]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_clocksource.c
MFC
[FreeBSD/FreeBSD.git] / sys / kern / kern_clocksource.c
1 /*-
2  * Copyright (c) 2010-2012 Alexander Motin <mav@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification, immediately at the beginning of the file.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 /*
31  * Common routines to manage event timers hardware.
32  */
33
34 #include "opt_device_polling.h"
35 #include "opt_kdtrace.h"
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/bus.h>
40 #include <sys/lock.h>
41 #include <sys/kdb.h>
42 #include <sys/ktr.h>
43 #include <sys/mutex.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/sched.h>
47 #include <sys/smp.h>
48 #include <sys/sysctl.h>
49 #include <sys/timeet.h>
50 #include <sys/timetc.h>
51
52 #include <machine/atomic.h>
53 #include <machine/clock.h>
54 #include <machine/cpu.h>
55 #include <machine/smp.h>
56
57 #ifdef KDTRACE_HOOKS
58 #include <sys/dtrace_bsd.h>
59 cyclic_clock_func_t     cyclic_clock_func = NULL;
60 #endif
61
62 int                     cpu_can_deep_sleep = 0; /* C3 state is available. */
63 int                     cpu_disable_deep_sleep = 0; /* Timer dies in C3. */
64
65 static void             setuptimer(void);
66 static void             loadtimer(struct bintime *now, int first);
67 static int              doconfigtimer(void);
68 static void             configtimer(int start);
69 static int              round_freq(struct eventtimer *et, int freq);
70
71 static void             getnextcpuevent(struct bintime *event, int idle);
72 static void             getnextevent(struct bintime *event);
73 static int              handleevents(struct bintime *now, int fake);
74 #ifdef SMP
75 static void             cpu_new_callout(int cpu, int ticks);
76 #endif
77
78 static struct mtx       et_hw_mtx;
79
80 #define ET_HW_LOCK(state)                                               \
81         {                                                               \
82                 if (timer->et_flags & ET_FLAGS_PERCPU)                  \
83                         mtx_lock_spin(&(state)->et_hw_mtx);             \
84                 else                                                    \
85                         mtx_lock_spin(&et_hw_mtx);                      \
86         }
87
88 #define ET_HW_UNLOCK(state)                                             \
89         {                                                               \
90                 if (timer->et_flags & ET_FLAGS_PERCPU)                  \
91                         mtx_unlock_spin(&(state)->et_hw_mtx);           \
92                 else                                                    \
93                         mtx_unlock_spin(&et_hw_mtx);                    \
94         }
95
96 static struct eventtimer *timer = NULL;
97 static struct bintime   timerperiod;    /* Timer period for periodic mode. */
98 static struct bintime   hardperiod;     /* hardclock() events period. */
99 static struct bintime   statperiod;     /* statclock() events period. */
100 static struct bintime   profperiod;     /* profclock() events period. */
101 static struct bintime   nexttick;       /* Next global timer tick time. */
102 static struct bintime   nexthard;       /* Next global hardlock() event. */
103 static u_int            busy = 0;       /* Reconfiguration is in progress. */
104 static int              profiling = 0;  /* Profiling events enabled. */
105
106 static char             timername[32];  /* Wanted timer. */
107 TUNABLE_STR("kern.eventtimer.timer", timername, sizeof(timername));
108
109 static int              singlemul = 0;  /* Multiplier for periodic mode. */
110 TUNABLE_INT("kern.eventtimer.singlemul", &singlemul);
111 SYSCTL_INT(_kern_eventtimer, OID_AUTO, singlemul, CTLFLAG_RW, &singlemul,
112     0, "Multiplier for periodic mode");
113
114 static u_int            idletick = 0;   /* Run periodic events when idle. */
115 TUNABLE_INT("kern.eventtimer.idletick", &idletick);
116 SYSCTL_UINT(_kern_eventtimer, OID_AUTO, idletick, CTLFLAG_RW, &idletick,
117     0, "Run periodic events when idle");
118
119 static u_int            activetick = 1; /* Run all periodic events when active. */
120 TUNABLE_INT("kern.eventtimer.activetick", &activetick);
121 SYSCTL_UINT(_kern_eventtimer, OID_AUTO, activetick, CTLFLAG_RW, &activetick,
122     0, "Run all periodic events when active");
123
124 static int              periodic = 0;   /* Periodic or one-shot mode. */
125 static int              want_periodic = 0; /* What mode to prefer. */
126 TUNABLE_INT("kern.eventtimer.periodic", &want_periodic);
127
128 struct pcpu_state {
129         struct mtx      et_hw_mtx;      /* Per-CPU timer mutex. */
130         u_int           action;         /* Reconfiguration requests. */
131         u_int           handle;         /* Immediate handle resuests. */
132         struct bintime  now;            /* Last tick time. */
