]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_clocksource.c
Initialize td_sel in the thread_init(). Struct thread is not zeroed
[FreeBSD/FreeBSD.git] / sys / kern / kern_clocksource.c
1 /*-
2  * Copyright (c) 2010-2013 Alexander Motin <mav@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification, immediately at the beginning of the file.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 /*
31  * Common routines to manage event timers hardware.
32  */
33
34 #include "opt_device_polling.h"
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/bus.h>
39 #include <sys/limits.h>
40 #include <sys/lock.h>
41 #include <sys/kdb.h>
42 #include <sys/ktr.h>
43 #include <sys/mutex.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/sched.h>
47 #include <sys/smp.h>
48 #include <sys/sysctl.h>
49 #include <sys/timeet.h>
50 #include <sys/timetc.h>
51
52 #include <machine/atomic.h>
53 #include <machine/clock.h>
54 #include <machine/cpu.h>
55 #include <machine/smp.h>
56
57 int                     cpu_deepest_sleep = 0;  /* Deepest Cx state available. */
58 int                     cpu_disable_c2_sleep = 0; /* Timer dies in C2. */
59 int                     cpu_disable_c3_sleep = 0; /* Timer dies in C3. */
60
61 static void             setuptimer(void);
62 static void             loadtimer(sbintime_t now, int first);
63 static int              doconfigtimer(void);
64 static void             configtimer(int start);
65 static int              round_freq(struct eventtimer *et, int freq);
66
67 static sbintime_t       getnextcpuevent(int idle);
68 static sbintime_t       getnextevent(void);
69 static int              handleevents(sbintime_t now, int fake);
70
71 static struct mtx       et_hw_mtx;
72
73 #define ET_HW_LOCK(state)                                               \
74         {                                                               \
75                 if (timer->et_flags & ET_FLAGS_PERCPU)                  \
76                         mtx_lock_spin(&(state)->et_hw_mtx);             \
77                 else                                                    \
78                         mtx_lock_spin(&et_hw_mtx);                      \
79         }
80
81 #define ET_HW_UNLOCK(state)                                             \
82         {                                                               \
83                 if (timer->et_flags & ET_FLAGS_PERCPU)                  \
84                         mtx_unlock_spin(&(state)->et_hw_mtx);           \
85                 else                                                    \
86                         mtx_unlock_spin(&et_hw_mtx);                    \
87         }
88
89 static struct eventtimer *timer = NULL;
90 static sbintime_t       timerperiod;    /* Timer period for periodic mode. */
91 static sbintime_t       statperiod;     /* statclock() events period. */
92 static sbintime_t       profperiod;     /* profclock() events period. */
93 static sbintime_t       nexttick;       /* Next global timer tick time. */
94 static u_int            busy = 1;       /* Reconfiguration is in progress. */
95 static int              profiling;      /* Profiling events enabled. */
96
97 static char             timername[32];  /* Wanted timer. */
98 TUNABLE_STR("kern.eventtimer.timer", timername, sizeof(timername));
99
100 static int              singlemul;      /* Multiplier for periodic mode. */
101 SYSCTL_INT(_kern_eventtimer, OID_AUTO, singlemul, CTLFLAG_RWTUN, &singlemul,
102     0, "Multiplier for periodic mode");
103
104 static u_int            idletick;       /* Run periodic events when idle. */
105 SYSCTL_UINT(_kern_eventtimer, OID_AUTO, idletick, CTLFLAG_RWTUN, &idletick,
106     0, "Run periodic events when idle");
107
108 static int              periodic;       /* Periodic or one-shot mode. */
109 static int              want_periodic;  /* What mode to prefer. */
110 TUNABLE_INT("kern.eventtimer.periodic", &want_periodic);
111
112 struct pcpu_state {
113         struct mtx      et_hw_mtx;      /* Per-CPU timer mutex. */
114         u_int           action;         /* Reconfiguration requests. */
115         u_int           handle;         /* Immediate handle resuests. */
116         sbintime_t      now;            /* Last tick time. */
117         sbintime_t      nextevent;      /* Next scheduled event on this CPU. */
118         sbintime_t      nexttick;       /* Next timer tick time. */
119         sbintime_t      nexthard;       /* Next hardlock() event. */
120         sbintime_t      nextstat;       /* Next statclock() event. */
121         sbintime_t      nextprof;       /* Next profclock() event. */
122         sbintime_t      nextcall;       /* Next callout event. */
123         sbintime_t      nextcallopt;    /* Next optional callout event. */
124         int             ipi;            /* This CPU needs IPI. */
125         int             idle;           /* This CPU is in idle mode. */
126 };
127
128 static DPCPU_DEFINE(struct pcpu_state, timerstate);
129 DPCPU_DEFINE(sbintime_t, hardclocktime);
130
131 /*
132  * Timer broadcast IPI handler.
