPU_ID_PTR(cpu, timerstate);
362                         if (state->ipi) {
363                                 state->ipi = 0;
364                                 ipi_cpu(cpu, IPI_HARDCLOCK);
365                         }
366                 }
367         }
368 #endif
369 }
370
371 /*
372  * Load new value into hardware timer.
373  */
374 static void
375 loadtimer(sbintime_t now, int start)
376 {
377         struct pcpu_state *state;
378         sbintime_t new;
379         sbintime_t *next;
380         uint64_t tmp;
381         int eq;
382
383         state = DPCPU_PTR(timerstate);
384         if (timer->et_flags & ET_FLAGS_PERCPU)
385                 next = &state->nexttick;
386         else
387                 next = &nexttick;
388         if (periodic) {
389                 if (start) {
390                         /*
391                          * Try to start all periodic timers aligned
392                          * to period to make events synchronous.
393                          */
394                         tmp = now % timerperiod;
395                         new = timerperiod - tmp;
396                         if (new < tmp)          /* Left less then passed. */
397                                 new += timerperiod;
398                         CTR4(KTR_SPARE2, "load p:   now %d.%08x first in %d.%08x",
399                             (int)(now >> 32), (u_int)(now & 0xffffffff),
400                             (int)(new >> 32), (u_int)(new & 0xffffffff));
401                         *next = new + now;
402                         et_start(timer, new, timerperiod);
403                 }
404         } else {
405                 new = getnextevent(state);
406                 eq = (new == *next);
407                 CTR3(KTR_SPARE2, "load:    next %d.%08x eq %d",
408                     (int)(new >> 32), (u_int)(new & 0xffffffff), eq);
409                 if (!eq) {
410                         *next = new;
411                         et_start(timer, new - now, 0);
412                 }
413         }
414 }
415
416 /*
417  * Prepare event timer parameters after configuration changes.
418  */
419 static void
420 setuptimer(void)
421 {
422         int freq;
423
424         if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
425                 periodic = 0;
426         else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
427                 periodic = 1;
428         singlemul = MIN(MAX(singlemul, 1), 20);
429         freq = hz * singlemul;
430         while (freq < (profiling ? profhz : stathz))
431                 freq += hz;
432         freq = round_freq(timer, freq);
433         timerperiod = SBT_1S / freq;
434 }
435
436 /*
437  * Reconfigure specified per-CPU timer on other CPU. Called from IPI handler.
438  */
439 static int
440 doconfigtimer(void)
441 {
442         sbintime_t now;
443         struct pcpu_state *state;
444
445         state = DPCPU_PTR(timerstate);
446         switch (atomic_load_acq_int(&state->action)) {
447         case 1:
448                 now = sbinuptime();
449                 ET_HW_LOCK(state);
450                 loadtimer(now, 1);
451                 ET_HW_UNLOCK(state);
452                 state->handle = 0;
453                 atomic_store_rel_int(&state->action, 0);
454                 return (1);
455         case 2:
456                 ET_HW_LOCK(state);
457                 et_stop(timer);
458                 ET_HW_UNLOCK(state);
459                 state->handle = 0;
460                 atomic_store_rel_int(&state->action, 0);
461                 return (1);
462         }
463         if (atomic_readandclear_int(&state->handle) && !busy) {
464                 now = sbinuptime();
465                 handleevents(now, 0);
466                 return (1);
467         }
468         return (0);
469 }
470
471 /*
472  * Reconfigure specified timer.
473  * For per-CPU timers use IPI to make other CPUs to reconfigure.