133         struct bintime  nextevent;      /* Next scheduled event on this CPU. */
134         struct bintime  nexttick;       /* Next timer tick time. */
135         struct bintime  nexthard;       /* Next hardlock() event. */
136         struct bintime  nextstat;       /* Next statclock() event. */
137         struct bintime  nextprof;       /* Next profclock() event. */
138 #ifdef KDTRACE_HOOKS
139         struct bintime  nextcyc;        /* Next OpenSolaris cyclics event. */
140 #endif
141         int             ipi;            /* This CPU needs IPI. */
142         int             idle;           /* This CPU is in idle mode. */
143 };
144
145 static DPCPU_DEFINE(struct pcpu_state, timerstate);
146
147 #define FREQ2BT(freq, bt)                                               \
148 {                                                                       \
149         (bt)->sec = 0;                                                  \
150         (bt)->frac = ((uint64_t)0x8000000000000000  / (freq)) << 1;     \
151 }
152 #define BT2FREQ(bt)                                                     \
153         (((uint64_t)0x8000000000000000 + ((bt)->frac >> 2)) /           \
154             ((bt)->frac >> 1))
155
156 /*
157  * Timer broadcast IPI handler.
158  */
159 int
160 hardclockintr(void)
161 {
162         struct bintime now;
163         struct pcpu_state *state;
164         int done;
165
166         if (doconfigtimer() || busy)
167                 return (FILTER_HANDLED);
168         state = DPCPU_PTR(timerstate);
169         now = state->now;
170         CTR4(KTR_SPARE2, "ipi  at %d:    now  %d.%08x%08x",
171             curcpu, now.sec, (u_int)(now.frac >> 32),
172                              (u_int)(now.frac & 0xffffffff));
173         done = handleevents(&now, 0);
174         return (done ? FILTER_HANDLED : FILTER_STRAY);
175 }
176
177 /*
178  * Handle all events for specified time on this CPU
179  */
180 static int
181 handleevents(struct bintime *now, int fake)
182 {
183         struct bintime t;
184         struct trapframe *frame;
185         struct pcpu_state *state;
186         uintfptr_t pc;
187         int usermode;
188         int done, runs;
189
190         CTR4(KTR_SPARE2, "handle at %d:  now  %d.%08x%08x",
191             curcpu, now->sec, (u_int)(now->frac >> 32),
192                      (u_int)(now->frac & 0xffffffff));
193         done = 0;
194         if (fake) {
195                 frame = NULL;
196                 usermode = 0;
197                 pc = 0;
198         } else {
199                 frame = curthread->td_intr_frame;
200                 usermode = TRAPF_USERMODE(frame);
201                 pc = TRAPF_PC(frame);
202         }
203
204         state = DPCPU_PTR(timerstate);
205
206         runs = 0;
207         while (bintime_cmp(now, &state->nexthard, >=)) {
208                 bintime_addx(&state->nexthard, hardperiod.frac);
209                 runs++;
210         }
211         if (runs) {
212                 if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 &&
213                     bintime_cmp(&state->nexthard, &nexthard, >))
214                         nexthard = state->nexthard;
215                 if (fake < 2) {
216                         hardclock_cnt(runs, usermode);
217                         done = 1;
218                 }
219         }
220         runs = 0;
221         while (bintime_cmp(now, &state->nextstat, >=)) {
222                 bintime_addx(&state->nextstat, statperiod.frac);
223                 runs++;
224         }
225         if (runs && fake < 2) {
226                 statclock_cnt(runs, usermode);
227                 done = 1;
228         }
229         if (profiling) {
230                 runs = 0;
231                 while (bintime_cmp(now, &state->nextprof, >=)) {
232                         bintime_addx(&state->nextprof, profperiod.frac);
233                         runs++;
234                 }
235                 if (runs && !fake) {
236                         profclock_cnt(runs, usermode, pc);
237                         done = 1;
238                 }
239         } else
240                 state->nextprof = state->nextstat;
241
242 #ifdef KDTRACE_HOOKS
243         if (fake == 0 && cyclic_clock_func != NULL &&
244             state->nextcyc.sec != -1 &&
245             bintime_cmp(now, &state->nextcyc, >=)) {
246                 state->nextcyc.sec = -1;
247                 (*cyclic_clock_func)(frame);
248         }
249 #endif
250
251         getnextcpuevent(&t, 0);
252         if (fake == 2) {
253                 state->nextevent = t;
254                 return (done);
255         }
256         ET_HW_LOCK(state);
257         if (!busy) {
258                 state->idle = 0;
259                 state->nextevent = t;
260                 loadtimer(now, 0);
261         }
262         ET_HW_UNLOCK(state);
263         return (done);
264 }
265
266 /*
267  * Schedule binuptime of the next event on current CPU.
