]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_clocksource.c
Merge bmake-20230414
[FreeBSD/FreeBSD.git] / sys / kern / kern_clocksource.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2010-2013 Alexander Motin <mav@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer,
12  *    without modification, immediately at the beginning of the file.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 /*
33  * Common routines to manage event timers hardware.
34  */
35
36 #include "opt_device_polling.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/bus.h>
41 #include <sys/limits.h>
42 #include <sys/lock.h>
43 #include <sys/kdb.h>
44 #include <sys/ktr.h>
45 #include <sys/mutex.h>
46 #include <sys/proc.h>
47 #include <sys/kernel.h>
48 #include <sys/sched.h>
49 #include <sys/smp.h>
50 #include <sys/sysctl.h>
51 #include <sys/timeet.h>
52 #include <sys/timetc.h>
53
54 #include <machine/atomic.h>
55 #include <machine/clock.h>
56 #include <machine/cpu.h>
57 #include <machine/smp.h>
58
59 int                     cpu_disable_c2_sleep = 0; /* Timer dies in C2. */
60 int                     cpu_disable_c3_sleep = 0; /* Timer dies in C3. */
61
62 static void             setuptimer(void);
63 static void             loadtimer(sbintime_t now, int first);
64 static int              doconfigtimer(void);
65 static void             configtimer(int start);
66 static int              round_freq(struct eventtimer *et, int freq);
67
68 struct pcpu_state;
69 static sbintime_t       getnextcpuevent(struct pcpu_state *state, int idle);
70 static sbintime_t       getnextevent(struct pcpu_state *state);
71 static int              handleevents(sbintime_t now, int fake);
72
73 static struct mtx       et_hw_mtx;
74
75 #define ET_HW_LOCK(state)                                               \
76         {                                                               \
77                 if (timer->et_flags & ET_FLAGS_PERCPU)                  \
78                         mtx_lock_spin(&(state)->et_hw_mtx);             \
79                 else                                                    \
80                         mtx_lock_spin(&et_hw_mtx);                      \
81         }
82
83 #define ET_HW_UNLOCK(state)                                             \
84         {                                                               \
85                 if (timer->et_flags & ET_FLAGS_PERCPU)                  \
86                         mtx_unlock_spin(&(state)->et_hw_mtx);           \
87                 else                                                    \
88                         mtx_unlock_spin(&et_hw_mtx);                    \
89         }
90
91 static struct eventtimer *timer = NULL;
92 static sbintime_t       timerperiod;    /* Timer period for periodic mode. */
93 static sbintime_t       statperiod;     /* statclock() events period. */
94 static sbintime_t       profperiod;     /* profclock() events period. */
95 static sbintime_t       nexttick;       /* Next global timer tick time. */
96 static u_int            busy = 1;       /* Reconfiguration is in progress. */
97 static int              profiling;      /* Profiling events enabled. */
98
99 static char             timername[32];  /* Wanted timer. */
100 TUNABLE_STR("kern.eventtimer.timer", timername, sizeof(timername));
101
102 static int              singlemul;      /* Multiplier for periodic mode. */
103 SYSCTL_INT(_kern_eventtimer, OID_AUTO, singlemul, CTLFLAG_RWTUN, &singlemul,
104     0, "Multiplier for periodic mode");
105
106 static u_int            idletick;       /* Run periodic events when idle. */
107 SYSCTL_UINT(_kern_eventtimer, OID_AUTO, idletick, CTLFLAG_RWTUN, &idletick,
108     0, "Run periodic events when idle");
109
110 static int              periodic;       /* Periodic or one-shot mode. */
111 static int              want_periodic;  /* What mode to prefer. */
112 TUNABLE_INT("kern.eventtimer.periodic", &want_periodic);
113
114 struct pcpu_state {
115         struct mtx      et_hw_mtx;      /* Per-CPU timer mutex. */
116         u_int           action;         /* Reconfiguration requests. */
117         u_int           handle;         /* Immediate handle resuests. */
118         sbintime_t      now;            /* Last tick time. */
119         sbintime_t      nextevent;      /* Next scheduled event on this CPU. */
120         sbintime_t      nexttick;       /* Next timer tick time. */
121         sbintime_t      nexthard;       /* Next hardclock() event. */
122         sbintime_t      nextstat;       /* Next statclock() event. */
123         sbintime_t      nextprof;       /* Next profclock() event. */
124         sbintime_t      nextcall;       /* Next callout event. */
125         sbintime_t      nextcallopt;    /* Next optional callout event. */
126         int             ipi;            /* This CPU needs IPI. */
127         int             idle;           /* This CPU is in idle mode. */
128 };
129
130 DPCPU_DEFINE_STATIC(struct pcpu_state, timerstate);
131 DPCPU_DEFINE(sbintime_t, hardclocktime);
132
133 /*
134  * Timer broadcast IPI handler.