474  */
475 static void
476 configtimer(int start)
477 {
478         sbintime_t now, next;
479         struct pcpu_state *state;
480         int cpu;
481
482         if (start) {
483                 setuptimer();
484                 now = sbinuptime();
485         } else
486                 now = 0;
487         critical_enter();
488         ET_HW_LOCK(DPCPU_PTR(timerstate));
489         if (start) {
490                 /* Initialize time machine parameters. */
491                 next = now + timerperiod;
492                 if (periodic)
493                         nexttick = next;
494                 else
495                         nexttick = -1;
496 #ifdef EARLY_AP_STARTUP
497                 MPASS(mp_ncpus == 1 || smp_started);
498 #endif
499                 CPU_FOREACH(cpu) {
500                         state = DPCPU_ID_PTR(cpu, timerstate);
501                         state->now = now;
502 #ifndef EARLY_AP_STARTUP
503                         if (!smp_started && cpu != CPU_FIRST())
504                                 state->nextevent = SBT_MAX;
505                         else
506 #endif
507                                 state->nextevent = next;
508                         if (periodic)
509                                 state->nexttick = next;
510                         else
511                                 state->nexttick = -1;
512                         state->nexthard = next;
513                         state->nextstat = next;
514                         state->nextprof = next;
515                         state->nextcall = next;
516                         state->nextcallopt = next;
517                         hardclock_sync(cpu);
518                 }
519                 busy = 0;
520                 /* Start global timer or per-CPU timer of this CPU. */
521                 loadtimer(now, 1);
522         } else {
523                 busy = 1;
524                 /* Stop global timer or per-CPU timer of this CPU. */
525                 et_stop(timer);
526         }
527         ET_HW_UNLOCK(DPCPU_PTR(timerstate));
528 #ifdef SMP
529 #ifdef EARLY_AP_STARTUP
530         /* If timer is global we are done. */
531         if ((timer->et_flags & ET_FLAGS_PERCPU) == 0) {
532 #else
533         /* If timer is global or there is no other CPUs yet - we are done. */
534         if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 || !smp_started) {
535 #endif
536                 critical_exit();
537                 return;
538         }
539         /* Set reconfigure flags for other CPUs. */
540         CPU_FOREACH(cpu) {
541                 state = DPCPU_ID_PTR(cpu, timerstate);
542                 atomic_store_rel_int(&state->action,
543                     (cpu == curcpu) ? 0 : ( start ? 1 : 2));
544         }
545         /* Broadcast reconfigure IPI. */
546         ipi_all_but_self(IPI_HARDCLOCK);
547         /* Wait for reconfiguration completed. */
548 restart:
549         cpu_spinwait();
550         CPU_FOREACH(cpu) {
551                 if (cpu == curcpu)
552                         continue;
553                 state = DPCPU_ID_PTR(cpu, timerstate);
554                 if (atomic_load_acq_int(&state->action))
555                         goto restart;
556         }
557 #endif
558         critical_exit();
559 }
560
561 /*
562  * Calculate nearest frequency supported by hardware timer.
563  */
564 static int
565 round_freq(struct eventtimer *et, int freq)
566 {
567         uint64_t div;
568
569         if (et->et_frequency != 0) {
570                 div = lmax((et->et_frequency + freq / 2) / freq, 1);
571                 if (et->et_flags & ET_FLAGS_POW2DIV)
572                         div = 1 << (flsl(div + div / 2) - 1);
573                 freq = (et->et_frequency + div / 2) / div;
574         }
575         if (et->et_min_period > SBT_1S)
576                 panic("Event timer \"%s\" doesn't support sub-second periods!",
577                     et->et_name);
578         else if (et->et_min_period != 0)
579                 freq = min(freq, SBT2FREQ(et->et_min_period));
580         if (et->et_max_period < SBT_1S && et->et_max_period != 0)
581                 freq = max(freq, SBT2FREQ(et->et_max_period));
582         return (freq);
583 }
584
585 /*
586  * Configure and start event timers (BSP part).
587  */
588 void
589 cpu_initclocks_bsp(void)
590 {
591         struct pcpu_state *state;
592         int base, div, cpu;
593
594         mtx_init(&et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
595         CPU_FOREACH(cpu) {
596                 state = DPCPU_ID_PTR(cpu, timerstate);
597                 mtx_init(&state->et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
598                 state->nextcall = SBT_MAX;
599                 state->nextcallopt = SBT_MAX;
600         }
601         periodic = want_periodic;
602         /* Grab requested timer or the best of present. */
603         if (timername[0])
604                 timer = et_find(timername, 0, 0);
605         if (timer == NULL && periodic) {
606                 timer = et_find(NULL,
607                     ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
608         }
609         if (timer == NULL) {
610                 timer = et_find(NULL,
611                     ET_FLAGS_ONESHOT, ET_FLAGS_ONESHOT);
612         }
613         if (timer == NULL && !periodic) {
614                 timer = et_find(NULL,
615                     ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
616         }
617         if (timer == NULL)
618                 panic("No usable event timer found!");
619         et_init(timer, timercb, NULL, NULL);
620
621         /* Adapt to timer capabilities. */
622         if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
623                 periodic = 0;
624         else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
625                 periodic = 1;
626         if (timer->et_flags & ET_FLAGS_C3STOP)
627                 cpu_disable_c3_sleep++;
628
629         /*
630          * We honor the requested 'hz' value.