133  */
134 int
135 hardclockintr(void)
136 {
137         sbintime_t now;
138         struct pcpu_state *state;
139         int done;
140
141         if (doconfigtimer() || busy)
142                 return (FILTER_HANDLED);
143         state = DPCPU_PTR(timerstate);
144         now = state->now;
145         CTR3(KTR_SPARE2, "ipi  at %d:    now  %d.%08x",
146             curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
147         done = handleevents(now, 0);
148         return (done ? FILTER_HANDLED : FILTER_STRAY);
149 }
150
151 /*
152  * Handle all events for specified time on this CPU
153  */
154 static int
155 handleevents(sbintime_t now, int fake)
156 {
157         sbintime_t t, *hct;
158         struct trapframe *frame;
159         struct pcpu_state *state;
160         int usermode;
161         int done, runs;
162
163         CTR3(KTR_SPARE2, "handle at %d:  now  %d.%08x",
164             curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
165         done = 0;
166         if (fake) {
167                 frame = NULL;
168                 usermode = 0;
169         } else {
170                 frame = curthread->td_intr_frame;
171                 usermode = TRAPF_USERMODE(frame);
172         }
173
174         state = DPCPU_PTR(timerstate);
175
176         runs = 0;
177         while (now >= state->nexthard) {
178                 state->nexthard += tick_sbt;
179                 runs++;
180         }
181         if (runs) {
182                 hct = DPCPU_PTR(hardclocktime);
183                 *hct = state->nexthard - tick_sbt;
184                 if (fake < 2) {
185                         hardclock_cnt(runs, usermode);
186                         done = 1;
187                 }
188         }
189         runs = 0;
190         while (now >= state->nextstat) {
191                 state->nextstat += statperiod;
192                 runs++;
193         }
194         if (runs && fake < 2) {
195                 statclock_cnt(runs, usermode);
196                 done = 1;
197         }
198         if (profiling) {
199                 runs = 0;
200                 while (now >= state->nextprof) {
201                         state->nextprof += profperiod;
202                         runs++;
203                 }
204                 if (runs && !fake) {
205                         profclock_cnt(runs, usermode, TRAPF_PC(frame));
206                         done = 1;
207                 }
208         } else
209                 state->nextprof = state->nextstat;
210         if (now >= state->nextcallopt) {
211                 state->nextcall = state->nextcallopt = SBT_MAX;
212                 callout_process(now);
213         }
214
215         t = getnextcpuevent(0);
216         ET_HW_LOCK(state);
217         if (!busy) {
218                 state->idle = 0;
219                 state->nextevent = t;
220                 loadtimer(now, (fake == 2) &&
221                     (timer->et_flags & ET_FLAGS_PERCPU));
222         }
223         ET_HW_UNLOCK(state);
224         return (done);
225 }
226
227 /*
228  * Schedule binuptime of the next event on current CPU.