268  */
269 static void
270 getnextcpuevent(struct bintime *event, int idle)
271 {
272         struct bintime tmp;
273         struct pcpu_state *state;
274         int skip;
275
276         state = DPCPU_PTR(timerstate);
277         /* Handle hardclock() events. */
278         *event = state->nexthard;
279         if (idle || (!activetick && !profiling &&
280             (timer->et_flags & ET_FLAGS_PERCPU) == 0)) {
281                 skip = idle ? 4 : (stathz / 2);
282                 if (curcpu == CPU_FIRST() && tc_min_ticktock_freq > skip)
283                         skip = tc_min_ticktock_freq;
284                 skip = callout_tickstofirst(hz / skip) - 1;
285                 CTR2(KTR_SPARE2, "skip   at %d: %d", curcpu, skip);
286                 tmp = hardperiod;
287                 bintime_mul(&tmp, skip);
288                 bintime_add(event, &tmp);
289         }
290         if (!idle) { /* If CPU is active - handle other types of events. */
291                 if (bintime_cmp(event, &state->nextstat, >))
292                         *event = state->nextstat;
293                 if (profiling && bintime_cmp(event, &state->nextprof, >))
294                         *event = state->nextprof;
295         }
296 #ifdef KDTRACE_HOOKS
297         if (state->nextcyc.sec != -1 && bintime_cmp(event, &state->nextcyc, >))
298                 *event = state->nextcyc;
299 #endif
300 }
301
302 /*
303  * Schedule binuptime of the next event on all CPUs.
304  */
305 static void
306 getnextevent(struct bintime *event)
307 {
308         struct pcpu_state *state;
309 #ifdef SMP
310         int     cpu;
311 #endif
312         int     c, nonidle;
313
314         state = DPCPU_PTR(timerstate);
315         *event = state->nextevent;
316         c = curcpu;
317         nonidle = !state->idle;
318         if ((timer->et_flags & ET_FLAGS_PERCPU) == 0) {
319 #ifdef SMP
320                 if (smp_started) {
321                         CPU_FOREACH(cpu) {
322                                 if (curcpu == cpu)
323                                         continue;
324                                 state = DPCPU_ID_PTR(cpu, timerstate);
325                                 nonidle += !state->idle;
326                                 if (bintime_cmp(event, &state->nextevent, >)) {
327                                         *event = state->nextevent;
328                                         c = cpu;
329                                 }
330                         }
331                 }
332 #endif
333                 if (nonidle != 0 && bintime_cmp(event, &nexthard, >))
334                         *event = nexthard;
335         }
336         CTR5(KTR_SPARE2, "next at %d:    next %d.%08x%08x by %d",
337             curcpu, event->sec, (u_int)(event->frac >> 32),
338                              (u_int)(event->frac & 0xffffffff), c);
339 }
340
341 /* Hardware timer callback function. */
342 static void
343 timercb(struct eventtimer *et, void *arg)
344 {
345         struct bintime now;
346         struct bintime *next;
347         struct pcpu_state *state;
348 #ifdef SMP
349         int cpu, bcast;
350 #endif
351
352         /* Do not touch anything if somebody reconfiguring timers. */
353         if (busy)
354                 return;
355         /* Update present and next tick times. */
356         state = DPCPU_PTR(timerstate);
357         if (et->et_flags & ET_FLAGS_PERCPU) {
358                 next = &state->nexttick;
359         } else
360                 next = &nexttick;
361         binuptime(&now); 
362         if (periodic) { 
363                 *next = now;
364                 bintime_addx(next, timerperiod.frac); /* Next tick in 1 period. */
365         } else
366                 next->sec = -1; /* Next tick is not scheduled yet. */
367         state->now = now;
368         CTR4(KTR_SPARE2, "intr at %d:    now  %d.%08x%08x",