631          * We want to run stathz in the neighborhood of 128hz.
632          * We would like profhz to run as often as possible.
633          */
634         if (singlemul <= 0 || singlemul > 20) {
635                 if (hz >= 1500 || (hz % 128) == 0)
636                         singlemul = 1;
637                 else if (hz >= 750)
638                         singlemul = 2;
639                 else
640                         singlemul = 4;
641         }
642         if (periodic) {
643                 base = round_freq(timer, hz * singlemul);
644                 singlemul = max((base + hz / 2) / hz, 1);
645                 hz = (base + singlemul / 2) / singlemul;
646                 if (base <= 128)
647                         stathz = base;
648                 else {
649                         div = base / 128;
650                         if (div >= singlemul && (div % singlemul) == 0)
651                                 div++;
652                         stathz = base / div;
653                 }
654                 profhz = stathz;
655                 while ((profhz + stathz) <= 128 * 64)
656                         profhz += stathz;
657                 profhz = round_freq(timer, profhz);
658         } else {
659                 hz = round_freq(timer, hz);
660                 stathz = round_freq(timer, 127);
661                 profhz = round_freq(timer, stathz * 64);
662         }
663         tick = 1000000 / hz;
664         tick_sbt = SBT_1S / hz;
665         tick_bt = sbttobt(tick_sbt);
666         statperiod = SBT_1S / stathz;
667         profperiod = SBT_1S / profhz;
668         ET_LOCK();
669         configtimer(1);
670         ET_UNLOCK();
671 }
672
673 /*
674  * Start per-CPU event timers on APs.
675  */
676 void
677 cpu_initclocks_ap(void)
678 {
679         struct pcpu_state *state;
680         struct thread *td;
681
682         state = DPCPU_PTR(timerstate);
683         ET_HW_LOCK(state);
684         state->now = sbinuptime();
685         hardclock_sync(curcpu);
686         spinlock_enter();
687         ET_HW_UNLOCK(state);
688         td = curthread;
689         td->td_intr_nesting_level++;
690         handleevents(state->now, 2);
691         td->td_intr_nesting_level--;
692         spinlock_exit();
693 }
694
695 void
696 suspendclock(void)
697 {
698         ET_LOCK();
699         configtimer(0);
700         ET_UNLOCK();
701 }
702
703 void
704 resumeclock(void)
705 {
706         ET_LOCK();
707         configtimer(1);
708         ET_UNLOCK();
709 }
710
711 /*
712  * Switch to profiling clock rates.
713  */
714 void
715 cpu_startprofclock(void)
716 {
717
718         ET_LOCK();
719         if (profiling == 0) {
720                 if (periodic) {
721                         configtimer(0);
722                         profiling = 1;
723                         configtimer(1);
724                 } else
725                         profiling = 1;
726         } else
727                 profiling++;
728         ET_UNLOCK();
729 }
730
731 /*
732  * Switch to regular clock rates.
733  */
734 void
735 cpu_stopprofclock(void)
736 {
737
738         ET_LOCK();
739         if (profiling == 1) {
740                 if (periodic) {
741                         configtimer(0);
742                         profiling = 0;
743                         configtimer(1);
744                 } else
745                 profiling = 0;
746         } else
747                 profiling--;
748         ET_UNLOCK();
749 }
750
751 /*
752  * Switch to idle mode (all ticks handled).