229  */
230 static sbintime_t
231 getnextcpuevent(int idle)
232 {
233         sbintime_t event;
234         struct pcpu_state *state;
235         u_int hardfreq;
236
237         state = DPCPU_PTR(timerstate);
238         /* Handle hardclock() events, skipping some if CPU is idle. */
239         event = state->nexthard;
240         if (idle) {
241                 hardfreq = (u_int)hz / 2;
242                 if (tc_min_ticktock_freq > 2
243 #ifdef SMP
244                     && curcpu == CPU_FIRST()
245 #endif
246                     )
247                         hardfreq = hz / tc_min_ticktock_freq;
248                 if (hardfreq > 1)
249                         event += tick_sbt * (hardfreq - 1);
250         }
251         /* Handle callout events. */
252         if (event > state->nextcall)
253                 event = state->nextcall;
254         if (!idle) { /* If CPU is active - handle other types of events. */
255                 if (event > state->nextstat)
256                         event = state->nextstat;
257                 if (profiling && event > state->nextprof)
258                         event = state->nextprof;
259         }
260         return (event);
261 }
262
263 /*
264  * Schedule binuptime of the next event on all CPUs.
265  */
266 static sbintime_t
267 getnextevent(void)
268 {
269         struct pcpu_state *state;
270         sbintime_t event;
271 #ifdef SMP
272         int     cpu;
273 #endif
274         int     c;
275
276         state = DPCPU_PTR(timerstate);
277         event = state->nextevent;
278         c = -1;
279 #ifdef SMP
280         if ((timer->et_flags & ET_FLAGS_PERCPU) == 0) {
281                 CPU_FOREACH(cpu) {
282                         state = DPCPU_ID_PTR(cpu, timerstate);
283                         if (event > state->nextevent) {
284                                 event = state->nextevent;
285                                 c = cpu;
286                         }
287                 }
288         }
289 #endif
290         CTR4(KTR_SPARE2, "next at %d:    next %d.%08x by %d",
291             curcpu, (int)(event >> 32), (u_int)(event & 0xffffffff), c);
292         return (event);
293 }
294
295 /* Hardware timer callback function. */
296 static void
297 timercb(struct eventtimer *et, void *arg)
298 {
299         sbintime_t now;
300         sbintime_t *next;
301         struct pcpu_state *state;
302 #ifdef SMP
303         int cpu, bcast;
304 #endif
305
306         /* Do not touch anything if somebody reconfiguring timers. */
307         if (busy)
308                 return;
309         /* Update present and next tick times. */
310         state = DPCPU_PTR(timerstate);
311         if (et->et_flags & ET_FLAGS_PERCPU) {
312                 next = &state->nexttick;
313         } else
314                 next = &nexttick;
315         now = sbinuptime();
316         if (periodic)
317                 *next = now + timerperiod;
318         else
319                 *next = -1;     /* Next tick is not scheduled yet. */
320         state->now = now;
321         CTR3(KTR_SPARE2, "intr at %d:    now  %d.%08x",
322             curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
323
324 #ifdef SMP
325         /* Prepare broadcasting to other CPUs for non-per-CPU timers. */
326         bcast = 0;
327         if ((et->et_flags & ET_FLAGS_PERCPU) == 0 && smp_started) {
328                 CPU_FOREACH(cpu) {
329                         state = DPCPU_ID_PTR(cpu, timerstate);
330                         ET_HW_LOCK(state);
331                         state->now = now;
332                         if (now >= state->nextevent) {
333                                 state->nextevent += SBT_1S;
334                                 if (curcpu != cpu) {
335                                         state->ipi = 1;
336                                         bcast = 1;
337                                 }
338                         }
339                         ET_HW_UNLOCK(state);
340                 }
341         }
342 #endif
343
344         /* Handle events for this time on this CPU. */
345         handleevents(now, 0);
346
347 #ifdef SMP
348         /* Broadcast interrupt to other CPUs for non-per-CPU timers. */
349         if (bcast) {
350                 CPU_FOREACH(cpu) {
351                         if (curcpu == cpu)
352                                 continue;
353                         state = DPCPU_ID_PTR(cpu, timerstate);
354                         if (state->ipi) {
355                                 state->ipi = 0;
356                                 ipi_cpu(cpu, IPI_HARDCLOCK);
357                         }
358                 }
359         }
360 #endif
361 }
362
363 /*
364  * Load new value into hardware timer.