135  */
136 int
137 hardclockintr(void)
138 {
139         sbintime_t now;
140         struct pcpu_state *state;
141         int done;
142
143         if (doconfigtimer() || busy)
144                 return (FILTER_HANDLED);
145         state = DPCPU_PTR(timerstate);
146         now = state->now;
147         CTR2(KTR_SPARE2, "ipi:    now  %d.%08x",
148             (int)(now >> 32), (u_int)(now & 0xffffffff));
149         done = handleevents(now, 0);
150         return (done ? FILTER_HANDLED : FILTER_STRAY);
151 }
152
153 /*
154  * Handle all events for specified time on this CPU
155  */
156 static int
157 handleevents(sbintime_t now, int fake)
158 {
159         sbintime_t t, *hct;
160         struct trapframe *frame;
161         struct pcpu_state *state;
162         int usermode;
163         int done, runs;
164
165         CTR2(KTR_SPARE2, "handle:  now  %d.%08x",
166             (int)(now >> 32), (u_int)(now & 0xffffffff));
167         done = 0;
168         if (fake) {
169                 frame = NULL;
170                 usermode = 0;
171         } else {
172                 frame = curthread->td_intr_frame;
173                 usermode = TRAPF_USERMODE(frame);
174         }
175
176         state = DPCPU_PTR(timerstate);
177
178         runs = 0;
179         while (now >= state->nexthard) {
180                 state->nexthard += tick_sbt;
181                 runs++;
182         }
183         if (runs) {
184                 hct = DPCPU_PTR(hardclocktime);
185                 *hct = state->nexthard - tick_sbt;
186                 if (fake < 2) {
187                         hardclock(runs, usermode);
188                         done = 1;
189                 }
190         }
191         runs = 0;
192         while (now >= state->nextstat) {
193                 state->nextstat += statperiod;
194                 runs++;
195         }
196         if (runs && fake < 2) {
197                 statclock(runs, usermode);
198                 done = 1;
199         }
200         if (profiling) {
201                 runs = 0;
202                 while (now >= state->nextprof) {
203                         state->nextprof += profperiod;
204                         runs++;
205                 }
206                 if (runs && !fake) {
207                         profclock(runs, usermode, TRAPF_PC(frame));
208                         done = 1;
209                 }
210         } else
211                 state->nextprof = state->nextstat;
212         if (now >= state->nextcallopt || now >= state->nextcall) {
213                 state->nextcall = state->nextcallopt = SBT_MAX;
214                 callout_process(now);
215         }
216
217         ET_HW_LOCK(state);
218         t = getnextcpuevent(state, 0);
219         if (!busy) {
220                 state->idle = 0;
221                 state->nextevent = t;
222                 loadtimer(now, (fake == 2) &&
223                     (timer->et_flags & ET_FLAGS_PERCPU));
224         }
225         ET_HW_UNLOCK(state);
226         return (done);
227 }
228
229 /*
230  * Schedule binuptime of the next event on current CPU.