753  */
754 sbintime_t
755 cpu_idleclock(void)
756 {
757         sbintime_t now, t;
758         struct pcpu_state *state;
759
760         if (idletick || busy ||
761             (periodic && (timer->et_flags & ET_FLAGS_PERCPU))
762 #ifdef DEVICE_POLLING
763             || curcpu == CPU_FIRST()
764 #endif
765             )
766                 return (-1);
767         state = DPCPU_PTR(timerstate);
768         ET_HW_LOCK(state);
769         if (periodic)
770                 now = state->now;
771         else
772                 now = sbinuptime();
773         CTR2(KTR_SPARE2, "idle:    now  %d.%08x",
774             (int)(now >> 32), (u_int)(now & 0xffffffff));
775         t = getnextcpuevent(state, 1);
776         state->idle = 1;
777         state->nextevent = t;
778         if (!periodic)
779                 loadtimer(now, 0);
780         ET_HW_UNLOCK(state);
781         return (MAX(t - now, 0));
782 }
783
784 /*
785  * Switch to active mode (skip empty ticks).
786  */
787 void
788 cpu_activeclock(void)
789 {
790         sbintime_t now;
791         struct pcpu_state *state;
792         struct thread *td;
793
794         state = DPCPU_PTR(timerstate);
795         if (atomic_load_int(&state->idle) == 0 || busy)
796                 return;
797         spinlock_enter();
798         if (periodic)
799                 now = state->now;
800         else
801                 now = sbinuptime();
802         CTR2(KTR_SPARE2, "active:  now  %d.%08x",
803             (int)(now >> 32), (u_int)(now & 0xffffffff));
804         td = curthread;
805         td->td_intr_nesting_level++;
806         handleevents(now, 1);
807         td->td_intr_nesting_level--;
808         spinlock_exit();
809 }
810
811 /*
812  * Change the frequency of the given timer.  This changes et->et_frequency and
813  * if et is the active timer it reconfigures the timer on all CPUs.  This is
814  * intended to be a private interface for the use of et_change_frequency() only.
815  */
816 void
817 cpu_et_frequency(struct eventtimer *et, uint64_t newfreq)
818 {
819
820         ET_LOCK();
821         if (et == timer) {
822                 configtimer(0);
823                 et->et_frequency = newfreq;
824                 configtimer(1);
825         } else
826                 et->et_frequency = newfreq;
827         ET_UNLOCK();
828 }
829
830 void
831 cpu_new_callout(int cpu, sbintime_t bt, sbintime_t bt_opt)
832 {
833         struct pcpu_state *state;
834
835         /* Do not touch anything if somebody reconfiguring timers. */
836         if (busy)
837                 return;
838
839         CTR5(KTR_SPARE2, "new co:  on %d at %d.%08x - %d.%08x",
840             cpu, (int)(bt_opt >> 32), (u_int)(bt_opt & 0xffffffff),
841             (int)(bt >> 32), (u_int)(bt & 0xffffffff));
842
843         KASSERT(!CPU_ABSENT(cpu), ("Absent CPU %d", cpu));
844         state = DPCPU_ID_PTR(cpu, timerstate);
845         ET_HW_LOCK(state);
846
847         /*
848          * If there is callout time already set earlier -- do nothing.
849          * This check may appear redundant because we check already in
850          * callout_process() but this double check guarantees we're safe
851          * with respect to race conditions between interrupts execution
852          * and scheduling.
853          */
854         state->nextcallopt = bt_opt;
855         if (bt >= state->nextcall)
856                 goto done;
857         state->nextcall = bt;
858         /* If there is some other event set earlier -- do nothing. */
859         if (bt >= state->nextevent)
860                 goto done;
861         state->nextevent = bt;
862         /* If timer is periodic -- there is nothing to reprogram. */
863         if (periodic)
864                 goto done;
865         /* If timer is global or of the current CPU -- reprogram it. */
866         if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 || cpu == curcpu) {
867                 loadtimer(sbinuptime(), 0);
868 done:
869                 ET_HW_UNLOCK(state);
870                 return;
871         }
872         /* Otherwise make other CPU to reprogram it. */
873         state->handle = 1;
874         ET_HW_UNLOCK(state);
875 #ifdef SMP
876         ipi_cpu(cpu, IPI_HARDCLOCK);
877 #endif
878 }
879
880 /*
881  * Report or change the active event timers hardware.