365  */
366 static void
367 loadtimer(sbintime_t now, int start)
368 {
369         struct pcpu_state *state;
370         sbintime_t new;
371         sbintime_t *next;
372         uint64_t tmp;
373         int eq;
374
375         if (timer->et_flags & ET_FLAGS_PERCPU) {
376                 state = DPCPU_PTR(timerstate);
377                 next = &state->nexttick;
378         } else
379                 next = &nexttick;
380         if (periodic) {
381                 if (start) {
382                         /*
383                          * Try to start all periodic timers aligned
384                          * to period to make events synchronous.
385                          */
386                         tmp = now % timerperiod;
387                         new = timerperiod - tmp;
388                         if (new < tmp)          /* Left less then passed. */
389                                 new += timerperiod;
390                         CTR5(KTR_SPARE2, "load p at %d:   now %d.%08x first in %d.%08x",
391                             curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff),
392                             (int)(new >> 32), (u_int)(new & 0xffffffff));
393                         *next = new + now;
394                         et_start(timer, new, timerperiod);
395                 }
396         } else {
397                 new = getnextevent();
398                 eq = (new == *next);
399                 CTR4(KTR_SPARE2, "load at %d:    next %d.%08x eq %d",
400                     curcpu, (int)(new >> 32), (u_int)(new & 0xffffffff), eq);
401                 if (!eq) {
402                         *next = new;
403                         et_start(timer, new - now, 0);
404                 }
405         }
406 }
407
408 /*
409  * Prepare event timer parameters after configuration changes.
410  */
411 static void
412 setuptimer(void)
413 {
414         int freq;
415
416         if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
417                 periodic = 0;
418         else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
419                 periodic = 1;
420         singlemul = MIN(MAX(singlemul, 1), 20);
421         freq = hz * singlemul;
422         while (freq < (profiling ? profhz : stathz))
423                 freq += hz;
424         freq = round_freq(timer, freq);
425         timerperiod = SBT_1S / freq;
426 }
427
428 /*
429  * Reconfigure specified per-CPU timer on other CPU. Called from IPI handler.
430  */
431 static int
432 doconfigtimer(void)
433 {
434         sbintime_t now;
435         struct pcpu_state *state;
436
437         state = DPCPU_PTR(timerstate);
438         switch (atomic_load_acq_int(&state->action)) {
439         case 1:
440                 now = sbinuptime();
441                 ET_HW_LOCK(state);
442                 loadtimer(now, 1);
443                 ET_HW_UNLOCK(state);
444                 state->handle = 0;
445                 atomic_store_rel_int(&state->action, 0);
446                 return (1);
447         case 2:
448                 ET_HW_LOCK(state);
449                 et_stop(timer);
450                 ET_HW_UNLOCK(state);
451                 state->handle = 0;
452                 atomic_store_rel_int(&state->action, 0);
453                 return (1);
454         }
455         if (atomic_readandclear_int(&state->handle) && !busy) {
456                 now = sbinuptime();
457                 handleevents(now, 0);
458                 return (1);
459         }
460         return (0);
461 }
462
463 /*
464  * Reconfigure specified timer.
465  * For per-CPU timers use IPI to make other CPUs to reconfigure.