231  */
232 static sbintime_t
233 getnextcpuevent(struct pcpu_state *state, int idle)
234 {
235         sbintime_t event;
236         u_int hardfreq;
237
238         /* Handle hardclock() events, skipping some if CPU is idle. */
239         event = state->nexthard;
240         if (idle) {
241                 if (tc_min_ticktock_freq > 1
242 #ifdef SMP
243                     && curcpu == CPU_FIRST()
244 #endif
245                     )
246                         hardfreq = hz / tc_min_ticktock_freq;
247                 else
248                         hardfreq = hz;
249                 if (hardfreq > 1)
250                         event += tick_sbt * (hardfreq - 1);
251         }
252         /* Handle callout events. */
253         if (event > state->nextcall)
254                 event = state->nextcall;
255         if (!idle) { /* If CPU is active - handle other types of events. */
256                 if (event > state->nextstat)
257                         event = state->nextstat;
258                 if (profiling && event > state->nextprof)
259                         event = state->nextprof;
260         }
261         return (event);
262 }
263
264 /*
265  * Schedule binuptime of the next event on all CPUs.
266  */
267 static sbintime_t
268 getnextevent(struct pcpu_state *state)
269 {
270         sbintime_t event;
271 #ifdef SMP
272         int     cpu;
273 #endif
274 #ifdef KTR
275         int     c;
276
277         c = -1;
278 #endif
279         event = state->nextevent;
280 #ifdef SMP
281         if ((timer->et_flags & ET_FLAGS_PERCPU) == 0) {
282                 CPU_FOREACH(cpu) {
283                         state = DPCPU_ID_PTR(cpu, timerstate);
284                         if (event > state->nextevent) {
285                                 event = state->nextevent;
286 #ifdef KTR
287                                 c = cpu;
288 #endif
289                         }
290                 }
291         }
292 #endif
293         CTR3(KTR_SPARE2, "next:    next %d.%08x by %d",
294             (int)(event >> 32), (u_int)(event & 0xffffffff), c);
295         return (event);
296 }
297
298 /* Hardware timer callback function. */
299 static void
300 timercb(struct eventtimer *et, void *arg)
301 {
302         sbintime_t now;
303         sbintime_t *next;
304         struct pcpu_state *state;
305 #ifdef SMP
306         int cpu, bcast;
307 #endif
308
309         /* Do not touch anything if somebody reconfiguring timers. */
310         if (busy)
311                 return;
312         /* Update present and next tick times. */
313         state = DPCPU_PTR(timerstate);
314         if (et->et_flags & ET_FLAGS_PERCPU) {
315                 next = &state->nexttick;
316         } else
317                 next = &nexttick;
318         now = sbinuptime();
319         if (periodic)
320                 *next = now + timerperiod;
321         else
322                 *next = -1;     /* Next tick is not scheduled yet. */
323         state->now = now;
324         CTR2(KTR_SPARE2, "intr:    now  %d.%08x",
325             (int)(now >> 32), (u_int)(now & 0xffffffff));
326
327 #ifdef SMP
328 #ifdef EARLY_AP_STARTUP
329         MPASS(mp_ncpus == 1 || smp_started);
330 #endif
331         /* Prepare broadcasting to other CPUs for non-per-CPU timers. */
332         bcast = 0;
333 #ifdef EARLY_AP_STARTUP
334         if ((et->et_flags & ET_FLAGS_PERCPU) == 0) {
335 #else
336         if ((et->et_flags & ET_FLAGS_PERCPU) == 0 && smp_started) {
337 #endif
338                 CPU_FOREACH(cpu) {
339                         state = DPCPU_ID_PTR(cpu, timerstate);
340                         ET_HW_LOCK(state);
341                         state->now = now;
342                         if (now >= state->nextevent) {
343                                 state->nextevent += SBT_1S;
344                                 if (curcpu != cpu) {
345                                         state->ipi = 1;
346                                         bcast = 1;
347                                 }
348                         }
349                         ET_HW_UNLOCK(state);
350                 }
351         }
352 #endif
353
354         /* Handle events for this time on this CPU. */
355         handleevents(now, 0);
356
357 #ifdef SMP
358         /* Broadcast interrupt to other CPUs for non-per-CPU timers. */
359         if (bcast) {
360                 CPU_FOREACH(cpu) {
361                         if (curcpu == cpu)
362                                 continue;
363                         state = DPCPU_ID_PTR(cpu, timerstate);
364                         if (state->ipi) {
365                                 state->ipi = 0;
366                                 ipi_cpu(cpu, IPI_HARDCLOCK);
367                         }
368                 }
369         }
370 #endif
371 }
372
373 /*
374  * Load new value into hardware timer.