882  */
883 static int
884 sysctl_kern_eventtimer_timer(SYSCTL_HANDLER_ARGS)
885 {
886         char buf[32];
887         struct eventtimer *et;
888         int error;
889
890         ET_LOCK();
891         et = timer;
892         snprintf(buf, sizeof(buf), "%s", et->et_name);
893         ET_UNLOCK();
894         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
895         ET_LOCK();
896         et = timer;
897         if (error != 0 || req->newptr == NULL ||
898             strcasecmp(buf, et->et_name) == 0) {
899                 ET_UNLOCK();
900                 return (error);
901         }
902         et = et_find(buf, 0, 0);
903         if (et == NULL) {
904                 ET_UNLOCK();
905                 return (ENOENT);
906         }
907         configtimer(0);
908         et_free(timer);
909         if (et->et_flags & ET_FLAGS_C3STOP)
910                 cpu_disable_c3_sleep++;
911         if (timer->et_flags & ET_FLAGS_C3STOP)
912                 cpu_disable_c3_sleep--;
913         periodic = want_periodic;
914         timer = et;
915         et_init(timer, timercb, NULL, NULL);
916         configtimer(1);
917         ET_UNLOCK();
918         return (error);
919 }
920 SYSCTL_PROC(_kern_eventtimer, OID_AUTO, timer,
921     CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
922     0, 0, sysctl_kern_eventtimer_timer, "A", "Chosen event timer");
923
924 /*
925  * Report or change the active event timer periodicity.
926  */
927 static int
928 sysctl_kern_eventtimer_periodic(SYSCTL_HANDLER_ARGS)
929 {
930         int error, val;
931
932         val = periodic;
933         error = sysctl_handle_int(oidp, &val, 0, req);
934         if (error != 0 || req->newptr == NULL)
935                 return (error);
936         ET_LOCK();
937         configtimer(0);
938         periodic = want_periodic = val;
939         configtimer(1);
940         ET_UNLOCK();
941         return (error);
942 }
943 SYSCTL_PROC(_kern_eventtimer, OID_AUTO, periodic,
944     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
945     0, 0, sysctl_kern_eventtimer_periodic, "I", "Enable event timer periodic mode");
946
947 #include "opt_ddb.h"
948
949 #ifdef DDB
950 #include <ddb/ddb.h>
951
952 DB_SHOW_COMMAND(clocksource, db_show_clocksource)
953 {
954         struct pcpu_state *st;
955         int c;
956
957         CPU_FOREACH(c) {
958                 st = DPCPU_ID_PTR(c, timerstate);
959                 db_printf(
960                     "CPU %2d: action %d handle %d  ipi %d idle %d\n"
961                     "        now %#jx nevent %#jx (%jd)\n"
962                     "        ntick %#jx (%jd) nhard %#jx (%jd)\n"
963                     "        nstat %#jx (%jd) nprof %#jx (%jd)\n"
964                     "        ncall %#jx (%jd) ncallopt %#jx (%jd)\n",
965                     c, st->action, st->handle, st->ipi, st->idle,
966                     (uintmax_t)st->now,
967                     (uintmax_t)st->nextevent,
968                     (uintmax_t)(st->nextevent - st->now) / tick_sbt,
969                     (uintmax_t)st->nexttick,
970                     (uintmax_t)(st->nexttick - st->now) / tick_sbt,
971                     (uintmax_t)st->nexthard,
972                     (uintmax_t)(st->nexthard - st->now) / tick_sbt,
973                     (uintmax_t)st->nextstat,
974                     (uintmax_t)(st->nextstat - st->now) / tick_sbt,
975                     (uintmax_t)st->nextprof,
976                     (uintmax_t)(st->nextprof - st->now) / tick_sbt,
977                     (uintmax_t)st->nextcall,
978                     (uintmax_t)(st->nextcall - st->now) / tick_sbt,
979                     (uintmax_t)st->nextcallopt,
980                     (uintmax_t)(st->nextcallopt - st->now) / tick_sbt);
981         }
982 }
983
984 #endif