369             curcpu, (int)(now.sec), (u_int)(now.frac >> 32),
370                              (u_int)(now.frac & 0xffffffff));
371
372 #ifdef SMP
373         /* Prepare broadcasting to other CPUs for non-per-CPU timers. */
374         bcast = 0;
375         if ((et->et_flags & ET_FLAGS_PERCPU) == 0 && smp_started) {
376                 CPU_FOREACH(cpu) {
377                         state = DPCPU_ID_PTR(cpu, timerstate);
378                         ET_HW_LOCK(state);
379                         state->now = now;
380                         if (bintime_cmp(&now, &state->nextevent, >=)) {
381                                 state->nextevent.sec++;
382                                 if (curcpu != cpu) {
383                                         state->ipi = 1;
384                                         bcast = 1;
385                                 }
386                         }
387                         ET_HW_UNLOCK(state);
388                 }
389         }
390 #endif
391
392         /* Handle events for this time on this CPU. */
393         handleevents(&now, 0);
394
395 #ifdef SMP
396         /* Broadcast interrupt to other CPUs for non-per-CPU timers. */
397         if (bcast) {
398                 CPU_FOREACH(cpu) {
399                         if (curcpu == cpu)
400                                 continue;
401                         state = DPCPU_ID_PTR(cpu, timerstate);
402                         if (state->ipi) {
403                                 state->ipi = 0;
404                                 ipi_cpu(cpu, IPI_HARDCLOCK);
405                         }
406                 }
407         }
408 #endif
409 }
410
411 /*
412  * Load new value into hardware timer.
413  */
414 static void
415 loadtimer(struct bintime *now, int start)
416 {
417         struct pcpu_state *state;
418         struct bintime new;
419         struct bintime *next;
420         uint64_t tmp;
421         int eq;
422
423         if (timer->et_flags & ET_FLAGS_PERCPU) {
424                 state = DPCPU_PTR(timerstate);
425                 next = &state->nexttick;
426         } else
427                 next = &nexttick;
428         if (periodic) {
429                 if (start) {
430                         /*
431                          * Try to start all periodic timers aligned
432                          * to period to make events synchronous.
433                          */
434                         tmp = ((uint64_t)now->sec << 36) + (now->frac >> 28);
435                         tmp = (tmp % (timerperiod.frac >> 28)) << 28;
436                         new.sec = 0;
437                         new.frac = timerperiod.frac - tmp;
438                         if (new.frac < tmp)     /* Left less then passed. */
439                                 bintime_addx(&new, timerperiod.frac);
440                         CTR5(KTR_SPARE2, "load p at %d:   now %d.%08x first in %d.%08x",
441                             curcpu, now->sec, (u_int)(now->frac >> 32),
442                             new.sec, (u_int)(new.frac >> 32));
443                         *next = new;
444                         bintime_add(next, now);
445                         et_start(timer, &new, &timerperiod);
446                 }
447         } else {
448                 getnextevent(&new);
449                 eq = bintime_cmp(&new, next, ==);
450                 CTR5(KTR_SPARE2, "load at %d:    next %d.%08x%08x eq %d",
451                     curcpu, new.sec, (u_int)(new.frac >> 32),
452                              (u_int)(new.frac & 0xffffffff),
453                              eq);
454                 if (!eq) {
455                         *next = new;
456                         bintime_sub(&new, now);
457                         et_start(timer, &new, NULL);
458                 }
459         }
460 }
461
462 /*
463  * Prepare event timer parameters after configuration changes.