375  */
376 static void
377 loadtimer(sbintime_t now, int start)
378 {
379         struct pcpu_state *state;
380         sbintime_t new;
381         sbintime_t *next;
382         uint64_t tmp;
383         int eq;
384
385         state = DPCPU_PTR(timerstate);
386         if (timer->et_flags & ET_FLAGS_PERCPU)
387                 next = &state->nexttick;
388         else
389                 next = &nexttick;
390         if (periodic) {
391                 if (start) {
392                         /*
393                          * Try to start all periodic timers aligned
394                          * to period to make events synchronous.
395                          */
396                         tmp = now % timerperiod;
397                         new = timerperiod - tmp;
398                         if (new < tmp)          /* Left less then passed. */
399                                 new += timerperiod;
400                         CTR4(KTR_SPARE2, "load p:   now %d.%08x first in %d.%08x",
401                             (int)(now >> 32), (u_int)(now & 0xffffffff),
402                             (int)(new >> 32), (u_int)(new & 0xffffffff));
403                         *next = new + now;
404                         et_start(timer, new, timerperiod);
405                 }
406         } else {
407                 new = getnextevent(state);
408                 eq = (new == *next);
409                 CTR3(KTR_SPARE2, "load:    next %d.%08x eq %d",
410                     (int)(new >> 32), (u_int)(new & 0xffffffff), eq);
411                 if (!eq) {
412                         *next = new;
413                         et_start(timer, new - now, 0);
414                 }
415         }
416 }
417
418 /*
419  * Prepare event timer parameters after configuration changes.
420  */
421 static void
422 setuptimer(void)
423 {
424         int freq;
425
426         if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
427                 periodic = 0;
428         else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
429                 periodic = 1;
430         singlemul = MIN(MAX(singlemul, 1), 20);
431         freq = hz * singlemul;
432         while (freq < (profiling ? profhz : stathz))
433                 freq += hz;
434         freq = round_freq(timer, freq);
435         timerperiod = SBT_1S / freq;
436 }
437
438 /*
439  * Reconfigure specified per-CPU timer on other CPU. Called from IPI handler.
440  */
441 static int
442 doconfigtimer(void)
443 {
444         sbintime_t now;
445         struct pcpu_state *state;
446
447         state = DPCPU_PTR(timerstate);
448         switch (atomic_load_acq_int(&state->action)) {
449         case 1:
450                 now = sbinuptime();
451                 ET_HW_LOCK(state);
452                 loadtimer(now, 1);
453                 ET_HW_UNLOCK(state);
454                 state->handle = 0;
455                 atomic_store_rel_int(&state->action, 0);
456                 return (1);
457         case 2:
458                 ET_HW_LOCK(state);
459                 et_stop(timer);
460                 ET_HW_UNLOCK(state);
461                 state->handle = 0;
462                 atomic_store_rel_int(&state->action, 0);
463                 return (1);
464         }
465         if (atomic_readandclear_int(&state->handle) && !busy) {
466                 now = sbinuptime();
467                 handleevents(now, 0);
468                 return (1);
469         }
470         return (0);
471 }
472
473 /*
474  * Reconfigure specified timer.
475  * For per-CPU timers use IPI to make other CPUs to reconfigure.