466  */
467 static void
468 configtimer(int start)
469 {
470         sbintime_t now, next;
471         struct pcpu_state *state;
472         int cpu;
473
474         if (start) {
475                 setuptimer();
476                 now = sbinuptime();
477         } else
478                 now = 0;
479         critical_enter();
480         ET_HW_LOCK(DPCPU_PTR(timerstate));
481         if (start) {
482                 /* Initialize time machine parameters. */
483                 next = now + timerperiod;
484                 if (periodic)
485                         nexttick = next;
486                 else
487                         nexttick = -1;
488                 CPU_FOREACH(cpu) {
489                         state = DPCPU_ID_PTR(cpu, timerstate);
490                         state->now = now;
491                         if (!smp_started && cpu != CPU_FIRST())
492                                 state->nextevent = SBT_MAX;
493                         else
494                                 state->nextevent = next;
495                         if (periodic)
496                                 state->nexttick = next;
497                         else
498                                 state->nexttick = -1;
499                         state->nexthard = next;
500                         state->nextstat = next;
501                         state->nextprof = next;
502                         state->nextcall = next;
503                         state->nextcallopt = next;
504                         hardclock_sync(cpu);
505                 }
506                 busy = 0;
507                 /* Start global timer or per-CPU timer of this CPU. */
508                 loadtimer(now, 1);
509         } else {
510                 busy = 1;
511                 /* Stop global timer or per-CPU timer of this CPU. */
512                 et_stop(timer);
513         }
514         ET_HW_UNLOCK(DPCPU_PTR(timerstate));
515 #ifdef SMP
516         /* If timer is global or there is no other CPUs yet - we are done. */
517         if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 || !smp_started) {
518                 critical_exit();
519                 return;
520         }
521         /* Set reconfigure flags for other CPUs. */
522         CPU_FOREACH(cpu) {
523                 state = DPCPU_ID_PTR(cpu, timerstate);
524                 atomic_store_rel_int(&state->action,
525                     (cpu == curcpu) ? 0 : ( start ? 1 : 2));
526         }
527         /* Broadcast reconfigure IPI. */
528         ipi_all_but_self(IPI_HARDCLOCK);
529         /* Wait for reconfiguration completed. */
530 restart:
531         cpu_spinwait();
532         CPU_FOREACH(cpu) {
533                 if (cpu == curcpu)
534                         continue;
535                 state = DPCPU_ID_PTR(cpu, timerstate);
536                 if (atomic_load_acq_int(&state->action))
537                         goto restart;
538         }
539 #endif
540         critical_exit();
541 }
542
543 /*
544  * Calculate nearest frequency supported by hardware timer.
545  */
546 static int
547 round_freq(struct eventtimer *et, int freq)
548 {
549         uint64_t div;
550
551         if (et->et_frequency != 0) {
552                 div = lmax((et->et_frequency + freq / 2) / freq, 1);
553                 if (et->et_flags & ET_FLAGS_POW2DIV)
554                         div = 1 << (flsl(div + div / 2) - 1);
555                 freq = (et->et_frequency + div / 2) / div;
556         }
557         if (et->et_min_period > SBT_1S)
558                 panic("Event timer \"%s\" doesn't support sub-second periods!",
559                     et->et_name);
560         else if (et->et_min_period != 0)
561                 freq = min(freq, SBT2FREQ(et->et_min_period));
562         if (et->et_max_period < SBT_1S && et->et_max_period != 0)
563                 freq = max(freq, SBT2FREQ(et->et_max_period));
564         return (freq);
565 }
566
567 /*
568  * Configure and start event timers (BSP part).
569  */
570 void
571 cpu_initclocks_bsp(void)
572 {
573         struct pcpu_state *state;
574         int base, div, cpu;
575
576         mtx_init(&et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
577         CPU_FOREACH(cpu) {
578                 state = DPCPU_ID_PTR(cpu, timerstate);
579                 mtx_init(&state->et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
580                 state->nextcall = SBT_MAX;
581                 state->nextcallopt = SBT_MAX;
582         }
583         periodic = want_periodic;
584         /* Grab requested timer or the best of present. */
585         if (timername[0])
586                 timer = et_find(timername, 0, 0);
587         if (timer == NULL && periodic) {
588                 timer = et_find(NULL,
589                     ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
590         }
591         if (timer == NULL) {
592                 timer = et_find(NULL,
593                     ET_FLAGS_ONESHOT, ET_FLAGS_ONESHOT);
594         }
595         if (timer == NULL && !periodic) {
596                 timer = et_find(NULL,
597                     ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
598         }
599         if (timer == NULL)
600                 panic("No usable event timer found!");
601         et_init(timer, timercb, NULL, NULL);
602
603         /* Adapt to timer capabilities. */
604         if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
605                 periodic = 0;
606         else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
607                 periodic = 1;
608         if (timer->et_flags & ET_FLAGS_C3STOP)
609                 cpu_disable_c3_sleep++;
610
611         /*
612          * We honor the requested 'hz' value.