464  */
465 static void
466 setuptimer(void)
467 {
468         int freq;
469
470         if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
471                 periodic = 0;
472         else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
473                 periodic = 1;
474         singlemul = MIN(MAX(singlemul, 1), 20);
475         freq = hz * singlemul;
476         while (freq < (profiling ? profhz : stathz))
477                 freq += hz;
478         freq = round_freq(timer, freq);
479         FREQ2BT(freq, &timerperiod);
480 }
481
482 /*
483  * Reconfigure specified per-CPU timer on other CPU. Called from IPI handler.
484  */
485 static int
486 doconfigtimer(void)
487 {
488         struct bintime now;
489         struct pcpu_state *state;
490
491         state = DPCPU_PTR(timerstate);
492         switch (atomic_load_acq_int(&state->action)) {
493         case 1:
494                 binuptime(&now);
495                 ET_HW_LOCK(state);
496                 loadtimer(&now, 1);
497                 ET_HW_UNLOCK(state);
498                 state->handle = 0;
499                 atomic_store_rel_int(&state->action, 0);
500                 return (1);
501         case 2:
502                 ET_HW_LOCK(state);
503                 et_stop(timer);
504                 ET_HW_UNLOCK(state);
505                 state->handle = 0;
506                 atomic_store_rel_int(&state->action, 0);
507                 return (1);
508         }
509         if (atomic_readandclear_int(&state->handle) && !busy) {
510                 binuptime(&now);
511                 handleevents(&now, 0);
512                 return (1);
513         }
514         return (0);
515 }
516
517 /*
518  * Reconfigure specified timer.
519  * For per-CPU timers use IPI to make other CPUs to reconfigure.
520  */
521 static void
522 configtimer(int start)
523 {
524         struct bintime now, next;
525         struct pcpu_state *state;
526         int cpu;
527
528         if (start) {
529                 setuptimer();
530                 binuptime(&now);
531         }
532         critical_enter();
533         ET_HW_LOCK(DPCPU_PTR(timerstate));
534         if (start) {
535                 /* Initialize time machine parameters. */
536                 next = now;
537                 bintime_addx(&next, timerperiod.frac);
538                 if (periodic)
539                         nexttick = next;
540                 else
541                         nexttick.sec = -1;
542                 CPU_FOREACH(cpu) {
543                         state = DPCPU_ID_PTR(cpu, timerstate);
544                         state->now = now;
545                         state->nextevent = next;
546                         if (periodic)
547                                 state->nexttick = next;
548                         else
549                                 state->nexttick.sec = -1;
550                         state->nexthard = next;
551                         state->nextstat = next;
552                         state->nextprof = next;
553                         hardclock_sync(cpu);
554                 }
555                 busy = 0;
556                 /* Start global timer or per-CPU timer of this CPU. */
557                 loadtimer(&now, 1);
558         } else {
559                 busy = 1;
560                 /* Stop global timer or per-CPU timer of this CPU. */
561                 et_stop(timer);
562         }
563         ET_HW_UNLOCK(DPCPU_PTR(timerstate));
564 #ifdef SMP
565         /* If timer is global or there is no other CPUs yet - we are done. */
566         if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 || !smp_started) {
567                 critical_exit();
568                 return;
569         }
570         /* Set reconfigure flags for other CPUs. */
571         CPU_FOREACH(cpu) {
572                 state = DPCPU_ID_PTR(cpu, timerstate);
573                 atomic_store_rel_int(&state->action,
574                     (cpu == curcpu) ? 0 : ( start ? 1 : 2));
575         }
576         /* Broadcast reconfigure IPI. */
577         ipi_all_but_self(IPI_HARDCLOCK);
578         /* Wait for reconfiguration completed. */
579 restart:
580         cpu_spinwait();
581         CPU_FOREACH(cpu) {
582                 if (cpu == curcpu)
583                         continue;
584                 state = DPCPU_ID_PTR(cpu, timerstate);
585                 if (atomic_load_acq_int(&state->action))
586                         goto restart;
587         }
588 #endif
589         critical_exit();
590 }
591
592 /*
593  * Calculate nearest frequency supported by hardware timer.