476  */
477 static void
478 configtimer(int start)
479 {
480         sbintime_t now, next;
481         struct pcpu_state *state;
482         int cpu;
483
484         if (start) {
485                 setuptimer();
486                 now = sbinuptime();
487         } else
488                 now = 0;
489         critical_enter();
490         ET_HW_LOCK(DPCPU_PTR(timerstate));
491         if (start) {
492                 /* Initialize time machine parameters. */
493                 next = now + timerperiod;
494                 if (periodic)
495                         nexttick = next;
496                 else
497                         nexttick = -1;
498 #ifdef EARLY_AP_STARTUP
499                 MPASS(mp_ncpus == 1 || smp_started);
500 #endif
501                 CPU_FOREACH(cpu) {
502                         state = DPCPU_ID_PTR(cpu, timerstate);
503                         state->now = now;
504 #ifndef EARLY_AP_STARTUP
505                         if (!smp_started && cpu != CPU_FIRST())
506                                 state->nextevent = SBT_MAX;
507                         else
508 #endif
509                                 state->nextevent = next;
510                         if (periodic)
511                                 state->nexttick = next;
512                         else
513                                 state->nexttick = -1;
514                         state->nexthard = next;
515                         state->nextstat = next;
516                         state->nextprof = next;
517                         state->nextcall = next;
518                         state->nextcallopt = next;
519                         hardclock_sync(cpu);
520                 }
521                 busy = 0;
522                 /* Start global timer or per-CPU timer of this CPU. */
523                 loadtimer(now, 1);
524         } else {
525                 busy = 1;
526                 /* Stop global timer or per-CPU timer of this CPU. */
527                 et_stop(timer);
528         }
529         ET_HW_UNLOCK(DPCPU_PTR(timerstate));
530 #ifdef SMP
531 #ifdef EARLY_AP_STARTUP
532         /* If timer is global we are done. */
533         if ((timer->et_flags & ET_FLAGS_PERCPU) == 0) {
534 #else
535         /* If timer is global or there is no other CPUs yet - we are done. */
536         if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 || !smp_started) {
537 #endif
538                 critical_exit();
539                 return;
540         }
541         /* Set reconfigure flags for other CPUs. */
542         CPU_FOREACH(cpu) {
543                 state = DPCPU_ID_PTR(cpu, timerstate);
544                 atomic_store_rel_int(&state->action,
545                     (cpu == curcpu) ? 0 : ( start ? 1 : 2));
546         }
547         /* Broadcast reconfigure IPI. */
548         ipi_all_but_self(IPI_HARDCLOCK);
549         /* Wait for reconfiguration completed. */
550 restart:
551         cpu_spinwait();
552         CPU_FOREACH(cpu) {
553                 if (cpu == curcpu)
554                         continue;
555                 state = DPCPU_ID_PTR(cpu, timerstate);
556                 if (atomic_load_acq_int(&state->action))
557                         goto restart;
558         }
559 #endif
560         critical_exit();
561 }
562
563 /*
564  * Calculate nearest frequency supported by hardware timer.
565  */
566 static int
567 round_freq(struct eventtimer *et, int freq)
568 {
569         uint64_t div;
570
571         if (et->et_frequency != 0) {
572                 div = lmax((et->et_frequency + freq / 2) / freq, 1);
573                 if (et->et_flags & ET_FLAGS_POW2DIV)
574                         div = 1 << (flsl(div + div / 2) - 1);
575                 freq = (et->et_frequency + div / 2) / div;
576         }
577         if (et->et_min_period > SBT_1S)
578                 panic("Event timer \"%s\" doesn't support sub-second periods!",
579                     et->et_name);
580         else if (et->et_min_period != 0)
581                 freq = min(freq, SBT2FREQ(et->et_min_period));
582         if (et->et_max_period < SBT_1S && et->et_max_period != 0)
583                 freq = max(freq, SBT2FREQ(et->et_max_period));
584         return (freq);
585 }
586
587 /*
588  * Configure and start event timers (BSP part).
589  */
590 void
591 cpu_initclocks_bsp(void)
592 {
593         struct pcpu_state *state;
594         int base, div, cpu;
595
596         mtx_init(&et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
597         CPU_FOREACH(cpu) {
598                 state = DPCPU_ID_PTR(cpu, timerstate);
599                 mtx_init(&state->et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
600                 state->nextcall = SBT_MAX;
601                 state->nextcallopt = SBT_MAX;
602         }
603         periodic = want_periodic;
604         /* Grab requested timer or the best of present. */
605         if (timername[0])
606                 timer = et_find(timername, 0, 0);
607         if (timer == NULL && periodic) {
608                 timer = et_find(NULL,
609                     ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
610         }
611         if (timer == NULL) {
612                 timer = et_find(NULL,
613                     ET_FLAGS_ONESHOT, ET_FLAGS_ONESHOT);
614         }
615         if (timer == NULL && !periodic) {
616                 timer = et_find(NULL,
617                     ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
618         }
619         if (timer == NULL)
620                 panic("No usable event timer found!");
621         et_init(timer, timercb, NULL, NULL);
622
623         /* Adapt to timer capabilities. */
624         if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
625                 periodic = 0;
626         else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
627                 periodic = 1;
628         if (timer->et_flags & ET_FLAGS_C3STOP)
629                 cpu_disable_c3_sleep++;
630
631         /*
632          * We honor the requested 'hz' value.