613          * We want to run stathz in the neighborhood of 128hz.
614          * We would like profhz to run as often as possible.
615          */
616         if (singlemul <= 0 || singlemul > 20) {
617                 if (hz >= 1500 || (hz % 128) == 0)
618                         singlemul = 1;
619                 else if (hz >= 750)
620                         singlemul = 2;
621                 else
622                         singlemul = 4;
623         }
624         if (periodic) {
625                 base = round_freq(timer, hz * singlemul);
626                 singlemul = max((base + hz / 2) / hz, 1);
627                 hz = (base + singlemul / 2) / singlemul;
628                 if (base <= 128)
629                         stathz = base;
630                 else {
631                         div = base / 128;
632                         if (div >= singlemul && (div % singlemul) == 0)
633                                 div++;
634                         stathz = base / div;
635                 }
636                 profhz = stathz;
637                 while ((profhz + stathz) <= 128 * 64)
638                         profhz += stathz;
639                 profhz = round_freq(timer, profhz);
640         } else {
641                 hz = round_freq(timer, hz);
642                 stathz = round_freq(timer, 127);
643                 profhz = round_freq(timer, stathz * 64);
644         }
645         tick = 1000000 / hz;
646         tick_sbt = SBT_1S / hz;
647         tick_bt = sbttobt(tick_sbt);
648         statperiod = SBT_1S / stathz;
649         profperiod = SBT_1S / profhz;
650         ET_LOCK();
651         configtimer(1);
652         ET_UNLOCK();
653 }
654
655 /*
656  * Start per-CPU event timers on APs.
657  */
658 void
659 cpu_initclocks_ap(void)
660 {
661         sbintime_t now;
662         struct pcpu_state *state;
663         struct thread *td;
664
665         state = DPCPU_PTR(timerstate);
666         now = sbinuptime();
667         ET_HW_LOCK(state);
668         state->now = now;
669         hardclock_sync(curcpu);
670         spinlock_enter();
671         ET_HW_UNLOCK(state);
672         td = curthread;
673         td->td_intr_nesting_level++;
674         handleevents(state->now, 2);
675         td->td_intr_nesting_level--;
676         spinlock_exit();
677 }
678
679 /*
680  * Switch to profiling clock rates.
681  */
682 void
683 cpu_startprofclock(void)
684 {
685
686         ET_LOCK();
687         if (profiling == 0) {
688                 if (periodic) {
689                         configtimer(0);
690                         profiling = 1;
691                         configtimer(1);
692                 } else
693                         profiling = 1;
694         } else
695                 profiling++;
696         ET_UNLOCK();
697 }
698
699 /*
700  * Switch to regular clock rates.
701  */
702 void
703 cpu_stopprofclock(void)
704 {
705
706         ET_LOCK();
707         if (profiling == 1) {
708                 if (periodic) {
709                         configtimer(0);
710                         profiling = 0;
711                         configtimer(1);
712                 } else
713                 profiling = 0;
714         } else
715                 profiling--;
716         ET_UNLOCK();
717 }
718
719 /*
720  * Switch to idle mode (all ticks handled).