594  */
595 static int
596 round_freq(struct eventtimer *et, int freq)
597 {
598         uint64_t div;
599
600         if (et->et_frequency != 0) {
601                 div = lmax((et->et_frequency + freq / 2) / freq, 1);
602                 if (et->et_flags & ET_FLAGS_POW2DIV)
603                         div = 1 << (flsl(div + div / 2) - 1);
604                 freq = (et->et_frequency + div / 2) / div;
605         }
606         if (et->et_min_period.sec > 0)
607                 panic("Event timer \"%s\" doesn't support sub-second periods!",
608                     et->et_name);
609         else if (et->et_min_period.frac != 0)
610                 freq = min(freq, BT2FREQ(&et->et_min_period));
611         if (et->et_max_period.sec == 0 && et->et_max_period.frac != 0)
612                 freq = max(freq, BT2FREQ(&et->et_max_period));
613         return (freq);
614 }
615
616 /*
617  * Configure and start event timers (BSP part).
618  */
619 void
620 cpu_initclocks_bsp(void)
621 {
622         struct pcpu_state *state;
623         int base, div, cpu;
624
625         mtx_init(&et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
626         CPU_FOREACH(cpu) {
627                 state = DPCPU_ID_PTR(cpu, timerstate);
628                 mtx_init(&state->et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
629 #ifdef KDTRACE_HOOKS
630                 state->nextcyc.sec = -1;
631 #endif
632         }
633 #ifdef SMP
634         callout_new_inserted = cpu_new_callout;
635 #endif
636         periodic = want_periodic;
637         /* Grab requested timer or the best of present. */
638         if (timername[0])
639                 timer = et_find(timername, 0, 0);
640         if (timer == NULL && periodic) {
641                 timer = et_find(NULL,
642                     ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
643         }
644         if (timer == NULL) {
645                 timer = et_find(NULL,
646                     ET_FLAGS_ONESHOT, ET_FLAGS_ONESHOT);
647         }
648         if (timer == NULL && !periodic) {
649                 timer = et_find(NULL,
650                     ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
651         }
652         if (timer == NULL)
653                 panic("No usable event timer found!");
654         et_init(timer, timercb, NULL, NULL);
655
656         /* Adapt to timer capabilities. */
657         if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
658                 periodic = 0;
659         else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
660                 periodic = 1;
661         if (timer->et_flags & ET_FLAGS_C3STOP)
662                 cpu_disable_deep_sleep++;
663
664         /*
665          * We honor the requested 'hz' value.
666          * We want to run stathz in the neighborhood of 128hz.
667          * We would like profhz to run as often as possible.
668          */
669         if (singlemul <= 0 || singlemul > 20) {
670                 if (hz >= 1500 || (hz % 128) == 0)
671                         singlemul = 1;
672                 else if (hz >= 750)
673                         singlemul = 2;
674                 else
675                         singlemul = 4;
676         }
677         if (periodic) {
678                 base = round_freq(timer, hz * singlemul);
679                 singlemul = max((base + hz / 2) / hz, 1);
680                 hz = (base + singlemul / 2) / singlemul;
681                 if (base <= 128)
682                         stathz = base;
683                 else {
684                         div = base / 128;
685                         if (div >= singlemul && (div % singlemul) == 0)
686                                 div++;
687                         stathz = base / div;
688                 }
689                 profhz = stathz;
690                 while ((profhz + stathz) <= 128 * 64)
691                         profhz += stathz;
692                 profhz = round_freq(timer, profhz);
693         } else {
694                 hz = round_freq(timer, hz);
695                 stathz = round_freq(timer, 127);
696                 profhz = round_freq(timer, stathz * 64);
697         }
698         tick = 1000000 / hz;
699         FREQ2BT(hz, &hardperiod);
700         FREQ2BT(stathz, &statperiod);
701         FREQ2BT(profhz, &profperiod);
702         ET_LOCK();
703         configtimer(1);
704         ET_UNLOCK();
705 }
706
707 /*
708  * Start per-CPU event timers on APs.