633          * We want to run stathz in the neighborhood of 128hz.
634          * We would like profhz to run as often as possible.
635          */
636         if (singlemul <= 0 || singlemul > 20) {
637                 if (hz >= 1500 || (hz % 128) == 0)
638                         singlemul = 1;
639                 else if (hz >= 750)
640                         singlemul = 2;
641                 else
642                         singlemul = 4;
643         }
644         if (periodic) {
645                 base = round_freq(timer, hz * singlemul);
646                 singlemul = max((base + hz / 2) / hz, 1);
647                 hz = (base + singlemul / 2) / singlemul;
648                 if (base <= 128)
649                         stathz = base;
650                 else {
651                         div = base / 128;
652                         if (div >= singlemul && (div % singlemul) == 0)
653                                 div++;
654                         stathz = base / div;
655                 }
656                 profhz = stathz;
657                 while ((profhz + stathz) <= 128 * 64)
658                         profhz += stathz;
659                 profhz = round_freq(timer, profhz);
660         } else {
661                 hz = round_freq(timer, hz);
662                 stathz = round_freq(timer, 127);
663                 profhz = round_freq(timer, stathz * 64);
664         }
665         tick = 1000000 / hz;
666         tick_sbt = SBT_1S / hz;
667         tick_bt = sbttobt(tick_sbt);
668         statperiod = SBT_1S / stathz;
669         profperiod = SBT_1S / profhz;
670         ET_LOCK();
671         configtimer(1);
672         ET_UNLOCK();
673 }
674
675 /*
676  * Start per-CPU event timers on APs.
677  */
678 void
679 cpu_initclocks_ap(void)
680 {
681         struct pcpu_state *state;
682         struct thread *td;
683
684         state = DPCPU_PTR(timerstate);
685         ET_HW_LOCK(state);
686         state->now = sbinuptime();
687         hardclock_sync(curcpu);
688         spinlock_enter();
689         ET_HW_UNLOCK(state);
690         td = curthread;
691         td->td_intr_nesting_level++;
692         handleevents(state->now, 2);
693         td->td_intr_nesting_level--;
694         spinlock_exit();
695 }
696
697 void
698 suspendclock(void)
699 {
700         ET_LOCK();
701         configtimer(0);
702         ET_UNLOCK();
703 }
704
705 void
706 resumeclock(void)
707 {
708         ET_LOCK();
709         configtimer(1);
710         ET_UNLOCK();
711 }
712
713 /*
714  * Switch to profiling clock rates.
715  */
716 void
717 cpu_startprofclock(void)
718 {
719
720         ET_LOCK();
721         if (profiling == 0) {
722                 if (periodic) {
723                         configtimer(0);
724                         profiling = 1;
725                         configtimer(1);
726                 } else
727                         profiling = 1;
728         } else
729                 profiling++;
730         ET_UNLOCK();
731 }
732
733 /*
734  * Switch to regular clock rates.
735  */
736 void
737 cpu_stopprofclock(void)
738 {
739
740         ET_LOCK();
741         if (profiling == 1) {
742                 if (periodic) {
743                         configtimer(0);
744                         profiling = 0;
745                         configtimer(1);
746                 } else
747                 profiling = 0;
748         } else
749                 profiling--;
750         ET_UNLOCK();
751 }
752
753 /*
754  * Switch to idle mode (all ticks handled).