721  */
722 sbintime_t
723 cpu_idleclock(void)
724 {
725         sbintime_t now, t;
726         struct pcpu_state *state;
727
728         if (idletick || busy ||
729             (periodic && (timer->et_flags & ET_FLAGS_PERCPU))
730 #ifdef DEVICE_POLLING
731             || curcpu == CPU_FIRST()
732 #endif
733             )
734                 return (-1);
735         state = DPCPU_PTR(timerstate);
736         if (periodic)
737                 now = state->now;
738         else
739                 now = sbinuptime();
740         CTR3(KTR_SPARE2, "idle at %d:    now  %d.%08x",
741             curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
742         t = getnextcpuevent(1);
743         ET_HW_LOCK(state);
744         state->idle = 1;
745         state->nextevent = t;
746         if (!periodic)
747                 loadtimer(now, 0);
748         ET_HW_UNLOCK(state);
749         return (MAX(t - now, 0));
750 }
751
752 /*
753  * Switch to active mode (skip empty ticks).
754  */
755 void
756 cpu_activeclock(void)
757 {
758         sbintime_t now;
759         struct pcpu_state *state;
760         struct thread *td;
761
762         state = DPCPU_PTR(timerstate);
763         if (state->idle == 0 || busy)
764                 return;
765         if (periodic)
766                 now = state->now;
767         else
768                 now = sbinuptime();
769         CTR3(KTR_SPARE2, "active at %d:  now  %d.%08x",
770             curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
771         spinlock_enter();
772         td = curthread;
773         td->td_intr_nesting_level++;
774         handleevents(now, 1);
775         td->td_intr_nesting_level--;
776         spinlock_exit();
777 }
778
779 /*
780  * Change the frequency of the given timer.  This changes et->et_frequency and
781  * if et is the active timer it reconfigures the timer on all CPUs.  This is
782  * intended to be a private interface for the use of et_change_frequency() only.
783  */
784 void
785 cpu_et_frequency(struct eventtimer *et, uint64_t newfreq)
786 {
787
788         ET_LOCK();
789         if (et == timer) {
790                 configtimer(0);
791                 et->et_frequency = newfreq;
792                 configtimer(1);
793         } else
794                 et->et_frequency = newfreq;
795         ET_UNLOCK();
796 }
797
798 void
799 cpu_new_callout(int cpu, sbintime_t bt, sbintime_t bt_opt)
800 {
801         struct pcpu_state *state;
802
803         /* Do not touch anything if somebody reconfiguring timers. */
804         if (busy)
805                 return;
806         CTR6(KTR_SPARE2, "new co at %d:    on %d at %d.%08x - %d.%08x",
807             curcpu, cpu, (int)(bt_opt >> 32), (u_int)(bt_opt & 0xffffffff),
808             (int)(bt >> 32), (u_int)(bt & 0xffffffff));
809         state = DPCPU_ID_PTR(cpu, timerstate);
810         ET_HW_LOCK(state);
811
812         /*
813          * If there is callout time already set earlier -- do nothing.
814          * This check may appear redundant because we check already in
815          * callout_process() but this double check guarantees we're safe
816          * with respect to race conditions between interrupts execution
817          * and scheduling.
818          */
819         state->nextcallopt = bt_opt;
820         if (bt >= state->nextcall)
821                 goto done;
822         state->nextcall = bt;
823         /* If there is some other event set earlier -- do nothing. */
824         if (bt >= state->nextevent)
825                 goto done;
826         state->nextevent = bt;
827         /* If timer is periodic -- there is nothing to reprogram. */
828         if (periodic)
829                 goto done;
830         /* If timer is global or of the current CPU -- reprogram it. */
831         if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 || cpu == curcpu) {
832                 loadtimer(sbinuptime(), 0);
833 done:
834                 ET_HW_UNLOCK(state);
835                 return;
836         }
837         /* Otherwise make other CPU to reprogram it. */
838         state->handle = 1;
839         ET_HW_UNLOCK(state);
840 #ifdef SMP
841         ipi_cpu(cpu, IPI_HARDCLOCK);
842 #endif
843 }
844
845 /*
846  * Report or change the active event timers hardware.