709  */
710 void
711 cpu_initclocks_ap(void)
712 {
713         struct bintime now;
714         struct pcpu_state *state;
715
716         state = DPCPU_PTR(timerstate);
717         binuptime(&now);
718         ET_HW_LOCK(state);
719         state->now = now;
720         hardclock_sync(curcpu);
721         handleevents(&state->now, 2);
722         if (timer->et_flags & ET_FLAGS_PERCPU)
723                 loadtimer(&now, 1);
724         ET_HW_UNLOCK(state);
725 }
726
727 /*
728  * Switch to profiling clock rates.
729  */
730 void
731 cpu_startprofclock(void)
732 {
733
734         ET_LOCK();
735         if (periodic) {
736                 configtimer(0);
737                 profiling = 1;
738                 configtimer(1);
739         } else
740                 profiling = 1;
741         ET_UNLOCK();
742 }
743
744 /*
745  * Switch to regular clock rates.
746  */
747 void
748 cpu_stopprofclock(void)
749 {
750
751         ET_LOCK();
752         if (periodic) {
753                 configtimer(0);
754                 profiling = 0;
755                 configtimer(1);
756         } else
757                 profiling = 0;
758         ET_UNLOCK();
759 }
760
761 /*
762  * Switch to idle mode (all ticks handled).
763  */
764 void
765 cpu_idleclock(void)
766 {
767         struct bintime now, t;
768         struct pcpu_state *state;
769
770         if (idletick || busy ||
771             (periodic && (timer->et_flags & ET_FLAGS_PERCPU))
772 #ifdef DEVICE_POLLING
773             || curcpu == CPU_FIRST()
774 #endif
775             )
776                 return;
777         state = DPCPU_PTR(timerstate);
778         if (periodic)
779                 now = state->now;
780         else
781                 binuptime(&now);
782         CTR4(KTR_SPARE2, "idle at %d:    now  %d.%08x%08x",
783             curcpu, now.sec, (u_int)(now.frac >> 32),
784                              (u_int)(now.frac & 0xffffffff));
785         getnextcpuevent(&t, 1);
786         ET_HW_LOCK(state);
787         state->idle = 1;
788         state->nextevent = t;
789         if (!periodic)
790                 loadtimer(&now, 0);
791         ET_HW_UNLOCK(state);
792 }
793
794 /*
795  * Switch to active mode (skip empty ticks).
796  */
797 void
798 cpu_activeclock(void)
799 {
800         struct bintime now;
801         struct pcpu_state *state;
802         struct thread *td;
803
804         state = DPCPU_PTR(timerstate);
805         if (state->idle == 0 || busy)
806                 return;
807         if (periodic)
808                 now = state->now;
809         else
810                 binuptime(&now);
811         CTR4(KTR_SPARE2, "active at %d:  now  %d.%08x%08x",
812             curcpu, now.sec, (u_int)(now.frac >> 32),
813                              (u_int)(now.frac & 0xffffffff));
814         spinlock_enter();
815         td = curthread;
816         td->td_intr_nesting_level++;
817         handleevents(&now, 1);
818         td->td_intr_nesting_level--;
819         spinlock_exit();
820 }
821
822 #ifdef KDTRACE_HOOKS
823 void
824 clocksource_cyc_set(const struct bintime *t)
825 {
826         struct bintime now;
827         struct pcpu_state *state;
828
829         state = DPCPU_PTR(timerstate);
830         if (periodic)
831                 now = state->now;
832         else
833                 binuptime(&now);
834
835         CTR4(KTR_SPARE2, "set_cyc at %d:  now  %d.%08x%08x",
836             curcpu, now.sec, (u_int)(now.frac >> 32),
837                              (u_int)(now.frac & 0xffffffff));
838         CTR4(KTR_SPARE2, "set_cyc at %d:  t  %d.%08x%08x",
839             curcpu, t->sec, (u_int)(t->frac >> 32),
840                              (u_int)(t->frac & 0xffffffff));
841
842         ET_HW_LOCK(state);
843         if (bintime_cmp(t, &state->nextcyc, ==)) {
844                 ET_HW_UNLOCK(state);
845                 return;
846         }
847         state->nextcyc = *t;
848         if (bintime_cmp(&state->nextcyc, &state->nextevent, >=)) {
849                 ET_HW_UNLOCK(state);
850                 return;
851         }
852         state->nextevent = state->nextcyc;
853         if (!periodic)
854                 loadtimer(&now, 0);
855         ET_HW_UNLOCK(state);
856 }
857 #endif
858
859 #ifdef SMP
860 static void
861 cpu_new_callout(int cpu, int ticks)
862 {
863         struct bintime tmp;
864         struct pcpu_state *state;
865
866         CTR3(KTR_SPARE2, "new co at %d:    on %d in %d",
867             curcpu, cpu, ticks);
868         state = DPCPU_ID_PTR(cpu, timerstate);
869         ET_HW_LOCK(state);
870         if (state->idle == 0 || busy) {
871                 ET_HW_UNLOCK(state);
872                 return;
873         }
874         /*
875          * If timer is periodic - just update next event time for target CPU.