755  */
756 sbintime_t
757 cpu_idleclock(void)
758 {
759         sbintime_t now, t;
760         struct pcpu_state *state;
761
762         if (idletick || busy ||
763             (periodic && (timer->et_flags & ET_FLAGS_PERCPU))
764 #ifdef DEVICE_POLLING
765             || curcpu == CPU_FIRST()
766 #endif
767             )
768                 return (-1);
769         state = DPCPU_PTR(timerstate);
770         ET_HW_LOCK(state);
771         if (periodic)
772                 now = state->now;
773         else
774                 now = sbinuptime();
775         CTR2(KTR_SPARE2, "idle:    now  %d.%08x",
776             (int)(now >> 32), (u_int)(now & 0xffffffff));
777         t = getnextcpuevent(state, 1);
778         state->idle = 1;
779         state->nextevent = t;
780         if (!periodic)
781                 loadtimer(now, 0);
782         ET_HW_UNLOCK(state);
783         return (MAX(t - now, 0));
784 }
785
786 /*
787  * Switch to active mode (skip empty ticks).
788  */
789 void
790 cpu_activeclock(void)
791 {
792         sbintime_t now;
793         struct pcpu_state *state;
794         struct thread *td;
795
796         state = DPCPU_PTR(timerstate);
797         if (atomic_load_int(&state->idle) == 0 || busy)
798                 return;
799         spinlock_enter();
800         if (periodic)
801                 now = state->now;
802         else
803                 now = sbinuptime();
804         CTR2(KTR_SPARE2, "active:  now  %d.%08x",
805             (int)(now >> 32), (u_int)(now & 0xffffffff));
806         td = curthread;
807         td->td_intr_nesting_level++;
808         handleevents(now, 1);
809         td->td_intr_nesting_level--;
810         spinlock_exit();
811 }
812
813 /*
814  * Change the frequency of the given timer.  This changes et->et_frequency and
815  * if et is the active timer it reconfigures the timer on all CPUs.  This is
816  * intended to be a private interface for the use of et_change_frequency() only.
817  */
818 void
819 cpu_et_frequency(struct eventtimer *et, uint64_t newfreq)
820 {
821
822         ET_LOCK();
823         if (et == timer) {
824                 configtimer(0);
825                 et->et_frequency = newfreq;
826                 configtimer(1);
827         } else
828                 et->et_frequency = newfreq;
829         ET_UNLOCK();
830 }
831
832 void
833 cpu_new_callout(int cpu, sbintime_t bt, sbintime_t bt_opt)
834 {
835         struct pcpu_state *state;
836
837         /* Do not touch anything if somebody reconfiguring timers. */
838         if (busy)
839                 return;
840
841         CTR5(KTR_SPARE2, "new co:  on %d at %d.%08x - %d.%08x",
842             cpu, (int)(bt_opt >> 32), (u_int)(bt_opt & 0xffffffff),
843             (int)(bt >> 32), (u_int)(bt & 0xffffffff));
844
845         KASSERT(!CPU_ABSENT(cpu), ("Absent CPU %d", cpu));
846         state = DPCPU_ID_PTR(cpu, timerstate);
847         ET_HW_LOCK(state);
848
849         /*
850          * If there is callout time already set earlier -- do nothing.
851          * This check may appear redundant because we check already in
852          * callout_process() but this double check guarantees we're safe
853          * with respect to race conditions between interrupts execution
854          * and scheduling.
855          */
856         state->nextcallopt = bt_opt;
857         if (bt >= state->nextcall)
858                 goto done;
859         state->nextcall = bt;
860         /* If there is some other event set earlier -- do nothing. */
861         if (bt >= state->nextevent)
862                 goto done;
863         state->nextevent = bt;
864         /* If timer is periodic -- there is nothing to reprogram. */
865         if (periodic)
866                 goto done;
867         /* If timer is global or of the current CPU -- reprogram it. */
868         if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 || cpu == curcpu) {
869                 loadtimer(sbinuptime(), 0);
870 done:
871                 ET_HW_UNLOCK(state);
872                 return;
873         }
874         /* Otherwise make other CPU to reprogram it. */
875         state->handle = 1;
876         ET_HW_UNLOCK(state);
877 #ifdef SMP
878         ipi_cpu(cpu, IPI_HARDCLOCK);
879 #endif
880 }
881
882 /*
883  * Report or change the active event timers hardware.