847  */
848 static int
849 sysctl_kern_eventtimer_timer(SYSCTL_HANDLER_ARGS)
850 {
851         char buf[32];
852         struct eventtimer *et;
853         int error;
854
855         ET_LOCK();
856         et = timer;
857         snprintf(buf, sizeof(buf), "%s", et->et_name);
858         ET_UNLOCK();
859         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
860         ET_LOCK();
861         et = timer;
862         if (error != 0 || req->newptr == NULL ||
863             strcasecmp(buf, et->et_name) == 0) {
864                 ET_UNLOCK();
865                 return (error);
866         }
867         et = et_find(buf, 0, 0);
868         if (et == NULL) {
869                 ET_UNLOCK();
870                 return (ENOENT);
871         }
872         configtimer(0);
873         et_free(timer);
874         if (et->et_flags & ET_FLAGS_C3STOP)
875                 cpu_disable_c3_sleep++;
876         if (timer->et_flags & ET_FLAGS_C3STOP)
877                 cpu_disable_c3_sleep--;
878         periodic = want_periodic;
879         timer = et;
880         et_init(timer, timercb, NULL, NULL);
881         configtimer(1);
882         ET_UNLOCK();
883         return (error);
884 }
885 SYSCTL_PROC(_kern_eventtimer, OID_AUTO, timer,
886     CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
887     0, 0, sysctl_kern_eventtimer_timer, "A", "Chosen event timer");
888
889 /*
890  * Report or change the active event timer periodicity.
891  */
892 static int
893 sysctl_kern_eventtimer_periodic(SYSCTL_HANDLER_ARGS)
894 {
895         int error, val;
896
897         val = periodic;
898         error = sysctl_handle_int(oidp, &val, 0, req);
899         if (error != 0 || req->newptr == NULL)
900                 return (error);
901         ET_LOCK();
902         configtimer(0);
903         periodic = want_periodic = val;
904         configtimer(1);
905         ET_UNLOCK();
906         return (error);
907 }
908 SYSCTL_PROC(_kern_eventtimer, OID_AUTO, periodic,
909     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
910     0, 0, sysctl_kern_eventtimer_periodic, "I", "Enable event timer periodic mode");
911
912 #include "opt_ddb.h"
913
914 #ifdef DDB
915 #include <ddb/ddb.h>
916
917 DB_SHOW_COMMAND(clocksource, db_show_clocksource)
918 {
919         struct pcpu_state *st;
920         int c;
921
922         CPU_FOREACH(c) {
923                 st = DPCPU_ID_PTR(c, timerstate);
924                 db_printf(
925                     "CPU %2d: action %d handle %d  ipi %d idle %d\n"
926                     "        now %#jx nevent %#jx (%jd)\n"
927                     "        ntick %#jx (%jd) nhard %#jx (%jd)\n"
928                     "        nstat %#jx (%jd) nprof %#jx (%jd)\n"
929                     "        ncall %#jx (%jd) ncallopt %#jx (%jd)\n",
930                     c, st->action, st->handle, st->ipi, st->idle,
931                     (uintmax_t)st->now,
932                     (uintmax_t)st->nextevent,
933                     (uintmax_t)(st->nextevent - st->now) / tick_sbt,
934                     (uintmax_t)st->nexttick,
935                     (uintmax_t)(st->nexttick - st->now) / tick_sbt,
936                     (uintmax_t)st->nexthard,
937                     (uintmax_t)(st->nexthard - st->now) / tick_sbt,
938                     (uintmax_t)st->nextstat,
939                     (uintmax_t)(st->nextstat - st->now) / tick_sbt,
940                     (uintmax_t)st->nextprof,
941                     (uintmax_t)(st->nextprof - st->now) / tick_sbt,
942                     (uintmax_t)st->nextcall,
943                     (uintmax_t)(st->nextcall - st->now) / tick_sbt,
944                     (uintmax_t)st->nextcallopt,
945                     (uintmax_t)(st->nextcallopt - st->now) / tick_sbt);
946         }
947 }
948
949 #endif