876          * If timer is global - there is chance it is already programmed.
877          */
878         if (periodic || (timer->et_flags & ET_FLAGS_PERCPU) == 0) {
879                 tmp = hardperiod;
880                 bintime_mul(&tmp, ticks - 1);
881                 bintime_add(&tmp, &state->nexthard);
882                 if (bintime_cmp(&tmp, &state->nextevent, <))
883                         state->nextevent = tmp;
884                 if (periodic ||
885                     bintime_cmp(&state->nextevent, &nexttick, >=)) {
886                         ET_HW_UNLOCK(state);
887                         return;
888                 }
889         }
890         /*
891          * Otherwise we have to wake that CPU up, as we can't get present
892          * bintime to reprogram global timer from here. If timer is per-CPU,
893          * we by definition can't do it from here.
894          */
895         ET_HW_UNLOCK(state);
896         if (timer->et_flags & ET_FLAGS_PERCPU) {
897                 state->handle = 1;
898                 ipi_cpu(cpu, IPI_HARDCLOCK);
899         } else {
900                 if (!cpu_idle_wakeup(cpu))
901                         ipi_cpu(cpu, IPI_AST);
902         }
903 }
904 #endif
905
906 /*
907  * Report or change the active event timers hardware.
908  */
909 static int
910 sysctl_kern_eventtimer_timer(SYSCTL_HANDLER_ARGS)
911 {
912         char buf[32];
913         struct eventtimer *et;
914         int error;
915
916         ET_LOCK();
917         et = timer;
918         snprintf(buf, sizeof(buf), "%s", et->et_name);
919         ET_UNLOCK();
920         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
921         ET_LOCK();
922         et = timer;
923         if (error != 0 || req->newptr == NULL ||
924             strcasecmp(buf, et->et_name) == 0) {
925                 ET_UNLOCK();
926                 return (error);
927         }
928         et = et_find(buf, 0, 0);
929         if (et == NULL) {
930                 ET_UNLOCK();
931                 return (ENOENT);
932         }
933         configtimer(0);
934         et_free(timer);
935         if (et->et_flags & ET_FLAGS_C3STOP)
936                 cpu_disable_deep_sleep++;
937         if (timer->et_flags & ET_FLAGS_C3STOP)
938                 cpu_disable_deep_sleep--;
939         periodic = want_periodic;
940         timer = et;
941         et_init(timer, timercb, NULL, NULL);
942         configtimer(1);
943         ET_UNLOCK();
944         return (error);
945 }
946 SYSCTL_PROC(_kern_eventtimer, OID_AUTO, timer,
947     CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
948     0, 0, sysctl_kern_eventtimer_timer, "A", "Chosen event timer");
949
950 /*
951  * Report or change the active event timer periodicity.
952  */
953 static int
954 sysctl_kern_eventtimer_periodic(SYSCTL_HANDLER_ARGS)
955 {
956         int error, val;
957
958         val = periodic;
959         error = sysctl_handle_int(oidp, &val, 0, req);
960         if (error != 0 || req->newptr == NULL)
961                 return (error);
962         ET_LOCK();
963         configtimer(0);
964         periodic = want_periodic = val;
965         configtimer(1);
966         ET_UNLOCK();
967         return (error);
968 }
969 SYSCTL_PROC(_kern_eventtimer, OID_AUTO, periodic,
970     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
971     0, 0, sysctl_kern_eventtimer_periodic, "I", "Enable event timer periodic mode");