884  */
885 static int
886 sysctl_kern_eventtimer_timer(SYSCTL_HANDLER_ARGS)
887 {
888         char buf[32];
889         struct eventtimer *et;
890         int error;
891
892         ET_LOCK();
893         et = timer;
894         snprintf(buf, sizeof(buf), "%s", et->et_name);
895         ET_UNLOCK();
896         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
897         ET_LOCK();
898         et = timer;
899         if (error != 0 || req->newptr == NULL ||
900             strcasecmp(buf, et->et_name) == 0) {
901                 ET_UNLOCK();
902                 return (error);
903         }
904         et = et_find(buf, 0, 0);
905         if (et == NULL) {
906                 ET_UNLOCK();
907                 return (ENOENT);
908         }
909         configtimer(0);
910         et_free(timer);
911         if (et->et_flags & ET_FLAGS_C3STOP)
912                 cpu_disable_c3_sleep++;
913         if (timer->et_flags & ET_FLAGS_C3STOP)
914                 cpu_disable_c3_sleep--;
915         periodic = want_periodic;
916         timer = et;
917         et_init(timer, timercb, NULL, NULL);
918         configtimer(1);
919         ET_UNLOCK();
920         return (error);
921 }
922 SYSCTL_PROC(_kern_eventtimer, OID_AUTO, timer,
923     CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
924     0, 0, sysctl_kern_eventtimer_timer, "A", "Chosen event timer");
925
926 /*
927  * Report or change the active event timer periodicity.
928  */
929 static int
930 sysctl_kern_eventtimer_periodic(SYSCTL_HANDLER_ARGS)
931 {
932         int error, val;
933
934         val = periodic;
935         error = sysctl_handle_int(oidp, &val, 0, req);
936         if (error != 0 || req->newptr == NULL)
937                 return (error);
938         ET_LOCK();
939         configtimer(0);
940         periodic = want_periodic = val;
941         configtimer(1);
942         ET_UNLOCK();
943         return (error);
944 }
945 SYSCTL_PROC(_kern_eventtimer, OID_AUTO, periodic,
946     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
947     0, 0, sysctl_kern_eventtimer_periodic, "I", "Enable event timer periodic mode");
948
949 #include "opt_ddb.h"
950
951 #ifdef DDB
952 #include <ddb/ddb.h>
953
954 DB_SHOW_COMMAND(clocksource, db_show_clocksource)
955 {
956         struct pcpu_state *st;
957         int c;
958
959         CPU_FOREACH(c) {
960                 st = DPCPU_ID_PTR(c, timerstate);
961                 db_printf(
962                     "CPU %2d: action %d handle %d  ipi %d idle %d\n"
963                     "        now %#jx nevent %#jx (%jd)\n"
964                     "        ntick %#jx (%jd) nhard %#jx (%jd)\n"
965                     "        nstat %#jx (%jd) nprof %#jx (%jd)\n"
966                     "        ncall %#jx (%jd) ncallopt %#jx (%jd)\n",
967                     c, st->action, st->handle, st->ipi, st->idle,
968                     (uintmax_t)st->now,
969                     (uintmax_t)st->nextevent,
970                     (uintmax_t)(st->nextevent - st->now) / tick_sbt,
971                     (uintmax_t)st->nexttick,
972                     (uintmax_t)(st->nexttick - st->now) / tick_sbt,
973                     (uintmax_t)st->nexthard,
974                     (uintmax_t)(st->nexthard - st->now) / tick_sbt,
975                     (uintmax_t)st->nextstat,
976                     (uintmax_t)(st->nextstat - st->now) / tick_sbt,
977                     (uintmax_t)st->nextprof,
978                     (uintmax_t)(st->nextprof - st->now) / tick_sbt,
979                     (uintmax_t)st->nextcall,
980                     (uintmax_t)(st->nextcall - st->now) / tick_sbt,
981                     (uintmax_t)st->nextcallopt,
982                     (uintmax_t)(st->nextcallopt - st->now) / tick_sbt);
983         }
984 }
985
986 #endif